共射极放大电路的组成
晶体管共射极单管放大电路实验报告
晶体管共射极单管放大电路实验报告一、实验目的1、掌握晶体管共射极单管放大电路的组成及工作原理。
2、学习静态工作点的调试方法,研究静态工作点对放大器性能的影响。
3、掌握放大器电压放大倍数、输入电阻、输出电阻的测量方法。
4、观察放大器输出波形的失真情况,了解产生失真的原因及消除方法。
二、实验原理1、晶体管共射极单管放大电路的组成晶体管共射极单管放大电路由晶体管、基极电阻、集电极电阻、发射极电阻和耦合电容等组成。
输入信号通过耦合电容加到晶体管的基极,经晶体管放大后,从集电极输出,再通过耦合电容加到负载电阻上。
2、静态工作点的设置静态工作点是指在没有输入信号时,晶体管各极的直流电流和电压值。
合适的静态工作点可以保证放大器在输入信号的作用下,输出信号不失真。
静态工作点的设置主要通过调整基极电阻和集电极电阻的阻值来实现。
3、放大器的性能指标(1)电压放大倍数:是指输出电压与输入电压的比值,反映了放大器对信号的放大能力。
(2)输入电阻:是指从放大器输入端看进去的等效电阻,反映了放大器从信号源获取信号的能力。
(3)输出电阻:是指从放大器输出端看进去的等效电阻,反映了放大器带负载的能力。
三、实验仪器及设备1、示波器2、信号发生器3、直流稳压电源4、万用表5、实验电路板6、晶体管、电阻、电容等元件四、实验内容及步骤1、按图连接实验电路仔细对照电路图,在实验电路板上正确连接晶体管共射极单管放大电路,注意元件的极性和引脚的连接。
2、静态工作点的调试(1)接通直流稳压电源,调节电源电压至合适值。
(2)用万用表测量晶体管各极的电压,计算静态工作电流。
(3)通过调整基极电阻的阻值,改变静态工作点,观察输出电压的变化,使输出电压不失真。
3、测量电压放大倍数(1)将信号发生器的输出信号接到放大器的输入端,调节信号发生器的频率和幅度,使输入信号为正弦波。
(2)用示波器分别测量输入信号和输出信号的峰峰值,计算电压放大倍数。
4、测量输入电阻(1)在放大器的输入端串联一个已知电阻。
共射极放大电路
(2)静态工作点的作用 若不设置静态工作点,三极管只有在大于死区电
压才能导通,其他情况下不导通,故放大电路中的信 号是严重失真的信号。
若设置合适的静态工作点,三极管在任何时刻都 能正常导通,来自信号源的信号能完整通过放大电路 ,是真实的信号。
作用:使来自信号源的信号能完整通过放大电路进 行放大。
4.工作原理
放大电路的种类
二、共射极基本放大电路的组成及工作原理
1.放大电路的组成及各元件的作用
双电源供电
单电源供电
习惯画法
偏置电阻
RB C1
Ui电源
UCC
V
耦合电容
RL Uo
负载
放大电路各元件的作用
2.放大器中电压、电流符号及正方向的规定
在没有信号输入时,放大电路中三极管各电极电压、 电流均为直流。
在共射极基本放大电路中,设UCC=12V, RB=300kΩ,RC=2kΩ,β=50,试求静态工作点?
