高考二轮复习三角函数专题第2讲.ppt

合集下载

三角函数:三角函数的图像与性质-高三数学二轮复习

三角函数:三角函数的图像与性质-高三数学二轮复习

(4)对称轴:ωx + =________.
(5)对称中心:ωx + =________.
试卷讲评课件
(6)值域:若已知三角函数y = Asin ωx + + B,且x ∈ [m, n]
①若ωx +
π
可以取到
2
+
π
2kπ和−
2
+ 2kπ,则Asin ωx + + B的最大
值为________,最小值为________;
2
2
A.1
B.2
= f x 的图象与直线
C.3
D.4
π
6
试卷讲评课件
例10.( ⋅辽宁·二模)已知函数f x = sin2x + 2 3cos2 x − 3,则下
列说法正确的是(
)
A.函数f x 的最小正周期为π
B.函数f x
π 3π
在区间[ , ]上单调递减
6 4
C.将函数f x
π
的图象向右平移 个单位长度,得到函数y
π
是y
6
π
,0
3
对称
上单调递增
= f x 图象的一条对称轴
)
试卷讲评课件
例12.( ⋅河北沧州·一模)已知函数f x = sin 2x +
且f x = f

3
函数,则(
)
A. =

π
2

− x ,若函数f x 向右平移a a>0 个单位长度后为偶
π

6
B.函数f x 在区间
π
C.a的最小值为
6

高考数学二轮复习 专题2 三角函数、三角变换、解三角形、平面向量 第一讲 三角函数的图象与性质 理-

高考数学二轮复习 专题2 三角函数、三角变换、解三角形、平面向量 第一讲 三角函数的图象与性质 理-

专题二 三角函数、三角变换、解三角形、平面向量第一讲 三角函数的图象与性质1.角的概念.(1)终边相同的角不一定相等,相等的角终边一定相同(填“一定”或“不一定”). (2)确定角α所在的象限,只要把角α表示为α=2k π+α0[k ∈Z,α0∈[0,2π)],判断出α0所在的象限,即为α所在象限.2.诱导公式.诱导公式是求三角函数值、化简三角函数的重要依据,其记忆口诀为:奇变偶不变,符号看象限.1.三角函数的定义:设α是一个任意大小的角,角α的终边与单位圆交于点P (x ,y ),则sin α=y ,cos α=x ,tan α=yx.2.同角三角函数的基本关系. (1)sin 2α+cos 2α=1. (2)tan α=sin αcos α.判断下面结论是否正确(请在括号中打“√”或“×”).(1)角α终边上点P 的坐标为⎝ ⎛⎭⎪⎫-12,32,那么sin α=32,cos α=-12;同理角α终边上点Q 的坐标为(x 0,y 0),那么sin α=y 0,cos α=x 0.(×)(2)锐角是第一象限角,反之亦然.(×) (3)终边相同的角的同一三角函数值相等.(√)(4)常函数f (x )=a 是周期函数,它没有最小正周期.(√) (5)y =cos x 在第一、二象限上是减函数.(×) (6)y =tan x 在整个定义域上是增函数.(×)1.(2015·某某卷)若sin α=-513,且α为第四象限角,则tan α的值等于(D )A.125 B .-125 C.512 D .-512解析:解法一:因为α为第四象限的角,故cos α=1-sin 2α=1-(-513)2=1213,所以tan α=sin αcos α=-5131213=-512. 解法二:因为α是第四象限角,且sin α=-513,所以可在α的终边上取一点P (12,-5),则tan α=y x =-512.故选D.2.已知α的终边经过点A (5a ,-12a ),其中a <0,则sin α的值为(B ) A .-1213 B.1213 C.513 D .-5133.(2014·新课标Ⅰ卷)在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝⎛⎭⎪⎫2x +π6,④y=tan ⎝⎛⎭⎪⎫2x -π4中,最小正周期为π的所有函数为(A ) A .①②③ B .①③④C .②④D .①③解析:①中函数是一个偶函数,其周期与y =cos 2x 相同,T =2π2=π;②中函数y =|cos x |的周期是函数y =cos x 周期的一半,即T =π;③T =2π2=π;④T =π2.故选A.4.(2015·某某卷)如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin(π6x +φ)+k .据此函数可知,这段时间水深(单位:m)的最大值为(C )A .5B .6C .8D .10解析:根据图象得函数的最小值为2,有-3+k =2,k =5,最大值为3+k =8.一、选择题1.若sin(α-π)=35,α为第四象限角,则tan α=(A )A .-34B .-43C.34D.43 解析:∵sin(α-π)=35,∴-sin α=35,sin α=-35.又∵α为第四象限角, ∴cos α= 1-sin 2α= 1-⎝ ⎛⎭⎪⎫-352=45, tan α=sin αcos α=-3545=-34.2. 定义在R 上的周期函数f (x ),周期T =2,直线x =2是它的图象的一条对称轴,且f (x )在[-3,-2]上是减函数,如果A ,B 是锐角三角形的两个内角,则(A )A .f (sin A )>f (cosB ) B .f (cos B )>f (sin A )C .f (sin A )>f (sin B )D .f (cos B )>f (cos A )解析:由题意知:周期函数f (x )在[-1,0]上是减函数,在[0,1]上是增函数.又因为A ,B 是锐角三角形的两个内角,A +B >π2,得:sin A >cos B ,故f (sin A )>f (cos B ).综上知选A.3.函数y =2sin ⎝⎛⎭⎪⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为(A )A .2- 3B .0C .-1D .-1- 3解析:用五点作图法画出函数y =2sin ⎝⎛⎭⎪⎫πx 6-π3(0≤x ≤9)的图象,注意0≤x ≤9知,函数的最大值为2,最小值为- 3.故选A.4. 把函数y =cos 2x +1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图象是(A )解析:y =cos 2x +1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的解析式为y =cos (x +1).故选A.5.(2015·新课标Ⅰ卷)函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为(D )A.⎝⎛⎭⎪⎫k π-14,k π+34,k ∈ZB.⎝⎛⎭⎪⎫2k π-14,2k π+34,k ∈Z C.⎝ ⎛⎭⎪⎫k -14,k +34,k ∈ZD.⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z 解析:由图象知周期T =2⎝ ⎛⎭⎪⎫54-14=2,∴2πω=2,∴ω=π.由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4,∴f (x )=cos ⎝⎛⎭⎪⎫πx +π4.由2k π<πx +π4<2k π+π,得2k -14<x <2k +34,k ∈Z ,∴f (x )的单调递减区间为⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z.故选D.6.已知函数f (x )=A sin(ωx +φ)(x ∈R,A >0,ω>0,|φ|<π2)的图象(部分)如图所示,则f (x )的解析式是(A )A .f (x )=2sin ⎝ ⎛⎭⎪⎫πx +π6(x ∈R)B .f (x )=2sin ⎝ ⎛⎭⎪⎫2πx +π6(x ∈R)C .f (x )=2sin ⎝ ⎛⎭⎪⎫πx +π3(x ∈R)D .f (x )=2sin ⎝⎛⎭⎪⎫2πx +π3(x ∈R) 解析:由图象可知其周期为:4⎝ ⎛⎭⎪⎫56-13=2,∵2πω=2,得ω=π,故只可能在A ,C 中选一个,又因为x =13时达到最大值,用待定系数法知φ=π6.二、填空题7.若sin θ=-45,tan θ>0,则cos θ=-35.8.已知角α的终边经过点(-4,3),则cos α=-45.解析:由题意可知x =-4,y =3,r =5,所以cos α=x r =-45.三、解答题9. (2014·某某卷)已知函数f (x )=2cos x (sin x +cos x ). (1)求f ⎝⎛⎭⎪⎫5π4的值;(2)求函数f (x )的最小正周期及单调递增区间.分析:思路一 直接将5π4代入函数式,应用三角函数诱导公式计算.(2)应用和差倍半的三角函数公式,将函数化简2sin ⎝ ⎛⎭⎪⎫2x +π4+1. 得到T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,解得k π-3π8≤x ≤k π+π8,k ∈Z.思路二 先应用和差倍半的三角函数公式化简函数f (x )=2sin x cos x +2cos 2x =2sin ⎝⎛⎭⎪⎫2x +π4+1.(1)将5π4代入函数式计算;(2)T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,解得k π-3π8≤x ≤k π+π8,k ∈Z.解析:解法一 (1)f ⎝⎛⎭⎪⎫5π4=2cos 5π4⎝ ⎛⎭⎪⎫sin 5π4+cos 5π4=-2cos π4⎝ ⎛⎭⎪⎫-sin π4-cos π4=2.(2)因为f (x )=2sin x cos x +2cos 2x =sin 2x +cos 2x +1 =2sin ⎝ ⎛⎭⎪⎫2x +π4+1. 所以T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z ,所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z.解法二 因为f (x )=2sin x cos x +2cos 2x =sin 2x +cos 2x +1 =2sin ⎝ ⎛⎭⎪⎫2x +π4+1.(1)f ⎝⎛⎭⎪⎫5π4=2sin 11π4+1=2sin π4+1=2. (2)T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z ,所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z.10.函数f (x )=A sin ⎝ ⎛⎭⎪⎫ωx -π6+1(A >0,ω>0)的最大值为3, 其图象相邻两条对称轴之间的距离为π2.(1)求函数f (x )的解析式;word(2)设α∈⎝ ⎛⎭⎪⎫0,π2,则f ⎝ ⎛⎭⎪⎫α2=2,求α的值. 解析:(1)∵函数f (x )的最大值为3,∴A +1=3,即A =2.∵函数图象的相邻两条对称轴之间的距离为π2, ∴最小正周期为 T =π,∴ω=2,故函数f (x )的解析式为y =2sin ⎝ ⎛⎭⎪⎫2x -π6+1. (2)∵f ⎝ ⎛⎭⎪⎫α2=2sin ⎝⎛⎭⎪⎫α-π6+1=2, 即sin ⎝⎛⎭⎪⎫α-π6=12, ∵0<α<π2,∴-π6<α-π6<π3. ∴α-π6=π6,故α=π3. 11.(2015·卷)已知函数f (x )=2sin x 2cos x 2-2sin 2x 2. (1)求f (x )的最小正周期;(2)求f (x )在区间[-π,0]上的最小值.解析:(1)由题意得f (x )=22sin x -22(1-cos x )=sin ⎝ ⎛⎭⎪⎫x +π4-22,所以f (x )的最小正周期为2π.(2)因为-π≤x ≤0,所以-3π4≤x +π4≤π4. 当x +π4=-π2,即x =-3π4时,f (x )取得最小值. 所以f (x )在区间[-π,0]上的最小值为f ⎝ ⎛⎭⎪⎫-3π4=-1-22.。

