分式与分式方程课件PPT

合集下载

八年级数学上册第二章分式与分式方程1认识分式第2课时分式的基本性质pptx课件鲁教版五四制

八年级数学上册第二章分式与分式方程1认识分式第2课时分式的基本性质pptx课件鲁教版五四制
x
y
y
错解解析:上述解法出错的原因是把分子、分母首项的
符号当成了分子、分母的符号.
x
正确解析:
x
y
y
x
y
x
y
x
x
y
.
y
归纳
当分式的分子、分母是多项式时,
若分子、分母的首项系数是负数,应先
提取“-”并添加括号,再利用分式的
基本性质化成题目要求的结果;变形时
要注意不要把分子、分母的第一项的符
号误认为是分子、分母的符号.
b
(1)
2x
by
y
2 xy

0 ;
b
解:(1)因为y≠0,所以
2x
ax
(2)因为x≠0,所以
bx
ax
(2)
bx
a
.
b
b y
by
;
2 x y 2 xy
ax x a
.
bx x b
归纳
应用分式的基本性质时,一定要确定分式
在有意义的情况下才能应用.应用时要注
意是否符合两个“同”:一是要同时作
“乘法”或“除法”运算;二是“乘(或除
定义 把分式分子、分母的公因式约去,这种变形叫
分式的约分.
约分的步骤:
(1)约去系数的最大公约数;
(2)约去分子分母相同因式的最低次幂.
特别解读
1. 约分的依据是分式的基本性质,关键是确定分子和
分母的公因式;
2. 约分是针对分式的分子和分母整体进行的,而不是
针对其中的某些项,因此约分前一定要确认分子和
1
D.缩小到原来的
20
5.
x 2- y 2
当x=6,y=-2时,则式子 ( x- y ) 2

12.1 分式 - 第1课时课件(共18张PPT)

12.1 分式 - 第1课时课件(共18张PPT)
谈一谈
由上面的问题,我们分别得到下面一些代数式:,;;,
将这些代数式按“分母”含与不含字母来分类,可分成怎样的两类?
分母不含字母
分母含字母
知识点1 分式的概念
定义
一般地,我们把形如 的代数式叫做分式,其中,A,B都是整式,分母必须含有字母.分式也可以看做两个整式相除(除式中含有字母)的商.
12.1 分式第1课时
第十二章 分式和分式方程
学习目标
1.知道分式的概念,发展符号感.2.经历由类比、猜想获得分式基本性质的过程,发展学生的合情推理能力.
学习重难点
掌握分式的概念.
理解并掌握分式的基本性质.
难点
重点
问题导入
1.一项工程,甲施工队5天可以完成。甲施工队每天完成的工程量是多少?3天完成的工程量又是多少?如果乙施工队a天可以完成这项工程,那么乙施工队每天完成的工程量是多少?b(b<a)天完成的工程量又是多少?2.已知甲、乙两地之间的路程为m km。如果A车的速度为n km/h,B车比A车每小时多行20 km,那么从甲地到乙地,A车和B车所用的时间各为多少?
分式的基本性质
同学们再见!
授课老师:
时间:2024年9月15日
知识点2 分式的基本性质
分式的基本性质 分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变.
做一做
分式
随堂练习
1.下列式子中,哪些是整式?哪些是分式?
(1)
2.当x取何值时,下列分式有意义?
3.
(3)(4)(5)
拓展提升
B
归纳小结
分式
分式的概念
例题解析
例1 指出下列各式中,哪些是整式,哪些是分式.
归纳:

《分式方程的应用》PPT课件

《分式方程的应用》PPT课件

售额为10 000元; 若按八五折销售,则每月多卖出
20件,且月销售额还增加1 900元. 每件服装的原
价为多少元?
分析:本题中的主要等量关系为:按八五折销售这种服
装的数量一按原价销售这种服装的数量=20件.
解:设每件服装原价为x元.根据题意,得
10 000 1 900 10 000 20.
85%x
第十二章 分式和分式方程
分式方程的应用
-.
1 课堂讲解 建立分式方程的模型
列分式方程解应用题的步骤 列分式方程解应用题的常见类型
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
小红和小丽分别将9 000字和7 500字的两篇文稿 录入计算机,所用时间相同. 已知两人每分钟录入计 算机字数的和是220字.两人每分钟各录入多少字?
(来自《点拨》)
知3-练
2 【中考·安顺】“母亲节”前夕,某商店根据市场 调查,用3 000元购进第一批盒装花,上市后很 快售完,接着又用5 000元购进第二批这种盒装 花.已知第二批所购花的盒数是第一批所购花 盒数的2倍,且每盒花的进价比第一批的进价少 5元.求第一批盒装花每盒的进价是多少元?
(来自《典中点》)
2.补充: 请完成《典中点》剩余部分习题
(1)利润问题:利润=售价-进价,利润率=
利润 进价
×100%;
(2)工程问题:工作量=工作效率×工作时间;
(3)行程问题:路程=速度×时间.
注意:列分式方程解应用题,往往与实数的运算或不等
式联合应用.
易错警示:列分式方程时易出现单位不统一的错误.
(来自《点拨》)
知3-讲
例3 某服装店销售一种服装.若按原价销售,则每月销

八年级数学上册第二章分式与分式方程复习课件(30张PPT)

八年级数学上册第二章分式与分式方程复习课件(30张PPT)
解这个方程得:x=30
经检验:x=30 是原方程的解, 所以 1.5x=45 答:实际有 45 人参加了植树活动。
评注:1、分式方程解应用题应相应地增加检验的过程。 2、要注意灵活设未知数。
列方程解应用题:
例4、甲、乙两人分别从相距36千米的 A、B两地同时相向而行,甲从A地出 发到1千米时发现有一物品遗忘在A地 ,立即返回,取过物品后又立即从A地 向B地行进,这样两人恰好在A、B两 地中点处相遇,又知甲比乙每小时多 走0.5千米,求甲、乙两人的速度。
一、分式的概念:
x2 4 1. 若分式 (x 1)(x 2)
若有意义,则x应满足( B )
A、x≠-1 C、x≠2
B、x ≠-1且x ≠2 D、x ≠-1或x ≠2
若值为0,则x应满足( B )
A、x=2
B、x =-2
C、 x 2 D、x =-1或x =2
二、分式的基本性质
1.若把分式 2x 的yx 和y 都扩大两倍,则分式的值( ) B 3x y
(3)
m2+4m+4
m2 - 4
7.通分
(1) x 与 y
6a2b
9ab2c
a-1
(2) a2+2a+1 与
6 a2-1
计算: 8 9
10
算一算
11、解方程
(1) 2 1 x2 x
(2) x 1 1 3 x2 2x
12、列方程,解应用题: 甲、乙两城间的铁路路程为1600千米,经过技
术改造,列车实施了提速,提速后比提速前速度增 加20千米/时,列车从甲城到乙城行驶时间减少了4 小时,这条铁路在现有条件下安全行驶速度不得超 过140千米/时.请你用学过的数学知识说明在这条 铁路的现有的条件下列车还可以提速.

北师大版数学八年级下册《第五章 分式与分式方程 1 认识分式 第1课时 分式的概念》教学课件

北师大版数学八年级下册《第五章 分式与分式方程 1 认识分式 第1课时 分式的概念》教学课件
第五章 分式与分式方程 1 认识分式
第1课时 分式的概念
北师版 八年级下册
新课导入
面对日益严重的土地沙漠化问题,某县决定在
一定期限内固沙造林2400hm2,实际每月固沙造林
的面积比原计划多30hm2 ,结果提前完成原计划的
任务.如果设原计划每月固沙造林xhm2,那么
(1)原计划完成造林任务需要多少月? 2 4 0 0
b a x
上面问题中出现了代数式 2 4 0 0 , 2 4 0 0 ,
35a 45b , b
x
x + 30
,它们有什么共同特征?
ab a x
观察下列两组式子,它们都是整式吗? 它们有什么特点? (1)a,-3x2y3,5x-1,x2+xy+y2 (2) 2 ,y,a ,c
m-n x 9a-1 ab
x2
A. ±2
B.2 C. -2
D.4
分析 分式的值为零,即分子为零且分母不为零. 根据题意,得x2-4=0且x-2≠0, 解得x=-2.
3.有下列式子:①x; ②y2; ③5; ④x2 .
3 y x2
其中是分式的有( B )
A. 1个
B.2个 C. 3个
D.4个
课后小结
一般地,.只要分母不 等于零,分式就有意义;
(2)有关求分式有意义、无意义的条件的问题, 常转化为不等式的问题.
分式的值为零的条件
分式的值为零的条件:分子为零,分母不为零. 用式子表示:B A=0A=0且B0 例 当x为何值时,分式 x 2 9 的值为零.
x3
[分析] 分式的值为零 分 分子 母= 00xx239 解出x的值.
解 依题意,得
x 2 9 = 0 ①