(2).若输入信号电压ui,即ui≠0时,称为动态。 与直流电压UBEQ叠加,这时基极总电压为
uBE U BEQ ui
基极总电流为 iB I BQ ib
集电极总电流为 iC I CQ ic
当有信号输入时,电路中有两个电源共同作用,电路 中的电流和电压时直流分量和交流分量的叠加。
3.静态工作点的设置 (1).静态工作点 静态:放大电路处于放大状态但没有交流信号时的状态叫静态。 静态值:静态时,放大电路中IB、IC、UBE、UCE叫静态值。 静态工作点:静态值对应三极管特性曲线上的一点Q。
共射极基本放大电路
复习
1.三极管图形符号 2.三极管工作电压 3.三极管电流放大作用 4.三极管三个工作区 5.用万用表测三极管
基本共射极放大电路电路分析
基本共射极放大电路电路分析3.2.1基本共射放大电路1.放大电路概念:基本放大电路一般是指由一个三极管与相应元件组成的三种基本组态放大电路。
a.放大电路主要用于放大微弱信号,输出电压或电流在幅度上得到了放大,输出信号的能量得到了加强。
b.输出信号的能量实际上是由直流电源提供的,经过三极管的控制,使之转换成信号能量,提供给负载。
■■童■ Br - - ■:必)iy, :信号慷:I ■t>A放大电路!»!2.电路组成:(1)三极管T;(2)VCC :为JC提供反偏电压,一般几〜几十伏;(3)RC :将IC的变化转换为Vo的变化,一般几K〜几十K。
VCE=VCC-ICRC RC,VCC同属集电极回路。
(4)VBB :为发射结提供正偏。
(习R十一般为儿1 K - JLT-Rb一般,程骨V開=e7V当%*宀只£时;,V B,I B A(6)Cb1,Cb2 :耦合电容或隔直电容,(7)Vi :输入信号(8)Vo :输出信号(9)公共地或共同端,电路中每一点的电位实际上都是该点与公共端之间的电位差。
图中各电压的极性是参考极性,电流的参考方向如图所示。
其作用是通交流隔直流。
V⑵输入电阻RiI£黒 b ZCKt亡/〒气V.V2^3.共射电路放大原理f' h : 1112V峠变化% %变化7变化 %尸%-叫好变化 > %变化SOOK A 4KTHl/cc/jt 躍—=40w/{ Ic = E h = \ .6rffA J cE = f4v-AVr = -bn y T M = —5 址44.放大电路的主要技术指标放大倍数/输入电阻Ri /输出电阻Ro /通频带(1)放大倍数放大电路的输出信号的电压和电流幅度得到 了念大,所以输出功零也龛筋「所肢大.对赦夫电ffilfilH'W:电压放人侣数;凰=峙电 电流放脸倚tt : ■半二扫冷 功率ttXMSi :心=£『尸=峡!鰹 通常它们蛊;fi 按F 张怙宦义的4放大俗数定 义式中各有其S 如图所示,慮频段九—中频段一■久高频詁(3)输出电阻Ro输出电阻是表明放大电路帯负栽的能力,饨大表明 放大电路带负载的能力差,心的宦义:R 、=4-g(町根捌图"}・在帯竝肘,测得!色 鶴 JF 跑时的繭dj 为J*畀 则;心人! 丁 乂(厂:=口}认C 」叫 / 4 K 10 — 1 : %注总:肚大倍数、输入电阻、输岀电阻通常^^;11在 E 弦信巧下的它渝琴®, iHr n-放k 电呂&处于威k 状态且输;IM 伙珥的条件卜V 们息义.(4)通频带放大电路的增率的歯数4在低预段和 高频段放大缶数祁要下降。
9 共射极放大电路
江 阴 学 院
• 三极管微变等效电路模型的建立
1 使用条件
低频 小信号 变化量
江 阴 学 院
输入回路可等效为
ib
B
u be
B
等效为
ib
u be
江 阴 学 院
rbe
E
对于小功率三极管:
E
26(mV ) rbe 200( ) (1 β ) I E (mA )
rbe一般为几百欧到几千欧。
基极电流的瞬时值(交流分量+直流分量)
共射放大电路的电压放大作用
+UCC RB C1 + C2 + + iB iC + + T uCE uBE – uo – iE – iC RC
江 阴 学 院
+ ui
–
uo = 0 uBE = UBE uCE = UCE
uCE
无输入信号(ui = 0)时:
uBE UBE tO iB IB tO
分析对象:各极电压电流的直流分量。 所用电路:放大电路的直流通路。
江 阴 学 院
设置Q点的目的: (1) 使放大电路的放大信号不失真; (2) 使放大电路工作在较佳的工作状态,静态是 动态的基础。
分压偏置放大电路——工作点稳定
RB1、RB2——分压电阻,保证VB恒定。
U CC
RC
江 阴 学 院
RB1
波形分析
RB
iC
C1 +
+UCC RC
江 阴 学 院
ui
+
iB
t ui
–
t + + iB iC u T uCE C + uBE – – t iE
共射极基本放大电路
R b1 C b1
+
u-i
短路
+ 置VC零C
Rc
C b2
T 短路
+
uo RL -
.