二轮复习Ⅰ2小题考法——三角函数的图象与性质课件(47张)

二轮复习Ⅰ2小题考法——三角函数的图象与性质课件(47张)

解析:根据图象的最低点,得A= 2,设函数的最小正周期为T,则T4=71π2-
π 3

π 4
,所以T=π=
2π ω
,所以ω=2,f(x)=
2 sin(2x+φ).根据点 71π2,-
2
在f(x)的图象上,得φ=2kπ+π3(k∈Z ),因为|φ|<π2,所以φ=π3,所以f(x)= 2
sin2x+π3.又f(x)= 2sin2x+π3= 2cosπ2-2x-π3= 2cosπ6-2x,因此A、 B正确.
的值为
()
1 A.2
B.-12
C.-
3 2
3 D. 2
解析:因为 tan43π=tanπ+π3=tanπ3= 3, sin-167π=sin-2π-π+π6=sin-π+π6=-sinπ-π6=-sinπ6=-12, 即 2sin-167π=-1, 所以 P( 3,-1),
所以 cos θ= 32+3 -12= 23.故选 D. 答案:D
5.(2021·北京高考)若 P(cos θ,sin θ)与 Qcosθ+π6,sinθ+π6关于 y 轴对称,
写出一个符合题意的 θ 值________.
π
解析:点
P,Q
都在单位圆上,θ
可取π2-62=51π2θ=51π2+kπ,k∈Z
.
答案:51π2(答案不唯一)
1.三角函数的定义
设 α 是一个任意角,它的终边与单位圆交于点 P(x,y),则 sin α=y,cos
间为kπ+1π2,kπ+71π2(k∈Z ),D错误. 答案:AB
命题点三 三角函数的性质及应用
方法例解
[典例] (1)已知函数y=tan(ωx+φ)ω>0,|φ|<π2的最小正周期为π2,其图

备战2024高考数学二轮复习讲义第二讲-转化思想在解三角形中的应用

备战2024高考数学二轮复习讲义第二讲-转化思想在解三角形中的应用

第2讲转化思想在解三角形中的应用转化思想是高中生必备的灵活性思维方式,也是解决数学问题的有效途径之一,其要点在于将陌生的问题情形转化为熟悉的情形,将复杂、抽象的数学问题简单化、直观化,或从不同角度切入以分析问题,逐步探索出解决问题的有效方法。

解三角形作为高中数学教学的重要内容之一,对于学生数学思维品质有着较高要求,需要学生运用三角形相关知识,结合已有条件求出三角形的三个边或三个角,其中便涉及到对转化思想的运用,例如将题干内的抽象语言转化为直观的图形、“爪型”问题的相关求解、边角互化的应用及三角形内角转化在解三角形中都有广泛的重要应用,而本文会重点就转化思想在解三角形中的几类应用展开详细讲解。

【应用一】转化思想在解三角形边角互化中的应用形如我们在学习解三角形时,会学习正弦定理及其变化的相关应用,对于基础型的“对边对角”类型,我们可以利用正弦定理直接求解,但有时也会遇到形如“cos cos sin b C c B a A +=、cos sin 0a C C b c --=、222sin sin sin sin sin A C A C B ++=、()()2sin sin sin sin sin A B A B C +-=”等类型的等式来求对应角的问题,那么此时我们该如何求解呢?我们不妨重新学习一下正弦定理,基本公式为R Cc B b A a 2sin sin sin ===(其中R 为ABC ∆外接圆的半径),可变形为①CR c B R b A R a sin 2,sin 2,sin 2===②,2sin ,2sin ,2sin Rc C R b B R a A ===③CB A c b a sin :sin :sin ::=其实上面3个变形已经解释了边角互化的本质,即R 2能否被抵消掉,能同时被抵消则可以实现边角互化。

我们在做题过程中遇见“边是一次”时,通常边化角;遇见“正弦乘积是二次或边与正弦乘积是二次”时,通常角化边后用余弦定理求解;例如下面这两道例题:本题是模考或高考中解三角形较常规的题型,解题关键突破口在于利用正弦定理进行边角互化求角,通过刚才分析,我们发现这是边为一次的齐次类型,我们可以边化角,即得到sin cos sin sin sin A B A B B C =+,此时我们发现有三个角,于是我们可以利用三角形内角和为︒180,进行角度转化,那么要替换哪个角呢?通过观察我们发现,B A 、角的正余弦值是乘积关系,于是我们可以替换C 角,即()sin cos sin sin sin A B A B B A B =++1cos A A =+,利用辅助角公式化简即可求值。

