高一数学上册期末考试试题(含答案)

合集下载

高一上学期期末考试数学试题(含答案)

高一上学期期末考试数学试题(含答案)

高一上学期期末考试数学试题(含答案) 高一上学期期末考试数学试题(含答案)第I卷选择题(共60分)1.sin480的值为()A。

-1133B。

-2222C。

2222D。

11332.若集合M={y|y=2,x∈R},P={x|y=x-1},则M∩P=()A。

(1,+∞)B。

[1,+∞)C。

(-∞,+∞)D。

(-∞。

+∞)3.已知幂函数通过点(2,22),则幂函数的解析式为()A。

y=2xB。

y=xC。

y=x2D。

y=x1/24.已知sinα=-1/2,且α是第二象限角,那么tanα的值等于()A。

-5/3B。

-4/3C。

4/3D。

5/35.已知点A(1,3),B(4,-1),则与向量AB同方向的单位向量为()A。

(3/5,-4/5)B。

(-3/5,4/5)C。

(-4/5,-3/5)D。

(4/5,3/5)6.设tanα,tanβ是方程x2-3x+2=0的两根,则tan(α+β)的值为()A。

-3B。

-1C。

1D。

37.已知锐角三角形ABC中,|AB|=4,|AC|=1,△ABC的面积为3,则AB·AC的值为()A。

2B。

-2C。

4D。

-48.已知函数f(x)=asin(πx+β)+bcos(πx+β),且f(4)=3,则f(2015)的值为()A。

-1B。

1C。

3D。

-39.下列函数中,图象的一部分如图所示的是()无法确定图像,无法判断正确选项)10.在斜△ABC中,sinA=-2cosB·cosC,且tanB·tanC=1-2,则角A的值为()A。

π/4B。

π/3C。

π/2D。

2π/311.已知f(x)=log2(x2-ax+3a)在区间[2,+∞)上是减函数,则实数a的取值范围是()A。

(-∞,4]B。

(-∞,4)C。

(-4,4]D。

[-4,4]12.已知函数f(x)=1+cos2x-2sin(x-π/6),其中x∈R,则下列结论中正确的是()A。

f(x)是最小正周期为π的偶函数B。

高一上学期期末数学试卷及答案

高一上学期期末数学试卷及答案

高一上期末数学试卷一、选择题1.已知集合M={0,2},则M的真子集的个数为()A.1B.2C.3D.42.已知幂函数y=f(x)的图象过点(,4),则f(2)=()A.B.1C.2D.43.下列条件中,能判断两个平面平行的是()A.一个平面内的两条直线平行于另一个平面B.一个平面内的无数条直线平行于另一个平面C.平行于同一个平面的两个平面D.垂直于同一个平面的两个平面4.已知a=log32,b=log2,c=20.5,则a,b,c的大小关系为()A.a<b<cB.b<a<cC.c<b<aD.c<a<b5.已知函数f(x)的定义域为[0,2],则函数f(x﹣3)的定义域为()A.[﹣3,﹣1]B.[0,2]C.[2,5]D.[3,5]6.已知直线l1:(m﹣2)x﹣y+5=0与l2:(m﹣2)x+(3﹣m)y+2=0平行,则实数m的值为()A.2或4B.1或4C.1或2D.47.如图,关于正方体ABCD﹣A1B1C1D1,下面结论错误的是()A.BD⊥平面ACC1A1B.AC⊥BDC.A1B∥平面CDD1C1D.该正方体的外接球和内接球的半径之比为2:18.过点P(1,2),并且在两坐标轴上的截距相等的直线方程是()A.x+y﹣3=0或x﹣2y=0B.x+y﹣3=0或2x﹣y=0C.x﹣y+1=0或x+y﹣3=0D.x﹣y+1=0或2x﹣y=09.已知函数f(x)=(x﹣a)(x﹣b)(其中a>b)的图象如图所示,则函数g (x)=b+log a x的图象大致是()A.B.C.D.10.已知某个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是()A.cm3B.cm3C.2cm3D.4cm311.已知函数y=f(x)的图象关于直线x=1对称,当x<1时,f(x)=|()x ﹣1|,那么当x>1时,函数f(x)的递增区间是()A.(﹣∞,0)B.(1,2)C.(2,+∞)D.(2,5)12.已知点M(a,b)在直线4x﹣3y+c=0上,若(a﹣1)2+(b﹣1)2的最小值为4,则实数c的值为()A.﹣21或19B.﹣11或9C.﹣21或9D.﹣11或19二、填空题13.log240﹣log25=_______.14.已知函数f(x)=则f(f(e))=________.15.如图所示的正四棱台的上底面边长为2,下底面边长为8,高为3,则它的侧棱长为_______.16.给出下列结论:①已知函数f(x)是定义在R上的奇函数,若f(﹣1)=2,f(﹣3)=﹣1,则f (3)<f(﹣1);②函数y=log(x2﹣2x)的单调递增减区间是(﹣∞,0);③已知函数f(x)是奇函数,当x≥0时,f(x)=x2,则当x<0时,f(x)=﹣x2;④若函数y=f(x)的图象与函数y=e x的图象关于直线y=x对称,则对任意实数x,y都有f(xy)=f(x)+f(y).则正确结论的序号是_____________(请将所有正确结论的序号填在横线上).三、解答题17.已知全集U=R,集合A={x|0<log2x<2},B={x|x≤3m﹣4或x≥8+m}(m<6).(1)若m=2,求A∩(∁U B);(2)若A∩(∁U B)=∅,求实数m的取值范围.18.如图,在正三棱锥P﹣ABC中,D,E分别是AB,BC的中点.(1)求证:DE∥平面P AC;(2)求证:AB⊥PC.19.已知△ABC的三个顶点坐标分别为A(﹣1,1),B(7,﹣1),C(﹣2,5),AB边上的中线所在直线为l.(1)求直线l的方程;(2)若点A关于直线l的对称点为D,求△BCD的面积.20.在如图所示的几何体中,四边形DCFE为正方形,四边形ABCD为等腰梯形,AB∥CD,AC=,AB=2BC=2,且AC⊥FB.(1)求证:平面EAC⊥平面FCB;(2)若线段AC上存在点M,使AE∥平面FDM,求的值.21.2016年9月,第22届鲁台经贸洽谈会在潍坊鲁台会展中心举行,在会展期间某展销商销售一种商品,根据市场调查,每件商品售价x(元)与销量t(万元)之间的函数关系如图所示,又知供货价格与销量呈反比,比例系数为20.(注:每件产品利润=售价﹣供货价格)(1)求售价15元时的销量及此时的供货价格;(2)当销售价格为多少时总利润最大,并求出最大利润.22.已知a∈R,当x>0时,f(x)=log2(+a).(1)若函数f(x)过点(1,1),求此时函数f(x)的解析式;(2)若函数g(x)=f(x)+2log2x只有一个零点,求实数a的范围;(3)设a>0,若对任意实数t∈[,1],函数f(x)在[t,t+1]上的最大值与最小值的差不大于1,求实数a的取值范围.高一期末数学试卷(三)参考答案与试题解析一、选择题二、填空题 13.3 14.2 15.6 16.①③④. 三、解答题 17.答案:见解析解析:全集U =R ,集合A ={x |0<log 2x <2}={x |1<x <4}, B ={x |x ≤3m ﹣4或x ≥8+m }(m <6); (1)当m =2时,B ={x |x ≤2或x ≥10}, ∴∁U B ={x |2<x <10}, A ∩(∁U B )={x |2<x <4}; (2)∁U B ={x |3m ﹣4<x <8+m },当∁U B =∅时,3m ﹣4≥8+m ,解得m ≥6,不合题意,舍去; 当∁U B ≠∅时,应满足6634481m m m m <<⎧⎧⎨⎨-≥+≤⎩⎩或解得8673m m ≤<≤-或 ∴实数m 的取值范围是8673m m ≤<≤-或.点拨:(1)m =2时,求出集合B ,根据补集与交集的定义计算即可; (2)求出∁U B ,讨论∁U B =∅和∁U B ≠∅时,对应实数m 的取值范围. 18.答案:见解析解析:(1)∵在正三棱锥P ﹣ABC 中,D ,E 分别是AB ,BC 的中点. ∴DE ∥AC ,∵DE⊄平面P AC,AC⊂平面P AC,∴DE∥平面P AC.(2)连结PD,CD,∵正三棱锥P﹣ABC中,D是AB的中点,∴PD⊥AB,CD⊥AB,∵PD∩CD=D,∴AB⊥平面PDC,∵PC⊂平面PDC,∴AB⊥PC.点拨:(1)推导出DE∥AC,由此能证明DE∥平面P AC.(2)连结PD,CD,则PD⊥AB,CD⊥AB,从而AB⊥平面PDC,由此能证明AB⊥PC.19.答案:见解析解析:(1)AB中点坐标为(3,0),∴直线l的方程为y=(x﹣3),即x+y ﹣3=0;(2)设D(a,b),则,∴a=2,b=4,即D(2,4),直线BC的方程为y+1=(x﹣7),即2x+3y﹣11=0,D到直线BC的距离d==,|BC|==3,∴△BCD的面积S==.点拨:(1)求出AB中点坐标,即可求直线l的方程;(2)求出点A关于直线l的对称点为D,直线BC的方程,即可求△BCD的面积.20.答案:见解析解析:(1)在△ABC中,∵AC=,AB=2BC=2,∴AC2+BC2=AB2.∴AC⊥BC.又∵AC⊥FB,BF∩CB=B,∴AC⊥平面FBC.∵AC⊂平面平面EAC,∴平面EAC⊥平面FCB.(2)线段AC上存在点M,且M为AC中点时,有EA∥平面FDM,证明如下:连接CE与DF交于点N,连接MN.由CDEF为正方形,得N为CE中点.∴EA∥MN.∵MN⊂平面FDM,EA⊄平面FDM,∴EA∥平面FDM.所以线段AC上存在点M,且=1,使得EA∥平面FDM成立.点拨:(1)推导出AC⊥BC,AC⊥FB,从而AC⊥平面FBC,由上能证明平面EAC⊥平面FCB.(2)线段AC上存在点M,且M为AC中点时,连接CE与DF交于点N,连接MN.则EA∥MN.由此推导出线段AC上存在点M,且=1,使得EA∥平面FDM成立.21.答案:见解析解析:(1)每件商品售价x(元)与销量t(万件)之间的函数关系为t=20﹣x (0≤x≤20),设价格为y,则y=,x=15时,t=5万件,y=4万元;(2)总利润L=(x﹣)t=xt﹣20=x(20﹣x)﹣20≤﹣20=80,当且仅当x=10元时总利润最大,最大利润80万元.点拨:(1)每件商品售价x(元)与销量t(万件)之间的函数关系为t=20﹣x (0≤x≤20),设价格为y,则y=,即可求售价15元时的销量及此时的供货价格;(2)总利润L=(x﹣)t=xt﹣20=x(20﹣x)﹣20≤﹣20=80,可得结论.22.答案:见解析解析:(1)∵a∈R,当x>0时,f(x)=log2(+a).函数f(x)过点(1,1),∴f(1)=log2(1+a)=1,解得a=1,∴此时函数f(x)=log2(+1)(x>0).(2)g(x)=f(x)+2log2x=+2log2x=log2(x+ax2),∵函数g(x)=f(x)+2log2x只有一个零点,∴g(x)=f(x)+2log2x=log2(x+ax2)=0∴(+a)•x2=1化为ax2+x﹣1=0∴h(x)=ax2+x=1在(0,+∞)上只有一个解,∴当a=0时,h(x)=x﹣1,只有一个零点,可得x=1;当a≠0时,h(x)=ax2+x﹣1在(0,+∞)上只有一个零点,当a>0时,成立;当a<0时,令△=1+4a=0解得a=﹣,可得x=2.综上可得,a≥0或a=﹣.(3)f(x)=,f′(x)=﹣,当x>0时,f′(x)<0,f(x)在[t,t+1]上的最大值与最小值分别是f(t)与f (t+1),由题意,得f(t)﹣f(t+1)≤1,∴≤2,整理,得a ≥,设Q(t)=,Q′(t)=,当t∈[,1]时,Q′(t)<0,则a≥Q(t),∴a≥Q (),解得a ≥.∴实数a的取值范围是[,+∞).点拨:(1)由f(1)=log2(1+a)=1,解得a=1,由此能求出此时函数f(x)的解析式.(2)g(x)=log2(x+ax2),由函数g(x)只有一个零点,从而h(x)=ax2+x=1在(0,+∞)上只有一个解,由此能求出a.(3)f(x)=,,由题意,得f(t)﹣f(t+1)≤1,从而a ≥,设Q(t)=,Q′(t)=,由此利用导数性质能求出实数a的取值范围.第11页(共11页)。

高一数学上册期末试卷(含答案)

高一数学上册期末试卷(含答案)