上一页 下一页 返回
共射极基本放大电路
交流通路
+
+
ui RB -
+
T Rc
+
RL u o -
上一页 下一页 返回
共射极基本放大电路
三极管微变等效电路
T rbe
26(mV)
C = 12V , RB1 = 20kΩ ,
RB2 =10kΩ, RC=2 kΩ,
RB1
RE=2 kΩ,RL=3 kΩ,β =50, UBE =o.6V。试求:+
C1
+
1)静态值 IB、IC 和UCE 。
u i
RB2
2) 电压放大倍数Au ,输入 -
电阻 Ri和输出电阻 Ro。
+
Rc
+VCC C2
T
共射极基本放大电路
1. 共射基本放大电路的组成
图所示是一个典型的共射基 本放大电路。电路中各元件的 作用如下所述:
(1)三极管T。它是放大电 路的核心器件,具有放大电流 的作用
(2)基极偏流电阻RB。其作 用是向三极管的基极提供合适 的偏置电流,并使发射结正向 偏置。
R b1 Cb1
+
u-i
+ VCC
RL
u
o
-
+
+
u i
R B1
R B2
rbe
-
共射极单管放大电路实验报告
共射极单管放大电路实验报告
共射极单管放大电路是一种常见的放大电路,由一个NPN型晶体管组成。
本实验的目的是通过实验验证共射极单管放大电路的放大特性。
一、实验原理:
共射极单管放大电路是一种常用的放大电路,使用一个NPN型晶体管来放大输入信号。
晶体管的三个引脚分别为发射极(E)、基极(B)、集电极(C)。
在共射极单管放大电路中,输入信号通过耦合电容C1输入到基极,集电极通过负载电阻RC与正电源相连。
输出信号由电容C2耦合到负载电阻RL上。
二、实验仪器:
1. 功率放大器实验箱
2. 万用表
3. 音频信号发生器
三、实验步骤:
1. 连接电路:根据实验箱上的电路图,将电路连接好。
2. 调整电源:根据实验箱上的电源电压要求,调整电源电压。
3. 调节发生器:将发生器的频率调节到所需的数值,信号幅度调节适宜值。
4. 测量电压:用万用表分别测量发射极电压、集电极电压和基极电压。
5. 测量电流:用万用表测量发射极电流、集电极电流和基极电流。
6. 测量电容:用万用表测量输入输出电容。
四、实验结果:
将实验测得的数据填入实验报告中,并绘制相应的图表。
五、实验分析:
根据实验结果分析共射极单管放大电路的放大特性、输入输出电容等参数。
六、实验总结:
总结本实验的目的、步骤、结果以及实验中遇到的问题等。
七、思考题:
进一步思考实验中遇到的问题,并提出解决方案。
共射放大电路实验报告
共射放大电路实验报告共射放大电路实验报告引言:共射放大电路是电子学中常见的一种放大电路,它具有放大电压和功率的能力。
本实验旨在通过搭建共射放大电路并进行实验验证,深入理解其工作原理和特性。
一、实验目的本实验的主要目的有以下几点:1. 理解共射放大电路的基本原理和结构;2. 学习如何搭建和调试共射放大电路;3. 通过实验验证共射放大电路的放大倍数和频率响应特性;4. 掌握使用示波器和万用表等实验仪器进行电路测试和测量的方法。
二、实验原理共射放大电路由三个主要元件组成:NPN型晶体管、输入电容和输出电容。
晶体管的基极通过输入电容与输入信号相连,发射极与输出电容相连,集电极则与负载电阻相连。
当输入信号施加在基极上时,晶体管的发射极电流会随之变化,从而引起集电极电流的变化,实现信号的放大。
三、实验步骤1. 按照电路图搭建共射放大电路,注意连接的正确性;2. 使用示波器观察输入和输出信号波形,调节电源电压和负载电阻,使得输出信号幅度适中;3. 使用万用表测量电路中各个元件的电压和电流数值;4. 调节输入信号的频率,观察输出信号的变化,记录并分析实验数据。