备战2024高考数学二轮复习讲义第二讲-整体思想在三角函数中的应用

备战2024高考数学二轮复习讲义第二讲-整体思想在三角函数中的应用

第2讲整体思想在三角函数中的应用“整体思想”是高中数学的一类最基本、最常用的数学思想。

整体思想要求我们在处理数学问题时,将需要解决的问题视为一个整体,从不同侧面、不同角度,全面地分析问题的整体形式、整体结构,或对整体结构作适当调整、变形,从而达到找出解题思路或简便方法的目的。

运用整体的思想方法解题,在思维方向上,既有正向的,也有逆向的,在思维形态上,既有集中的,也有发散的,既有直观的,也有抽象的。

运用整体的思想方法解题,常与换元法结合起来,对题目进行整体观察、整体变形、整体配对、整体换元、整体代入,在运用整体的思想进行转化问题时一定要注意等价性。

三角函数是高考的重点与难点,公式相对较多,应用比较灵活,不少学生由于公式使用不恰当,常常陷入纷繁的运算中,在解答某些函数题的时候,若能仔细观察题目,注意与已知条件的联系,实现等价转化,采用整体思想进行求解,往往能起到很好的效果。

例如整体思想在正切函数定义域、在三角函数单调性、对称性、值域,在给值求值问题中都有广泛的重要应用。

而本文会重点就整体思想在三角函数中的几类应用展开详细讲解。

【应用一】整体思想在已知x x cos sin ±求解x x cos sin 或x 2cos 中的应用我们在学习三角函数的概念及同角三角函数的基本关系,诱导公式及三角恒等变换时,会遇到给值求值的试题,有时待求的给值求值会比较好化简,可以拼凑角或借助同角关系求解,但有时也会遇到这样一类题,给定x x cos sin ±的值,待求x x cos sin 或x 2cos 的值,常规利用同角三角函数及恒等变换转化也可以求解,解题思路为:①第一步:对原方程“M x x =±cos sin ”平方得到ααcos sin 的值或α2sin 的值②第二步:对待求式子进行平方,进而代入第一步ααcos sin 的值,结合角度象限范围求解x x cos sin 的值③第三步:利用()()αααααsin cos sin cos 2cos -+=即可求解此方法解题时稍过于繁琐,那有没有简洁一点的解题方法呢?我们不妨先来证明一个恒等式()()2sin cos sin cos 22=-++αααα,证明:()ααααcos sin 21sin cos 2+=+,()ααααcos sin 21sin cos 2-=-,相加可得()()2sin cos sin cos 22=-++αααα,而此公式就是整体思想的应用,可以做到“知一求一”,也就是说,在后续学习中,再有给定x x cos sin ±的值,待求x x cos sin 或x 2cos 此类题型,我们都可以用整体思想来求解,例如下面这道例题:通过观察及上述方法介绍的学习,本题用常规方法计算稍显繁琐,我们可以直接使用整体思想来求解,从而达到提升解题能力的效果【应用二】整体思想在三角函数求单调性、对称轴及对称中心的应用我们在学习三角函数图象与性质及三角恒等变换综合时,会遇到这样一类题,给出对应的三角函数的解析式,求解三角函数的单调性和对称性。

【走向高考】2015高考数学(通用版)二轮复习课件 专题2 第2讲 三角变换与解三角形

【走向高考】2015高考数学(通用版)二轮复习课件 专题2 第2讲 三角变换与解三角形

而 b2+c2≥2b c ,∴b c +4≥2b c ,∴b c ≤4 (当 且 仅 当 等 号 成 立 ), 1 3 3 所 以 S△ABC=2b cs n i A= 4 b c ≤ 4 ×4= 3, 当△ABC 的 面 积 取 最 大 值 时 , b=c.
b=c 时
π 又 A=3, 故 此 时 △ABC 为 等 边 三 角 形 .
3.三角变换的基本策略: (1)1的变换;(2)切化弦;(3)升 降次;(4)引入辅助角;(5)角的变换与项的分拆.
专题二 第二讲
走向高考 ·二轮专题复习 ·新课标版 ·数学
三角形形状的判定
(文)已知向量
1 m=sinA,2与
n=(3,sinA+ 3
cosA)共线,其中 A 是△ABC 的内角. (1)求角 A 的大小; (2)若 BC=2,求△ABC 的面积 S 的最大值,并判断 S 取得 最大值时△ABC 的形状.
专题二 第二讲
走向高考 ·二轮专题复习 ·新课标版 ·数学
2. 倍 角 公 式 ( 1 ) s n i2 ( 2 ) c o s 2 ( 3 a ) tn 2 α=2 s n i αc o s α; α=c o s 2α-s n i 2α=2 c o s 2 a tn α α= . 1-a tn 2α
1-c o s α s n i α α = s 2=1+c n i α . o s α
专题二 第二讲ห้องสมุดไป่ตู้
走向高考 ·二轮专题复习 ·新课标版 ·数学
4.正 弦 定 理 接 圆 的 直 径 s n i A=s n i B=s n i C=2R(2R 为△ABC 外 5.余 弦 定 理 a2=b2+c2-2b cc o s A, b2=a2+c2-2a cc o s B, c2=a2+b2-2a bc o s C. a b c ).

2023届高考二轮总复习课件数学(理)第2讲 高考客观题速解技巧

2023届高考二轮总复习课件数学(理)第2讲 高考客观题速解技巧
越好)进行探求,从而清晰、快捷地得到正确的答案,即通过对特殊情况的
研究来判断一般规律,从而“小题小做”或“小题巧做”.
2.当题目的已知条件中含有某些不确定的量时,可针对题目中变化的不定
量选取一些符合条件的特殊值(或特殊函数、特殊角、特殊数列、特殊图
形、图形特殊位置、特殊点、特殊方程、特殊模型等)进行处理,从而得出

(1-e )
)
答案 (1)C
(2)D
(3)A
解析 (1)因为α是第二象限角,所以cos α<0,sin α>0,tan α<0,故选项ABC都错,
故选C.
(2)由题意可知,a·
b=|a|·
|b|cos
对于 A,(a+2b)·
b=a·
b+2b
1
60°= .
2
5
= ≠0,不符合题意;
2
解析法
例 4(1)(2022·陕西榆林二模)已知||=| |=2,||=1,则|+3|=(
A.2
B.4
C. 10
D. 15
(2)(2022·山东济宁一模)在边长为6的菱形ABCD中,A=
π
3
,现将△ABD沿
BD折起,当三棱锥A-BCD的体积最大时,三棱锥A-BCD的外接球的表面积
A.cos α>0
B.sin α<0
C.sin 2α<0
D.tan α>0
)
(2)(2020·全国Ⅱ·文5)已知单位向量a,b的夹角为60°,则在下列向量中,与b
垂直的是(
)
A.a+2b B.2a+b
C.a-2b D.2a-b
e + 1

微专题 三角函数中ω的求解方法 2023高考数学二轮复习课件

微专题  三角函数中ω的求解方法 2023高考数学二轮复习课件
目录
设函数f(x)=4cosωx-π6sin ω1x-cos(2ωx+π),其中ω>0.若f(x)在区间-32π,π2上
为增函数,则ω的最大值为____6____.
解析:易得f(x)=(2 3cos ωx+2sin ωx)sin ωx+cos 2ωx= 3sin 2ωx+2sin2 ωx+cos 2
ωx= 3 sin 2ωx+1-cos 2ωx+cos 2ωx= 3 sin 2ωx+1.因为y=sin x在每个闭区间
2kπ-π2,2kπ+π2 (k∈Z )上为增函数,故f(x)= 3 sin 2ωx+1(ω>0)在每个闭区间
kωπ-4πω,kωπ+4πω
(k∈Z )上为增函数.依题意,对某个k∈Z ,
A.83,136
B.4,136
C.4,230
D.38,230
(B )
目录
解析 令f(x)=2sin(ωx+φ)-1=0,则原问题
转化为sin(ωx+φ)=
1 2
在区间
π4,34π
上至少有
2个根,至多有3个根.如图为y=sin x的部分
图象,由图可知,若sin x=12,则x=π6或x=56π或x=136π或x=176π,若sin x=
微专题 三角函数中ω的求解方法
目录
CONTENTS
01 类型1 利用对称中心与对称轴间的距离求解 02 类型2 利用特殊点的坐标求解 03 类型3 利用题设区间长度与周期的关系求解 04 类型4 结合三角函数的单调性求解 05 类型5 利用三角函数的零点求解
在三角函数的图象与性质中,ω的求解是近年高考的一个热点内 容,但因其求法复杂,涉及的知识点多,历来是我们复习中的难点; 本文整理了以下几种ω的求法,以供参考.

