电磁场和电磁波的应用

合集下载

电磁场与电磁波的理论与应用

电磁场与电磁波的理论与应用

电磁场与电磁波的理论与应用电磁场与电磁波是电磁学中的重要概念,它们在现代科技与生活中有着广泛应用。

本文将围绕电磁场与电磁波的理论基础展开讨论,并探索它们在实际应用中的意义。

1. 电磁场的理论基础电磁场是由带电粒子周围的电荷所形成的一种物理场。

根据电场与磁场之间的相互作用,我们可以推导出麦克斯韦方程组,这是电磁场理论的基础。

麦克斯韦方程组包括四个方程式,分别是:高斯定律、高斯磁定律、法拉第电磁感应定律和安培环路定理。

这些方程式描述了电荷的分布、电流的产生和磁场的形成,从而揭示了电磁场的本质。

2. 电磁波的理论基础电磁波是指由变化的电场和磁场相互作用而形成的波动现象。

根据麦克斯韦方程组的推导,我们可以得到有关电磁波的方程式,即麦克斯韦方程的波动解。

其中,电磁波的传播速度等于光速,即300,000km/s。

根据频率和波长的不同,电磁波可以分为射线、微波、红外线、可见光、紫外线、X射线和γ射线等不同类型。

3. 电磁场与电磁波的应用电磁场与电磁波的理论已广泛应用于各个领域,为人类的生活与科技进步做出了重要贡献。

3.1 通信领域电磁波在通信领域起着关键作用。

无线电通信、手机通讯、卫星通信等都依赖于电磁波的传输和接收。

通过合理的调制和解调信号,我们可以实现远距离的信息传递。

3.2 医学领域医学成像技术如X射线、磁共振成像(MRI)和超声波等都利用了电磁波在物质中的相互作用特性。

这些技术可以帮助医生进行诊断和治疗,为疾病的早期发现和治疗提供了可能。

3.3 物理学研究电磁场与电磁波在物理学研究中扮演着重要角色。

例如,研究电磁波的干涉和衍射现象可以揭示光的性质;通过电磁场的分析,可以研究电磁波与物质的相互作用规律。

这些研究对于理解自然界和推动科学发展具有重要意义。

3.4 能源领域电磁场与电磁波在能源领域也有广泛应用。

太阳能板利用光的电磁辐射转化为电能,而微波炉则是利用微波的电磁波来产生加热效果。

这些应用不仅改善了人们的生活质量,还为减少对化石燃料的依赖做出了贡献。

看见无形的力量电磁场与电磁波的应用与原理

看见无形的力量电磁场与电磁波的应用与原理

看见无形的力量电磁场与电磁波的应用与原理看见无形的力量——电磁场与电磁波的应用与原理电磁场和电磁波是当今科学技术领域中至关重要的概念,它们具有广泛的应用和深远的影响。

不可见的电磁场和电磁波,正是支撑着我们日常生活中的许多现象和技术。

本文将就电磁场和电磁波的基本概念以及它们在现实生活中的应用进行探讨。

一、电磁场的基本概念与原理1. 什么是电磁场电磁场是由带电物体或变化的电流所产生的一种物理现象。

在电磁场中,电荷之间存在相互作用力,这种力被称为电磁力。

电磁场可以分为静电场和磁场。

静电场是由带电粒子产生的场,而磁场则由电流所产生。

2. 电磁场的产生和传播当电荷或电流产生时,它们会形成电场和磁场。

电场是由电荷引起的,而磁场是由电流引起的。

电磁场的变化会导致电磁波的产生和传播,这是电磁场与电磁波之间密切关联的一个重要方面。

3. 电磁场的数学描述电磁场可以用数学方程来描述。

麦克斯韦方程组是描述电磁场和电磁波的基本方程。

它们包括四个方程,即麦克斯韦方程组的两个高斯定律和两个法拉第定律。

通过这些方程,我们可以描述电磁场的起源和性质。

二、电磁波的基本概念与原理1. 什么是电磁波电磁波是由电磁场的变化产生的一种波动现象。

电磁波可以传播在真空中,也可以传播在介质中。

电磁波由电场和磁场相互作用而构成,其传播速度为光速。

2. 电磁波的特性电磁波具有很多特性,包括振幅、波长、频率、传播速度等。

振幅决定了电磁波的强度,波长和频率决定了电磁波的性质和种类。

电磁波的传播速度在真空中为光速,即约为300,000 km/s。

3. 电磁波的分类根据频率的不同,电磁波可以分为不同的种类,包括无线电波、微波、红外线、可见光、紫外线、X射线和γ射线等。

这些电磁波在科学研究、通信、医疗、遥感等领域都有广泛的应用。

三、电磁场与电磁波的应用1. 通信技术电磁场和电磁波在通信技术中起着至关重要的作用。

无线电波被广泛应用于广播、电视、手机和无线网络等通信领域。

电磁场与电磁波在电子通信技术领域中的应用

电磁场与电磁波在电子通信技术领域中的应用

电磁场与电磁波在电子通信技术领域中的应用电、磁现象是大自然最重要的物理现象,也是最早被科学家们关心和研究的物理现象。

19世纪以前,电、磁现象作为两个独立的物理现象,没有发现电与磁的联系,但是这些研究为电磁学理论的建立奠定了基础。

18世纪末期,德国哲学家谢林认为,宇宙是有活力的,而不是僵死的。

他认为电就是宇宙的活力,是宇宙的灵魂,电、磁、光、热是相互联系的。

法拉第在谢林的影响下,相信电、磁、光、热是相互联系的。

奥斯特1820年发现电流以力作用于磁针后,法拉第敏锐地意识到,电可以对磁产生作用,磁也一定能够对电产生影响。

1821年他开始探索磁生电的实验。

1831年他发现,当磁捧插入导体线圈时,导体线圈中就产生电流。

这表明电与磁之间存在着密切的联系。

麦克斯韦深入研究并探讨了电与磁之间相互作用的关系,并发展了场的概念。

他在法拉第实验的基础上,总结了宏观电磁现象的规律,引进位移电流的概念。

这个概念的核心思想是:变化着的电场能产生磁场;与变化着的磁场产生电场相对应。

在此基础上提出了一组表达电磁现象基本规律的偏微分方程,称为麦克斯韦方程组,成为经典电磁场理论的基本内容。

电磁场作为无线电技术的理论基础,集中于三大类应用问题的研究。

电磁场(或电磁波)作为能量的一种形式,是当今世界最重要的能源,其研究领域涉及能量的产生、储存、变换、传输和综合利用;电磁波作为信息传输的载体,成为当今人类社会发布和获取信息的主要手段,主要研究领域为信息的产生、获取、交换、传输、储存、处理、再现和综合利用;电磁波作为探测未知世界的一种重要手段,主要研究领域为电磁波与目标的相互作用特性、目标特征的获取与重建、探测新技术等。