四、实验结果与分析在实验中,我们搭建了共射放大电路,并进行了一系列的测试和测量。
通过示波器观察到的输入和输出信号波形,我们可以清晰地看到输入信号在放大电路中被放大了。
通过测量电压和电流数值,我们可以进一步计算出放大倍数和功率增益等参数。
五、实验讨论在实验过程中,我们发现共射放大电路的放大倍数与输入信号频率有关。
当频率较低时,放大倍数较高;而当频率较高时,放大倍数会逐渐下降。
这是由于晶体管的频率响应特性所决定的。
此外,我们还发现负载电阻的大小对放大倍数和输出功率也有一定的影响。
六、实验总结通过本次实验,我们深入学习和理解了共射放大电路的工作原理和特性。
通过搭建和调试电路,我们掌握了使用示波器和万用表等实验仪器进行电路测试和测量的方法。
通过实验结果和数据分析,我们进一步加深了对共射放大电路的认识。
共射极放大器原理
Q′
IC
Q
0
t
0
Ib = 0 Q
ib2
0 u ce2 u ce
t
为了使放大电路的输出电压幅度 尽可能大,而非线性失真小一般将静 态工作点设置在交流负载线中段稍下 一点。
二、稳定工作点的偏置电路
在共射基本放大器中,IBQ
=
EC
UBEQ Rb
EC Rb
是固定不变的,叫固定偏置电路,其温度稳
性很差,当温度变化时,三极管的反向饱和
0
u ce
(d)
0
UBE U beq
u BE
+
t0
t0
t
IB Ibq
iB
+
t0
t
0
t
IC Icq
iC
+0
t
t0
t
UCE Uceq
u CE
+
t0
t0
t
由图可得:
基极总电压是静态电压 UBE 和信号电
压 ui 的叠加,
即: uCE = UBEQ ui
同理,基极总电流也是静态基极电流 IBQ 和交变信号电流 Ib 的叠加.
(IBQ<<I1)
C1
则基极电位为: ui I2
IBQ b c
V
e
R
U
b2
E
Re
u0
UB
=
Rb2 R b1 R b2
EC
分压式偏置稳定电路
(2)、利用发射极电阻 Re 来获得直流负 反馈,稳定静态工作点。过程如下:
T(C) ICEO ICQ UE UBE IBQ ICQ
通常,UB>>UBE 所以发射极电流为:
电工电子C第10章基本放大电路
iB IB Q IB
UBE
B
E 电路图 uCE -
O
输入特性
uBE
结论: 晶体管从输 入端看,可以 用一个等效 的动态电阻 rbe代替。
rbe =
26mV rbe 可以估算:rbe = 200 + ( +1) IEmA
UBE 为一个常数。 ΔIB
(2) 输出端电压和电流的关系 在放大区: IC=βIB 结论: 从输出端看,可以用一个 受 控电流源代替。
其中:R′L= RC∥RL
Ii (RB∥rbe ) U i ri = = = RB∥ rbe Ii Ii -Ic RC ro = = RC - Ic
例2:求放大电路的空载电压放大倍数、输入电阻 和输出电阻 。
解:(1) 空载电压放大倍数 RB rbe = 200 + 26 C1 IC + + 26 = (200 + 50× ) = 1 084 ui 1.47 - RC 50×2 =-92.25 = - Ao =- r 1.084 be
R
C
+ UCC C + 2 + uo -
(2) 输入电阻 180×1.084 k = 1.078 k ri = RB rbe = 180+1.084 (3) 输出电阻 ro = RC = 2 k
10.3 静态工作点的稳定