高一数学上册期末试卷(含答案)高一数学上册期末试卷(含答案)第Ⅰ卷一.选择题(本大题共12小题,每小题5分,共60分)1.如果集合A={x|ax2-2x-1=0}只有一个元素则a的值是( )A.0B.0或1C.-1D.0或-12. 的值为( )A. B. C. D.3.若tan α=2,tan β=3,且α,β∈0,π2,则α+β的值为( )A.π6B.π4C.3π4D.5π44.已知,则 ( )A. B. C. D. 或5.设则( )A B C D6.若x∈[0,1],则函数y=x+2-1-x的值域是( )A.[2-1,3-1]B.[1,3 ]C.[2-1,3 ]D.[0,2-1]7若,则 ( )A. B. C.- D.8.若函数图象的两条相邻的对称轴之间的距离为,且该函数图象关于点成中心对称,,则 ( )A. B. C. D.9.已知函数的值域为R,则实数的范围是( )A. B. C. D.10.将函数y=3sin2x+π3的图像向右平移π2个单位长度,所得图像对应的函数( )A.在区间π12,7π12上单调递减B.在区间π12,7π12上单调递增C在区间-π6,π3上单调递减 D在区间-π6,π3上单调递增11.函数的值域为( )A.[1,5]B.[1,2]C.[2,5]D.[5,3]12.设是定义在上的偶函数,对,都有,且当时,,若在区间内关于的方程恰有3个不同的实数根,则的取值范围是( )A. B. C. D.第II卷(非选择题,共70分)二.填空题(本大题共4小题,每小题5分,共20分,请将答案填在答题纸上)13.已知则的值为------14.3tan 12°-34cos212°-2sin 12°=________.15.已知 ,试求y= 的`值域—16.设(x)=asin 2x+bcos 2x,其中a,b∈R,ab≠0.若f(x)≤fπ6对一切x∈R恒成立,则以下结论正确的是_____(写出所有正确结论的编号).① ;② ≥ ;③f(x)的单调递增区间是kπ+π6,kπ+2π3(k∈Z);④f(x)既不是奇函数也不是偶函数;17.(本题满分8分)已知:,,,,求18.(本题满分10分)已知函数,且(Ⅰ)求的值; (Ⅱ)判断并证明函数在区间上的单调性.19.(本题满分10分)已知函数 ((1)若是最小正周期为的偶函数,求和的值;(2)若在上是增函数,求的最大值.20(本题满分12分)已知函数,,( )(1)当≤ ≤ 时,求的最大值;(2)若对任意的,总存在,使成立,求实数的取值范围;(3)问取何值时,方程在上有两解?21.(附加题)(本题满分10分)已知函数(1)求函数的零点;(2)若实数t满足,求的取值范围.高一数学参考答案一.选择题:DBCBA CCCCB AC二.填空题:13. 0 14. 15. 16. ①②④ .17.解:,,∴ ,∴ = = = ......8分18.【解答】解:(Ⅰ)∵ ,,由,∴ ,又∵a,b∈N*,∴b=1,a=1;………………3分(Ⅱ)由(1)得,函数在(﹣1,+∞)单调递增.证明:任取x1,x2且﹣1<x1<x2,< p="">= ,∵﹣1<x1<x2,< p="">∴ ,∴ ,即f(x1)<f(x2),< p="">故函数在(﹣1,+∞)上单调递增.………………10分19.解:(1)由 =2 (∵ …………又是最小正周期为的偶函数,∴ ,即,…………3分且,即……6分,∴ 为所求;…………………………………………………5分(2)因为在上是增函数,∴ ,…………………………………………7分∵ ,∴ ,∴ ,于是,∴ ,即的最大值为,………此时……10分20.试题分析:(1) 设,则∴ ∴当时,……4分(2)当∴ 值域为当时,则有①当时,值域为②当时,值域为而依据题意有的值域是值域的子集则或∴ 或 8分(3) 化为在上有两解,令则t∈ 在上解的情况如下:①当在上只有一个解或相等解,有两解或∴ 或②当时,有惟一解③当时,有惟一解故或……12分21.(1) 的零点分别为和 2分(2)由题意,当时,,同理,当时,,,所以函数是在R上的偶函数,…5分所以,由,.………………时,为增函数,,即 .………10分。

2023-2024学年新疆乌鲁木齐市高一上册期末考试数学试题(含解析)

2023-2024学年新疆乌鲁木齐市高一上册期末考试数学试题(含解析)