1887年,德国科学家赫兹用火花隙激励一个环状天线,用另一个带隙的环状天线接收,证实了麦克斯韦关于电磁波存在的预言,这一重要的实验导致了后来无线电报的发明。

从此开始了电磁场理论应用与发展的时代,并且发展成为当代最引人注目的学科之一。

电磁波电磁场的原理和应用

电磁波电磁场的原理和应用

电磁波电磁场的原理和应用1. 电磁波的概述•电磁波是一种能量传播的现象,由电场和磁场构成。

•电磁波可以分为不同频率的波段,包括无线电波、微波、红外线、可见光、紫外线、X射线和γ射线等。

•电磁波具有特定的速度,即真空中的光速,约为300,000千米/秒。

2. 电磁场的定义和特性•电磁场是由电荷和电流所产生的一种物理现象,它具有方向和大小。

•电磁场可以通过电场和磁场的矢量叠加来描述。

•电磁场的特性包括强度、方向和变化率等。

3. 电磁场的形成和传播•电磁场的形成是由电荷和电流的相互作用导致的。

•电磁波的传播是通过电场和磁场的相互作用以及它们之间的耦合实现的。

•电磁波的传播速度取决于介质的性质,如在真空中传播速度为光速。

4. 电磁波的频谱和应用•电磁波频谱包含了不同频率的波段,每个波段都具有不同的特性和应用。

•无线电波用于无线通信、广播和雷达等应用。

•微波被广泛用于微波炉、雷达、通信和天体物理学研究等领域。

•可见光是人类所能感知的电磁波,用于照明和光通信等应用。

•紫外线、X射线和γ射线用于医学成像、材料检测和核物理研究等领域。

5. 电磁波的影响和安全性•长期暴露在强电磁场辐射下可能产生健康问题。

•电磁辐射的限制和安全标准由国际电工委员会(IEC)和其他组织制定。

6. 电磁波的研究和未来发展•对电磁波的研究对于理解宇宙和开发新的科技应用具有重要意义。

•未来的发展方向包括更高频率的电磁波研究和开发新的应用技术。

以上是关于电磁波电磁场的原理和应用的简要概述,电磁波作为一种能量传播方式,广泛应用于无线通信、雷达、医学成像和天体物理学研究等领域。

了解电磁波的原理和特性,以及电磁波的不同频段和应用,对于深入理解现代科学和技术的发展具有重要意义。

在使用电磁波技术时,我们也应注意电磁辐射对健康的潜在影响,并严格遵守相关的安全标准和规定。

未来,电磁波的研究将继续推动科技的进步,为人类带来更大的福祉。

电磁场与电磁波谢处方pdf

电磁场与电磁波谢处方pdf

电磁场与电磁波谢处方pdf电磁场与电磁波是物理学中非常重要的概念,对我们的生活、科技和社会发展都有着深远的影响。

本文将介绍电磁场与电磁波的基本概念,并探讨它们在各个领域的应用和意义。

首先,我们来了解一下什么是电磁场。

电磁场是由电荷和电流引起的空间中的物理场,它包括电场和磁场两个部分。

电场是由电荷产生的力场,描述了电荷之间的相互作用。

磁场是由电流产生的力场,描述了电流所产生的磁力和磁感应强度。

电磁场的存在对我们生活中的各种电器和通讯设备起着至关重要的作用。

例如,电磁场可以通过无线电波传输信息,实现手机和电视的无线通讯。

此外,电磁场也广泛应用于医学领域,如核磁共振成像(MRI)技术利用强大的磁场和电磁波来观察人体内部结构,帮助医生做出准确的诊断。

接下来,我们来了解一下电磁波。

电磁波是电磁场的一种传播方式,它是一种特殊的波动现象,可以在空间中传播而不需要媒质的支撑。

电磁波具有等电场和等磁场的交替变化,并以光速传播。

根据波长的不同,电磁波被分为不同的频段,包括无线电波、微波、红外线、可见光、紫外线、X射线和γ射线。

电磁波在我们的生活中起着至关重要的作用。

无线电波使得我们能够通过无线电收音机和电视接收到远方的信息,微波炉利用微波来加热食物,光线使得我们能够看到周围的世界。

此外,紫外线可以杀灭细菌和病毒,被广泛应用于消毒和杀虫。

电磁场和电磁波的研究对于我们理解自然界的基本规律和发展新技术有着重要的意义。

我们通过对电磁场和电磁波的认识,掌握了无线通信技术、医学诊断技术、光电子技术等一系列重要的科学和技术。

我们能够利用电磁波来探测遥远的星系和宇宙,推动了天文学的发展。

同时,电磁场和电磁波的研究也带动了量子物理学、相对论等前沿领域的发展。

总之,电磁场与电磁波是物理学中非常重要的概念。

它们在我们的生活中起到了举足轻重的作用,广泛应用于电子技术、通讯技术、医学技术等领域。

我们的科技和社会发展离不开对电磁场和电磁波的研究。

电磁场与电磁波的基础与应用

电磁场与电磁波的基础与应用

电磁场与电磁波的基础与应用电磁场是描述电荷引起的电场和电流引起的磁场的物理现象,并且用数学方程来表示的,可以说是电学和磁学的一个统一体系。

电磁波是一种自然界中广泛存在的物理现象,是由变化的电磁场产生的,并传播于真空和介质中。

电磁场与电磁波这两个物理概念,虽然都和电磁现象有关,但是内容和范畴上存在一定的差异。

在本篇文章中,我们将会重点探讨电磁场与电磁波的基础与应用。

一、电磁场的基础1. 电场和磁场电场是指任何电荷周围存在的物理场,可以用电场强度$\vecE$来描述。

磁场是指任何电流周围存在的物理场,可以用磁感应强度$\vec B$来描述。

电场和磁场是互相绑定的,电场变化会引起磁场变化,磁场变化也会引起电场变化。

2. 麦克斯韦方程组麦克斯韦方程组是电磁学中非常重要的一组方程,用于揭示电磁现象的本质和规律。

麦克斯韦方程组包含四个方程式:高斯定律,安培定律,法拉第电磁感应定律和安培-麦克斯韦定律。

通过这四个方程式,我们可以以数学形式精确地描述电磁现象的规律。

3. 电磁场的应用电磁场在现代科技中具有极其重要的应用价值,几乎所有电子技术都离不开电磁场的基础理论。

例如,电磁场的波动理论是无线电通信、卫星通信、光纤通信等现代通讯技术的基础;电磁波辐射和信号控制理论是雷达、卫星定位、导航系统等技术的基础。

二、电磁波的基础1. 电磁波的起源电磁波是由电场和磁场相互耦合而形成的,是一种能够在真空中传播的纵波和横波。

电磁波是由英国物理学家麦克斯韦在19世纪中期首次发现的,他基于理论计算和实验结果得出了电磁波的存在,成为了电磁学的重要理论之一。

2. 电磁波的性质电磁波具有多种性质,如波长、频率、速度、传播方向、极化等。

其中,频率与波长成反比例关系,波长短的电磁波频率高,波长长的电磁波频率低。

电磁波的传播方向分为纵波和横波,纵波的传播方向垂直于电场方向,横波的传播方向则垂直于电场和磁场的方向。

电磁波的速度与介质的性质有关,所有电磁波在真空中速度都是光速,即299792458m/s。

电磁场与电磁波的应用

电磁场与电磁波的应用

电磁场与电磁波的应用0 引言电磁场与电磁波简介:电磁波是电磁场的一种运动形态。

电与磁可说是一体两面,电流会产生磁场,变动的磁场则会产生电流。

变化的电场和变化的磁场构成了一个不可分离的统一的场,这就是电磁场,而变化的电磁场在空间的传播形成了电磁波,电磁的变动就如同微风轻拂水面产生水波一般,因此被称为电磁波,也常称为电波。