高考数学(文)二轮复习专题一 三角函数和平面向量 第2讲 平面向量、解三角形 Word版含答案

高考数学(文)二轮复习专题一 三角函数和平面向量 第2讲 平面向量、解三角形 Word版含答案

第2讲 平面向量、解三角形【课前热身】第2讲 平面向量、解三角形(本讲对应学生用书第4~6页)1.(必修4 P76习题7改编)在矩形ABCD 中,O 是对角线的交点,若BC u u u r =e 1,DC u u u r =e 2,则OC u u u r= .【答案】12(e 1+e 2)【解析】因为O 是矩形ABCD 对角线的交点,BCu u u r =e 1,DCu u u r =e 2,所以OCu u u r =12(BC u u u r +DC u u u r)=12(e 1+e 2).2.(必修4 P90习题19改编)已知向量a =(6,-3),b =(2,x+1),若a ⊥b ,则实数x= . 【答案】3【解析】因为a ⊥b ,所以a ·b =0,所以12-3x-3=0,解得x=3.3.(必修5 P10练习2改编)在锐角三角形ABC 中,设角A ,B 所对的边分别为a ,b.若2a sin B=3b ,则角A= .【答案】π3【解析】在△ABC 中,由正弦定理及已知得2sin A·sin B=3sin B ,因为B 为△ABC的内角,所以sin B ≠0,所以sinA=32.又因为△ABC 为锐角三角形,所以A ∈π02⎛⎫ ⎪⎝⎭,,所以A=π3.4.(必修4 P80例5改编)已知向量a =(1,0),b =(2,1),则当k= 时,向量k a -b 与a +3b 平行.【答案】-13【解析】由题设知向量a 与b 不平行,因为向量k a -b 与a +3b 平行,所以1k =-13,即k=-13.5.(必修5 P16习题1(3)改编)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a=7,b=43,c=13,则△ABC 最小的内角为 .【答案】π6【解析】因为13<43<7,所以C<B<A ,又因为cosC=222-2a b c ab +=2743⨯⨯=32,所以C=π6.【课堂导学】平面向量与三角函数综合例1 (2016·淮安5月信息卷)已知向量m =(cos α,sin α),n =(3,-1),α∈(0,π).(1)若m ⊥n ,求角α的大小; (2)求|m +n |的最小值.【解答】(1)因为m =(cos α,sin α),n =(3,-1),且m ⊥n ,所以3cos α-sin α=0,即tan α=3.又因为α∈(0,π),所以α=π3.(2)因为m +n =(cos α+3,sin α-1),所以|m +n |=22(cos 3)(sin -1)αα++=523cos -2sin αα+=π54cos 6α⎛⎫++ ⎪⎝⎭. 因为α∈(0,π),所以α+ππ7π666⎛⎫∈ ⎪⎝⎭,,故当α+π6=π,即α=5π6时,|m +n |取得最小值1.正弦定理、余弦定理的应用例2 (2016·苏州暑假测试)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c.已知sin2-2A B+sin A sin B=22+.(1)求角C 的大小;(2)若b=4,△ABC 的面积为6,求c 的值.【解答】(1)sin2-2A B+sin A sin B=1-cos(-)2A B+2sin sin2A B=1-cos cos-sin sin2A B A B+2sin sin2A B=1-cos cos sin sin2A B A B+=1-(cos cos-sin sin)2A B A B=1-cos()2A B+=1-cos(π-)2C=1cos2C+=22+,所以cos C=22.又0<C<π,所以C=π4.(2)因为S=12ab sin C=12a×4×sinπ4=2a=6,所以a=32.因为c2=a2+b2-2ab cos C=(32)2+42-2×32×4×22=10,所以c=10.变式1(2016·南通一调)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知(a+b-c)(a+b+c)=ab.(1)求角C的大小;(2)若c=2a cos B,b=2,求△ABC的面积.【解答】(1)在△ABC中,由(a+b-c)(a+b+c)=ab,得222-2a b cab+=-12,即cosC=-12.因为0<C<π,所以C=2π3.(2)方法一:因为c=2a cos B,由正弦定理,得sin C=2sin A cos B.因为A+B+C=π,所以sin C=sin(A+B ),所以sin(A+B )=2sin A cos B ,即sin A cos B-cos A sin B=0, 所以sin(A-B )=0.又-π3<A-B<π3,所以A-B=0,即A=B ,所以a=b=2. 所以△ABC 的面积为S △ABC =12ab sin C=12×2×2×sin 2π3=3.方法二:由c=2a cos B 及余弦定理,得c=2a×222-2a c b ac +,化简得a=b ,所以△ABC 的面积为S △ABC =12ab sin C=12×2×2×sin 2π3=3.变式2 (2016·南通、扬州、淮安、宿迁、泰州二调)在斜三角形ABC 中,tan A+tan B+tan A tan B=1.(1)求角C 的大小; (2)若A=15°,2,求△ABC 的周长.【解答】(1)因为tan A+tan B+tan A tan B=1, 即tan A+tan B=1-tan A tan B.因为在斜三角形ABC 中,1-tan A tan B ≠0,所以tan(A+B )=tan tan 1-tan tan A BA B +=1,即tan(180°-C )=1,tan C=-1. 因为0°<C<180°,所以C=135°.(2)在△ABC 中,A=15°,C=135°,则B=180°-A-C=30°.由正弦定理sin BC A =sin CAB =sin ABC ,得sin15BC o =°sin30CA=2=2,故BC=2sin 15°=2sin(45°-30°)=2(sin 45°cos 30°-cos 45°sin 30°)=6-2 2,CA=2sin 30°=1.所以△ABC的周长为AB+BC+CA=2+1+6-22=2622++.平面向量与解三角形综合例3(2016·无锡期末)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知向量a=(sin B-sin C,sin C-sin A),b=(sin B+sin C,sin A),且a⊥b.(1)求角B的大小;(2)若b=c·cos A,△ABC的外接圆的半径为1,求△ABC的面积.【解答】(1)因为a⊥b,所以a·b=0,即sin2B-sin2C+sin A(sin C-sin A)=0,即sin A sin C=sin2A+sin2C-sin2B,由正弦定理得ac=a2+c2-b2,所以cos B=222-2a c bac+=12.因为B∈(0,π),所以B=π3.(2)因为c·cos A=b,所以bc=222-2b c abc+,即b2=c2-a2,又ac=a2+c2-b2,b=2R sin3,解得a=1,c=2.所以S△ABC =12ac sin B=3.变式(2016·苏锡常镇二调)在△ABC中,内角A,B,C的对边分别是a,b,c,已知向量m=(cos B,cos C),n=(4a-b,c),且m∥n.(1)求cos C的值;(2)若c=3,△ABC的面积S=15,求a,b的值.【解答】(1)因为m∥n,所以c cos B=(4a-b)cos C,由正弦定理,得sin C cos B=(4sin A-sin B)cos C,化简得sin(B+C)=4sin A cos C.因为A+B+C=π,所以sin(B+C)=sin A.又因为A∈(0,π),所以sin A≠0,所以cos C=14.(2)因为C∈(0,π),cos C=14,所以sin C=21-cos C=11-16=15.因为S=12ab sin C=15,所以ab=2.①因为c=3,由余弦定理得3=a2+b2-12ab,所以a2+b2=4,②由①②,得a4-4a2+4=0,从而a2=2,a=2(a=-2舍去),所以a=b=2.【课堂评价】1.(2016·镇江期末)已知向量a=(-2,1),b=(1,0),则|2a+b|=. 【答案】13【解析】因为2a+b=(-3,2),所以|2a+b|=22(-3)2+=13.2.(2016·南京学情调研)已知向量a=(1,2),b=(m,4),且a∥(2a+b),则实数m=.【答案】2【解析】方法一:由题意得a=(1,2),2a+b=(2+m,8),因为a∥(2a+b),所以1×8-(2+m)×2=0,故m=2.方法二:因为a∥(2a+b),所以存在实数λ,使得λa=2a+b,即(λ-2)a=b,所以(λ-2,2λ-4)=(m,4),所以λ-2=m且2λ-4=4,解得λ=4,m=2.3.(2016·南京、盐城一模)在△ABC中,设a,b,c分别为内角A,B,C的对边,若a=5,A=π4,cos B=35,则c=.【答案】7【解析】因为cos B=35,所以B∈π2⎛⎫⎪⎝⎭,,从而sin B=45,所以sin C=sin(A+B)=sinA cos B+cos A sin B=2×35+2×45=72,又由正弦定理得sinaA=sincC,即52 =72c,解得c=7.4.(2016·全国卷Ⅲ)在△ABC中,B=π4,BC边上的高等于13BC,则cos A=.(第4题)【答案】-10【解析】如图,作AD ⊥BC交BC 于点D ,设BC=3,则AD=BD=1,AB=2,AC=5.由余弦定理得32=(2)2+(5)2-2×2×5×cos A ,解得cos A=-10.5.(2016·南通一调)已知在边长为6的正三角形ABC 中,BD u u u r =12BC u u u r ,AE u u u r=13AC u u u r ,AD 与BE 交于点P ,则PB u u u r ·PD u u ur 的值为 .