2023-2024学年新疆乌鲁木齐市高一上册期末考试数学试题一、单选题1.下列各式中,错误的个数是()①{0}{0,1,2}∈;②{0,1}={(0,1)};③{0,1,2}∅⊆;④{0}∅=.A .1B .2C .3D .4【正确答案】C【分析】根据元素与集合的关系以及空集的概念和性质,一一判断,可得答案.【详解】因为{0}是以0为元素的集合,{0,1,2}的元素是0,1,2,故{0}不是{0,1,2}的元素,故①错误;{0,1}是含有两个元素的数集,而{(0,1)}是含有一个元素的点集,二者不相等,②错误;∅是任何集合的子集,故{0,1,2}∅⊆正确,③正确;∅是不含任何元素的集合,{0}是含有元素0的集合,二者不相等,④错误,故错误的个数是3个,故选:C2.下列说法正确的是()A .若22ac bc >,则a b >B .若a b >,则22a b >C .若a b <,则ln ln a b <D .若a b <,则11a b>【正确答案】A【分析】根据不等式性质可判断A ;举反例可判断B,C,D ,即得答案,【详解】对于A ,若22ac bc >,则20,0c c ≠∴>,则a b >,A 正确;对于B,若a b >,取1,2a b =-=-,则22a b <,B 错误;对于C ,若0a b <<,则ln ,ln a b 无意义,C 错误;对于D,若a b <,1,2a b =-=,则11a b <,D 错误,故选:A3.若一元二次不等式20x ax b ++<的解集为{|12}x x -<<,则a b +=()A .3-B .2-C .1-D .1【分析】根据一元二次不等式的解集,可得1,2-为方程20x ax b ++=的两实数根,根据一元二次方程根与系数的关系即可求得答案.【详解】一元二次不等式20x ax b ++<的解集为{|12}x x -<<,则1,2-为方程20x ax b ++=的两实数根,故12,12,1,2a b a b -+=--⨯=∴=-=-,则3a b +=-,故选:A4.若函数()y f x =的定义域为{22}M x x =-≤≤∣,值域为{02}N y y =≤≤∣,则函数()y f x =的图像可能是()A .B .C .D .【正确答案】B【分析】根据函数的定义可以排除C 选项,根据定义域与值域的概念排除A ,D 选项.【详解】对于A 选项,当2(]0,x ∈时,没有对应的图像,不符合题意;对于B 选项,根据函数的定义本选项符合题意;对于C 选项,出现了定义域当中的一个元素对应值域当中的两个元素的情况,不符合函数的定义,不符合题意;对于D 选项,值域当中有的元素在集合M 中没有对应的实数,不符合题意.故选:B .5.已知函数1lg 2102x x x f x x -≥⎧=⎨<⎩,,(),,则()()20f f 等于()A .20B .19C .2D .lg2【分析】由分段函数解析式,分别求函数值即可【详解】因为()20lg202lg100f =<=,所以()()()lg20lg201102020lg201021010f f f -====.故选:C .6.函数()()110,1x f x a a a -=+>≠的图象恒过定点()A .()1,1B .()1,2C .()1,1-D .()1,2-【正确答案】B【分析】令10x -=,求出x 的值,再代入函数解析式计算可得.【详解】解:因为()()110,1x f x a a a -=+>≠,令10x -=,即1x =,所以()0112f a =+=,即函数的图象过定点()1,2.故选:B7.幂函数y =f (x )的图象经过点(4,2),若0<a <b <1,则下列各式正确的是A .f (a )<f (b )<f (1b )1f a ⎛⎫< ⎪⎝⎭B .11f f a b ⎛⎫⎛⎫<⎪ ⎝⎭⎝⎭<f (b )<f (a )C .f (a )<f (b )11f f a b ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭D .()()11f f a f f b a b ⎛⎫⎛⎫<<< ⎪ ⎪⎝⎭⎝⎭【正确答案】A【分析】先求得幂函数的解析式,由解析式得到该函数的单调性,根据1110b a a b>>>>>及单调性得出正确选项.【详解】设幂函数y =f (x )=xα,∵该幂函数的图象经过点(4,2),∴4α=2,解得12α=,∴f (x )=12x ,∵0<a <b <1,∴1110b a a b >>>>>,∴f (a )<f (b )<f (1b )1f a ⎛⎫< ⎪⎝⎭.故选A .本小题主要考查幂函数解析式的求法,考查幂函数的单调性,考查函数值比较大小,属于基础题.8.设0.443a ⎛⎫= ⎪⎝⎭、0.534b ⎛⎫= ⎪⎝⎭、()334log log 4c =,则()A .a b c <<B .a c b <<C .c<a<bD .c b a<<【正确答案】D【分析】根据指数函数的单调性可判断,a b 的大小,根据对数函数的性质可判断c 的正负,从而可得正确的选项.【详解】因为43⎛⎫= ⎪⎝⎭xy 为R 上的增函数,且0.40.5>-,故0.40.50.5443334-⎛⎫⎛⎫⎛⎫>= ⎪⎪⎝⎭⎝⎭⎝⎭,故a b >,又33log 4log 31>=,故()33344log log 4log 10<=,但0.5304⎛⎫> ⎪⎝⎭,故b c >,故a b c >>,故选:D.9.若奇函数()f x 在区间[3,1]--上单调递减,且最小值为5,则()f x 在区间[]13,上()A .单调递增且有最大值5-B .单调递增且有最小值5-C .单调递减且有最大值5-D .单调递减且有最小值5-【正确答案】C【分析】根据奇函数的性质结合已知条件可得()f x 在[]13,上单调递减,从而可求出其最值.【详解】因为函数()f x 在区间[3,1]--上单调递减,且最小值为5,所以()15f -=,因为()f x 为奇函数,所以()f x 在[]13,上单调递减,所以()f x 在[]13,上的最大值为()()115f f =--=-,故选:C10.已知25x y k ==,且211x y+=,则k 的值为()A B .C .10D .20【正确答案】D【分析】由题意可得25log ,log x k y k ==,然后代入211x y+=中可求出k 的值.【详解】由25x y k ==,得25log ,log x k y k ==,因为211x y+=,所以2521log lo 1g k k+=,所以2log 2log 51k k +=,所以log 4log 5log 201k k k +==,得20k =,故选:D11.已知角α的终边与单位圆的交点为34,55⎛⎫-- ⎪⎝⎭,则sin cos sin cos αααα-=+()A .7-B .17-C .17D .7【正确答案】C【分析】根据题意结合任意角三角函数的定义可求出sin ,cos αα,然后代入求解即可.【详解】因为角α的终边与单位圆的交点为34,55⎛⎫-- ⎪⎝⎭,所以34cos ,sin 55αα=-=-,所以43sin cos 15543sin cos 755αααα-+-==+--.故选:C12.水车在古代是进行灌溉引水的工具,是人类的一项古老的发明,也是人类利用自然和改造自然的象征.如图是一个半径为R的水车,一个水斗从点(1A ,出发,沿圆周按逆时针方向匀速旋转,且旋转一周用时60秒.经过t 秒后,水斗旋转到P 点,设点P 的坐标为()x y ,,其纵坐标满足πsin 00.2y f t R t t ωϕωϕ==+≥><()()(,,)则下列叙述正确的是()A .π6ϕ=-B .当[]030t ∈,时,函数()y f t =单调递增C .当[]030t ∈,时,点P 到x D .当50t =时,2PA =【正确答案】D【分析】首先根据条件求函数的解析式,再分别代入选项,判断函数的单调性,以及函数值.【详解】2R =,2π60T ω==,π30ω∴=,当0=t 时,()y f t ==,且||2ϕπ<,π3ϕ∴=-,所以30ππ()2sin 3f t t ⎛⎫=- ⎪⎝⎭,故A 错误;当[0,30]t ∈时,πππ2π,33330t ⎡⎤-∈-⎢⎥⎣⎦,所以函数()y f t =在[0,30]不是单调递增的,故B 错误;当[0,30]t ∈时,πππ2π,33330t ⎡⎤-∈-⎢⎥⎣⎦,所以函数()y f t =在[0,30]的最大值为2,故C 错误;当50t =时,ππ4π3303t -=,此时y =,点(1,P -,(1A ,,2PA =,故D 正确.故选:D二、双空题13.函数()()2sin 0,22f x x ππωϕωϕ⎛⎫=+>-<< ⎪⎝⎭的部分图像如图所示,则ω=__________,ϕ=__________.【正确答案】2;3π-##13π-【分析】①先由图像求出周期,进而求得2ω=;②由()f x 过点5,212π⎛⎫⎪⎝⎭,结合22ππϕ-<<,求出ϕ即可.【详解】①由图知:11521212T ππ=-,可得2T ππω==,解得2ω=;②故()()2sin 2x x f ϕ=+,又()f x 过点5,212π⎛⎫⎪⎝⎭,故52sin 2212πϕ⎛⎫⨯+= ⎪⎝⎭,可得52,62k k Z ππϕπ+=+∈,解得2,3k k Z πϕπ=-+∈,又22ππϕ-<<,故0,3k πϕ==-.故2;3π-.三、填空题14.已知πsin 63α⎛⎫+= ⎪⎝⎭,则πsin 26α⎛⎫- ⎪⎝⎭的值是______.【正确答案】13-【分析】根据题意,结合诱导公式以及二倍角公式代入计算,即可得到结果.【详解】因为πsin 63α⎛⎫+= ⎪⎝⎭,所以ππππsin 2sin 2cos 26323ααα⎡⎤⎛⎫⎛⎫⎛⎫-=+-=-+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦21112sin 1233π6α⎡⎤⎛⎫=--=-+⨯=-⎪⎝+⎢⎥⎭⎣⎦故答案为:13-15.若正实数a 、b 满足3a b +=,则14a b+的最小值为______.【正确答案】3【分析】利用乘“1”法及基本不等式计算可得.【详解】解:因为正实数a 、b 满足3a b +=,所以()14114141553333a a b a b a b a b b ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当4b aa b =,则23b a a b =⎧⎨+=⎩,即1a =,2b =时取等号,即14a b +的最小值为3.故316.若关于x 的不等式22(1)(1)10a x a x -+--≥解集是空集,则实数a 的取值范围是______.【正确答案】3(,1]5-【分析】由题意推出22(1)(1)10a x a x -+--<对于x ∈R 恒成立,讨论21a -是否为0,不等于0时,列出相应的不等式,综合讨论结果,即可求得答案.【详解】由题意关于x 的不等式22(1)(1)10a x a x -+--≥解集是空集,可得22(1)(1)10a x a x -+--<对于x ∈R 恒成立,当210a -=时,1a =±,若1a =,则10-<恒成立,适合题意;若1a =-,则120,12x x -∴->-<,不合题意;当210a -≠时,需满足210a -<且22(1)4(1)0a a ∆=-+-<,解得315a -<<,综合以上可得实数a 的取值范围3(,1]5-,故3(,1]5-四、解答题17.已知全集U =R ,集合{|26}A x x =-<≤,集合()()2{|2330}B x x m x m m =-+++≤.(1)若0m =,求()R A B ð;(2)设p :x A q ∈;:x B ∈,若p 是q 的必要不充分条件,求实数m 的取值范围.【正确答案】(1)()()(]R 2,03,6A B =- ð;(2)23m -<≤【分析】(1)求出集合B 后可求()R A B ð.(2)由条件关系可得集合的包含关系,从而可求参数的取值范围.【详解】(1)当0m =时,[]0,3B =,故()()R ,03,B =-∞+∞ ð,故()()(]R 2,03,6A B =- ð.(2)因为p 是q 的必要不充分条件,故,B A B A ⊆≠,而[],3B m m =+,故236m m -<⎧⎨+≤⎩,故23m -<≤18.(1)计算()113441lg 238-⎛⎫⎡⎤+- ⎪⎣⎦⎝⎭(2)已知sin 2cos 2αα+=,求tan α.【正确答案】(1)7;(2)tan 0α=或4tan 3α=.【分析】(1)利用分数指数幂的运算性质和对数的运算性质求解;(2)对sin 2cos 2αα+=两边平方化简,再结合22sin cos 1αα+=和同角三角函数的关系可求得结果.【详解】(1)()113441lg 238-⎛⎫⎡⎤+- ⎪⎣⎦⎝⎭2lg 23=++2lg 51lg 23=++++6(lg 5lg 2)7=++=;(2)因为sin 2cos 2αα+=,所以22sin 4cos 4sin cos 4αααα++=,因为22sin cos 1αα+=,所以2222sin 4cos 4sin cos 4sin cos αααααα++=+,由题意可得cos 0α≠,所以22tan 44tan 4tan 1ααα++=+,化简得23tan 4tan 0αα-=,解得tan 0α=或4tan 3α=.19.已知函数()211mx f x x +=+是R 上的偶函数.(1)求实数m 的值;(2)判断函数()y f x =在[)0,∞+上单调性,并用定义法证明;(3)求函数()y f x =在[]2,1-上的最大值与最小值.【正确答案】(1)0(2)在[)0,∞+上单调递减,证明见解析(3)最大值为1,最小值为15【分析】(1)根据偶函数的性质进行求解即可;(2)根据单调性的定义进行判断证明即可;(3)根据偶函数的性质,结合单调性进行求解即可.【详解】(1)解:因为函数()211mx f x x +=+是R 上的偶函数,所以有()()2211112011mx mx f x f x mx mx mx x x +-+=-⇒=⇒+=-+⇒=++,因为x ∈R ,所以0m =;(2)解:由(1)可知0m =,即()211f x x =+,则()f x 在[)0,∞+上单调递减,理由如下:设12,x x 是[)0,∞+上任意两个实数,且12x x <,即120x x ≤<,则()()()()()()()()()22212121122222221212121111111111x x x x x x f x f x x x x x x x +++--=-==+-+++++,因为120x x ≤<,则210x x +>,210x x ->,所以()()120f x f x ->,即()()12f x f x >,所以函数()f x 在区间[)0,∞+上单调递减;(3)解:由(2)可知:函数()f x 在[)0,∞+上单调递减,而函数()f x 是偶函数,所以函数()f x 在区间(],0-∞上单调递增,因为[]2,1x ∈-,又()01f =,()112145f -==+,()112f =,所以()max 1f x =,()min 15f x =.20.已知函数22()log 1)lo ()(g 1f x x x =--+.(1)求函数的定义域;(2)判断函数()y f x =的奇偶性,并用定义法证明;(3)求不等式()1f x >的解集.【正确答案】(1)()1,1-(2)奇函数,证明见解析(3)11,3⎛⎫-- ⎪⎝⎭【分析】(1)根据对数的真数大于零,列出不等式组,求解即可;(2)用定义证明即可求解;(3)利用对数函数的单调性解不等式即可.【详解】(1)要使函数有意义,则有1010x x ->⎧⎨+>⎩,解得11x -<<,函数的定义域为()1,1-.(2)函数()f x 为奇函数,证明:由(1)函数的定义域为()1,1-,关于原点对称,又因为22()log (1)log (1)()f x x x f x -=+--=-,所以函数()f x 为奇函数.(3)解不等式()1f x >,即21log 11x x ->+,即221log log 21x x->+,从而有11121x x x-<<⎧⎪-⎨>⎪+⎩,所以113x -<<-.不等式()1f x >的解集为11,3⎛⎫-- ⎪⎝⎭.21.已知函数2cos cos f x x x x a ωωω=-+()的最小正周期为π,且函数f x ()在R 上的最小值为1.(1)求函数()f x 的单调递增区间;(2)若π02x ⎡⎤∈⎢⎥⎣⎦,,求函数()f x 的值域.【正确答案】(1)πππ,π63k k ⎡⎤-+⎢⎥⎣⎦,k ∈Z (2)3,32⎡⎤⎢⎥⎣⎦【分析】(1)根据题意,由二倍角公式以及辅助角公式将函数()f x 化简,结合条件求得,a ω的值,再由正弦型函数的单调区间即可得到结果;(2)根据题意,由(1)中的函数()f x 的解析式,结合正弦型函数的值域即可得到结果.【详解】(1)因为函数2cos cos f x x x x a ωωω=-+=()11sin 2cos2222x x a ωω-+-π1sin 262x a ω⎛⎫=-+- ⎪⎝⎭.函数()f x 的最小值为1,且x ∈R ,312a ∴-+=,52a ∴=.2ππ,ω12T ω==∴= 即()πsin 226f x x ⎛⎫=-+ ⎪⎝⎭由πππ2π22π262k x k -≤-≤+,k ∈Z ,可得ππππ63k x k -≤≤+,k ∈Z ,∴函数()f x 的单调递增区间为πππ,π63k k 轾犏-+犏臌,k ∈Z .(2)当π0,2x ⎡⎤∈⎢⎥⎣⎦时,2ππ5π,666x ⎡⎤-∈-⎢⎥⎣⎦,则π1sin 2,162x ⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦,即πsin 22,3362x ⎛⎫⎡⎤-+∈ ⎪⎢⎥⎝⎭⎣⎦函数()f x 的值域为3,32⎡⎤⎢⎥⎣⎦.22.已知函数()124x x f x a +=⋅-(1)若函数f x ()的零点是12,求a 的值;(2)设f x ()在区间[]11-,上的最大值为g a (),求g a ()的解析式.【正确答案】(1)2a =(2)()211,421,2244,2a a g a a a a a ⎧-<⎪⎪⎪=≤≤⎨⎪->⎪⎪⎩【分析】(1)根据函数零点的定义,列出方程即可求得结果;(2)根据题意,将函数()f x 变形,利用换元法,令2x t =,结合二次函数的性质,分类讨论,即可得到结果.【详解】(1)因为函数f x ()的零点是12;则11122124202f a +⎛⎫=⋅-=-= ⎪⎝⎭,所以2a =;(2)因为()()2124222x x x x f x a a +=⋅-=-+⋅令2x t =,则1,22t ⎡⎤∈⎢⎥⎣⎦,所以()()22212,22h t t at t a a t ⎛⎫=-+=--+≤≤ ⎪⎝⎭,()h t 的图像开口向下,对称轴为t a =,当12a <时,()1124g a h a ⎛⎫==- ⎪⎝⎭;当122a ≤≤时,()()2g a h a a ==;当2a >时,()()244g a h a ==-.所以()211,421,2244,2a a g a a a a a ⎧-<⎪⎪⎪=≤≤⎨⎪->⎪⎪⎩.。

2023-2024学年山东省济南高一上册期末数学试题(含解析)

2023-2024学年山东省济南高一上册期末数学试题(含解析)