电磁场与电磁波在实际生产、生活、医学、军事等领域有着广泛的应用,具有不可替代的作用。

如果没有发现电磁波,现在的社会生活将是无法想象的。

所以,本文主要研究电磁场与电磁波在生活中的多项应用,其中,将主要研究电能的无线传输技术。

1 电磁场与电磁波理论的建立在电磁学发展的早期,人们认识到带电体之间以及磁极之间存在作用力,而作为描述这种作用力的一种手段而引入的"场"的概念,并未普遍地被人们接受为一种客观的存在。

现在人们已经认识清楚,电磁场是物质在一种形态,它可以和一切带电物质相互作用,产生出各种电磁现象。

电磁场本身的运动服从波动的规律。

这种以波动形式运动变化的电磁场称为电磁波。

库仑定律揭示了电荷间的静电作用力与它们之间的距离平方成反比。

安培等人又发现电流元之间的作用力也符合平方反比关系,提出了安培环路定律。

基于这与牛顿万有引力定律十分类似,泊松、高斯等人仿照引力理论,对电磁现象也引入了各种场矢量,如电场强度、电通量密度(电位移矢量)、磁场强度、磁通密度等,并将这些量表示为空间坐标的函数。

但是当时对这些量仅是为了描述方便而提出的数学手段,实际上认为电荷之间或电流之间的物理作用是超距作用。

直到法拉第, 他认为场是真实的物理存在, 电力或磁力是经过场中的力线逐步传递的,最终才作用到电荷或电流上。

他在1831 年发现了著名的电磁感应定律,并用磁力线的模型对定律成功地进行了阐述。

1846 年, 法拉第还提出了光波是力线振动的设想。

法拉第提出的电磁感应定律表明,磁场的变化要产生电场。

电磁场与电磁波在实际中的应用

电磁场与电磁波在实际中的应用

电磁场与电磁波在实际中的应用电磁场与电磁波在实际中的应用班级:电子0801 姓名:郑文韬学号:20212653一、《电磁场与电磁波》课程综述:《电磁场与电磁波》课程要求电子类各专业主要课程的核心内容都是电磁现象在特定范围、条件下的体现,分析电磁现象的定性过程和定量方法是电类各专业学生掌握专业知识和技能的基础之一,因而电磁场与电磁波课程所涉及的内容,是合格的电子类专业本科学生所应具备的知识结构的必要组成部分。

不仅如此,电磁场理论又是一些交叉领域的学科生长点和新兴边缘学科发展的基础。

学好电磁场理论将增强学生的适应能力和创造能力。

因此本课程的作用不仅是为进一步学习准备必要的基础,更为深远的是关系到所培养学生的基本素质,因此“电磁场与电磁波”课程在教学计划中应占有重要地位,它是电子类专业本科学生的一门技术基础课。

通过学习本课程,应具备以下能力:(1)在大学物理电磁学的基础上,进一步掌握宏观电磁场的基本规律,并结合各专业实际介绍其技术应用的基本知识;(2)通过教学,培养学生用场的观点对电器工程中的电磁现象和电磁过程进行定性分析和判断的能力,了解进行定量分析的基本途径,为进一步学习和应用各种较复杂的电磁场计算方法打下基础;(3)通过电磁场理论的逻辑推理,培养学生正确思维和严谨的科学态度。

二、电磁场与电磁波在生活生产中的应用(1)光电开关光是一种电磁射线,其特性如同无线电波和X射线,传递速度约为300000千米/秒,因此它可以在发射的一瞬间被其接收。

红外线开关光电开关是利用人眼不可见(波长为780nm-1mm)的近红外线和红外线的来检测、判别物体。

通过光电装置瞬间发射的微弱光束能被安全可靠的准确的发射和接收。

光电开关的重要功能是能够处理光的强度变化:利用光学元件,在传播媒介中间使光束发生变化;利用光束来反射物体;使光束发射经过长距离后瞬间返回。

光电开关是由发射器、接收器和检测电路三部分组成。

发射器对准目标发射光束,发射的光束一般来源于发光二极管(LED)和激光二极管。

电磁场与电磁波的特性及应用

电磁场与电磁波的特性及应用

电磁场与电磁波的特性及应用电磁场和电磁波是物理学中非常重要的概念,它们在现代科技和生活中有着广泛的应用。

本文将介绍电磁场和电磁波的特性,并探讨它们在通信、医学和能源等领域的应用。

首先,让我们来了解电磁场的特性。

电磁场是由带电粒子产生的一种物理场,它包括了电场和磁场两个方面。

电场是由电荷产生的力场,在电荷周围存在电场线,它的强度与电荷的大小和距离有关。

磁场则是由电流或者磁荷产生的力场,通过磁场线来表示。

电磁场具有叠加和作用力的性质,可以相互影响和转化。

接下来,我们来了解电磁波的特性。

电磁波是电磁场的传播形式,由电场和磁场相互垂直且相互关联而组成。

根据波长的不同,电磁波可以分为射线、短波、中波和长波等不同的频段。

电磁波的特点是既具有粒子的性质,也具有波动的性质。

它们传播的速度是光速,且可以在真空中传播。

电磁场和电磁波的应用非常广泛。

首先,在通信领域,电磁波被利用做为无线电、电视、手机和卫星通信等的传输介质。

由于电磁波能够在大气层内的不同频段传播,我们可以通过无线电和电视接收器接收到远距离的信号。

手机通信则利用短波和微波区域的电磁波进行信号传输。

而卫星通信则利用长波和微波区域的电磁波将信号传输到卫星上,并通过卫星进行传播,实现全球通信。

其次,在医学领域,电磁场和电磁波也有重要的应用。

例如,核磁共振成像(MRI)利用强大的磁场和无线电波来观察人体内部的结构和功能。

MRI图像能够帮助医生进行疾病的诊断和治疗。

另外,电磁波还被应用在放射治疗中,用于治疗癌症。

通过调节电磁波的能量和方向,可以精确照射肿瘤细胞,从而起到杀灭肿瘤细胞的作用。

最后,在能源领域,电磁场和电磁波的应用也是不可忽视的。

太阳能是一种重要的可再生能源,它的利用就使用了电磁波。

太阳能电池板利用光电效应,将太阳光中的光子转化为电能,再通过变流器转化为交流电。

这种转换过程的关键就是电磁波的利用。

另外,微波炉也是利用微波的能量使食物产生热量,从而达到加热食物的目的。

高中物理课件 电磁波及其应用

高中物理课件  电磁波及其应用

判一判 (1)变化的电场一定产生变化的磁场。 (×) (2)恒定电流周围产生磁场,磁场又产生电场。 (×) (3)电磁波和光在真空中的传播速度都是3.0×108 m/s。 (√ ) (4)麦克斯韦预言并验证了电磁波的存在。 (×) (5)电磁波在任何介质中的传播速度均为3×108 m/s。 (×)
知识点二、电磁波谱的理解 角度1. 各种电磁波的共性和个性 1.共性: (1)在本质上都是电磁波,遵循相同的规律,各波段之间的区别并没有 绝对的意义。 (2)都遵循公式v=λf,在真空中的传播速度都是c=3×108 m/s。 (3)传播都不需要介质。 2.个性:不同的电磁波由于具有不同的波长(频率),故具有不同的特性。
第六章 电磁现象与电磁波 6.4 电磁波及其应用
知识梳理 一、电磁场与电磁波 1.电磁场:(1)麦克斯韦电磁场理论的两个基本假设: ①变化的磁场能够在周围空间产生_电__场__(如图甲所示)。 ②变化的电场能够在周围空间产生_磁__场__(如图乙所示)。
(2)电磁场:变化的_电__场__和变化的_磁__场__交替产生,形成不可分割 的统一体,称为_电__磁__场__。