八年级数学上册第二章分式与分式方程全章热门考点整合应用习题pptx课件鲁教版五四制

八年级数学上册第二章分式与分式方程全章热门考点整合应用习题pptx课件鲁教版五四制
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
考点2 一个性质——分式的基本性质
6. [2023·泰安新泰市期末]下列各式从左到右的变形中,正确
的是(
C
)


A. =




B. =




C.


(−)
D.
1
2
3
4
5
6
7
8
18
19
20


8. (1)不改变分式的值,使分式



的分子与分母的最高次
项的系数是整数,且分子、分母不含公因式;
【解】原式=

1
2
3
4
5
6
7
8



9
10
.
11
12
13
14
15
16
17
18
19
20
(2)不改变分式的值,使分式




的分子与分母的最高


2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
【点拨】



∵ - =
=3,



∴ y - x =3 xy ,

北师版八年级下册第五章分式和分式方程复习课件(28张PPT)

北师版八年级下册第五章分式和分式方程复习课件(28张PPT)
解分式方程一定要 验根 。
【 例5】2019年中国设计了第一条采用我国自主研发的 北斗卫星导航系统的智能化高速铁路﹣﹣京张高铁, 作为2022年北京冬奥会重要交通保障设施。已知北京 至张家口铁路全长约180千米.按照设计,京张高铁 列车的平均行驶速度是普通快车的1.5倍,用时比普通 快车用时少了20分钟,求高铁列车的平均行驶速度.
1
2 2x x 1
)
x2 x
x
1
x的值从﹣2<x<3的整数值中选取。
解:(x
1
2
x
2x
1
)
x2 x
x
1
(x 1)(x 1) 2 2x x 2 x
x 1
x 1 x 1
x2
1 2 2x x 1
x 1 x2 x
x 2 2x 1 x 1 x 1 x2 x
a b ab . cc c (2)异分母分式的加减法则:先通分,化为同分母的分 式,然后按照同分母分式的加减法法则进行计算。
a c ad bc ad bc . b d bd bd bd
3.分式的混合运算:
先算乘方,再算乘除,最后算加减,有括号 的先算括号里面的.
计算结果要化为最简分式或整式.
解:(x
1
2
x
2x
1
)
x2 x
x
1
(x
1)(x x 1
1)
2 2x
x
1
x2 x
x
1
x2
1 2 2x x 1
x x2
1
x
x 2 2x 1 x 1 x 1 x2 x
满足﹣2<x<3的整数有 ﹣1,0,1,2, ∵分母x≠0,x+1≠0,x﹣1≠0

八年级数学下册 第五章 分式与分式方程 5.1 认识分式(第1课时)课件

八年级数学下册 第五章 分式与分式方程 5.1 认识分式(第1课时)课件

D .x 2 x
第十九页,共三十三页。
★★3.若式子(shì2
x
zi)
1
3y 1
的值.
无意义,求代数式(y+x)(y-x)+x2
解:∵式子 2 x 1无意义,∴3y-1=0,
3y 1
解得y= 1 ,原式=y2-x2+x2=y2= ( 1 ) 2= 1 .
3
39
第二十页,共三十三页。
知识点三 分式(fēnshì)的值(P109例1拓展) 【典例3】下列判断错误的是 ( D ) A.当a≠0时,分式 2有意义
解:(1)∵分式(fēnshì2) x 4 无意义,∴x-1=0,解得x=1.
x 1
(2)∵分式 2 x有 意4 义,∴x-1≠0,即x≠1.
x 1
(3)∵分式 2的x 值4为0,
x 1
∴ 2 x 解4 得0 x, =-2.
xபைடு நூலகம்
1
0,
第三十页,共三十三页。
【母题(mǔ tí)变式】
【变式一】当a取何值时,分式
第三页,共三十三页。
二、分式有无(yǒu wú)意义及值为0的条件
1.当分母 ___不__等__于__零时,分式有意义,即_____时B≠,分0式
A 有意义;
B
2.当分母__等__于__零_时,分式无意义,即____B时=0,分式
A
B
无意义;
第四页,共三十三页。
3.分式等于零的条件(tiáojiàn)有两个:①分子__等__于__零_____,②分 母____不__等__于__零___.
(2)求出这列分式的第2 019个分式除以第2 018个分式所得 的商.并回答把任意一个分式除以前面(qián mian)的一个分式, 你发现什么规律?用语言表示出来.