2023-2024学年山东省济南高一上册期末数学试题一、单选题1.设集合{|1}A x x =≥,{}2|20B x x x =--<,则A B ⋃=()A .{|1}x x >-B .{|1}x x ≥C .{|11}x x -<<D .{|12}x x ≤<【正确答案】A【分析】解出集合{}|12=-<<B x x ,根据并集的运算法则求得结果.【详解】由220x x --<,得(2)(1)0x x -+<,得12x -<<即{}|12=-<<B x x ,则A B ⋃={|1}x x >-故选:A.2.已知p :02x <<,那么p 的一个充分不必要条件是()A .13x <<B .11x -<<C .01x <<D .03x <<【正确答案】C【分析】利用集合的关系,结合充分条件、必要条件的定义判断作答.【详解】对于A ,(1,3)(0,2)⊄,且(0,2)(1,3)⊄,即13x <<是p 的不充分不必要条件,A 不是;对于B ,(1,1)(0,2)-⊄,且(0,2)(1,1)⊄-,即11x -<<是p 的不充分不必要条件,B 不是;对于C ,(0,1)(0,2),即01x <<是p 的一个充分不必要条件,C 是;对于D ,(0,2)(0,3),即03x <<是p 的必要不充分条件,D 不是.故选:C3.已知0.20.32log 0.2,2,0.2a b c ===,则A .a b c <<B .a c b <<C .c<a<bD .b<c<a【正确答案】B【分析】运用中间量0比较,a c ,运用中间量1比较,b c【详解】22log 0.2log 10,a =<=0.20221,b =>=0.3000.20.21,<<=则01,c a c b <<<<.故选B .本题考查指数和对数大小的比较,渗透了直观想象和数学运算素养.采取中间变量法,利用转化与化归思想解题.4.函数3()6x f x x =+的大致图象为()A .B .C .D .【正确答案】D【分析】由题可得函数定义域,函数()f x 的奇偶性及其在0x >时的函数值符号,结合排除法即得.【详解】对任意的x ∈R ,660x +≥>,故函数3()6x f x x =+的定义域为R ,故A 错误;又当0x >时,()0f x >,故B 错误;因为33()()()66x x f x f x x x ---===--++,所以()f x 为奇函数,故C 错误.故选:D.5.在下列区间中,函数()43xf x e x =+-的零点所在的区间为()A .1,04⎛⎫- ⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫ ⎪⎝⎭D .13,24⎛⎫ ⎪⎝⎭【正确答案】C【分析】先判断函数()f x 在R 上单调递增,由104102f f ⎧⎛⎫< ⎪⎪⎪⎝⎭⎨⎛⎫⎪> ⎪⎪⎝⎭⎩,利用零点存在定理可得结果.【详解】因为函数()43xf x e x =+-在R 上连续单调递增,且114411221143204411431022f e e f e e ⎧⎛⎫=+⨯-=-<⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=+⨯-=-> ⎪⎪⎝⎭⎩,所以函数的零点在区间11,42⎛⎫⎪⎝⎭内,故选C.本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续.6.已知π3cos 35α⎛⎫-= ⎪⎝⎭,则πsin 6α⎛⎫+= ⎪⎝⎭()A .45±B .45C .45-D .35【正确答案】D 【分析】根据πππ626αα⎛⎫+=-+ ⎪⎝⎭及诱导公式即可求解.【详解】∵π3cos 35α⎛⎫-= ⎪⎝⎭,∴ππππ3sin cos cos 62635ααα⎡⎤⎛⎫⎛⎫⎛⎫+=-+=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.故选:D .7.已知函数()1e e 3x xf x x-=-++,若()2f m =,则()f m -=()A .2-B .4-C .2D .4【正确答案】D【分析】令()()3g x f x =-,由奇偶性定义可知()g x 为奇函数,由()()0g m g m +-=可构造方程求得结果.【详解】令()()13e e x xg x f x x -=-=-+,则()()1e e x xg x g x x--=--=-,()g x ∴为定义在()(),00,∞-+∞U 上的奇函数,()()0g m g m ∴+-=,即()()330f m f m --+-=,()()64f m f m ∴-=-=.故选:D.8.定义在区间π0,2⎛⎫ ⎪⎝⎭上的函数3cos y x =与8tan y x =的图象交点为00(,)P x y ,则0sin x 的值为()A .13BC .23D.3【正确答案】A【分析】将P 点坐标代入两个函数的解析式,结合同角三角函数的基本关系式求得0sin x .【详解】依题意0π0,2x ⎛⎫∈ ⎪⎝⎭,0000008sin 3cos ,8tan cos x y x y x x ===,所以008sin 3cos cos x x x =,2003cos 8sin x x =,()20031sin 8sin x x -=,2003sin 8sin 30x x +-=,()()00sin 33sin 10x x +-=,其中0sin 30x +>,所以0013sin 10,sin 3x x -==.故选:A二、多选题9.下列说法正确的是()A .若22ac bc >,则a b>B .若a b >,c d >,则a c b d ->-C .若0b a >>,0c >,则b c ba c a+>+D .若0a b >>,则11a b b a+>+【正确答案】AD【分析】通过不等式性质证明选项正确或通过反例判断选项错误即可.【详解】对于A ,∵22ac bc >,∴0c ≠,∴20c >,∴210c>,∴222211ac bc c c ⨯>⨯,∴a b >,故选项A 正确;对于B ,当2a =,1b =,0c =,2d =-时,有a b >,c d >,但此时2a c -=,3b d -=,a c b d -<-,故选项B 错误;对于C ,当1a =,2b =,1c =时,有0b a >>,0c >,但此时32b c a c +=+,2b a =,b c ba c a+<+,故选项C 错误;对于D ,∵0a b >>,∴0ab >,∴10ab>,∴11a b ab ab ⨯>⨯,∴11b a>,由不等式的同向可加性,由a b >和11b a >可得11a b b a+>+,故选项D 正确.故选:AD.10.已知函数()1f x x =-,()2g x x =.记{},max ,,a a b a b b a b ≥⎧=⎨<⎩,则下列关于函数()()(){}()max ,0F x f x g x x =≠的说法正确的是()A .当()0,2x ∈时,()2F x x=B .函数()F x 的最小值为2-C .函数()F x 在()1,0-上单调递减D .若关于x 的方程()F x m =恰有两个不相等的实数根,则21m -<<-或1m >【正确答案】ABD【分析】得到函数()1,1022,102x x x F x x x x --≤<≥⎧⎪=⎨<-<<⎪⎩或或,作出其图象逐项判断.【详解】由题意得:()1,1022,102x x x F x x x x --≤<≥⎧⎪=⎨<-<<⎪⎩或或,其图象如图所示:由图象知:当()0,2x ∈时,()2F x x=,故A 正确;函数()F x 的最小值为2-,故正确;函数()F x 在()1,0-上单调递增,故错误;方程()F x m =恰有两个不相等的实数根,则21m -<<-或1m >,故正确;故选:ABD11.已知函数π()2sin 214f x x ⎛⎫=-+ ⎪⎝⎭,下列选项中正确的是()A .()f x 的最小值为2-B .()f x 在π0,4⎛⎫⎪⎝⎭上单调递增C .()f x 的图象关于π8x =对称D .()f x 在ππ,42⎡⎤⎢⎥⎣⎦上值域为21,3⎤⎦【正确答案】BD【分析】根据三角函数的最值、单调性、对称性、值域等知识对选项进行分析,从而确定正确答案.【详解】当2ππ22π4x k -=-,Z k ∈,即ππ8x k =-,Z k ∈时,π()2sin 214f x x ⎛⎫=-+ ⎪⎝⎭取得最小值,最小值为211-+=-,A 错误;当π0,4x ⎛⎫∈ ⎪⎝⎭时,πππ2,444x ⎛⎫-∈- ⎪⎝⎭,故πsin 24y x ⎛⎫=- ⎪⎝⎭在π0,4x ⎛⎫∈ ⎪⎝⎭上单调递增,则π()2sin 214f x x ⎛⎫=-+ ⎪⎝⎭在π0,4x ⎛⎫∈ ⎪⎝⎭上单调递增,故B 正确;当π8x =时,πππ()2sin 211884f ⎛⎫=⨯-+= ⎪⎝⎭,故C 错误;ππ,42x ⎡⎤∈⎢⎥⎣⎦时,ππ3π24,44x ⎡⎤-∈⎢⎥⎣⎦,当ππ244x -=或3π4,即π4x =或π2时,π()2sin 214f x x ⎛⎫=-+ ⎪⎝⎭取得最小值,最小值为2112+=,当ππ242x -=,即3π8x =时,π()2sin 214f x x ⎛⎫=-+ ⎪⎝⎭取得最大值,最大值为2113⨯+=,故值域为1,3⎤⎦,D 正确.故选:BD12.关于函数()|ln |2||f x x =-,下列描述正确的有()A .函数()f x 在区间(1,2)上单调递增B .函数()y f x =的图象关于直线2x =对称C .若12x x ≠,但()()12f x f x =,则122x x +=D .函数()f x 有且仅有两个零点【正确答案】ABD【分析】根据函数图象变换,可得图像,利用图象注意检测选项,可得答案.【详解】由函数ln y x =,x 轴下方图象翻折到上方可得函数ln y x =的图象,将y 轴右侧图象翻折到左侧,右侧不变,可得函数ln ln y x x ==-的图象,将函数图象向右平移2个单位,可得函数()ln 2ln 2y x x =--=-的图象,则函数()|ln |2||f x x =-的图象如图所示.由图可得函数()f x 在区间(1,2)上单调递增,A 正确;函数()y f x =的图象关于直线2x =对称,B 正确;若12x x ≠,但()()12f x f x =,若1x ,2x 关于直线2x =对称,则124x x +=,C 错误;函数()f x 有且仅有两个零点,D 正确.故选:ABD.三、填空题13.已知正实数x ,y 满足111x y+=,则4x y +最小值为______.【正确答案】9【分析】利用基本不等式的性质直接求解即可.【详解】 正数x ,y 满足:111x y+=,∴()114445529y x x y x y x y x y ⎛⎫+=+⋅+=++≥+ ⎪⎝⎭,当且仅当4y x x y =,即2x y =,233x y ==,时“=”成立,故答案为.914.已知tan 2α=,则22sin cos cos ααα-=______.【正确答案】35##0.6【分析】根据同角三角函数之间的基本关系,以及“1”的妙用即可将22sin cos cos ααα-转化为tan α的形式,代入即可求得结果.【详解】由题意知,222222sin cos cos 2sin cos cos 2sin cos cos 1sin cos ααααααααααα---==+又因为sin tan cos ααα=,将上式分子分母同时除以2cos α得222tan 12sin cos cos tan 1ααααα--=+代入tan 2α=即可得,2222tan 122132sin cos cos tan 1215ααααα-⨯--===++故3515.若函数()()()12log ,02,0xx x f x x ⎧>⎪=⎨⎪≤⎩,则()2f f =⎡⎤⎣⎦______.【正确答案】12##0.5【分析】首先计算()21f =-,从而得到()()21f f f =-⎡⎤⎣⎦,即可得到答案.【详解】因为()122log 21f ==-,所以()()112122f f f -=-==⎡⎤⎣⎦.故1216.如果定义在R 上的函数()f x ,对任意12x x ≠都有()()()()11221221x f x x f x x f x x f x +>+,则称函数为“H 函数”,给出下列函数,其中是“H 函数”的有_____________(填序号)①()31f x x =+②11()2x f x +⎛⎫= ⎪⎝⎭③2()1f x x =+④21,1()45,1x f x xx x x ⎧-<-⎪=⎨⎪++≥-⎩【正确答案】①④.【分析】不等式11221221()()()()x f x x f x x f x x f x +>+等价为1212()[()()]0x x f x f x -->,即满足条件的函数为单调递增函数,判断函数的单调性即可得到结论.【详解】 对于任意的不等实数1x ,2x ,不等式()()()()11221221x f x x f x x f x x f x +>+恒成立,∴不等式等价为1212()[()()]0x x f x f x -->恒成立,即函数()f x 是定义在R 上的增函数;①()f x 在R 上单调递增,符合题意;②()f x 在R 上单调递减,不合题意;③()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增,不合题意;④()f x 在R 上单调递增,符合题意;故①④.四、解答题17.设{},56,{|6U R A x x B x x ==-<≤=≤-或2}x >,求:(1)A B ⋂;(2)()()U U A B 痧【正确答案】(1){}26x x <≤;(2){|2x x ≤或6}x >.【分析】(1)根据集合交集的概念及运算,即可求解;(2)根据补集的运算,求得,U U A B 痧,再结合集合并集的运算,即可求解.【详解】(1)由题意,集合{}56,{|6A x x B x x =-<≤=≤-或2}x >,根据集合交集的概念及运算,可得{}26A B x x ⋂=<≤.(2)由{},56,{|6U R A x x B x x ==-<≤=≤-或2}x >,可得{|5U A x =≤ð或6}x >,{|62}U B x x =-<≤ð,所以()()U U A B 痧{|2x x =≤或6}x >.18.已知4cos 5α=-,且α为第三象限角.(1)求sin α的值;(2)求()()tan()sin()sin 2cos f ππαπαααπα⎛⎫-⋅-⋅- ⎪⎝⎭=+的值.【正确答案】(1)35-(2)920-【分析】(1)根据同角三角函数关系平方和公式求解即可;(2)由题知3tan 4α=,再根据诱导公式化简计算即可.【详解】(1)解:因为4cos 5α=-,且α为第三象限角,所以3sin 5α==-,(2)解:由(1)知sin 3tan cos 4ααα==,()()tan()sin()sin 2cos f ππαπαααπα⎛⎫-⋅-⋅- ⎪⎝⎭=+tan sin cos tan 33sin cos 94520αααααα-⋅⋅===⎛⎫⨯-=- ⎪⎝⎭-.19.已知函数()π2sin 2,R4f x x x ⎛⎫=-∈ ⎪⎝⎭(1)求()f x 的最大值及对应的x 的集合;(2)求()f x 在[]0,π上的单调递增区间;【正确答案】(1)()max 2f x =,此时x 的集合为3π|π,Z 8x x k k ⎧⎫=+∈⎨⎬⎩⎭(2)3π7π0,,,π88⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦.【分析】(1)根据正弦函数的最值结合整体思想即可得解;(2)根据正弦函数的单调性结合整体思想即可得出答案.【详解】(1)解:当ππ2242π+x k -=,即3ππ,Z 8x k k =+∈时,()max 2f x =,所以()max 2f x =,此时x 的集合为3π|π,Z 8x x k k ⎧⎫=+∈⎨⎬⎩⎭;(2)令πππ2π22π,Z 242k x k k -+≤-≤+∈,则π3πππ,Z 88k x k k -+≤≤+∈,又因[]0,πx ∈,所以()f x 在[]0,π上的单调递增区间为3π7π0,,,π88⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦.20.已知函数()()2log 41x f x kx =++为偶函数.(1)求实数k 的值;(2)解关于m 的不等式()()211f m f m +>-.【正确答案】(1)1-(2)()(),20,-∞-⋃+∞【分析】(1)根据偶函数的定义及性质直接化简求值;(2)判断0x ≥时函数的单调性,根据奇偶性可得函数在各区间内的单调性,解不等式即可.【详解】(1)函数的定义域为R ,函数()()2log 41x f x kx =++为偶函数,()()f x f x ∴-=,即()()22log 41log 41x x kx kx -+-=++,()()22224142log 41log 41log log 4241x x x x x x kx x --+∴=+-+===-+,1k ∴=-;(2)()()222411log 41log log 222x x x x x f x x ⎛⎫+⎛⎫=+-==+ ⎪ ⎪⎝⎭⎝⎭ ,当0x ≥时,121,22x x xy ≥=+在[0,)+∞单调递增,()f x \在[)0,∞+上单调递增,又函数()f x 为偶函数,所以函数()f x 在[)0,∞+上单调递增,在(],0∞-上单调递减,()()211f m f m +>- ,211m m ∴+>-,解得2m <-或0m >,所以所求不等式的解集为()(),20,∞∞--⋃+。

高一数学上册期末试卷(附答案)

高一数学上册期末试卷(附答案)