荧光效应
最强
电磁波谱 用途
无线电波 红外线
可见光 紫外线
X射线
γ射线
通信、广 播、导航
加热遥测、 遥感、红外 摄像、红外 制导
日光灯、杀 照明、
菌消毒、治 照相等
疗皮肤病等
检测、探 探测、
测、透视、 治疗
治疗
提醒: (1)波长越长的电磁波频率越低,能量越低,衍射能力越强,穿透力越差。 (2)波长越短的电磁波频率越高,能量越高,衍射能力越弱,穿透力越强。
2.雷达: (1)雷达是利用_电__磁__波__进行测距、定位的仪器。 (2)组成:雷达主要由发射机、接收机和显示器等部分组成。 (3)雷达工作时使用的是_微__波__(选填“长波”“中波”或“微波”)。 3.移动电话: (1)_现__代__通__信__技__术__是电磁波最辉煌的应用成果之一。 (2)无线电话、无线对讲机、移动电话均是通过_电__磁__波__实现信号的发射 KH—12光学侦察卫星,采用先进的自适应光学 成像技术,地面分辨率最高可达0.1 m,是美国天基侦查的主力军。那么, 你知道它上面携带的相机在夜间进行红外摄像时工作在什么波段吗?该波 段有什么特点?

电子通信技术中电磁场和电磁波的运用

电子通信技术中电磁场和电磁波的运用

电子通信技术中电磁场和电磁波的运用摘要:电磁场和电磁波在现代通信技术中扮演着重要的角色。

电磁场和电磁波在现代通信技术中的应用具有广泛的前景和巨大的潜力,将会在未来的科技发展中发挥越来越重要的作用。

本文主要探讨了电磁场和电磁波的物理特性、传输方式以及在通信技术中的应用。

关键字:电子通信技术;电磁场;电磁波引言:自从人类发现电磁现象以来,电磁场和电磁波就一直扮演着重要的角色。

电磁波作为电磁场的传播方式,被广泛应用于无线电通信、微波通信、光纤通信等方面。

随着电子通信技术的快速发展,电磁场和电磁波的应用范围也在不断扩大和深化。

在现代通信系统中,电磁场和电磁波已成为不可或缺的基础,对通信技术的性能、速度和可靠性起着至关重要的作用。

一、电子通信技术中电磁场和电磁波的运用现状1.在无线电通信方面,电磁场和电磁波被广泛应用于移动通信、卫星通信、雷达系统等。

移动通信技术中,电磁场和电磁波是无线信号的主要传输媒介,而卫星通信系统中则是重要的传输和接收方式。

雷达系统中,电磁场和电磁波被用于探测、跟踪和测量远距离目标。

2.在微波通信方面,电磁场和电磁波被广泛应用于微波电路、微波天线、微波雷达等方面。

微波通信技术中,电磁场和电磁波的高频特性使得其在高速数据传输、远距离通信、高分辨率成像等方面具有优势。

3.在光纤通信方面,电磁场和电磁波被用于光纤传输和光通信技术中。

光纤通信技术中,光信号是通过光纤中的电磁波来传输的,其高带宽、低损耗、抗干扰等特性使得其在高速数据传输、长距离通信、安全通信等方面具有广泛的应用前景。

二、电子通信技术中电磁场和电磁波的运用策略1.研究和创新高效的电磁场和电磁波的产生和传输技术,以提高通信的速度和质量。

研究和创新高效的电磁场和电磁波的产生和传输技术,对于提高通信速度和质量具有非常重要的意义。

随着信息时代的到来,人们对于通信的要求越来越高,传统的通信方式已经无法满足现代化的需求。

因此,研究和创新电磁场和电磁波的技术成为当务之急,这不仅可以提高通信的速度和质量,还可以开发出更为高效和智能的通信技术,满足人们日益增长的通信需求。

电磁场与电磁波

电磁场与电磁波

电磁场与电磁波电磁场和电磁波是物理学中非常重要的概念,它们在我们的日常生活中扮演着重要的角色。

本文将会探讨电磁场与电磁波的定义、特性以及应用。

首先,我们来了解什么是电磁场。

电磁场是由电荷和电流产生的一种物理场,在空间中具有能量和动量。

电磁场包含了电场和磁场两个要素。

电场是由电荷产生的力场,而磁场则是由电流产生的力场。

当电荷或电流存在时,它们会在周围产生电场和磁场,这些场相互作用并相互影响,形成电磁场。

电磁场的特性非常丰富。

首先,电磁场是无形的,即我们无法直接感知电磁场的存在。

然而,我们可以通过观察电场和磁场的效应来间接感知电磁场。

例如,当我们将一个带有电荷的物体靠近另一个带有电荷的物体时,它们会相互排斥或吸引,这是由于它们之间相互作用的电场产生的效应。

其次,电磁场具有传播性。

当电荷或电流发生变化时,电磁场会随之变化,并以一种特定的形式传播出去,形成电磁波。

电磁波是电磁场的一种特殊表现形式,它可以在真空中传播,并以光速传播。

电磁波包括了不同频率和波长的波,例如无线电波、微波、可见光、紫外线、X射线和γ射线等。

电磁场和电磁波在许多领域有广泛的应用。

其中一个重要的应用是通信。

无线电波被广泛用于无线电通信、电视和手机等设备中。

电磁波还被应用于医疗诊断和治疗领域。

例如,X射线被用于检查骨骼和器官,而核磁共振成像(MRI)则被用于观察人体内部的结构和病变。

此外,电磁场和电磁波还被用于能源和工业领域。

例如,电力是通过电磁场的作用而传输的。

发电厂中的发电机通过生成电流产生电磁场,并将电能输送到我们的家庭和工厂。

另外,激光器利用强大的电磁场来产生一束高强度的激光光束,广泛用于切割、焊接和激光打印等工业应用。

除了以上的应用外,电磁场和电磁波还在科学研究中扮演着重要角色。

电磁波可以用于研究星际空间和宇宙中的天体。

天文学家通过收集来自外太空的电磁波,并分析其中的信息,来研究宇宙的演化和构成。

此外,科学家们还利用电磁波来研究物质的微观结构和性质,以及探索量子力学等领域。

电路中的电磁场与电磁波传播

电路中的电磁场与电磁波传播

电路中的电磁场与电磁波传播电磁场和电磁波的相互作用在电路中起着关键的作用,它们是现代电子技术的基础。

本文将探讨电路中的电磁场和电磁波传播的原理及其重要性。

一、电磁场的形成与作用电磁场是由电荷在空间中产生的物理场。

在电路中,当电流通过导线时,会形成一个环绕导线的磁场。

根据安培定律,电流产生的磁场大小与电流强度成正比。

电磁场不仅存在于导线周围,还可以由电荷的运动直接产生。

例如,一个电容器中的电子在充放电过程中会产生电荷流动,从而形成电磁场。

这种电磁场的产生和作用被广泛应用于电子器件和电路的设计中。

二、电磁波的传播原理电磁波是由振荡的电磁场构成的,它沿着空间传播。

在电路中,电磁波的传播可以通过天线等装置实现。

在无线通信领域,电磁波的传播特性非常重要。

电磁波的传播是基于麦克斯韦方程组,它描述了电场和磁场之间的相互关系以及它们随时间的变化规律。

电磁波在真空中的传播速度是光速,也是一种特殊的电磁波,即光波。

在电路中,如无线电波、微波等电磁波的传播速度较慢,主要受到电磁波在导体中的衰减影响。

三、电磁场与电磁波在电路中的应用1. 电磁场在电子器件中的应用电磁场在电子器件中的应用非常广泛,例如,磁性元件如电感和变压器利用磁场的相互感应实现电能的转换和传输。