2022八年级数学上册第二章分式与分式方程4分式方程1ppt教学课件鲁教版五四制

2022八年级数学上册第二章分式与分式方程4分式方程1ppt教学课件鲁教版五四制

解:
x 5
69000 x 3
3.王军同学准备在课外活动时间组织部分同学参加 电脑网络培训,按原定的人数估计共需费用300元。 后因人数增加到原定人数的2倍,费用享受了优惠, 一共只需要480元,参加活动的每个同学平均分摊的 费用比原计划少4元,原定的人数是多少?如果设原
定是x人,那么 x 满足怎样的分式方程?
解:10 x 5 . 80 x 7
7.从甲地到乙地有两条路可以走:一条全长 600 km普通公路,另一条是全长 480km 的高 速公路,某客车在高速公路上行驶的平均速度 比普通公路上快45km/h,由高速公路从甲地到 乙地的所需的时间是由普通公路从甲地到乙地 所需时间的一半,求该客车由高速公路从甲地 到乙地所需要的时间? 解:该客车由高速公路从甲地到乙地所需要的 时间为xh
(1) 1 (x 3) 1.x找找(看,否下)列方程哪; 些(是2)分式1方程 1:( 是)
2
2x
(3)
x 3 1 x 1 2 x
(是) ; (4)
x 2
x 3
1(否

2. “退耕还林还草”是在我国西部地区实施的一项
重还hm要林2 生与态退工耕程还.草某的地面规积划比退为耕5∶面3积,共设退69耕00还0 ,林退的耕面 积为 x ,那么 x 满足怎hm样2 的分式方程?
解:设第一块小麦实验田的每公顷的产量为 x ㎏
9000
15000
x x 3000
6.李庄村原来用10hm2耕地种植粮食作物, 用80hm2耕地种植经济作物。为了增加粮食 作物的种植面积,该村计划将部分种植经济 作物的耕地改为种植粮食作物,使得粮食作 物的种植面积与经济作物的种植面积之比为 5:7.设有xhm2种植经济作物的耕地改为种植 粮食作物,那么x满足怎样的分式方程?

《分式》PPT教学课件(第1课时)

《分式》PPT教学课件(第1课时)

a b2 a b2
1
b a4 a b4 a b2 .
注意 判断一个分式是不是最简分式,要严格按照定义来 判断,就是看分子、分母有没有公因式.分子或分母 是多项式时,要先把分子、分母因式分解.
三 分式的求值
分式的求值 对一些较复杂的分式求值,应先约分化简,再代入具体数据 求值.常用方法有整体代入法,倒数法,换元法和配方法等.
课堂小结
❖分式的概念 ①分子分母都是整式; ②分母中必含有字母. ❖分母中字母的取值不能使分母值为零,否则分式无意义. ❖当分子为零且分母不为零时,分式值为零. ❖分式的基本性质
课后作业
见《学练优》本课时练习
第十二章 分式和分式方程
分式
第2课时
学习目标
1.理解约分和最简分式的意义.(难点) 2.根据定义找出分式中分子与分母的公因式,并会约分. 3.理解分式求值的意义,学会根据已知条件求分式值.(重点)
1
;
2
a b
b a
2 4
;
3
x2
y 8x 8
.
解析: 最简分式: x2 y2 ; x2 2x 1 .
y2 2x2 8x 8
不是最简分式:
m2 2m 1 m2
1
;
a b
b a
2 4
.
m2 2m 1 m 12 m 1;
1 m2
m 1m 1 m 1
分式的特点 分式的特征是: ①分子、分母 都是 整式 ;
②分母中含有 字母 .
二 分式有(无)意义及分式值为0
观察与思考
探究 求下列分式的值:
x … -2 -1
0
1
2…
x x-2 …
1 2
1 3