高一数学上册期末试卷(附答案)高一数学期末考试试题一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的1.函数的定义域为( )A.( ,1)B.( ,∞)C.(1,+∞ )D.( ,1)∪( 1,+∞)2.以正方体ABCD—A1B1C1D1的棱AB、AD、AA1所在的直线为坐标轴建立空间直角坐标系,且正方体的棱长为一个单位长度,则棱CC1中点坐标为( )A.( ,1,1)B.(1,,1)C.(1,1, )D.( ,,1)3.若,,,则与的位置关系为( )A.相交B.平行或异面C.异面D.平行4.如果直线同时平行于直线,则的值为( )A. B.C. D.5.设,则的大小关系是( )A. B. C. D.6.空间四边形ABCD中,E、F分别为AC、BD中点,若CD=2AB,EF⊥AB,则直线EF与CD所成的角为( )A.45°B.30°C.60°D.90°7.如果函数在区间上是单调递增的,则实数的取值范围是( )A. B. C. D.8.圆:和圆:交于A,B两点,则AB的垂直平分线的方程是( )A. B.C. D.9.已知,则直线与圆的位置关系是( )A.相交但不过圆心B.过圆心C.相切D.相离10.某三棱锥的三视图如右图所示,则该三棱锥的表面积是( )A.28+65B.60+125C.56+125D.30+6511.若曲线与曲线有四个不同的交点,则实数m的取值范围是( )A. B.C. D.12.已知直线与函数的图象恰好有3个不同的公共点,则实数m 的取值范围是( )A. B.C. D.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.若是奇函数,则 .14.已知,则 .15.已知过球面上三点A,B,C的截面到球心O的距离等于球半径的一半,且AB=BC=CA=3 cm,则球的体积是 .16.如图,将边长为1的正方形ABCD沿对角线AC折起,使得平面ADC⊥平面ABC,在折起后形成的三棱锥D-ABC中,给出下列三种说法:①△DBC是等边三角形;②AC⊥BD;③三棱锥D-ABC的体积是26.其中正确的序号是________(写出所有正确说法的序号).三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题10分)根据下列条件,求直线的方程:(1)已知直线过点P(-2,2)且与两坐标轴所围成的三角形面积为1;(2)过两直线3x-2y+1=0和x+3y+4=0的交点,且垂直于直线x+3y+4=0.18.(本小题12分)已知且,若函数在区间的最大值为10,求的值.19.(本小题12分)定义在上的函数满足 ,且 .若是上的减函数,求实数的取值范围.20.(本小题12分)如图,在直三棱柱(侧棱垂直于底面的三棱柱) 中,,分别是棱上的点(点不同于点 ),且为的中点.求证:(1)平面平面 ;(2)直线平面 .21.(本小题12分)如图所示,边长为2的等边△PCD所在的平面垂直于矩形A BCD所在的平面,BC=22,M为BC的中点.(1)证明:AM⊥PM;(2)求二面角P-AM-D的大小.22.(本小题12分)已知圆C:x2+y2+2x-4y+3=0.(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程.(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.高一数学期末考试试题答案一、选择题ACBAD BDCAD BC二、填空题13. 14.13 15. 16.①②三、解答题17.(本小题10分)(1)x+2y-2=0或2x+y+2=0.(2)3x-y+2=0.18.(本小题12分)当0当x=-1时,函数f(x)取得最大值,则由2a-1-5=10,得a=215,当a>1时,f(x)在[-1,2]上是增函数,当x=2时,函数取得最大值,则由2a2-5=10,得a=302或a=-302(舍),综上所述,a=215或302.19.(本小题12分)由f(1-a)+f(1-2a)<0,得f(1-a)<-f(1-2a).∵f(-x)=-f(x),x∈(-1,1),∴f(1-a)又∵f(x)是(-1,1)上的减函数,∴-1<1-a<1,-1<1-2a<1,1-a>2a-1,解得0故实数a的取值范围是0,23.20.(本小题12分)(1)∵ 是直三棱柱,∴ 平面。

完整版)高一第一学期数学期末考试试卷(含答案)

完整版)高一第一学期数学期末考试试卷(含答案)

完整版)高一第一学期数学期末考试试卷(含答案)高一第一学期期末考试试卷考试时间:120分钟注:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集U=R,集合A={x|3≤x<7},B={x|x^2-7x+10<0},则(A∩B)的取值为A。

(−∞,3)∪(5,+∞)B。

(−∞,3)∪[5,+∞)C。

(−∞,3]∪[5,+∞)D。

(−∞,3]∪(5,+∞)2.已知a⋅3^a⋅a的分数指数幂表示为A。

a^3B。

a^3/2C。

a^3/4D。

都不对3.下列指数式与对数式互化不正确的一组是A。

e=1与ln1=0B。

8^(1/3)=2与log2^8=3C。

log3^9=2与9=3D。

log7^1=0与7^1=74.下列函数f(x)中,满足“对任意的x1,x2∈(−∞,0),当x1f(x2)”的是A。

x^2B。

x^3C。

e^xD。

1/x5.已知函数y=f(x)是奇函数,当x>0时,f(x)=logx,则f(f(100))的值等于A。

log2B。

−1/lg2C。

lg2D。

−lg26.对于任意的a>0且a≠1,函数f(x)=ax^−1+3的图像必经过点(1,4/5)7.设a=log0.7(0.8),b=log1.1(0.9),c=1.10.9,则a<b<c8.下列函数中哪个是幂函数A。

y=−3x^−2B。

y=3^xC。

y=log_3xD。

y=x^2+1是否有模型能够完全符合公司的要求?原因是公司的要求只需要满足以下条件:当x在[10,1000]范围内时,函数为增函数且函数的最大值不超过5.参考数据为e=2.L,e的8次方约为2981.已知函数f(x)=1-2a-a(a>1),求函数f(x)的值域和当x 在[-2,1]范围内时,函数f(x)的最小值为-7.然后求出a的值和函数的最大值。

2023-2024学年山东省东营市高一上册期末数学试题(含解析)

2023-2024学年山东省东营市高一上册期末数学试题(含解析)