在电子芯片的设计中,电磁场的存在和作用需要被合理考虑,以减小对电子器件的干扰。

2. 电磁波传输和接收电磁波的传输和接收在通信领域起着重要作用。

通过天线发射的电磁波可以在空间中传播,接收端的天线可以接收到这些电磁波,并将其转化为电信号。

这种原理被广泛应用于广播、卫星通信和移动通信等领域。

3. 电磁波在磁共振成像中的应用磁共振成像(MRI)是基于核磁共振原理实现的成像技术,它利用强磁场和高频电磁波相互作用,通过感测被测物体所释放的信号来获取图像。

MRI已成为医学影像学的重要技术,为医生提供了非常有价值的影像信息。

四、电路中的电磁场与电磁波传播的优化与控制在电路设计中,合理利用电磁场和电磁波的传播特性可以实现电路性能的优化和控制。

电磁场与电磁波

电磁场与电磁波

电磁场与电磁波电磁场和电磁波是我们生活中经常接触到的物理现象。

本文将以通俗易懂的方式,详细介绍电磁场和电磁波的基本概念、特性及应用。

一、电磁场的概念与特性电磁场是由电荷所产生的力场和磁荷所产生的磁场组成的物理场。

它包括电场和磁场两个方面。

电场是由静止电荷所产生的场,具有方向和大小;磁场是由运动电荷所产生的场,同样也具有方向和大小。

电磁场具有以下特性:1. 空间的任何一点都存在电场和磁场;2. 电场和磁场相互作用,相互转换;3. 电场和磁场都遵循相应的物理规律,如库仑定律和安培定律;4. 电场和磁场的强度与产生它们的电荷和电流的大小有关。

二、电磁波的概念与特性电磁波是一种能够在真空中传播的无线电波,它是电磁场的一种表现形式。

电磁波具有电场和磁场的振荡,并且垂直于传播方向。

通常将电磁波按照频率分成不同的波段,如无线电波、微波、红外线、可见光、紫外线、X射线和γ射线等。

电磁波的特性如下:1. 电磁波具有波长和频率的关系,波长和频率互为倒数;2. 不同频率的电磁波在介质中传播的速度是相同的,即为光速;3. 电磁波可以在真空中传播,不需要介质媒质;4. 电磁波的能量和强度与其频率有关。