(第5题)【答案】274【解析】如图,以BC 为x 轴,AD 为y 轴,建立平面直角坐标系,不妨设B (-3,0),C (3,0),则D (0,0),A (0,33),E (1,23),P 330⎛ ⎝⎭,,所以PB u u u r ·PD u u ur =|PD u u u r |2=233⎝⎭=274.温馨提示:趁热打铁,事半功倍.请老师布置同学们完成《配套检测与评估》第3~4页.【检测与评估】第2讲 平面向量、解三角形一、 填空题1.(2016·苏州暑假测试)设x ,y ∈R ,向量a =(x ,1),b =(2,y ),且a +2b =(5,-3),则x+y= .2.(2016·盐城三模)已知向量a ,b 满足a =(4,-3),|b |=1,|a -b |=21,则向量a ,b 的夹角为 .3.(2016·全国卷Ⅱ)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A=45,cos C=513,a=1,则b= .4.(2016·天津卷)在△ABC 中,若AB=13,BC=3,∠C=120°,则AC= .5.(2016·南京三模)如图,在梯形ABCD 中,AB ∥CD ,AB=4,AD=3,CD=2,AM u u u u r =2MD u u u u r .若AC u u u r ·BM u u u u r =-3,则AB u u u r ·AD u u u r = .(第5题)6.(2016·无锡期末)已知平面向量α,β满足|β|=1,且α与β-α的夹角为120°,则α的模的取值范围为 .7.在锐角三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.若b a +ab =6cos C ,则tan tan C A +tan tan CB = .8.(2016·苏北四市摸底)在△ABC 中,AB=2,AC=3,角A 的平分线与AB 边上的中线交于点O ,若AO u u u r =x AB u u u r+y AC u u u r (x ,y ∈R ),则x+y 的值为 .二、 解答题9.(2016·苏北四市期末)已知在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,sin A=35,tan(A-B )=-12.(1)求tan B 的值; (2)若b=5,求c 的值.10.(2016·徐州、连云港、宿迁三检)如图,在梯形ABCD 中,已知AD ∥BC ,AD=1,BD=210,∠CAD=π4,tan ∠ADC=-2.(1)求CD 的长; (2)求△BCD 的面积.(第10题)11.(2016·南京三模)在△ABC 中,已知a ,b ,c 分别为角A ,B ,C 的对边.若向量m =(a ,cos A ),向量n =(cos C ,c ),且m ·n =3b cos B.(1)求cos B 的值;(2)若a ,b ,c 成等比数列,求1tan A +1tan C 的值.【检测与评估答案】第2讲 平面向量、解三角形一、 填空题1. -1 【解析】由题意得a +2b =(x+4,1+2y )=(5,-3),所以4512-3x y +=⎧⎨+=⎩,,解得1-2x y =⎧⎨=⎩,,所以x+y=-1.2. π3【解析】设向量a ,b 的夹角为θ,由|a -b|=,得21=(a -b )2=a 2+b 2-2a ·b =25+1-2·5·cos θ,即cos θ=12,所以向量a ,b 的夹角为π3.3. 2113 【解析】因为cos A=45,cos C=513,且A ,C 为三角形的内角,所以sin A=35,sin C=1213,所以sin B=sin(A+C )=sin A cos C+cos A sin C=6365.由正弦定理得sin b B =sin aA ,解得b=2113.4. 1【解析】设AC=x,由余弦定理得cos 120°=29-13 23xx+⋅⋅=-12,即x2+3x-4=0,解得x=1或x=-4(舍去),所以AC=1.5.32【解析】方法一:设ABu u u r=4a,ADu u u r=3b,其中|a|=|b|=1,则DCu u u r=2a,AMu u u u r=2b.由ACu u u r·BMu u u u r=(ADu u u r+DCu u u r)·(BAu u u r+AMu u u u r)=-3,得(3b+2a)·(2b-4a)=-3,化简得a·b=18,所以ABu u u r·ADu u u r=12a·b=32.方法二:建立平面直角坐标系,使得A(0,0),B(4,0),设D(3cos α,3sin α),则C(3cos α+2,3sin α),M(2cos α,2sin α).由ACu u u r·BMu u u u r=-3,得(3cos α+2,3sin α)·(2cos α-4,2sin α)=-3,化简得cos α=18,所以ABu u u r·ADu u u r=12cos α=32.6.23⎛⎤⎥⎝⎦,【解析】如图,设α=ABu u u r,β=ACu u u r,则β-α=BCu u u r,∠ABC=60°,设α与β的夹角为θ,则0°<θ<120°,由正弦定理可得°||sin(120-)θα=°||sin60β,所以|α|=233sin(120°-θ).因为0°<θ<120°,所以0°<120°-θ<120°,所以0<sin(120°-θ)≤1,所以0<|α|≤23.(第6题)7. 4 【解析】b a +ab =6cos C ⇒6ab cos C=a 2+b 2⇒3(a 2+b 2-c 2)=a 2+b 2⇒a 2+b 2=232c ,所以tan tan C A +tan tan CB =sin cosC C ·cos sin sin cos sin sin B A B A A B +=sin cos C C ·sin()sin sin A B A B +=1cos C ·2sin sin sin C A B =2222-aba b c +·2c ab =22223-2c c c=2222c c =4.8. 58 【解析】如图,在△ABC 中,AD 为∠BAC 的平分线,CE 为AB 边上的中线,且AD ∩CE=O.在△AEO 中,由正弦定理得sin AE AOE ∠=sin EOEAO ∠.在△ACO 中,由正弦定理得sin AC AOC ∠=sin COCAO ∠,两式相除得AE AC =EO OC .因为AE=12AB=1,AC=3,所以EO OC =13,所以CO u u u r =3OE u u u r ,即AO u u u r -AC u u u r =3(AE u u u r -AO u u ur ),即4AO u u u r =3AE u u u r+AC u u u r ,所以4AO u u u r =32AB u u ur +AC u u u r ,从而AO u u u r =38AB u u u r +14AC u u u r .因为AO u u u r =x AB u u u r+y ACu u u r ,所以x=38,y=14,所以x+y=58.(第8题)二、 解答题9. (1) 方法一:在锐角三角形ABC 中,由sin A=35,得cos A=21-sin A =45,所以tan A=sin cos A A =34.由tan(A-B )=tan -tan 1tan ?tan A B A B +=-12,得tan B=2.方法二:在锐角三角形ABC 中,由sin A=35,得cos A=21-sin A =45,所以tanA=sin cos A A =34.又因为tan(A-B )=-12,所以tan B=tan[A-(A-B )]=tan -tan(-)1tan tan(-)A A B A A B +=31--42311-42⎛⎫ ⎪⎝⎭⎛⎫+⨯ ⎪⎝⎭=2. (2) 由(1)知tan B=2,得sin B=255,cos B=55, 所以sin C=sin(A+B )=sin A cos B+cos A sin B=11525,由正弦定理sin bB =sin cC ,得c=sin sin b C B =112.10. (1) 因为tan ∠ADC=-2,且∠ADC ∈(0,π),所以sin ∠ADC=255,cos ∠ADC=-55. 所以sin ∠ACD=sinππ--4ADC ∠⎛⎫ ⎪⎝⎭ =sin ∠ADC+π4=sin ∠ADC ·cos π4+cos ∠ADC ·sin π4=,在△ADC 中,由正弦定理得CD=·sin sin AD DACACD ∠∠=.(2) 因为AD ∥BC ,所以cos ∠BCD=-cos ∠ADC=,sin ∠BCD=sin ∠ADC=.在△BDC 中,由余弦定理得BD 2=BC 2+CD 2-2BC ·CD ·cos ∠BCD , 即BC 2-2BC-35=0,解得BC=7,所以S △BCD =12BC ·CD ·sin ∠BCD=12×7=7.11. (1) 因为m ·n =3b cos B ,所以a cos C+c cos A=3b cos B. 由正弦定理得sin A cos C+sin C cos A=3sin B cos B , 所以sin(A+C )=3sin B cos B , 所以sin B=3sin B cos B.因为B 是△ABC 的内角,所以sin B ≠0,所以cos B=13.(2) 因为a ,b ,c 成等比数列,所以b 2=ac. 由正弦定理得sin 2B=sin A ·sin C.因为cos B=13,B 是△ABC 的内角,所以sinB=,又1tan A +1tan C =cos sin A A +cos sin C C =cos ?sin sin ?cos sin sin A C A CA C +⋅ =sin()sin sin A C A C +⋅=sin sin sin B A C=2sin sin B B =1sin B=.。