北师大版八年级下册数学《分式方程》分式与分式方程教学说课复习课件

北师大版八年级下册数学《分式方程》分式与分式方程教学说课复习课件
②高铁列车的平均行驶速度=特快列车的平均速度×2.8倍;
探究新知
(2)如果设特快列车的平均行驶速度为xkm/h,那么x满足怎
样的方程?
1400 1400

9
x
2.8 x
(3)如果设小明乘高铁列车从甲地到乙地需y h.那么y满足怎
样的方程?
1400
1400
2.8
y
y9
探究新知
问题2 为了帮助遭受自然灾害的地区重建家园,某校团总支号
1. 理解分式方程的概念和意义,掌握解分式
方程的基本思路和解法.
探究新知
知识点
分式方程的概念及列分式方程
问题1 甲、乙两地相距1400km,乘高铁列车从甲地到乙地比
乘特快列车少用9h,已知高铁列车的平均行驶速度是特快列车
的2.8倍.
(1)你能找出这一问题中的所有等量关系吗?
等量关系:①乘高铁列车所用时间=乘特快列车所用时间-9,
(2)怎样去分母?
(3)在方程两边乘什么样的式子才能把每一个分母都约去?
(4)这样做的依据是什么?
解分式方程最关键的问题是什么? “去分母”
90
60
=
30 + 30 −
方程各分母的最简公分母是:(30+x)(30-x)
解:方程①两边同乘(30+x)(30-x),得
x=6是原分式
90(30-x)=60(30+x),
成计划任务.原计划每月固沙造林多少公顷?
1.这一问题中有哪些已知量和未知量?
已知量:造林总面积2400公顷;实际每月造林面积比原计
划多30公顷;提前4个月完成原任务.
未知量:原计划每月固沙造林多少公顷.

八年级数学上册第二章分式与分式方程1认识分式第1课时认识分式pptx课件鲁教版五四制

八年级数学上册第二章分式与分式方程1认识分式第1课时认识分式pptx课件鲁教版五四制

求解.
3.易错警示:当分母出现含字母的式子是平方形式时,容
易出现考虑不周的错误.
2
例2 分式 x 1 有意义,则x的取值范围是 ( A )
A.x≠1
B.x=1
C.x≠-1
D.x=-1
导引:根据分式有意义的条件:分母不等于0,即可求解.
根据题意得:x-1≠0,解得:x≠1.
归纳
求分式有意义时字母的取值
范围,一般是根据分母不等于0
构造不等式,求使分式的分母不
等于0的字母的取值范围.
例3 当x取何值时,下列分式无意义?
2 x-1
(1) 3 x ;
5 x+1
(2) 3 x 2-27 .
导引:由分式无意义可得分母的值为0,从而利用方程求解.
2 x-1
解:(1)当3x=0,即x=0时,分式
无意义;
3x
(2)当3x2-27=0,即x=±3时,
b

,
a x 它们有什么共同特征?它们与整式有什么不同?
相同点
都具有分数的形式
不同点 (观察分母)分母中有字母
一般地,如果A,B表示两个整式,并且B中
定义
A
A
含有字母,那么式子 B 叫做分式. 分式
B
中,A叫做分子,B叫做分母.
特别解读
1. 分式可看成是两个整式的商,它的分子是被
除式,分母是除式,分数线相当于除号,分
数线还具有括号作用.
2. 判断一个式子是否是分式,不能将原式子进
行变形后再判断,而必须按照本来“面目”
2
3a
进行判断. 如: 是分式.
a
x+2 2 x a+2b
2x
3,
例1 下列各式:-3a , 2 ,x ,π+2 ,

12.4 分式方程课件(共19张PPT)