三、电磁场与电磁波的应用电磁场和电磁波在生活中有着广泛的应用。

以下是其中几个重要的应用领域:1. 通信技术:无线电通信、卫星通信、手机通信等都是基于电磁波传播原理进行的。

2. 电磁辐射与医学:医学影像学中的X射线和核磁共振都是利用电磁波进行的影像诊断。

3. 电磁感应:电磁感应是电动机、发电机和变压器等电器工作原理的基础。

4. 光学技术:光学仪器和光通信等利用了可见光的电磁波特性。

5. 无人驾驶和雷达系统:雷达系统利用电磁波的反射与接收原理,实现物体的探测与定位。

总结:电磁场与电磁波是我们日常生活中不可或缺的物理现象。

电磁场是由电场和磁场组成的物理场,而电磁波则是电磁场在真空中的一种传播形式。

电磁场和电磁波在通信技术、医学、电气工程、光学技术、雷达系统等方面都有广泛应用。

电子通信技术中电磁场和电磁波的运用

电子通信技术中电磁场和电磁波的运用

电子通信技术中电磁场和电磁波的运用
电磁场和电磁波是电子通信技术中非常重要的组成部分。

电磁场是由电荷引起的力场,包括电场和磁场,而电磁波则是在电磁场中传播的能量。

下面我们将详细介绍在电子通信技术中电磁场和电磁波的运用。

1. 电磁场的应用
电磁场在电子通信技术中被广泛应用。

无线电通信正是利用电磁波在空间中传播的特性实现的。

在无线电通信中,电子设备通过将电信号转化为电磁波向空中发送,接收器通过天线接收空气中传播的电磁波并将其转化为电信号。

此外,电磁场还被用于电子元件的设计和制造中,例如:线圈、电感、变压器等。

2. 电磁波的应用
电磁波的应用在电子通信技术中更加广泛。

除了被用于无线电通信之外,还有以下几个方面的应用:
(1)雷达技术:雷达技术利用了电磁波向目标物体发出并返回的特性,从而实现了对目标物体的探测和跟踪。

(2)手机通信:手机通信是利用地面基站和手机之间通过无线电信号传输实现通信的技术,其中电磁波的应用主要在于通过空气中传播信号。

(3)卫星通信:卫星通信是利用人造卫星作为信号的中转站,通过向卫星发射电磁波,再被卫星接收后转发到目的地实现通信。

(4)光纤通信:光纤通信利用的是光的横向振动来进行信息传输,而光就是电磁波。

(5)医疗诊断:医疗设备中利用X射线、磁共振、超声波等电磁波来做成像诊断。

总之,电磁场和电磁波在电子通信技术中的应用非常广泛,是现代通信技术的重要基础。

高级物理电磁场与电磁波的应用

高级物理电磁场与电磁波的应用

高级物理电磁场与电磁波的应用电磁场与电磁波在现代科技和工程领域中发挥着重要的作用。

从通信技术到医学影像,从能源传输到无线充电,电磁场与电磁波的应用贯穿了我们的日常生活。

本文将探讨一些高级物理电磁场与电磁波的应用案例,展示它们对各个领域的贡献。

一、通信技术在现代社会中,通信技术的发展已经成为我们日常生活的基石。

电磁场与电磁波在无线通信中发挥着核心作用。

通过调制、解调和传输电磁波,我们能够实现移动电话、无线网络、卫星通信等各种方式的通信。

当我们打开手机,接通无线网络,或是通过卫星接收信息时,电磁场与电磁波已经在背后默默地工作。

二、医学影像医学影像技术是医学领域的重要组成部分。

通过利用电磁波的特性,我们可以获取人体内部的结构和功能信息。

X射线和CT扫描利用电磁波的穿透能力,可以产生关于骨骼和器官的影像。

而核磁共振成像(MRI)则利用电磁场与人体组织间的相互作用,生成高分辨率的内部器官影像。

这些医学影像技术在诊断疾病、观察人体器官的运作中发挥着重要作用。

三、能源传输电磁场与电磁波的应用还延伸到能源传输领域。

通过电磁场的作用,我们可以实现无线电能传输和电磁能转换。

无线电能传输技术可以将电能从源头传输到目标设备,而不需要使用传统的导线连接。

这种技术在电动汽车充电站、无线电视遥控器等方面得到广泛应用。

同时,电磁场也能够将电能转换为电磁能,在太阳能电池板中利用光电效应实现太阳能向电能的转换。

四、材料加工电磁场与电磁波的应用还包括材料加工领域。

激光切割、电子束焊接等技术利用电磁波的能量和特性,可以对材料进行精确加工和改善材料性能。

激光切割技术已广泛应用于金属、塑料和纺织品等行业,而电子束焊接技术在航空航天和汽车制造中发挥着重要作用。

这些技术的发展提高了生产效率和产品质量。

五、无线充电无线充电技术是近年来电磁场与电磁波应用的一个热门领域。

通过利用电磁场与电磁波的相互作用,我们可以实现设备的无线充电。

这种技术在智能手机、智能手表、电动牙刷等消费电子产品中越来越常见。

电磁场与电磁波的基本理论和工程应用

电磁场与电磁波的基本理论和工程应用

电磁场与电磁波的基本理论和工程应用电磁场和电磁波是电磁学的基础概念,其理论和应用在现代科技社会中起着重要作用。

本文将详细介绍电磁场和电磁波的基本理论以及其在工程应用中的具体情况。

一、电磁场的基本理论1.1 电磁场的概念电磁场是一种存在于空间中的物理现象,描绘了电荷和电流的相互作用过程。

它由电场和磁场两部分组成,具有方向强度和传播速度等特性。

1.2 电磁场的数学表达电磁场的数学表达主要是通过麦克斯韦方程组来描述。

麦克斯韦方程组包括四个方程,分别是高斯定律、法拉第电磁感应定律、安培环路定律和法拉第电磁感应第二定律。

1.3 电磁场的特性电磁场有许多特性,其中包括:- 有源性:电磁场的产生需要带电粒子或电流作为能量源。

- 传播性:电磁场可以在空间中传播,并以光速的速度传递信息。

- 叠加性:多个电磁场可以叠加形成新的电磁场。

- 势能性:电磁场可以与电荷相互转化,从而进行能量的传递。

二、电磁波的基本理论2.1 电磁波的概念电磁波是由电磁场在空间中传播形成的一种波动现象。

它由电场和磁场的相互作用引起,具有电磁场的传播速度和特性。

2.2 电磁波的产生和传播电磁波的产生主要是通过加速带电粒子或振荡电流来实现的。

一旦电磁波产生后,它会以电磁场的形式在空间中传播,直到被吸收或衰减。

2.3 电磁波的分类根据波长和频率的不同,电磁波可以分为不同的分类,包括无线电波、微波、红外线、可见光、紫外线、X射线和γ射线等。

三、电磁场和电磁波的工程应用3.1 通信技术电磁场和电磁波在通信技术中起着关键作用。

无线电波和微波被广泛应用于无线通信和卫星通讯领域,可实现远距离的信息传输。

3.2 雷达技术雷达技术利用电磁波进行探测和测距,广泛应用于航空、军事等领域。

雷达可实现对目标的探测、定位和跟踪,具有重要意义。

3.3 高频加热技术高频加热技术是利用电磁场的能量将物体加热到所需温度。

它在工业生产中广泛应用于熔融金属、加热塑料等领域。

3.4 医学诊断技术电磁波在医学诊断技术中也有重要应用。

电磁场与电磁波

电磁场与电磁波

电磁场与电磁波电磁场和电磁波是物理学中非常重要的概念,它们在我们的日常生活和科学研究中扮演着重要角色。

本文将介绍电磁场和电磁波的概念、性质以及它们在现代科技中的应用。

一、电磁场的概念和性质电磁场是指由电荷产生的力场和磁场所组成的物理场。

根据麦克斯韦方程组,电荷的运动会产生电场,而变化的电流则会产生磁场。

这两个场之间相互作用,共同构成了电磁场。

电磁场具有以下几个重要的性质:1. 电磁场是无线的:电磁场的传播速度是光速,约为300,000公里/秒,具有较快的传播速度。

2. 电场和磁场的相互作用:根据法拉第电磁感应定律,变化的磁场可以产生感应电场,而变化的电场则会产生感应磁场。

这种相互作用是电磁波传播的基础。

3. 电磁场的能量传递:电磁场携带能量,能量的传递通过电磁波进行。

电磁波是由电场和磁场相互耦合形成的波动现象。

二、电磁波的概念和性质电磁波是由电场和磁场相互耦合形成的一种波动现象。

它以光速传播,并在真空中可以自由传播。

电磁波具有以下几个重要的性质:1. 频率和波长:电磁波的频率和波长之间存在确定的关系,即频率乘以波长等于光速。

不同频率和波长的电磁波表现出不同的特性,如可见光、射线和无线电波等。

2. 偏振性质:电磁波可以是无偏振的,也可以是偏振的。

偏振电磁波只在一个特定的方向上振动,有利于某些应用,如偏振镜和3D眼镜等。

3. 干涉和衍射:电磁波在遇到障碍物或孔径时会产生干涉和衍射现象。

这些现象可以用来解释光的折射、多普勒效应等现象,对科学研究和技术应用具有重要意义。

三、电磁场和电磁波的应用电磁场和电磁波在现代科技中运用广泛。

以下列举几个例子:1. 通信技术:无线通信离不开电磁波传播,无线电、微波和红外线等电磁波被广泛用于手机、无线网络、卫星通信等领域。

2. 医学影像:射线和磁共振成像等技术利用电磁波对人体进行成像,对医学诊断和治疗起到重要作用。

3. 光学器件:电磁波在光学器件中被广泛应用,如透镜、光电二极管和激光器等。

电磁场与电磁波论文

电磁场与电磁波论文

《电磁场与电磁波论文》学院:信息科学与工程学院专业:电子信息工程班级:电子xx班学号:XXXX姓名:++++++++电磁场与电磁波的实际应用电磁波是电磁场的一种运动形态。

电与磁可说是一体两面,电流会产生磁场,变动的磁场则会产生电流。

变化的电场和变化的磁场构成了一个不可分离的统一的场,这就是电磁场,而变化的电磁场在空间的传播形成了电磁波,电磁的变动就如同微风轻拂水面产生水波一般,因此被称为电磁波,也常称为电波。