2023-2024学年山东省东营市高一上册期末数学试题一、单选题1.已知集合{}2560,{10}A x x x B x x =-+≥=-<,则A B = ()A .(,1)-∞B .(2,1)--C .(3,1)--D .(3,)+∞【正确答案】A【分析】解不等式求得集合,A B ,由此求得A B ⋂.【详解】()()256230x x x x -+=--≥,解得2x ≤或3x ≥,所以(][),23,A =-∞⋃+∞,而(),1B =-∞,所以A B = (,1)-∞.故选:A2.十名工人某天生产同一零件,生产的件数分别是:15,17,14,10,15,17,17,16,14,12,设其中位数为a ,众数为b ,第一四分位数为c ,则a ,b ,c 大小关系为()A .a b c <<B .<<c a bC .c b a <<D .a c b<<【正确答案】B【分析】根据中位数、众数、分位数的定义求解.【详解】对生产件数由小到大排序可得:10,12,14,14,15,15,16,17,17,17,所以中位数151515,2a +==众数为b =17,100.25 2.5⨯=,所以第一四分位数为第三个数,即c =14,所以<<c a b ,故选:B.3.已知函数()f x 的定义域为R ,则“()00f =”是“()f x 是奇函数”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【正确答案】B【分析】通过反例和奇函数的性质可直接得到结论.【详解】若()2f x x =,则()00f =,此时()f x 为偶函数,充分性不成立;若()f x 为奇函数,且其定义域为R ,则()00f =恒成立,必要性成立;∴函数()f x 的定义域为R ,则“()00f =”是“()f x 是奇函数”的必要不充分条件.故选:B.4.如图是函数()f x 的图象,则下列说法不正确的是()A .()02f =-B .()f x 的定义域为[]3,2-C .()f x 的值域为[]22-,D .若()0f x =,则12x =或2【正确答案】C【分析】结合函数的图象和定义域,值域等性质进行判断即可.【详解】解:由图象知(0)2f =-正确,函数的定义域为[3-,2]正确,函数的最小值为3-,即函数的值域为[3-,2],故C 错误,若()0f x =,则12x =或2,故D 正确故选:C .5.17世纪,在研究天文学的过程中,为了简化大数运算,苏格兰数学家纳皮尔发明了对数,对数的思想方法即把乘方和乘法运算分别转化为乘法和加法运算,数学家拉普拉斯称赞“对数的发明在实效上等于把天文学家的寿命延长了许多倍”.已知lg20.3010,lg30.4771≈≈,设71249N =⨯,则N 所在的区间为()A .()131410,10B .()141510,10C .()151610,10D .()161710,10【正确答案】C【分析】根据对数的运算性质,结合题中所给的数据进行判断即可.【详解】因为712712142449,lg lg4lg9lg2lg314lg224lg3 4.21411.450415N N =⨯=+=+=+≈+≈.6644,所以()15.664415161010,10N =∈.故选:C6.方程24x x +=的根所在的区间为()A .()0,1B .()1,2C .()2,3D .()3,4【正确答案】B构造函数()24xf x x =+-,利用零点存在定理可得出结论.【详解】构造函数()24xf x x =+-,则函数()f x 为R 上的增函数,()110f =-< ,()220f =>,则()()120f f ⋅<,因此,方程24x x +=24x x +=的根所在的区间为()1,2.故选:B.7.已知偶函数()f x 在[0,)+∞上单调递减,且2是它的一个零点,则不等式(1)0f x ->的解集为()A .(1,3)-B .(,3)(1,)-∞-+∞C .(3,1)-D .(,1)(3,)-∞-⋃+∞【正确答案】A【分析】根据函数的单调性和奇偶性解不等式.【详解】因为偶函数()f x 在[0,)+∞上单调递减,所以()f x 在(],0-∞上单调递增,又因为2是它的一个零点,所以(2)0f =,所以(2)(2)0f f -==,所以当22x -<<时()0f x >,所以由(1)0f x ->可得212x -<-<解得13x -<<,故选:A.8.设()f x 是定义在(,0)(0,)-∞+∞ 上的奇函数,对任意的12,(0,)x x ∈+∞满足()()2112120x f x x f x x x->- 且(1)2f =,则不等式()2f x x >的解集为()A .(1,0)(1,)-⋃+∞B .(1,0)(0,1)-C .,1(),)1(-∞-⋃+∞D .(,2)(2,)-∞-+∞ 【正确答案】A 【分析】设()()f x F x x=,判断出()F x 的奇偶性、单调性,由此求得不等式()2f x x >的解集.【详解】设()()f x F x x =,由于()f x 是定义在(,0)(0,)-∞+∞ 上的奇函数,所以()()()()f x f x F x F x x x--===-,所以()F x 是定义在(,0)(0,)-∞+∞ 上的偶函数.任取120x x <<,120x x -<,则:()()()()()()1221121212120f x f x x f x x f x F x F x x x x x --=-=<,()()12F x F x <,所以()F x 在()0,∞+上递增,则()F x 在(),0∞-上递减.()(1)21f f ==-,()()()11211f F F ===-,对于不等式()2f x x >,当0x >时,有()2f x x >,即()()11F x F x >⇒>;当0x <时,由()2f x x<,即()()110F x F x <-⇒-<<,综上所述,不等式()2f x x >的解集为(1,0)(1,)-⋃+∞.故选:A二、多选题9.有一组样本数据123,,,,n x x x x ,由这组数据得到新样本数据1232,2,2,,2n x x x x ++++ ,则下列结论正确的是()A .两组样本数据的样本平均数相同B .两组样本数据的样本中位数相同C .两组样本数据的样本标准差相同D .两组样本数据的样本极差相同【正确答案】CD【分析】根据一组数据的平均数、中位数、标准差和极差的定义求解.【详解】数据123,,,,n x x x x 的平均数为123nx x x x x n++++=,新数据1232,2,2,,2n x x x x ++++ 的平均数为123123222222n n x x x x x x x x nx n n++++++++++++==++ ,故A 错误;若数据123,,,,n x x x x 的中位数为i x ,则新数据1232,2,2,,2n x x x x ++++ 的中位数为2i x +,故B 错误;数据123,,,,n x x x x 的标准差为s =,新数据1232,2,2,,2n x x x x ++++ 的标准差为1s s ==,故C 正确;若数据123,,,,n x x x x 中的最大数为,m x 最小数为n x ,则极差为m n x x -,则数据1232,2,2,,2n x x x x ++++ 的极差为22m n m n x x x x +--=-,故D 正确,故选:CD.10.若a b >,则下列不等式一定成立的是()A .22lg lg a b >B .22a b--<C .11a b<D .33a b >【正确答案】BD【分析】应用特殊值23a b =>=-,判断A 、C ,根据2x y =,3y x =的单调性判断B 、D.【详解】当23a b =>=-时,则()22239<-=,而lg 4lg9<,又1123>-,∴A ,C 不正确;∵2x y =,3y x =都是R 上单调递增函数,∴B ,D 是正确的.故选:BD.11.关于x 的方程221x k xx x x-=--的解集中只含有一个元素,则k 的值可能是()A .0B .1-C .1D .3【正确答案】ABD【分析】由方程有意义可得0x ≠且1x ≠,并将方程化为220x x k +-=;根据方程解集中仅含有一个元素可分成三种情况:方程220x x k +-=有且仅有一个不为0和1的解、方程220x x k +-=有两个不等实根,其中一个根为0,另一根不为1、方程220x x k +-=有两个不等实根,其中一个根为1,另一根不为0;由此可解得k 所有可能的值.【详解】由已知方程得:210x x x -≠-≠⎧⎨⎩,解得:0x ≠且1x ≠;由221x k x x x x-=--得:220x x k +-=;若221x k x x x x-=--的解集中只有一个元素,则有以下三种情况:①方程220x x k +-=有且仅有一个不为0和1的解,440k ∴∆=+=,解得:1k =-,此时220x x k +-=的解为1x =-,满足题意;②方程220x x k +-=有两个不等实根,其中一个根为0,另一根不为1;由0200k +⨯-=得:=0k ,220x x ∴+=,此时方程另一根为2x =-,满足题意;③方程220x x k +-=有两个不等实根,其中一个根为1,另一根不为0;由1210k +⨯-=得:=3k ,2230x x ∴+-=,此时方程另一根为3x =-,满足题意;综上所述:1k =-或0或3.故选:ABD.12.已知函数2()21xx f x =+,下列说法正确的是()A .若2()1f a >,则0a >B .()f x 在R 上单调递增C .当120x x +>时,()()121f x f x +>D .函数()y f x =的图像关于点1,02⎛⎫⎪⎝⎭成中心对称【正确答案】ABC【分析】根据指数不等式、函数单调性、对称性等知识对选项进行分析,从而确定正确答案.【详解】A 选项,()21f a >,即221,2221,21,021aa a a aa ⨯>⨯>+>>+,A 选项正确.B 选项,1221()12111212x x x x xf x ==+=-+++-,由于121x y =+在R 上递减,所以()f x 在R 上递增,B 选项正确.C 选项,当120x x +>时,12x x >-,所以()()12f x f x >-,即12122221212112x x x x x -->=+++,所以()()1221222122221212121211x x x x x x x f x f x +=>++=++++,C 选项正确.D 选项,()()112212122x x xf x f x ---==≠-++,D 选项错误.故选:ABC三、填空题13.已知幂函数()f x x α=的图像经过点(8,2),则1()f x -=_________.【正确答案】3x 【分析】根据幂函数的的知识求得α,然后根据反函数的知识求得正确答案.【详解】依题意,幂函数()f x x α=的图像经过点(8,2),所以182,3αα==,所以()13f x x =,令13y x =,解得3x y =,交换,x y 得3y x =,所以13()f x x -=故3x 14.设两个相互独立事件A 与B ,若事件A 发生的概率为p ,B 发生的概率为1p -,则A 与B 同时发生的概率的最大值为______.【正确答案】14##0.25【分析】求出相互独立事件同时发生的概率,利用二次函数求最值.【详解】因为事件A 与B 同时发生的概率为()[]()221110,124p p p p p p ⎛⎫-=-=--+∈ ⎪⎝⎭,所以当12p =时,最大值为14.故1415.已知函数(),y f x x =∈R ,且(1)(2)()(0)3,2,2,,2,N (0)(1)(1)f f f n f n f f f n *===∈- ,写出函数()y f x =的一个解析式:________.【正确答案】()32xf x =⨯【分析】利用累乘的方法可求解函数解析式.【详解】因为(1)(2)()(0)3,2,2,,2,N (0)(1)(1)f f f n f n f f f n *===∈- ,所以(1)(2)()(0)32(0)(1)(1)n f f f n f f f f n ⨯⨯⨯=⨯- ,即()32n f n =⨯,所以函数()y f x =的一个解析式为()32x f x =⨯,故答案为:()32x f x =⨯.16.已知函数2()|2|4f x x x a a a =-+-,若函数()f x 有三个不同的零点123,,x x x ,且123x x x <<,则123111x x x ++的取值范围是_________.【正确答案】1,2⎛⎫+∞ ⎪ ⎪⎝⎭【分析】将()f x 表示为分段函数的形式,对a 进行分类讨论,求得12123,,x x x x x +,由此求得123111x x x ++的取值范围.【详解】()222224,224,2x ax a a x af x x ax a a x a ⎧-+-≥=⎨-++-<⎩,当0a >时,方程有3个不相等的实数根,()f x 在()2,a +∞上递增,所以2x a ≥时,22240x ax a a -+-=有1个根,且2x a <时,22240x ax a a -++-=有2个根,所以()222444040a a a a a ⎧+->⎪⎨-<⎪⎩,解得24a <<.由于123x x x <<,则2121232,4,2x x a x x a a x a +==-+=+,所以122123123111124x x a x x x x x x a a +++=+=+-+()24a a a =+-()()244a a a a a a -=-==--()()221111=----,)2111,311<<-<<,)22110-<-<,()2111<-()212214211+-<=-.当a<0时,当2x a >时,方程22240x ax a a -+-=的判别式()22444160a a a a ∆=--=<,所以此时不符合题意.当0a =时,()22,0,0x x f x x x ⎧≥=⎨-<⎩,不符合题意.综上所述,a 的取值范围是1,2⎛⎫++∞ ⎪ ⎪⎝⎭.故12⎛⎫+∞ ⎪ ⎪⎝⎭研究含有绝对值的函数的零点,关键点在于去绝对值,将所研究的函数表示为分段函数的形式,由此再对参数进行分类讨论,结合零点个数来求得参数的取值范围.在分类讨论时,要注意做到不重不漏.四、解答题17.求解下列问题:(1)2433641)27--⎛⎫-++ ⎪⎝⎭;(2)2log 3491lg2log 27log 8100-+-⋅.【正确答案】(1)2916(2)74-【分析】(1)根据根式、指数运算求得正确答案.(2)根据对数运算求得正确答案.【详解】(1)2433641)27--⎛⎫++ ⎪⎝⎭24333324123--⎡⎤⎛⎫⎛⎫=++⎢⎥ ⎪ ⎪⎝⎭⎢⎥⎝⎭⎣⎦224123--⎛⎫=++ ⎪⎝⎭9129116416=++=.(2)2log 3491lg2log 27log 8100--⋅221233223lg10ln e 3log 3log 2-=-+-⋅2313323log 3log 2222=--+-⋅192324=--+-74=-.18.甲、乙两人想参加某项竞赛,根据以往20次的测试,将样本数据分成[50,60),[60,70),[70,80),[80,90),[90,100]五组,并整理得到如下频率分布直方图:已知甲测试成绩的中位数为75.(1)求x ,y 的值,并分别求出甲、乙两人测试成绩的平均数(假设同一组中的每个数据可用该组区间中点值代替);(2)从甲、乙两人测试成绩不足60分的试卷中随机抽取3份,求恰有2份来自乙的概率.【正确答案】(1)0.025x =;0.02y =;甲的平均分为74.5,乙的平均分为73.5;(2)35.(1)根据甲测试成绩的中位数为75,由0.0110100.04(7570)0.5y ⨯+⨯+⨯-=,求得y ,再利用各矩形的面积的和为1,求得x ,然后利用平均数公式求解.(2)易得甲测试成绩不足60分的试卷数2,乙测试成绩不足60分的试卷数3,先得到从中抽3份的基本事件数,再找出恰有2份来自乙的基本事件数,代入古典概型公式求解.【详解】(1)∵甲测试成绩的中位数为75,∴0.0110100.04(7570)0.5y ⨯+⨯+⨯-=,解得0.02y =.∴0.0110100.0410100.005101y x ⨯+⨯+⨯+⨯+⨯=,解得0.025x =.同学甲的平均分为550.0110650.0210750.0410850.02510950.0051074.5⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=.同学乙的平均分为550.01510650.02510750.0310850.0210950.011073.5⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=.(2)甲测试成绩不足60分的试卷数为200.01102⨯⨯=,设为A ,B .乙测试成绩不足60分的试卷数为200.015103⨯⨯=,设为a ,b ,c .从中抽3份的情况有(),,A B a ,(),,A B b ,(),,A B c ,(),,A a b ,(),,A a c ,(),,A b c ,(),,B a b ,(),,B a c ,(),,B b c ,(),,a b c ,共10种情况.满足条件的有(),,A a b ,(),,A a c ,(),,A b c ,(),,B a b ,(),,B a c ,(),,B b c ,共6种情况,故恰有2份来自乙的概率为63105=.19.已知关于x 的不等式2540bx x -+>的解集为{|1x x <或}x a >(1a >).(1)求a ,b 的值;(2)当0x >,0y >,且满足1a b x y+=时,有226x y k k +>--恒成立,求k 的取值范围.【正确答案】(1)41a b =⎧⎨=⎩(2)(3,5)-【分析】(1)根据一元二次不等式的解法可得1和a 是方程2540bx x -+=的两个实数根且0b >,从而利用韦达定理建立方程组即可求解;(2)由均值不等式中“1”的灵活运用可得min ()9x y +=,从而解一元二次不等式22150k k --<即可得答案.【详解】(1)解:因为不等式2540bx x -+>的解集为{|1x x <或}x a >(1a >),所以1和a 是方程2540bx x -+=的两个实数根且0b >,所以5141a b a b ⎧+=⎪⎪⎨⎪⋅=⎪⎩,解得41a b =⎧⎨=⎩;(2)解:由(1)知411x y+=,且0x >,0y >,所以414()559y x x y x y x y x y ⎛⎫+=++=+++= ⎪⎝⎭,当且仅当4y x x y =,即63x y =⎧⎨=⎩时等号成立,依题意有2min ()26x y k k +>--,即2926k k >--,所以22150k k --<,解得35k -<<,所以k 的取值范围为(3,5)-.20.甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响.(1)求乙获胜的概率;(2)求投篮结束时乙只投了2个球的概率.【正确答案】(1)1327;(2)427.【分析】(1)根据规则乙先投进,分情况讨论,求各个情况下概率和即可;(2)根据规则第四次乙先进球或第五次甲先进球,符合题意,求概率和即可.【详解】(1)记“乙获胜”为事件C ,记甲第i 次投篮投进为事件i A ,乙第i 次投篮投进为事件iB 由互斥事件有一个发生的概率与相互独立事件同时发生的概率计算公式知()()()()111122112233P C P A B P A B A B P A B A B A B =+⋅⋅+⋅⋅⋅⋅()()()()()()()()()()()()111122112233P A P B P A P B P A P B P A P B P A P B P A P B =++⋅22332121211332323227⎛⎫⎛⎫⎛⎫⎛⎫=⨯++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(2)记“投篮结束时乙只投了2个球”为事件D ,则由互斥事件有一个发生的概率与相互独立事件同时发生的概率计算公式知()()()112211223P D P A B A B P A B A B A =⋅⋅+⋅⋅⋅()()()()()()()()()112211223P A P B P A P B P A P B P A P B P A =+⋅22222121143232327⎛⎫⎛⎫⎛⎫⎛⎫=+⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.21.提高隧道的车辆通行能力可改善附近路段高峰期间的交通状况.一般情况下,隧道内的车流速度v (单位:千米/小时)和车流密度x (单位:辆/千米)满足关系式:50,020,60,20120.140x v k x x <≤⎧⎪=⎨-<≤⎪-⎩研究表明,当隧道内的车流密度达到120辆/千米时会造成堵塞,此时车流速度为0千米/小时.(1)若车流速度v 不小于40千米/小时,求车流密度x 的取值范围;(2)隧道内的车流量y (单位时间内通过隧道的车辆数,单位:辆/小时)满足y x v =⋅.求隧道内车流量的最大值(精确到1辆/小时)及隧道内车流量达到最大时的车流密度(精确到1辆/千米).2.646=)【正确答案】(1)(1)车流速度v 不小于40千米/小时,车流密度x 的取值范围为(0,80];(2)(2)隧道内车流量的最大值为3250辆/小时,车流量最大时的车流密度87辆/千米.【分析】(1)由120x =(辆/千米)时,0v =(千米/小时)求得k ,可得v 关于x 的关系式,再由40v 求解x 的范围得结论;(2)结合(1)写出隧道内的车流量y 关于x 的函数,再由函数的单调性及基本不等式求出分段函数的最值,则答案可求.【详解】(1)解:由题意,当120x =(辆/千米)时,0v =(千米/小时),代入60140k v x=--,得060140120k =--,解得1200k =.∴50,020120060,20120140x v x x <⎧⎪=⎨-<⎪-⎩,当020x <时,5040v =,符合题意;当20120x <时,令12006040140x--,解得80x ,2080x ∴<.综上,080x <.故车流速度v 不小于40千米/小时,车流密度x 的取值范围为(0,80];(2)由题意得,50,020120060,20120140x x y x x x x <⎧⎪=⎨-<⎪-⎩,当020x <时,50y x =为增函数,20501000y ∴⨯=,等号当且仅当20x =时成立;当20120x <时,12002020(140)28006060()60[140140140x x x y x x x x x x--=-=-=+---2800280060(2060[160(140)140140x x x x=+-=-----60(16060(1603250-=-≈.当且仅当2800140140x x-=-,即14087(20x =-≈∈,120]时成立,综上,y 的最大值约为3250,此时x 约为87.故隧道内车流量的最大值为3250辆/小时,车流量最大时的车流密度87辆/千米.22.函数()()lg 93x x f x a =+-.(1)若()f x 的定义域为R ,求实数a 的取值范围;(2)当0a ≤时,若()f x 的值域为R ,求实数a 的值;(3)在(2)条件下,()g x 为定义域为R 的奇函数,且0x >时,()()109f x x g x =-,对任意的R t ∈,解关于x 的不等式()32()2|()|g x g x tx t g x +-≥.【正确答案】(1)0a ≤;(2)0a =;(3)答案详见解析.【分析】(1)由930x x a +->恒成立分离常数a ,结合指数函数、二次函数的性质求得正确答案;(2)令()93x x h x a =+-,结合()h x 的值域包含()0,∞+列不等式,由此求得正确答案;(3)先求得()g x 的解析式,由此化简不等式()32()2|()|g x g x tx t g x +-≥.对t 进行分类讨论,由此求得正确答案.【详解】(1)由题930x x a +->恒成立,则93x x a <+恒成立,由于1130,322x x >+>,所以211933024x x x ⎛⎫+=+-> ⎪⎝⎭,所以0a ≤;(2)令()93x x h x a =+-,则()h x 的值域包含()0,∞+,因为21193324x x x a a a ⎛⎫+-=+-->- ⎪⎝⎭,所以0a -≤,即0a ≥,又因为0a ≤,所以0a =;(3)当0x >时,()()1093f x x x g x =-=;若0x <,0x ->,()3x g x --=,又因为()g x 为定义域为R 的奇函数,所以当0x <时,()3xg x -=-,所以()3,00,03,0x x x g x x x -⎧>⎪==⎨⎪-<⎩,()()3g x g x =()()20g x x ≠,不等式()()()322g x g x tx t g x +-≥等价于()()()2220g x tx t g x x +-≥≠,由于()3,00,03,0x x x g x x x -⎧>⎪==⎨⎪-<⎩在()(),00,∞-+∞U 上是单调递增函数,所以原不等式等价于()2220x tx t x x +-≥≠,即:()()()200x x t x -+≥≠,当2t <-时,解集为{|2x x ≤且0x ≠或}x t ≥-;当2t =-时,解集为{}0x x ≠;当20t -<≤时,解集为{|x x t ≤-且0x ≠或}2x ≥;当0t >时,解集为{|x x t ≤-或}2x ≥.根据函数的奇偶性求函数的解析式要注意的地方有:1.如果函数的定义域为R ,则对于奇函数来说,必有()00f =,偶函数则不一定;2.当0x >时,0x -<(或当0x <时,0x ->),需要代入对应范围的解析式,结合()()=f x f x -或()()f x f x =--来求得函数的解析式.。