12.4 分式方程课件(共19张PPT)
12.4 分式方程
第十二章 分式和分式方程
学习目标
1.理解分式方程的意义.2.了解解分式方程的基本思路和解法.3.理解解分式方程时出现的无解情况及增根.
学习重难点
理解并掌握解分式方程的基本思路和解法.
难点
重点
理解解分式方程时出现的无解情况及增根.
复习回顾
方程含有未知数的等式叫做方程.
一元一次方程只含有一个未知数(也称元),并且未知数的次数是1.
整式方程分母不含有未知数的方程.
情景引入
小红家到学校的路程为38 km.小红从家去学校总是先乘公共汽车,下车后再步行2 km,才能到学校,路途所用时间是1 h.已知公共汽车的速度是小红步行速度的9倍,求小红步行的速度.
一起探究
知识点2 分式方程的增根
总结归纳
解分式方程的一般步骤:
分式方程
整式方程
检验
若最简公分母=0(分式方程无意义)
若最简公分母≠0(分式方程有意义)
经检验,是原分式方程的解(根)
经检验,原分式方程无解,这样的根叫做分式方程的增根
例2 解方程:
解分式方程一定要注意验根.
随堂练习
D
拓展提升
B
归纳小结
上面得到的方程与我们已学过的方程有什么不同?这两个方程有哪些共同特点?
谈一谈
像上面得到的方程那样,分母中含有未知数的方程叫做分式方程.使得分式方程等号两端相等的未知数的值叫做分式方程的解(也叫做分式方程的根).
例题解析
例1 解方程:
思考
不是.因为当x=1时,x-1=0,即这个分式方程的分母为0,方程中的分式无意义,所以x=1不是这个分式方程的解(根).
探究新知
知识点1 分式方程及其解的概念

八年级数学下册第五章分式与分式方程认识分式(第2课时)课件(新版)北师大版

八年级数学下册第五章分式与分式方程认识分式(第2课时)课件(新版)北师大版

B.
x x2
1 1
D.
x2 x2
xy y2
(B)
2.将分式
x 1
__x__1__.
x2 2x 1化为最简分式,所得结果是
x2 1
【火眼金睛】
化简:
m2 3m 9 m2
.
正解:
m2-3m 9-m2
3
m(m-3)
m(3-m)
- m m
3
.
【一题多变】 已知x2-4xy+4y2=0,那么分式 x y 的值等于多少?
(1)82aba2
a 1 1 a
(. 2)a
2
4ab 4b2 a2 4b2
.
【自主解答】(1)
2a a 1 8ab2 1 a
1 4b2
.
(2)a 2
4ab 4b2 a2 4b2
a
a 2b2 2ba 2b
a 2b . a 2b
【学霸提醒】 关于约分的三点说明 (1)根据:分式的基本性质. (2)关键:确定分式分子与分母的公因式. 确定公因式的步骤:
--A -B
-A . B
【基础小练】
请自我检测一下预习的效果吧! 1.分式变形 x = A 中的整式A=___x_2-_2_x___,变形
x 2 x2 4
的根据是 _分__式__的__分__子__与__分__母__乘__(_或__除__以__)_同__一__个__不__等__于__0_的__整__式__,_ _分__式__的__值__不__变__.
bm
(2)符号表示: b b m , b =__a___m__(m≠0).
a am a
2.约分 (1)概念:把一个分式的分子和分母的___公__因__式____约 去. (2)约分的关键:找出分子、分母的___公__因__式____; 约分的根据:分式的基本性质;

《分式方程》分式PPT课件 (共18张PPT)

《分式方程》分式PPT课件 (共18张PPT)
X(x―3)
X2-1=0
时,
3 x2 3、分式 2( x 3)与 x 2 3x 的最简公分母 是 2X(x―3) .
解分式方程
例1 解分式方程
x11 x1 2
分式方程
解: 方程的两边同乘以最简公分母2(x+1), 转 ● ● ● ● ● 化 x 1 1 得 2(x+1) · x1 2 · 2(x+1) 整式方程 ① 化简,得整式方程 2(x-1)=x+1
增根的定义
增根:在去分母,将分式方程转化为整 式方程的过程中出现的不适合于原方 · · · · · · 程的根. · · · 使分母值为零的根 产生的原因:分式方程两边同乘以一个 零因式后,所得的根是整式方程的根, · · · · 而不是分式方程的根. · · · ·
练 x(x 2) 解 : 方程两边同乘以最简公分母 , 一 2+ x -6=0 或x(x+1)-6=0 x 化简 , 得 . 练① ② 解得 x1= -3 , x2= 2 . ③ 检验:把x1= -3,代入最简公分母,
概 念 观察下列方程: 一元一次方程
1、2(x-1)=x+1;
一元二次方程
x2+x-20=0;
x+2y=1…
整式方程: 方程两边都是整式的方程.
1 x 1 1 1 1 x 1 5 x 9 x 0 ; ; 1 ; 2、 y 2 x 1 x 1 2 x 1 x 1 x 1
· · · · · · · · · x(x-2)=-3(-3-2)= 15 ≠0; 把x2= 2 ,代入最简公分母,
x 1 6 0 (填空)1、解方程: x 2 2 x 2 x
7
x(x-2)= 2(2-2) =0

八年级数学上册第二章分式与分式方程1认识分式第1课时认识分式习题pptx课件鲁教版五四制

八年级数学上册第二章分式与分式方程1认识分式第1课时认识分式习题pptx课件鲁教版五四制

B. 5个
C. 6个
D. 3个
【点拨】

∵分式
的值是正整数,且 m 为整数,

∴ m -2=1,2,3,6,∴ m =3,4,5,8,共4个.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
13.