高考数学二轮复习专题篇素养提升 专题1三角函数三角恒等变换与解三角形第2讲三角恒等变换与解三角形文理

高考数学二轮复习专题篇素养提升 专题1三角函数三角恒等变换与解三角形第2讲三角恒等变换与解三角形文理

②由 f(x)=12sin2x-π6= 63,
得 sin2x-π6= 33,
∵x∈0,π4,∴-π6≤2x-π6≤π3,
∴cos2x-π6=
6 3.
∴cos 2x=cos2x-π6+π6 =cos2x-π6× 23-sin2x-π6×21 = 36× 23- 33×12= 22- 63.
三角恒等变换的“四大策略” (1)常值代换:特别是“1”的代换, 1=sin2θ+cos2θ=tan 45°等. (2)项的拆分与角的配凑: 如sin2α+2cos2α=(sin2α+cos2α)+cos2α,α=(α-β)+β等. (3)降次与升次:正用二倍角公式升次,逆用二倍角公式降次. (4)弦、切互化:一般是切化弦.
分值 10 12 10
年份 卷别 Ⅰ卷
2019 Ⅱ卷 Ⅲ卷 Ⅰ卷
2018 Ⅱ卷 Ⅲ卷
题号
考查角度
分值
17 正余弦定理
12
二倍角公式、基本关系式、余弦定理、
15
5
三角形面积公式
18
正余弦定理、三角形面积公式
12
17
正余弦定理、解三角形
12
二倍角、辅助角公式、基本关系式、
10、15 和的正弦公式、余弦定理
10°=
典例1
A.34
(1)(2020·全国Ⅱ卷模拟)cos2 40°+2sin 35°sin 55°sin
( A)
B.14
C.12+
3 2
D.3
3 4
(2)(2020·宜宾模拟)已知 α∈0,π2,且 3sin2α-5cos2α+sin 2α=0,则
sin 2α+cos 2α=
( A)
A.1
B.-2137

专题:三角函数及解三角形 第二课时 三角函数的图象与解析式(课件)高三数学二轮复习

专题:三角函数及解三角形 第二课时  三角函数的图象与解析式(课件)高三数学二轮复习
4
(D)y=2sin(2x– )
3
题型突破
题型一 三角函数的图象变换问题
2.(2022·浙江高考)为了得到函数y=2sin 3x的图象,只要把函数 y 2sin3x
5
图象上所有的点 ( D )
A.向左平移 个单位长度
5
B.向右平移 个单位长度
5
C.向左平移 个单位长度
15
D.向右平移 个单位长度
( C)
A. 10π 9
B. 7π 6
C. 4π 3
D. 3π 2
题型突破
题型二 三角函数的图象及应用
7. 如 图 所 示 的 曲 线 为 函 数 f x Acosx A 0, 0, 的 部 分 图 象 , 将
2
y f x 图象上的所有点的横坐标伸长到原来的 3 倍,再将所得曲线向右平移
2
8
个单位长度,得到函数y=g(x)的图象,求 gx =
2sin 2x
达标检测
1.为了得到函数 y 2sin 2x 的图象,可以将函数y=2sin
3
2x的图象(
C)
A.向右平移π 个单位长度 6
B.向右平移π 个单位长度 3
C.向左平移π 个单位长度 6
D.向左平移π 个单位长度 3
达标检测
15Leabharlann 题型突破题型一 三角函数的图象变换问题
3. (2021年全国乙卷)把函数y=f(x)图像上所有点的横坐标缩短到原来的1 2
倍,纵坐标不变,再把所得曲线向右平移 个单位长度,得到函数
3
y=sin(x−
)的图像,则f(x)=(
4
B

A.sin(
2

7)

第一部分 层级二 专题2 第2讲 高考数学(文科)二轮总复习 层级2 保分专题2 三角函数与解三角形

第一部分 层级二 专题2 第2讲 高考数学(文科)二轮总复习 层级2 保分专题2 三角函数与解三角形

第15页
栏目导航
(2)因为 α∈π4,π,所以 2α∈π2,2π,又 sin 2α= 55,所以 2α∈π2,π,α∈π4,π2,
所以 cos 2α=-255.又 β∈π,32π,所以 β-α∈π2,54π,故 cos(β-α)=-31010,所
第30页
栏目导航
|规 律 方 法 | 1.正、余弦定理的适用条件 (1)“已知两角和一边”或“已知两边和其中一边的对角”应采用正弦定理. (2)“已知两边和这两边的夹角”或“已知三角形的三边”应采用余弦定理. [注意] 应用定理要注意“三统一”,即“统一角、统一函数、统一结构”.
第31页
栏目导航
2.三角形面积公式的应用原则 (1)对于面积公式 S=12absin C=12acsin B=12bcsin A,一般是已知哪一个角就使用 含该角的公式. (2)与面积有关的问题,一般要利用正弦定理或余弦定理进行边和角的互化.
解:(1)∵S△ABC=12acsin B= 23accos B, ∴tan B= 3. 又 0<B<π,∴B=π3.
第35页
栏目导航
(2)∵sin A=3sin C,由正弦定理得,a=3c,∴a=6.
由余弦定理得,b2=62+22-2×2×6×cos 60°=28,
∴b=2 7.
∴cos
A=b2+2cb2c-a2=22×722+×222-762=-
的面积
S=12bcsin
A=12×8
3
3×12=2
3
3 .
[答案]
23 3
第27页
栏目导航
(2)△ABC 的内角 A,B,C 的对边分别为 a,b,c.已知△ABC 的面积为3sain2 A. ①求 sin Bsin C; ②若 6cos Bcos C=1,a=3,求△ABC 的周长.