一、分压式偏置共射放大电路 1. 电路组成 (1)偏流电阻 RB2用于固定
C
Ic
Ui R B1 RB2
-
Ib
RE
βRL ′ Au =- rbe+(1+β)RE 放大倍数Au降低
思考:画出下图微变等效电路
+ UCC C1 + + ui
《共射极放大电路》课件
自适应和智能控制研究
研究自适应控制和智能控制算法,实现共射极放大电路的自动调节 和控制。
生物医学应用研究
探索共射极放大电路在生物医学领域的应用,如生理信号检测和医 疗仪器等。
THANKS
感谢观看
实验电路的搭建与测试
实验器材准备
列出搭建实验电路所 需的电子元件和测试 仪器,如电阻、电容 、晶体管等。
电路搭建技巧
介绍如何根据共射极 放大电路原理图搭建 实际电路,包括元件 的选择、布局和连接 方式等。
实验步骤与操作
详细说明实验操作的 步骤和方法,包括电 源接入、信号源设置 、输入信号的产生和 输出信号的测量等。
安全注意事项
强调实验过程中应注 意的安全事项,如避 免短路、过载等危险 情况。
实验结果的分析与讨论
数据记录与整理
指导如何准确记录实验数据,包括输 入输出电压、电流等,并对其进行整
理和表格化处理。
误差来源与减小方法
探讨实验结果误差的可能来源,如测 量误差、元件参数误差等,并提出减
小误差的方法和技巧。
静态分析
静态分析是分析放大电路在没有输入信号时的直流工作状态,主要目的是确定电路 的静态工作点,即基极电流、集电极电流和集电极电压等参数。
静态分析的方法包括欧姆定律、基尔霍夫定律等,通过计算电路的直流通路来得出 静态工作点的参数。
静态分析对于理解放大电路的工作原理和设计至关重要,因为合适的静态工作点可 以保证放大电路在信号放大时不会出现失真。
性能指标分析是对放 大电路性能的评估和 比较,主要包括通频 带、最大不失真输出 电压、输入电阻、输 出电阻等指标。
通频带是衡量放大电 路对不同频率信号的 放大能力的指标,主 要由电路中元件的分 布参数决定。
共射极放大电路
输出电阻:用于限制输出信号的电流,防止对负载电阻产生过大的电流冲击
负载电阻:用于接收放大后的信号,并将其转换为其他形式的能量,如声、光等
工作原理:共射极放大电路是一种常用的放大电路,其基本原理是通过改变基极电流来控制集电极电流,从而实现信号放大。
特点:共射极放大电路具有较高的输入阻抗和较低的输出阻抗,适合于放大高频信号。同时,其放大倍数较高,但失真度也较大。
静态工作点的计算:通过分析电路的直流通路,计算静态工作点的电压和电流
静态工作点的调整:通过调整电路参数,如偏置电阻、电源电压等,来调整静态工作点
带宽:放大电路能够放大的频率范围
失真:输出信号与输入信号的差异
稳定性:放大电路在输入信号变化时,输出信号的稳定性
输入电阻:输入信号的电压与电流之比
输出电阻:输出信号的电压与电流之比
汇报人:XX
XX,
CONTENTS
PRT ONE
PRT TWO
共射极放大电路:一种常用的放大电路,其输出信号与输入信号同相位
电路结构:由输入电阻、晶体管、输出电阻和负载电阻组成
晶体管:作为放大元件,其基极、发射极和集电极分别与输入信号、输出信号和电源相连
输入电阻:用于限制输入信号的电流,防止对晶体管产生过大的电流冲击
电阻:用于控制电流的大小,起到限流作用
电容:用于存储电荷,起到滤波、稳压作用
电感:用于产生磁场,起到阻抗、滤波作用
电阻、电容、电感的参数选择:根据电路需求,选择合适的电阻、电容、电感参数,以实现最佳性能
PRT FOUR
静态工作点的定义:在输入信号为零时,放大电路的输出电压和电流