电磁场与电磁波在实际生产、生活、医学、军事等领域有着广泛的应用,具有不可替代的作用。

如果没有发现电磁波,现在的社会生活将是无法想象的。

(一)在生产、生活上的应用静电场的最常见的一个应用就是带电粒子的偏转,这样象控制电子或是质子的轨迹。

很多装置,例如阴极射线示波器,回旋加速器,喷墨打印机以及速度选择器等都是基于这一原理的。

阴极射线示波器中电子束的电量是恒定的,而喷墨打印机中微粒子的电量却随着打印的字符而变化。

在所有的例子中带电粒子的偏转都是通过两个平行板之间的电位差来实现的。

1.磁悬浮列车列车头部的电磁体N极被安装在靠前一点的轨道上的电磁体S极所吸引,同时又被安装在轨道上稍后一点的电磁体N极所排斥。

列车前进时,线圈里流动的电流方向就反过来,即原来的S极变成N极,N极变成S极。

循环交替,列车就向前奔驰。

稳定性由导向系统来控制。

“常导型磁吸式”导向系统,是在列车侧面安装一组专门用于导向的电磁铁。

列车发生左右偏移时,列车上的导向电磁铁与导向轨的侧面相互作用,产生排斥力,使车辆恢复正常位置。

列车如运行在曲线或坡道上时,控制系统通过对导向磁铁中的电流进行控制,达到控制运行目的。

“常导型”磁悬浮列车的构想由德国工程师赫尔曼·肯佩尔于1922年提出。

“常导型”磁悬浮列车及轨道和电动机的工作原理完全相同。

只是把电动机的“转子”布置在列车上,将电动机的“定子”铺设在轨道上。

通过“转子”,“定子”间的相互作用,将电能转化为前进的动能。

电磁场与电磁波的应用

电磁场与电磁波的应用

电磁场与电磁波的应用电磁波是电磁场的一种运动形态。

在高频电磁振荡的情况下,部分能量以辐射方式从空间传播出去所形成的电波与磁波的总称叫做“电磁波”。

电磁场与电磁波在实际生产、生活、医学、军事等领域有着广泛的应用,具有不可替代的作用。

随着科技水平的进步,人们在于电磁场与电磁波的应用方面得到了更为全面的认识。

(一)在生产上的应用1.电磁泵利用磁场和导电流体中电流的相互作用,使流体受电磁力作用而产生压力梯度,从而推动流体运动的一种装置。

实用中大多用于泵送液态金属,所以又称液态金属电磁泵。

电磁泵按电源形式可分为交流泵和直流泵;按液态金属中电流馈给的方式可分为传导式电磁泵和感应式电磁泵;按结构不同可分为平面泵和圆柱泵等。

传导式泵中,电流由外部电源经泵沟两侧的电极直接传导给液态金属;感应泵中,电流则由交变磁场感应产生。

电磁泵没有转动部件,结构简单,密封性好,运转可靠,因此在化工、印刷行业中用于输送一些有毒的重金属,如汞、铅等;在原子能动力工业中用于输送化学性质特别活泼的金属,如钠、钾、钠钾合金;在铸造企业中可以用来做铝、镁等活泼金属的定量泵,但现在主要为军工等大型企业使用。

2.磁流体发电机磁流体发电中的带电流体,它们是通过加热燃料、惰性气体、碱金属蒸气而得到的。

在几千摄氏度的高温下,这些物质中的原子和电子的运动都很剧烈,有些电子甚至可以脱离原子核的束缚,结果,这些物质变成自由电子、失去电子的离子以及原子核的混合物,这就是等离子体。

将等离子体以超音速的速度喷射到一个加有强磁场的管道里面,等离子体中带有正电荷、负电荷的高速粒子,在磁场中受到洛伦兹力的作用,分别向两极偏移,于是在两极之间产生电压,用导线将电压接入电路中就可以使用了。

磁流体发电的另一个好处是产生的环境污染少。

利用火力发电,燃烧燃料产生的废气里含有大量的二氧化硫,这是造成空气污染的一个重要原因。

利用磁流体发电,不仅使燃料在高温下燃烧得更加充分,它使用的一些添加材料还可以和硫化合,生成硫酸钾,并被回收利用,这就避免了直接把硫排放到空气中,对环境造成污染。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本科生学年论文(课程设计)题目:电磁场与电磁波的应用学院物理科学与技术学院学科门类理学专业应用物理学号2012437019姓名郭天凯指导教师闫正2015年11月18日电磁场与电磁波的应用摘要随着社会的不断进步与发展,科学技术的不断改革创新,电磁场与电磁波已经应用于社会生活的方方面面,受到了越来越多人的高度重视和关注。

电子通信产品的随处可见,手机通信,微波通讯以及无线电视等;电磁波极化在雷达信号滤波、检测、增强、抗干扰和目标鉴别/识别等方面的应用;电磁场在金属材料加工、合成与制备中的应用;电磁波随钻遥测技术在钻井中的应用;电磁场的生物效应在电磁治疗方面的应用等都离不开电磁成与电磁波。

本文将进一步对电磁场与电磁波在通讯、科技开发、工业生产、生物科学、材料科学等方面的应用展开分析和探讨。

关键词:电磁场;电磁波;极化;电子通信技术;电磁波的应用目录1 电磁场与电磁波的概况 (1)2 电磁场与电磁波在通讯方面的应用 (2)2.1 在无线电广播中的应用 (2)2.2 在电视广播中的应用 (2)2.3 在移动通信中的应用 (2)2.4 在卫星通信中的应用 (2)3 电磁波极化的应用 (3)3.1 利用极化实现最佳发射和接收 (3)3.2 利用极化技术提高通信容量 (3)3.3 极化在雷达目标识别、检测和成像中的应用 (3)3.4 极化在抗干扰中的应用 (4)4 电磁波随钻遥测技术在钻井中的应用 (5)4.1 采用数据融合技术,优化产品性能,提高传输深度 (5)4.2 采用广播芯片技术,提高信息传输能力 (5)5 在生物医学中的应用 (6)5.1 电磁场的生物效应及其发展 (6)5.2 电磁场作用的机理 (6)6 电磁场在材料科学中的应用 (7)7 结束语 (7)参考文献 (8)1电磁场与电磁波的概况电磁场现象的研究发现是从十六世纪下半叶英国人吉尔伯特实验展开的,在研究过程中它采用的方法比较原始,无法完全解释出电磁场的现象原理。

电磁场的近代研究要追溯到18世纪,由法国物理学家库伦以及英国物理学家卡文迪许展开研究分析,他们的主要贡献是发明了用测量仪器对电磁场现象做定量的规律,从而促使电磁场的发展得到了质的飞越。

英国著名物理学家法拉第在哲学家谢林的影响下,认为大自然中的光、电、磁之间是存在一定的联系的。

1820年,奥斯特研究发现电流以力作用于磁针后,法拉第就更加肯定电与磁之间是相互影响作用,然后在1831年他研究发现,只要把磁棒插入到导体线圈时,导体线圈中就会产生一定的电流,这种实验现象证明了电与磁两种之间是有着紧密联系的。

[1] 从19世纪60年代麦克斯韦建立了完整的电磁场理论并预言了电磁波的存在,到1887年德国科学家赫兹证实了电磁波的存在,到现在不过100多年的时间,但电磁波的应用已经渗透到人类生活的方方面面。

可以说离开了电磁波人类的活动将会举步维艰。

[2]2 电磁场与电磁波在通讯方面的应用2.1 在无线电广播中的应用其中在无线电广播中的应用是实现最早、最普及的一种应用。

这是一种发射台与接收台分离、发射台对接收台之间的单向模拟通信方式,主要是指收音机广播。

按照所使用的载波的波长不同分为长波(低于535KHz)、中波(535KHZ~1605KHZ)、短波(2.3MHZ~26.1MHZ)以及调频波段(87MHZ~108MHZ)。

根据其调制方式又分为调幅波(AM)和调频波(FM)。

2.2 在电视广播中的应用上世纪50年代发明的电视系统实现了声音和图像的同步广播,即电视广播。

它分为声音和图像信号的传播两部分。

电视广播系统使用的频段是54MHZ~806MHZ之间,每频道电视信号占用8MHZ带宽,其中图像信号使用低端的6MHZ,以单边带方式调制,声音信号使用6.5MHz以上部分,使用调频或调幅方式调制。

2.3 在移动通信中的应用在1920年,现代移动通信技术的研究发展正式开始。

相继出现了第一(1G)、二(2G)、三(3G)、四(4G)代移动通信技术,逐步通过模拟、数字、无线网络等技术手段使移动通信具备了更加完美的抗信号衰落的功能,进一步提高了人们的上网速度,最高可达到100MB/s,实现了不同频率间的自动切换功能。