[新考法·整体代入法]已知 a + b =7, ab =12,则


= .
16
17
练点2 分式有(无)意义的条件
3. [2024·烟台招远市期末]若分式
义,则 x 的取值范围是(
A. x ≠-7
C. x ≠7
A


在实数范围内有意
)
B. x ≠0
D. x >-7
【点拨】
∵分式
1
2
3


4
5
有意义,∴ x +7≠0,解得 x ≠-7.
6
7
8
9
10
11
12
13
14
15
符合条件的分式.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
【解】张明摆出的分式不符合条件.理由如下:
当 x =3时,张明摆出的分式的分母为 x2-9=0,此时
分式无意义,
符合条件的分式可以为
1
2
3
4
5
6
7


8

北师大版八年级数学下册第五章分式与分式方程课件

北师大版八年级数学下册第五章分式与分式方程课件

X=-3
(4) X2 -1 X2 +2x+1 X=1
6.当x为何值时,分式 2x (x-2) 5x (x+2)
(1) 有意义
(2) 值为 0
X≠0且x≠-2
X=2
7.要使分式 -2 的值为正数,则x的取值范围是 X>1 1-x
8.当x <-2 时,分式 X2+1 的值是负数. X+2
9.当x ≥7
依题意得:
180
240
=
x
x5
请完成下面的过程
甲:15 乙:20
1
x2
的值.
变:已知 x+ 1 =3 ,求
x
x2 x4+x2+1
的值.
两个分式相乘,把分子相乘的积作为积的分子, 把分母相乘的积作为积的分母。
用符号语言表达:
两个分式相除,把除式的分子和分母颠倒位置
后再与被除式相乘。
用符号语言表达:
(1)
4 3
x y
y 2x
3
ab3 5a2b2 (பைடு நூலகம்) 2c2 4cd
4
2
2
x
1
解:原方程可化为 1 4x 2 1
NNoox 2 (x 2)(x 2) x 2
两边都乘以 (x 2)(x 2) ,并整理得;
IImmaaggee x2 3x2 0 解得 x1 1, x2 2
检验:x=1是原方程的根,x=2是增根
∴原方程的根是x=1
例2
已知
x3 (x 2)2
1.约分: 把分子、分母的最大公因式(数)约去。 2.通分:
把分母不相同的几个分式化成分母相同的分式。

《分式的加减法》分式与分式方程(第2课件)

《分式的加减法》分式与分式方程(第2课件)

2023-11-09CATALOGUE目录•分式的基本概念•分式的加减法•分式的乘除法•分式方程及其解法•分式在实际生活中的应用•分式与分式方程的历史与发展01分式的基本概念如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式。

分式的定义定义读作“分子A,分母B”,写作“A/B”符号表示当A=0,B≠0时,分式无意义;当A≠0,B=0时,分式值为无穷大特殊情况分式的分子和分母同时乘以(或除以)同一个不等于0的整式,分式的值不变。

性质1性质2性质3分式的分子和分母同时扩大(或缩小)相同的倍数,分式的值改变。

当分式的分子和分母是多项式时,首先要进行因式分解,然后约分。

03分式的基本性质0201把一个分式的分子和分母的公因式约去,叫做分式的约分。

定义先把分子、分母分解因式,然后约去它们公因式。

方法约分时,分子、分母必须是公因式的最高次幂。

注意分式的约分02分式的加减法运算法则同分母分式相加减,分子相加减,分母不变。

概念同分母分式是指具有相同分母的分式。

例子如$\frac{2}{3} + \frac{3}{3}$,$\frac{5}{6} - \frac{1}{6}$等。

同分母分式的加减法异分母分式是指具有不同分母的分式。

概念异分母分式的加减法异分母分式相加减,先通分,变为同分母分式,再按照同分母分式的加减法进行运算。

运算法则如$\frac{2}{3} + \frac{1}{2}$,$\frac{5}{6} - \frac{1}{2}$等。

例子概念混合运算是指包含加法、减法、乘法、除法等多种运算的算式。

分式加减法的混合运算运算法则按照运算的优先级,先乘除后加减,有括号先算括号里面的。

例子如$(2 + 3) \times 5 - \frac{1}{2} \times 4$,$5 \div (3 - 1) + \frac{1}{3} \times 6$等。