静态工作点的重要性:影响放大电路的线性度、稳定性和输出功率
共射极放大电路输入电阻小,输出电阻大
共射极放大电路输入电阻小,输出电阻大1.引言1.1 概述概述部分的内容可以包括以下信息:共射极放大电路是一种常见的电子电路结构,其具有输入电阻小、输出电阻大的特点。
该电路由三个主要元件组成:晶体管、负载电阻和输入信号源。
它是一种常见的放大电路,被广泛应用于各种电子设备和通信系统中。
在共射极放大电路中,输入电阻小是指电路对输入信号的阻抗较低,能够有效地接收和放大输入信号。
这种特性使得电路对外部信号源具有较高的灵敏度,能够以较低的电压或电流驱动电路。
因此,共射极放大电路在信号放大和传输中具有重要的作用。
而输出电阻大是指电路对外部负载的阻抗较高,能够有效地驱动负载并提供稳定的输出信号。
这种特点使得电路能够为外部设备提供较大的输出功率,同时保持较低的失真和波形变形。
因此,共射极放大电路在功率放大和信号传输中有着其他电路结构无法替代的优势。
通过分析共射极放大电路的输入电阻小和输出电阻大的原因,可以更好地理解这种电路结构的特性和应用。
本文将详细介绍共射极放大电路的工作原理、输入电阻小的原因以及输出电阻大的原因,以期对读者对该电路的理解和应用有所帮助。
文章结构部分的内容可以如下编写:1.2 文章结构本篇文章将围绕共射极放大电路的特性展开讨论,主要着重于分析该电路的输入电阻小和输出电阻大这一特点。
文章将分为引言、正文和结论三个部分。
在引言部分,我们将对共射极放大电路进行概述,介绍其基本原理和使用场景。
同时,我们还会阐述本文的目的,即解析共射极放大电路的输入电阻小和输出电阻大的原因。
这将为读者打下坚实的理论基础,使其对文章的内容有一个整体的把握。
在正文部分,我们将先详细介绍共射极放大电路的结构和工作原理。
接着,我们会深入探讨为何该电路具有输入电阻小的特点。
通过分析电路中的元件和信号传输过程,我们将揭示输入电阻小的原因,并举例说明此特性对电路性能的影响。
随后,我们将继续探讨共射极放大电路为何具有输出电阻大的特性。
我们将分析电路中各个元件的作用和相互影响,解释输出电阻大的原因。
基本共射极放大电路
2.3 图解 分析法
2.3.2 动态工作情况分析
3. BJT的三个工作区
②放大电路 的动态范围
放大电路要想 获得大的不失真输 出幅度,要求:
• 工作点Q要设置在 输出特性曲线放大区 的中间部位;
• 要有合适的交流负载线。
2.3 图解 分析法
2.3.2 动态工作情况分析
4. 输出功率和功率三角形
放大电路向电阻性负载提供的输出功率
=1.62 k
Au空= - RC /rbe=-60 5/1.62=-186 Au载= - RL /rbe=-60 (5//5)/1.62=-93
EC
uo UBE=UB-UE
=UB - IE RE
IE = IC +IB IC
+EC 静态工作点稳定过程
RB1 C1
I1 RC IC C2
IB
C
ui
RB2
B
I2
E
RE
RL
IE CE
UB
R B2 R B1 R B2
EC
UB被认为较稳定
uo
U本BE=电U路B-稳UE压的 过 于程 加=U实 了B R际- IEE是形R由成E
iCiC
VCC VVCRCCcC RRc c
ICQ ICICQQ
Q Q
Q Q
斜斜率率 -IIBIBQBQQ
11 RRc c
VVCCCEQ VC EQVC EQ
VCC vvCCEE
2.3
2. 放大电路如图所示。当测得 BJT的VCE 接近VCC的值时,问 管子处于什么工作状态?可能 的故障原因有哪些?