高三数学第二轮复习三角函数的图像与性质课件ppt.ppt

高三数学第二轮复习三角函数的图像与性质课件ppt.ppt

则同时具有以下两个性质的函数是( A ) ①最小正周期是π ②图象关于点(π/6,0)对称.
2.已知f(x)=sin(x+π/2),g(x)=cos(x-π/2),则下列结论
中正确的是( D) (A)函数y=f(x)·g(x)的周期为2π (B)函数y=f(x)·g(x)的最大值为1 (C)将f(x)的图象向左平移π/2单位后得g(x)的图象 (D)将f(x)的图象向右平移π/2单位后得g(x)的图象
直于 x 轴的直线, 对称中心为图象与 x 轴的交点).
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
[2k5.单+ 2调, 性2k:+y=3s2in]x(k在[Z2)k上-单2调, 2递k减+2;
](kZ)上单调递增, 在
6
是 (k ,k ],k z 使 g(x) 0 且递减的区间是
12
6
(k ,k 5 ],k z ,
6
12
∴当 0 a 1时,函数 f (x) 的递增的区间是
(k ,k 5 ],k z ,
6
12
当 a 1时,函数 f (x) 的递增的区间是 (k ,k ],k z .
且f (0) 3 , f ( ) 1 .
2 42
(1)求 f (x) 的最小正周期; (2)求 f (x) 的单调递减区间; (3)函数 f (x) 的图象经过怎样的平移才能 使所得图象对应的函数成为奇函数?
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程

2022年高三二轮专题复习数学课件 三角函数中ω范围的求解

2022年高三二轮专题复习数学课件 三角函数中ω范围的求解

类型三
三角函数的对称性、最值 与ω的关系
[例 3] (1)(2021·枣庄模拟)已知 f(x)=sin ωx-cos ωxω>23,若函数 f(x)图象的
任何一条对称轴与 x 轴交点的横坐标都不属于区间(π,2π),则 ω 的取值范围是 ________;
(2)已知函数 f(x)=2sin ωx 在区间-π3 ,π4 上的最小值为-2,则 ω 的取值范围
②若ωπ-π4 ,2ωπ-π4 ⊆(2kπ+π,2kπ+2π),解得ω∈2k+54,k+98 (k∈Z ).当 k=-1 时,ω∈-34,18,又 ω>0,则 ω∈0,18.综上,ω∈0,18∪14,58.
法二:由已知得 f(x)=12(sin ωx-cos ωx)= 22sinωx-π4 .当 f(x)=0 时,ωx-π4 =kπ,x=4πω+kωπ(k∈Z ).由于函数 f(x)在(π,2π)上无零点,则相邻的两个零点
[解析]

π 2
+ 2k
π
≤ωx

32 π

2k π
(k∈Z
)
,得
π

+ 2kωπ

x
≤ 32π ω

2kπ
ω
(k∈Z ),因为 f(x)在π3 ,π2 上单调递减,所以π22πω≤+322π ωkωπ +≤ 2kωππ3 ,,得 6k+32≤ω≤4k+
3(k∈Z ).又ω>0,所以 k≥0,又 6k+32<4k+3,得 0≤k<34,所以 k=0.故32≤ω≤3.
实数ω≤-2 或 ω≥32. [答案] (1)34,78 (2)ωω≤-2或ω≥32
这类三角函数题除了需要熟练掌握正弦函数、余弦函数、正切函数的单调性外, 还必须知晓一个周期内函数最值的变化,以及何时取到最值,函数取到最值的区间要 求与题目给定的区间的关系如何.

高三二轮复习(理数) 第二讲 三角恒等变换与解三角形(课件)

高三二轮复习(理数) 第二讲 三角恒等变换与解三角形(课件)