2023-2024学年江苏省常州市高一(上)期末数学试卷【答案版】

2023-2024学年江苏省常州市高一(上)期末数学试卷【答案版】

2023-2024学年江苏省常州市高一(上)期末数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.cos840°=( ) A .√32B .12C .−√32D .−122.设全集U =R ,集合M ={x |x 2﹣2x ﹣3≤0},N ={x |x >1},则{x |1<x ≤3}=( ) A .M ∪NB .M ∩NC .(∁U N )∪MD .(∁U M )∩N3.已知幂函数f (x )的图象经过点(2,14),则f (x )( )A .为偶函数且在区间(0,+∞)上单调递增B .为偶函数且在区间(0,+∞)上单调递减C .为奇函数且在区间(0,+∞)上单调递增D .为奇函数且在区间(0,+∞)上单调递减4.已知扇形的周长为10cm ,圆心角为3rad ,则扇形的面积为( ) A .3cm 2B .4cm 2C .5cm 2D .6cm 25.设a ,b ,m 都是正数,且a <b ,记x =a+m b+m ,y =ab,则( ) A .x >y B .x =yC .x <yD .x 与y 的大小与m 的取值有关6.“函数f (x )=e x (e x ﹣3)在区间[m ,+∞)上单调递增”的充要条件是( ) A .m ≥32B .m ≤32C .m ≥ln 32D .m ≤ln 327.将正弦曲线y =sin x 向左平移π6个单位得到曲线C 1,再将曲线C 1上的每一点的横坐标变为原来的12得到曲线C 2,最后将曲线C 2上的每个点的纵坐标变为原来的2倍得到曲线的C 3.若曲线C 3恰好是函数f (x )的图象,则f (x )在区间[0,π2]上的值域是( )A .[﹣1,1]B .[﹣1,2]C .[1,2]D .[﹣2,2]8.已知函数f(x)=log 2(12x −a)的定义域为[﹣2,0],若存在x 1,x 2∈[﹣2,0],满足|f (x 1)﹣f (x 2)|≥3,则实数a 的取值范围是( ) A .[47,+∞)B .[25,1)C .[25,4)D .[47,1)二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.若函数f (x )=a x +b (其中a >0且a ≠1)的图象过第一、三、四象限,则( ) A .0<a <1B .a >1C .﹣1<b <0D .b <﹣110.下列不等式中,正确的有( ) A .0.2﹣3<0.3﹣3<0.4﹣3B .0.81.1<0.80.9<0.80.7C .log 0.25<log 0.24<log 0.23D .cos3π7<cos 2π7<cos π711.若函数f (x )对于任意x 1,x 2∈(0,+∞),都有f(x 1)+f(x 1)2≤f(x 1+x 22),则称f (x )具有性质M .下列函数中,具有性质M 的有( ) A .f(x)=√x B .f (x )=e x C .f (x )=lnxD .f(x)=−1x+212.已知函数f (x )=cos (ωx +φ)+1(其中ω,φ均为常数,且ω>0,|φ|<π)恰能满足下列4个条件中的3个:①函数f (x )的最小正周期为π; ②函数f (x )的图象经过点(0,32);③函数f (x )的图象关于点(5π12,1)对称; ④函数f (x )的图象关于直线x =−π6对称.则这3个条件的序号可以是( ) A .①②③B .①②④C .①③④D .②③④三、填空题:本题共4小题,每小题5分,共20分.13.已知函数f(x)={(−x)12,x ≤0lgx ,x >0,则f (f (0.01))= .14.已知α为第二象限角,且满足sinα+cosα=−713,则tan α= . 15.已知在△ABC 中,AB =AC =25,BC =40,若△ABC 的内接矩形的一边在BC 边上,则该内接矩形的面积的最大值为 .16.设f (x ),g (x )分别为定义在R 上的奇函数和偶函数,若f (x )+g (x )=2x ,则曲线y =f(x)g(x)与曲线y =sin x 在区间[﹣2024π,2024π]上的公共点个数为 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)(1)计算:3log 32+(0.125)−23−0.25×(−12)−4;(2)已知3x =5y =15,计算1x +1y的值并证明xy >4.18.(12分)设集合A ={x|x +1x >103,x ∈R},集合B ={x ||2x ﹣1|<1,x ∈R },集合I =(∁R A )∩B .(1)求I ;(2)当x ∈I 时,求函数f(x)=log 3x4x−1的值域. 19.(12分)在平面直角坐标系xOy 中,角α的始边为x 轴的非负半轴,终边经过第四象限内的点P (1,m ),且cosα=−√510m .(1)求m 的值;(2)求sin(α+π2)⋅tan(π−α)⋅sin(α+3π2)cos(−α)的值.20.(12分)已知函数f (x )=(2x ﹣2tan θ)(2x ﹣tan θ),其中x ∈R ,θ∈(−π2,π2).(1)当θ=π4时,求f (x )在区间[0,3]上的最值及取最值时x 的值;(2)若f (x )的最小值为−34,求θ.21.(12分)已知结论:设函数f (x )的定义域为R ,a ,b ∈R ,若f (a +x )+f (a ﹣x )=2b 对x ∈R 恒成立,则f (x )的图象关于点(a ,b )中心对称,反之亦然.特别地,当a =b =0时,f (x )的图象关于原点对称,此时f (x )为奇函数.设函数g(x)=2e 2x +1. (1)判断g (x )在R 上的单调性,并用函数单调性的定义证明;(2)计算g (x )+g (﹣x )的值,并根据结论写出函数g (x )的图象的对称中心; (3)若不等式g(m −1x)+g(−4x)≥2对x >0恒成立,求实数m 的最大值.22.(12分)已知f(x)=ln(√x 2+1−x)+ax 2,g (x )=a (cos x +1),a ∈R . (1)若f (x )为奇函数,求a 的值,并解方程f(tanx)=−ln32; (2)解关于x 的不等式f(sinx)+f(cos(x +π2))≤g(x).2023-2024学年江苏省常州市高一(上)期末数学试卷参考答案与试题解析一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.cos840°=( ) A .√32B .12C .−√32D .−12解:cos840°=cos (2×360°+180°﹣60°)=﹣cos60°=−12.故选:D .2.设全集U =R ,集合M ={x |x 2﹣2x ﹣3≤0},N ={x |x >1},则{x |1<x ≤3}=( ) A .M ∪NB .M ∩NC .(∁U N )∪MD .(∁U M )∩N解:因为M ={x |x 2﹣2x ﹣3≤0}={x |﹣1≤x ≤3},N ={x |x >1},则{x |1<x ≤3}=M ∩N . 故选:B .3.已知幂函数f (x )的图象经过点(2,14),则f (x )( )A .为偶函数且在区间(0,+∞)上单调递增B .为偶函数且在区间(0,+∞)上单调递减C .为奇函数且在区间(0,+∞)上单调递增D .为奇函数且在区间(0,+∞)上单调递减解:设幂函数为f (x )=x α,幂函数f (x )的图象经过点(2,14),则2α=14,解得α=﹣2,故f (x )=x ﹣2,所以f (x )为偶函数且在区间(0,+∞)上单调递减. 故选:B .4.已知扇形的周长为10cm ,圆心角为3rad ,则扇形的面积为( ) A .3cm 2B .4cm 2C .5cm 2D .6cm 2解:令扇形的半径为r ,则2r +3r =5r =10,解得r =2cm ,所以扇形的面积S =12×3×22=6. 故选:D .5.设a ,b ,m 都是正数,且a <b ,记x =a+m b+m ,y =ab,则( ) A .x >y B .x =yC .x <yD .x 与y 的大小与m 的取值有关解:由a >0,b >0,m >0,且a <b ,可得x −y =a+m b+m −a b =m(b−a)b(b+m)>0,所以x >y ,A 项符合题意. 故选:A .6.“函数f (x )=e x (e x ﹣3)在区间[m ,+∞)上单调递增”的充要条件是( ) A .m ≥32B .m ≤32C .m ≥ln 32D .m ≤ln 32解:f (x )=e x (e x ﹣3),f ′(x )=e x (e x ﹣3)+e x •e x =2e x (e x −32),令f ′(x )=0,解得x =ln 32,∴函数f (x )在(﹣∞,ln 32)上单调递减,在(ln 32,+∞)上单调递增.∴“函数f (x )=e x (e x ﹣3)在区间[m ,+∞)上单调递增”的充要条件是m ≥ln 32.故选:C .7.将正弦曲线y =sin x 向左平移π6个单位得到曲线C 1,再将曲线C 1上的每一点的横坐标变为原来的12得到曲线C 2,最后将曲线C 2上的每个点的纵坐标变为原来的2倍得到曲线的C 3.若曲线C 3恰好是函数f (x )的图象,则f (x )在区间[0,π2]上的值域是( )A .[﹣1,1]B .[﹣1,2]C .[1,2]D .[﹣2,2]解:将正弦曲线y =sin x 向左平移π6个单位得到曲线C 1:y =sin (x +π6)的图象;再将曲线C 1上的每一点的横坐标变为原来的12得到曲线C 2:y =sin (2x +π6)的图象;最后将曲线C 2上的每个点的纵坐标变为原来的2倍得到曲线的C 3:y =2sin (2x +π6)的图象.由于曲线C 3恰好是函数f (x )=2sin (2x +π6)的图象.在区间[0,π2]上,2x +π6∈[π6,7π6],sin (2x +π6)∈[−12,1],2sin (2x +π6)∈[﹣1,2].故f (x )在区间[0,π2]上的值域是[﹣1,2].故选:B .8.已知函数f(x)=log 2(12x −a)的定义域为[﹣2,0],若存在x 1,x 2∈[﹣2,0],满足|f (x 1)﹣f (x 2)|≥3,则实数a 的取值范围是( ) A .[47,+∞)B .[25,1)C .[25,4)D .[47,1)解:令u (x )=12x −a 在[﹣2,0]单调递减,所以u 的最小值为u (0)=1﹣a >0,可得a <1, 且u (x )∈[1﹣a ,4﹣a ],所以g (u )=log 2u 在[﹣2,0]单调递减,所以g (u )∈[log 2(1﹣a ),log 2(4﹣a )], 因为存在x 1,x 2∈[﹣2,0],满足|f (x 1)﹣f (x 2)|≥3,则f (x )max ﹣f (x )min ≥3,所以g (u )max ﹣g (u )min =log 2(4﹣a )﹣log 2(1﹣a )=log 24−a 1−a ,由题意可得log 24−a 1−a ≥3,解得47≤a <1.故选:D .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.若函数f (x )=a x +b (其中a >0且a ≠1)的图象过第一、三、四象限,则( ) A .0<a <1B .a >1C .﹣1<b <0D .b <﹣1解:∵函数f (x )=a x +b (a >0,a ≠1)的图象在第一、三、四象限, ∴根据图象的性质可得:a >1,a 0+b <0,即a >1,b <﹣1. 故选:BD .10.下列不等式中,正确的有( ) A .0.2﹣3<0.3﹣3<0.4﹣3B .0.81.1<0.80.9<0.80.7C .log 0.25<log 0.24<log 0.23D .cos3π7<cos 2π7<cos π7解:对于A ,幂函数y =x﹣3在(0,+∞)上单调递减,所以0.2﹣3>0.3﹣3>0.4﹣3,故A 错误;对于B ,指数函数y =0.8x 在(﹣∞,+∞)上单调递减,0.81.1<0.80.9<0.80.7,故B 正确; 对于C ,对数函数y =log 0.2 x 在(0,+∞)上单调递减,log 0.25<log 0.24<log 0.23,故C 正确; 对于D ,余弦函数y =cos x 在(0,π2)上单调递减,cos 3π7<cos 2π7<cos π7,故D 正确.