2.4 在卫星通信中的应用他的发展离不开电磁场与电磁波的积极应用,主要通过采用人造地球卫星作为中继站,从而有效转发或者反射无线电波,它有地面通信站、海洋通信站以及地球大气通信站。

其通信范围大,只要在卫星发射的电波所覆盖的范围内,从任何两点之间都可进行通信;同时,它不易受陆地灾害的影响(可靠性高),同时可在多处接收,能经济地实现广播、多址通信等。

[3-7]3 电磁波极化的应用电磁波的极化特性是指给定空间观察点电场强度的取向和幅值随时间变化的规律,是电磁场与电磁波电动力学课程中的一个重要概念[8-11],电磁波的极化在物理学中称之为偏振[12、13]。

极化是除时域、频域和空域信息之外的又一可利用的重要信息,在通信、雷达信号滤波、检测、增强、抗干扰和目标鉴别/识别等方面都有广泛的应用,因此对极化理论的教学和研究有着重要的意义。

3.1 利用极化实现最佳发射和接收无线电技术中,利用不同极化的电磁波具有不同的传播特性,结合收发天线的极化特性,可实现无线电信号的最佳发射和接收。

例如,中波广播采用垂直极化波。

电视调频广播和短波广播一般采用水平极化方式,我们知道,任意极化均可由一对正交极化以不同的幅度比和相位差相合成,因此,发射时,将同一信号源经功分器后,分别经过不同的幅相关系处理并送到极化正交的一对天线上,便可合成任意极化状态。

接收时,用两副互相极化正交的天线,并将两个通道信号以不同幅相关系相合成,便可实现任意极化状态的最佳接收。

可见对极化域的充分利用,并不要求去构造许多不同形式的天线。

3.2 利用极化技术提高通信容量在通信中,为了在有限频带范围内尽量提高可用信道数,增加信道容量,提高频率利用率,减少波道间干扰。

目前广泛采用的频率复用技术之一是在同一传输链路上,利用电波的正交极化隔离,把互相正交极化的相邻两条信道安排在同一频段上,这样使频率利用率提高了一倍。

以往研究极化分集技术主要是为了抗衰落,然而多径散射的存在,却为更多信息的传输提供了可能。

研究表明,在城市密集区的散射环境下,收发两点间存在多径散射,在接收端空间所有的3个方向上会产生附加的极化状态,选用三振子的复合天线系统[14],3副天线正交放置,相比于传统的使用双极化天线,可以获得3倍的信道容量,也即散射的存在使得我们可以利用3个电场极化信道进行无线通信。

从应用极化技术抗衰落到应用极化技术来提高信道容量,极化技术的应用出现了质的飞跃。

3.3 极化在雷达目标识别、检测和成像中的应用雷达回波信号中除了幅度、相位信息外,还有一个重要的信息资源,极化信息,电磁波照射目标后,其极化状态将发生改变,它与目标的形状、结构材料以及姿态等因素有关,还与照射到目标的极化状态有关,因此,可以利用目标回波中的极化特征来识别目标。

[15]在气象雷达中可利用雨滴的散射极化的不同响应来识别目标,采用轮流发射正交极化波的方法,并相继接收水汽凝结物回波的正交极化分量,从而研究目标的性质.3.4 极化在抗干扰中的应用通信、雷达、导航等信息电子设备常会遇到来自其他设备的干扰。

对于单一极化的干扰,一般来说,只要将接收天线的极化改变成与干扰电波极化相正交,即可在很大程度上抑制干扰。

对于极化正交的双通道系统,采用复加权对两路极化正交信号进行求和,合成的等效极化状态可以抑制干扰,采用的电路称为极化滤波器。

运动中的干扰源,发射的干扰电波的极化状态可能有变化,可采用极化滤波器组,组成一个极化抑制带,也可采用自适应极化滤波器抗干扰。

在多路微波分配系统当中,交替采用不同的极化方式发射,可减少在覆盖区域中同频干扰问题。

采用圆极化波可以抗气象干扰,其机理是,气象微粒近似呈球形,对圆极化波的反射是反旋的,不会被雷达天线所接收;而雷达目标一般是非简单对称体,其反射波是椭圆极化波,必有同旋向的圆极化成分,因而能收到回波。

[16]4 电磁波随钻遥测技术在钻井中的应用1991年美国石油协会随钻测量论坛专门讨论了泥浆脉冲传输能力不足的问题,这促使人们考虑研制其他井下信息遥传技术[17]。

电磁波随钻遥测技术很快发展起来,一般理论分析认为:实际磁天线的有效作用系数一般远小于电天线的有效作用系数[18]。

常见的电磁波随钻测量发射天线按其电磁特性又可分为垂直磁场法和垂直电场法。

垂直磁场法是纯粹通过地层传输信号的方法,而垂直电场法是通过地层钻杆(或套管)体系传播信号的方法[19]。

4.1 采用数据融合技术,优化产品性能,提高传输深度[20]为适应深部能源勘探的需要,美国能源部国家能源技术实验室深部探测项目与圣安东尼奥e-Spectrum技术公司合作,经过3a努力,研制成高级电磁波随钻遥测技术,即把深空探测导航与导弹制导相关技术应用于EM-MWD系统。

4.2 采用广播芯片技术,提高信息传输能力[21]如前所述,电磁波传播主要依靠钻杆地层系统,为使电磁波有效穿过地层,只好采用超低频或极低频波段,其传输信息量与传输距离都受到限制。

由于电磁波在油基泥浆中传输损失较小,可以把油基泥浆作为电磁波传输介质。

采用中频或高频波段作为载波传输钻井信息,可以达到几kB/s节甚至更高的传输速度,将比现在的泥浆脉冲技术快数百倍。

5 在生物医学中的应用随着生物医学工程学发展,物理疗法已经成为当前疾病治疗一个重要手段,因此电磁场治疗及生物电磁的研究成为当前热点,特别是在骨病等相关领域的研究。

5.1 电磁场的生物效应及其发展1953年Yasuda首次发现骨骼的压电效应,1977年Bas-sett等提出了极低频脉冲电磁场治疗骨不连接取得肯定的疗效,以及Bassett[22]总结了半个世纪脉冲电磁场的研究成果,预言脉冲电磁场有治疗骨质疏松的前景以来,引起了医学界对这一疗法的关注,使得电磁场在骨质疏松方面的研究经历了从临床到实验动物再到细胞水平,然后从细胞水平到实验动物再到临床的一个循序发展的过程至今电磁场骨质疏松的临床治疗及其研究方面已经取得一定的进展。

5.2 电磁场作用的机理低频电磁场与细胞作用的初始位点是胞膜,随后触发的一切反应都是由胞膜介导的[23]细胞膜在静息电位下产生了“微孔”,只不过此时孔半径很小,并且在动作电位的作用下会修复,呈现瞬态性,由于细胞膜对离子或带电分子的势垒作用,此时离子很难通过在低频,低强度电磁场作用下,即使是小能量也可以导致电流体不稳定性的产生,逐步扩大这些“微孔”从而形成能让离子大量穿过细胞膜的“通道”,导致细胞膜的导电能力增加,引起更强的电流通过细胞膜,诱发一系列生化反应,甚至产生细胞膜性质变异。

相关文档
最新文档