Po
Vom 2
Iom 2
1 2
Vom
共射极基本放大电路
为了使放大电路能够正常工作,三极管必须处于放大状态。 因此,要求三极管各极的直流电压、直流电流必须具有合适
的静态工作参数IB、IC、UBE、UCE ,也即是放大电路的静态工
作点。静态工作点是放大电路工作的基础,它设置的合理及 稳定与否,将直接影响放大电确定静态工作点。
交点,即为静态工作点Q。从Q点查出结果与估算法所得 结果一样。
2.动态工作情况
当接入正弦信号时,电路将处在动态工作情况,可
以根据输入信号电压ui通过图解确定输出电压uo,从而 可以得出ui与uo之间的相位关系和动态范围。 图解的步 骤是先根据输入信号电压ui在输入特性上画出ib的波形, 然后根据ib的变化在输出特性上画出ic和UBE的波形,如图
图 7.4 图解法分析动态工作情况
设放大电路的输入电压正弦波,当它加到放大电路
值得指出的是, 放大作用是利用晶体管的基极对集电极的 控制作用来实现的, 即在输入端加一个能量较小的信号,通过 晶体管的基极电流去控制流过集电极电路的电流, 从而将直流
电源VCC的能量转化为所需要的形式供给负载。 因此, 放大作
用实质上是放大器件的控制作用;放大器是一种能量控制部件
1.2共射极基本放大电路的分析
态时的集电极电流
IC IB ICEO IB
(7-2)
由图7.2的输出回路可知 静态时的集电极与发射极间 电压
VCC
Rb
IB Rc
IC
(+12V)
300KΩ
4KΩ
U CE VCC IC RC
(7-3)
图 7.2 共射放大电路直流通 路图从式(7-1),由图7.2所 示参数可求得
UBE
T UCE
件组成,信号源电压ui从AO端输入,放大后的信号电压uo从BO端
pnp管的共射放大电路
pnp管的共射放大电路共射放大电路是一种常见的电子电路配置,其中使用了pnp晶体管作为放大器的核心元件。
这种电路可以将输入信号放大,并输出增大后的信号。
本文将详细介绍pnp管的共射放大电路的工作原理、特点以及应用。
一、工作原理pnp管的共射放大电路由pnp晶体管、输入电阻、输出电阻以及耦合电容等组成。
其工作原理如下:1. 输入信号:将输入信号加到输入电阻上。
当输入信号为正弦波时,输入电阻上的电压也会随之变化。
2. 稳定偏置:为了确保晶体管工作在合适的工作区域,需要通过稳定偏置电路来提供稳定的电压。
偏置电路通常由电阻和电源组成,可以将晶体管的基极电压固定在适当的值上。
3. 放大过程:当输入信号通过输入电阻加到基极时,晶体管的基极电流也会相应变化。
由于pnp晶体管的特性,当基极电流增大时,集电极电流也会相应增大。
这样就实现了输入信号的放大。
4. 输出信号:放大后的信号通过输出电阻传递到负载电阻上,形成输出信号。
输出电阻的选择要根据具体的应用需求来确定。
二、特点pnp管的共射放大电路具有以下几个特点:1. 放大增益高:共射放大电路的电压放大倍数一般较高,可以达到几十倍甚至更高。
这使得它在实际应用中具有重要的作用。
2. 输入电阻低:由于输入电阻是由输入电阻和基极电阻共同构成的,pnp管的共射放大电路具有较低的输入电阻。
这样可以减少输入信号源的驱动能力要求,提高整个电路的灵敏度。
3. 输出电阻高:由于输出电阻是由输出电阻和集电极电阻组成的,因此pnp管的共射放大电路具有较高的输出电阻。
这使得电路的输出信号可以更好地驱动负载电阻。
4. 工作稳定性好:通过稳定偏置电路的设计,可以使得pnp管的共射放大电路工作在稳定的工作区域,提高电路的工作稳定性。
三、应用pnp管的共射放大电路在电子设备中有着广泛的应用。
以下是一些常见的应用领域:1. 音频放大器:pnp管的共射放大电路可以用于音频放大器中,将微弱的音频信号放大到足够的大小,以便驱动扬声器或耳机。
共射极放大电路是同相放大电路
共射极放大电路是同相放大电路
共射极放大电路是一种常见的同相放大电路,广泛应用于各种电子电路中。