03分式的乘除法总结词了解分式乘法的运算方法,能够熟练进行分式乘法运算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式的概念
面对日益严重的土地沙化问题,某县决定在一定期限内固沙造林 2 400 hm2(公顷), 实际每月固沙造林的面积比原计划多 30 hm2,结果提前完成原计划的任务.如果设原计划 每月固沙造林 x hm2,那么 (1)原计划完成造林任务需要多少个月? (2)实际完成造林任务用了多少个月?
分式的概念
思路: 找等量关系→列方程→解方程→检验→答
回顾与复习
什么叫做分式?
分式的基本性质是什么? 分式的加减、乘除、混合运算有什么方法?
什么叫做分式方程?
增根是什么? 解分式方程的基本步骤是什么?
解应用题的一般步骤是什么?
2010年上海世博会吸引了成千上万的参观者,某一时段内的统计结果显示,前 a 天日 均参观人数 35 万人,后 b 天日均参观人数 45 万人,这(a + b)天日均参观人数为多少 万人?
文林书店库存一批图书,其中一种图书的原价是每册 a 元,现每册降价 x 元销售,当 这种图书的库存全部售出时,其销售额为 b 元.降价销售开始时,文林书店这种图书的库 存量是多少?
分式的概念
特征?
类似分数 分母中含有字母
什么叫做分式?
分式是两个整式相除的商,对于任意分式,分母不为零。
分式的概念
下列式子是整式还是分式?
分式
整式
分式
ห้องสมุดไป่ตู้
整式
分式的概念
分式的概念
分式值为零的条件:
分子=0且分母≠0
分式的基本性质
分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变。
这两个方程有什么特点?
分式方程 分式方程:分母中含有未知数的方程。
√ √
解分式方程
去分母 去括号
移向
合并同类项 系数化为1
分式方程如何解?
解分式方程
解分式方程
解分式方程 增根:使得原分式方程的分母为零的根。
产生增根的原因是,我们在方程的两边同乘了一个使分母为零的整式。 因为解分式方程可能产生增根,所以解分式方程必须检验。通常只需检验所
下列等式的右边怎样通过左边得到?
分式的基本性质
化简下列分式
分式的加减
分式的加减
分式的乘除
先化除为乘,然后计算
分式的乘除
计算
当分式的分子分母是多项式 时,应将分子分母进行因式 分解
分式的乘除
计算
分式的混合运算
与整式的混合运算法则类似: 优先进行乘方运算,其次进行乘、除运算,最后进行加、减运算。 如果有括号,优先进行括号内的运算。 对于统计运算,按照从左到右的顺序依次进行。
得的根是否使原方程中分式的分母的值等于零就可以了
解分式方程
解分式方程的一般步骤:
把整式方程的根代入最 方程两边同时乘以最简 公分母,约去分母,化 成整式方程。 解这个整式方程 简公分母,如果值不为
零,则是分式方程的解,
如果为零,则是增根, 舍去。
一化二解三检验
应用题
分析:
小丽家今年 7 月份的用水量 - 小丽家去年 12 月份的用水量 = 5 m3。
分式的混合运算
计算
分式方程
甲、乙两地相距 1 400 km,乘高铁列车从甲地到乙地比乘特快列车少用 9 h, 已知高铁列车的平均行驶速度是特快列车的 2.8 倍。 1. 找出这一问题中所有的等量关系。 2. 如果设小明乘高铁如果设特快列车的平均行驶速度为 x km/h,那么 x 满足怎 样的方程? 3. 如果设小明乘高铁列车从甲地到乙地需 y h,那么 y 满足怎样的方程? 1. 特快列车用时-高铁列车用时=9 高铁列车平均车速=特快列车平均车速×2.8
相关文档
最新文档