3.(2016· 高考全国卷Ⅱ)△ABC 的内角 A,B,C 的对边分别为 a,b,c, 21 4 5 若 cos A= ,cos C= ,a=1,则 b=________. 13 5 13
解析:先求出 sin A,sin C 的值,进而求出 sin B 的值,再利用正弦定理求 b 的值. 4 5 因为 A,C 为△ABC 的内角,且 cos A= ,cos C= , 5 13 3 12 所以 sin A= ,sin C= , 5 13 3 5 4 所以 sin B=sin(π-A-C)=sin(A+C)=sin Acos C+cos Asin C= × + 5 13 5 × 12 63 = . 13 65 asin B sin B 63 5 21 = = × = . sin A sin A 65 3 13
π 3 π 2. (2016· 高考全国卷Ⅰ)已知 θ 是第四象限角, 且 sinθ+4 = , 则 tanθ-4 5 4 - 3 =________.
π π π 解析:将 θ- 转化为θ+4 - . 4 2 π 3 π π 由题意知 sinθ+4 = , θ 是第四象限角, 所以 cosθ+4 >0, 所以 cosθ+4 5
Hale Waihona Puke 专题二三角函数、平面向量第二讲 三角恒等变换与解三角形
三角变换及解三角形是高考考查的热点,然而单独考查三角变 换的题目较少, 题目往往以解三角形为背景, 在应用正弦定理、 余弦定理的同时, 经常应用三角变换进行化简, 综合性比较强, 但难度不大.
年份 卷别
考查角度及命题位置
Ⅰ卷 三角变换与正弦定理解三角形·T17 2017 Ⅱ卷 三角变换与余弦定理解三角形·T17 Ⅲ卷 利用余弦定理解三角形及面积问题·T17 Ⅱ卷 三角恒等变换求值问题·T9 2016 Ⅲ卷 三角恒等变换求值问题·T5 解三角形(正、余弦定理)·T8 三角恒等变换·T2 解三角形·T16
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a∶b∶c=sin A∶sin B∶sin C.
5.余弦定理
a2=b2+c2-2bccos A,b2=a2+c2-2accos B,
c2=a2+b2-2abcos C. 推论:cos A=b2+2cb2c-a2,cos B=a2+2ca2c-b2, cos C=a2+2ba2b-c2. 变形:b2+c2-a2=2bccos A,a2+c2-b2=2accos B,
解 (1)∵0<β<π2<α<π, ∴-π4<α2-β<π2,π4<α-β2<π,
∴cos(α2-β)= 1-sin2(α2-β)= 35,
sin(α-β2)= 1-cos2(α-β2)=495, ∴cosα+2 β=cos[(α-β2)-(α2-β)] =cos(α-β2)cos(α2-β)+sin(α-β2)sin(α2-β)
3.三角恒等式的证明方法
(1)从等式的一边推导变形到另一边,一般是化繁为简.
(2)等式的两边同时变形为同一个式子.
(3)将式子变形后再证明.
4.正弦定理
a sin
A=sinb
B=sinc
C=2R(2R
为△ABC
外接圆的直径).
变形:a=2Rsin A,b=2Rsin B,c=2Rsin C. sin A=2aR,sin B=2bR,sin C=2cR.
探究提高 (1)注意角的变换,(α-β2)-(α2-β)=α+2 β; (2)先由 tan α=tan[(α-β)+β],求出 tan α 的值,再求 tan 2α 的值,这样能缩小角 2α 的取值范围; (3)善于观察条件中的角与欲求式中角的内在联系,整体运 用条件中角的函数值可使问题简化.
题型二 正、余弦定理
3.已知两边及其一边的对角,判断三角形解的情况
以已知 a,b,A 为例
(1)当 A 为直角或钝角时,若 a>b,则有一解;若 a≤b,
则无解.
(2)当 A 为锐角时,如下表:
a<bsin A a=bsin A bsin A<a<b a≥b
无解
一解
两解 一解
4.三角形中的常用结论
(1)三角形内角和定理:A+B+C=π. (2)A>B>C⇔a>b>c⇔sin A>sin B>sin C.
押题级别 ★★★★★
解析 ∵π4-α 是第一象限角,∴sinπ4-α=153, 于是ssiinnπ2π4-+2αα=scinos2π4π4--αα =2sinπ4-α=1103.
答案
10 13
2.在△ABC 中,角 A,B,C 所对的边长分别为 a,b,c, 已知 2sin A= 3cos A. (1)若 a2-c2=b2-mbc,求实数 m 的值; (2)若 a= 3,求△ABC 面积的最大值.
(3)a=bcos C+ccos B.
5.在△ABC 中,三边分别为 a,b,c(a<b<c) (1)若 a2+b2>c2,则△ABC 为锐角三角形. (2)若 a2+b2=c2,则△ABC 为直角三角形. (3)若 a2+b2<c2,则△ABC 为钝角三角形.
名师押题我来做
1.已知 cosπ4-α=1123,π4-α 是第一象限角, 则ssiinnπ2π4-+2αα的值是________. 押题依据 同角三角函数的基本关系式,诱导公式及倍角 公式都是高考的热点,本题题点设置恰当,难度适中,体 现了对基础和能力的双重考查,故押此题.
则2c-b a=2ksinkCsi-n Bksin
A=2sin
C-sin sin B
A,
所以cos
A-2cos cos B
C=2sin
C-sin sin B
A,
即(cos A-2cos C)sin B=(2sin C-sin A)cos B,
化简可得 sin(A+B)=2sin(B+C). 又 A+B+C=π,所以 sin C=2sin A.因此ssiinn CA=2. (2)由ssiinn CA=2,得 c=2a.由余弦定理及 cos B=14, 得 b2=a2+c2-2accos B=a2+4a2-4a2×14=4a2.
a 2+b2-c2=2abcos C.
6.面积公式 S△ABC=12bcsin A=12acsin B=12absin C.
7.解三角形 (1)已知两角及一边,利用正弦定理求解. (2)已知两边及一边的对角,利用正弦定理或余弦定理求 解,解的情况可能不唯一. (3)已知两边及其夹角,利用余弦定理求解. (4)已知三边,利用余弦定理求解.
故△ABC
面积的最大值为3
4
3 .
返回
Hale Waihona Puke 干知识梳理1.两角和与差的正弦、余弦、正切公式 (1)sin(α±β)=sin αcos β±cos αsin β. (2)cos(α±β)=cos αcos β∓sin αsin β. (3)tan(α±β)=1t∓atnanα±αttaannββ.
2.二倍角的正弦、余弦、正切公式 (1)sin 2α=2sin αcos α. (2)cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α. (3)tan 2α=1-2tatannα2α.
例 2 (2011·大纲全国)△ABC 的内角 A、B、C 的对边分
别为 a、b、c,asin A+csin C- 2asin C=bsin B.
(1)求 B;
(2)若 A=75°,b=2,求 a,c.
解 (1)由正弦定理得 a2+c2- 2ac=b2,
由余弦定理得
b2=a2+c2-2accos
B,故
由余弦定理,知 b2+c2-a2=2bccos A.
又 a2-c2=b2-mbc, 可得 cos A=m2 ,∴m=1.
(2)由余弦定理及 a= 3,A=π3,
可得 3=b2+c2-bc,
再由基本不等式 b2+c2≥2bc,∴bc≤3,
∴S△ABC=12bcsin A=12bcsin π3= 43bc≤343,
cos
B=
2 2.
又 B 为三角形的内角,因此 B=45°.
(2)sin A=sin(30°+45°)=sin 30°cos 45°+cos 30°sin 45°

2+ 4
6 .
故 a=bssiinnBA=
2+ 2
6=1+
3,c=bssiinnBC=2×ssiinn 6405°°=
6.
探究提高 正、余弦定理与三角函数恒等变换综合考查是 高考的一个方向.本题突破的关键是先根据三角变换化 简,再利用正、余弦定理求解.
规律方法总结
1.证明三角恒等式的常用方法 (1)从一边开始证它等于另一边,一般由繁到简. (2)证明左右两边都等于同一个式子(或值). (3)运用分析法,证明其等式成立.
2.三角恒等变形的基本思路 (1)“化异为同”,“切化弦”,“1”的代换是三角恒 等变换的常用技巧. “化异为同”是指“化异名为同名”,“化异次为同 次”,“化异角为同角”. (2)角的变换是三角变换的核心,如 β=(α+β)-α,2α =(α+β)+(α-β)等.
所以 b=2a.又 a+b+c=5,所以 a=1,因此 b=2.
考题分析 本题考查了正弦定理、余弦定理、三角恒等变 换等基础知识.考查了考生的运算能力,以及运用知识综 合分析、解决问题的能力.题目典型常规、难度适中.
易错提醒 (1)注意化归思想的应用、即将题中的条件都转 化为角的关系或都转化为边的关系. (2)不能正确进行三角恒等变换. (3)易忽略隐含条件:三角形内角和为 π.
押题依据 本题将三角函数、余弦定理及基本不等式巧妙 地结合在一起,突出了对重点知识的重点考查.体现了高 考题在知识的交汇处出题的理念,故押此题. 押题级别 ★★★★★
解 (1)∵ 2sin A= 3cos A,∴2sin2A=3cos A,
即 2cos2A+3cos A-2=0, 解得 cos A=12或-2(舍去), 又 0<A<π,∴A=π3.
第 2 讲 三角变换与解三角形
【高考真题感悟】
(2011·山东)在△ABC 中,内角 A,B,C 的对边分别为
a,b,c.已知cos
A-2cos cos B
C=2c-b a.
(1)求ssiinn CA的值;
(2)若 cos B=14,△ABC 的周长为 5,求 b 的长.
解 (1)由正弦定理,可设sina A=sinb B=sinc C=k,
热点分类突破
题型一 三角变换及求值 例 1 (1)已知 0<β<π2<α<π,且 cos(α-β2)=-19,sin(α2-β)
=23,求 cos(α+β)的值; (2)已知 α,β∈(0,π),且 tan(α-β)=12,tan β=-17, 求 2α-β 的值.
思维启迪 (1)(α-β2)-(α2-β)=α+2 β; (2)α=(α-β)+β,2α-β=α+(α-β).
=(-19)× 35+495×23=7275, ∴cos(α+β)=2cos2α+2 β-1=2×4792×95-1=-273299.
(2)tan α=tan[(α-β)+β]=1t-ant(aαn-(αβ-)+β)ttaannββ=1+12-12×17 17=13,
tan(2α-β)=tan[α+(α-β)] =1t-antaαn+αttaann((αα--ββ))=1-13+13×12 12=1. ∵tan α=13>0,∴0<α<π2,∴0<2α<π. 又 tan 2α=1-2tatannα2α=34>0,∴0<2α<π2. ∵tan β=-17<0,∴π2<β<π, ∴-π<2α-β<0.∴2α-β=-34π.
相关文档
最新文档