它由一个NPN晶体管组成,具有高输入阻抗、低输出阻抗、大增益和广泛的带宽等特点。
在共射极放大电路中,晶体管的集电极被接到正电源,基极通过输入信号源接入,发射极则连接输出负载。
晶体管的工作状态主要有三种:正向活动区、饱和区和截止区。
当输入信号使得基极电压达到晶体管的起动电压时,晶体管就进入了正向活动区,此时晶体管的集电极电流和输出电压呈反比例关系。
当前输入信号继续增大,晶体管会逐渐进入饱和区。
在这个区域,集电极电流达到极限值,即晶体管被完全开启,输出电压由负载电阻决定。
当输入信号继续增大,晶体管就进入了截止区,此时输出电压趋近于零。
总的来说,共射极放大电路的输入信号经过晶体管的放大作用,经过负载后,输出信号会出现大幅度的放大。
同时,由于负载电阻作用的影响,共射极放大电路的输出电压与输入电压具有反向性。
共射极放大电路最大的特点就是输入和输出电阻相互独立。
输入电阻是由基极和信号源组成的电路所决定的,而输出电阻主要由负载阻值决定。
由于输出电阻较小,可以有效避免信号衰减,使得共射极放大电路在电子电路中被广泛应用。
此外,共射极放大电路还可以通过调节集电极电阻或者负载电阻等方式来改变其放大倍数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
+
u_i
RB
(2)放大电路与负载
相互影响。
iB
+
uBE _
VBB
iC + T uCE
_
+
RC RL uO
VCC _
模拟电子技术
2. 晶体管及放大电路基础
改进的共射 极放大电路
C1
T——放大器件
ui
RB
各元器件的作用: VBB
耦合电容C1与 C2作用:
C2Leabharlann TRCu RL
VCC
o
•
(1)隔离放大电路对信号源和负载的直流影响。
谢 谢!
模拟电子技术
模拟电子技术
2. 晶体管及放大电路基础
共射极放大电路的组成原则:
(1)直流偏置原则
直流电源及偏置电阻为晶体管
提供合适的偏置,保证它处于放大
状态,即发射结正偏,集电结反偏。 ui
(2)耦合信号原则
VCC
RB
C1
RC
C2
T RL uo
信号源及负载不影响晶体管的直流偏置,
而信号可以无损地传递并放大。
模拟电子技术
(2)沟通信号源、放大电路、负载之间的信号传递。
模拟电子技术
2. 晶体管及放大电路基础
为T提供Je正偏电压UBE
C1
VBB、RB
提供基极偏置电流IB ui
RB
VBB
VCC
为T提供 Jc 反偏电压UCE
为电路提供能量
4 iC / mA
3
C2
T
RC
u RL
VCC
o
•
i B= 100 μA
80 60
使集电极有合适的电流 IC
2. 晶体管及放大电路基础
2.2 共射极放大电路的组成和工作原理
2.2.1 放大电路概述 2.2.2 共射极放大电路的组成及其工作原理 2.2.2.1 共射极放大电路的组成
模拟电子技术
2. 晶体管及放大电路基础
2.2.2.1 共射极放大电路的组成
电路存在的问题:
(1)信号源与放大电 路相互影响。
2
40
RC
1
转换集电极电流信号为电压信号,
20 0
0 2 4 6 8 uCE / V
实现电压放大
模拟电子技术
2. 晶体管及放大电路基础
(1)电路的简化
C1
C2
只用一个电源,减少电源数。
(2)电路画法
ui
VCC
RB
C1
RC
C2
T
RB
RC
RL
VCC
不画电源符•号,
只写出电源正极
uo
ui
T RL uo 对地的电位。
模拟电子技术
2. 晶体管及放大电路基础
例:判断下图所示电路是否具有电压放大作用
Rb
Rc
+VCC Rb
C2
C1
C1
+VCC
C1 C2
Rb
Rc
+VCC
C2
(a)
(b)
(c)
图(a)由于C1隔直流的作用,无输入直流通路。
图(b)由于没有Rc,只有信号电流,输出信号电压无法取出。
图(c)发射结没有正向偏置电压。