故选:BCD .11.若函数f (x )对于任意x 1,x 2∈(0,+∞),都有f(x 1)+f(x 1)2≤f(x 1+x 22),则称f (x )具有性质M .下列函数中,具有性质M 的有( ) A .f(x)=√x B .f (x )=e x C .f (x )=lnxD .f(x)=−1x+2解:根据题意,若函数f (x )对于任意x 1,x 2∈(0,+∞),都有f(x 1)+f(x 1)2≤f(x 1+x 22),则函数的图象在(0,+∞)上为直线或向上凸, f (x )=e x 和f (x )=−1x+2的图象不符合该特点,而f (x )=√x 和f (x )=lnx 的图象符合该特点. 故选:BC .12.已知函数f(x)=cos(ωx+φ)+1(其中ω,φ均为常数,且ω>0,|φ|<π)恰能满足下列4个条件中的3个:①函数f(x)的最小正周期为π;②函数f(x)的图象经过点(0,32 );③函数f(x)的图象关于点(5π12,1)对称;④函数f(x)的图象关于直线x=−π6对称.则这3个条件的序号可以是()A.①②③B.①②④C.①③④D.②③④解:若满足①,则π=2πω,可得ω=2,即函数的解析式为f(x)=cos(2x+φ)+1,若满足②,则cosφ=12,|φ|<π,可得φ=−π3或φ=π3,若①②正确时,则③代入可得cos(2×512π+π3)+1≠1,所以函数不关于(5π12,1)对称,或者cos(2×512π−π3)+1=1,此时关于点(5π12,1)对称,④代入因为sin[2×(−π6)+π3]+1=1,所以关于直线x=−π6对称,或者sin[2×(−π6)−π3]+1≠±1,所以不关于x=−π6对称,此时φ=−π3时,符合①②③;φ=π3时,符合①②④;②③④不能同时成立;若满足①③正确时,则cos(2×5π12+φ)+1=1,|φ|<π,可得φ=−π3,则②正确,④不正确,所以符合条件;若满足①④正确时,则2•(−π6)+φ=kπ,k∈Z,|φ|<π,可得φ=π3,此时②正确,③不正确,符合条件;②③④不能同时成立;综上所述:①②③或①②④符合条件故选:AB.三、填空题:本题共4小题,每小题5分,共20分.13.已知函数f(x)={(−x)12,x≤0lgx ,x >0,则f (f (0.01))= √2 .解:函数f(x)={(−x)12,x ≤0lgx ,x >0,则f (f (0.01))=f (﹣2)=√2.故答案为:√2.14.已知α为第二象限角,且满足sinα+cosα=−713,则tan α= −512. 解:∵sinα+cosα=−713, ∴两边平方,可得1+2cos αsin α=49169, ∴2cos αsin α=−120169, ∴(cos α﹣sin α)2=289169, ∵α为第二象限角, ∴cos α﹣sin α=−1713, ∴cos α=−1213,sin α=513, ∴tan α=sinαcosα=−512. 故答案为:−512. 15.已知在△ABC 中,AB =AC =25,BC =40,若△ABC 的内接矩形的一边在BC 边上,则该内接矩形的面积的最大值为 150 .解:设矩形与AB 、AC 分别交于点E 、F ,与B C 交于点G 、H ,且GH =x ,那么EG =FH =y , 根据题意,得y =3(40−x)8,矩形的面积为S =xy =3(40−x)x 8≤38×(x+40−x 2)2=150, 当且仅当x =40﹣x ,即x =20时,S 取得最大值150. 故答案为:150.16.设f (x ),g (x )分别为定义在R 上的奇函数和偶函数,若f (x )+g (x )=2x ,则曲线y =f(x)g(x)与曲线y =sin x 在区间[﹣2024π,2024π]上的公共点个数为 4047 . 解:因为f (x )+g (x )=2x ①,所以f (﹣x )+g (﹣x )=2﹣x , 又因为f (x ),g (x )分别为定义在R 上的奇函数和偶函数, 所以f (﹣x )=﹣f (x ),g (﹣x )=g (x ), 故﹣f (x )+g (x )=2﹣x ②, 由①②可知,f(x)=2x−2−x2,g(x)=2x +2−x2,y =f(x)g(x)=2x−2−x2x +2−x =4x −14x +1=1−24x +1为奇函数,图象关于原点对称, 当x →+∞,y →1,且y <1,sin x 最大值为1,如图,曲线y =f(x)g(x)与曲线y =sin x 在区间[﹣2024π,2024π]上的公共点个数为1011×2×2+3=4047个. 故答案为:4047.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)(1)计算:3log 32+(0.125)−23−0.25×(−12)−4;(2)已知3x =5y =15,计算1x +1y的值并证明xy >4.解:(1)3log 32+(0.125)−23−0.25×(−12)−4=2+823−14×(﹣2)4=2+4﹣4=2;(2)因为3x =5y =15,所以x =log 315,y =log 515, 1x+1y=log 153+log 155=log 1515=1,因为1=1x +1y,所以xy =x +y ,x >0,y >0,x ≠y , 所以xy =x +y >2√xy ,即xy >4,18.(12分)设集合A ={x|x +1x >103,x ∈R},集合B ={x ||2x ﹣1|<1,x ∈R },集合I =(∁R A )∩B .(1)求I ;(2)当x ∈I 时,求函数f(x)=log 3x4x−1的值域. 解:(1)因为A ={x|x +1x >103,x ∈R}={x |x >3或0<x <13},集合B ={x ||2x ﹣1|<1,x ∈R }={x |0<x <1},所以∁R A ={x |13≤x ≤3或x ≤0},故I =(∁R A )∩B ={x |13≤x <1};(2)当13≤x <1时,x 4x−1=14−1x∈[13,1),所以﹣1≤f (x )<0, 故函数f (x )的值域为[﹣1,0).19.(12分)在平面直角坐标系xOy 中,角α的始边为x 轴的非负半轴,终边经过第四象限内的点P (1,m ),且cosα=−√510m .(1)求m 的值;(2)求sin(α+π2)⋅tan(π−α)⋅sin(α+3π2)cos(−α)的值.解:(1)因为角α的始边为x 轴的非负半轴,终边经过第四象限内的点P (1,m ), 所以cosα=1√12+m2=−√510m ,即√1+m 2=−√510m ,且m <0,解得m =﹣2; (2)sin(α+π2)⋅tan(π−α)⋅sin(α+3π2)cos(−α)=cosα⋅(−tanα)⋅(−cosα)cosα=cos αtan α=sin α,因为P (1,﹣2),所以sin α=−2√1+4=−2√55,所以原式=−2√55. 20.(12分)已知函数f (x )=(2x ﹣2tan θ)(2x ﹣tan θ),其中x ∈R ,θ∈(−π2,π2).(1)当θ=π4时,求f (x )在区间[0,3]上的最值及取最值时x 的值;(2)若f (x )的最小值为−34,求θ.解:(1)当θ=π4时,f(x)=(2x −2tan π4)(2x −tan π4)=(2x −2)(2x −1),令2x =t ,t ∈[1,8],则f (x )=g (t )=(t ﹣2)(t ﹣1), g (t )的图象对称轴为t =32,开口向上,∴当t =32即x =log 232,时,f (x )取得最小值,最小值为−14;当t =8即x =3时,f (x )取得最大值,最大值为42,∴f (x )在区间[0,3]上的最小值为−14,此时x =log 232;最大值为42,此时x =3.(2)∵f (x )=(2x ﹣2tan θ)(2x ﹣tan θ)=(2x )2﹣(3tan θ)2x +2(tan θ)2=(2x−32tanθ)2−14(tanθ)2的最小值为−34,∴−14(tanθ)2=−34⇒tanθ=±√3,又−π2<θ<π2,∴θ=±π3.21.(12分)已知结论:设函数f(x)的定义域为R,a,b∈R,若f(a+x)+f(a﹣x)=2b对x∈R恒成立,则f(x)的图象关于点(a,b)中心对称,反之亦然.特别地,当a=b=0时,f(x)的图象关于原点对称,此时f(x)为奇函数.设函数g(x)=2e2x+1.(1)判断g(x)在R上的单调性,并用函数单调性的定义证明;(2)计算g(x)+g(﹣x)的值,并根据结论写出函数g(x)的图象的对称中心;(3)若不等式g(m−1x)+g(−4x)≥2对x>0恒成立,求实数m的最大值.解:(1)g(x)在R上单调递减,证明如下:任取x1>x2,则e2x1+1>e2x2+1>0,所以21+e2x1<21+e2x2,即g(x1)<g(x2),所以g(x)在R上单调递减;(2)g(﹣x)+g(x)=21+e−2x+21+e2x=2⋅e2x1+e2x+21+e2x=2,所以g(x)的图象关于(0,1)对称;(3)令h(x)=g(x)﹣1,则h(x)的图象关于(0,0)对称,即h(x)为奇函数且h(x)在R上单调递减,若g(m−1x)+g(−4x)≥2对x>0恒成立,即h(m−1x)+h(﹣4x)≥0,即h(m−1x)≥﹣h(﹣4x)=h(4x),所以m−1x≤4x,即m≤4x+1x在x>0时恒成立,因为4x+1x≥2√4x⋅1x=4,当且仅当4x=1x,即x=12时取等号,所以m≤4,即m的最大值为4.22.(12分)已知f(x)=ln(√x2+1−x)+ax2,g(x)=a(cos x+1),a∈R.(1)若f(x)为奇函数,求a的值,并解方程f(tanx)=−ln3 2;(2)解关于x的不等式f(sinx)+f(cos(x+π2))≤g(x).解:(1)f(x)=ln(√x2+1−x)+ax2的定义域为R,若f(x)为奇函数,则f(﹣1)+f(1)=ln(√2+1)+ln(√2−1)+2a=ln1+2a=0,解得a=0,故f(x)=ln(√x2+1−x),又y=√x2+1与y=﹣x在[0,+∞)上均为增函数,故奇函数f(x)在[0,+∞)上均为增函数,所以f(x)在R上为增函数,又f(tanx)=−ln32=−ln√3=ln√33,所以tan x=√33,解得x=kπ+π6(k∈Z);(2)因为g(x)=a(cos x+1),a∈R.y=ln(√x2+1−x)为奇函数,cos(x+π2)=﹣sin x,所以关于x的不等式f(sinx)+f(cos(x+π2))≤g(x).可转化为2a sin2x≤a(cos x+1),a∈R.即a(2﹣2cos2x﹣cos x﹣1)≤0⇔a(cos x+1)(2cos x﹣1)≥0,①当a=0时,x∈R;②当a<0时,x=2kπ+π或2kπ+π3≤x≤5π3+2kπ(k∈Z);③当a>0时,x=2kπ+π或2kπ−π3≤x≤π3+2kπ(k∈Z);综上,当a=0时,原不等式的解集为R;当a<0时,原不等式的解集为{x|=2kπ+π或2kπ+π3≤x≤5π3+2kπ(k∈Z)};当a>0时,原不等式的解集为{x|=2kπ+π或2kπ−π3≤x≤π3+2kπ(k∈Z)}.。

2023-2024学年广东省高一上册期末数学试题(含解析)

2023-2024学年广东省高一上册期末数学试题(含解析)

2023-2024学年广东省高一上册期末数学试题一、单选题1.已知角2022,Z 180k k α-⋅∈= ,则符合条件的最大负角为()A .–42B .–220C .–202D .–158【正确答案】A【分析】直接代入k 的值即可求解.【详解】依题意,2022,Z 180k k α-⋅∈= ,取11k =时,有最大负角01118420222α-=⋅=- .故选:A.2.若函数243x y a +=+(0a >且1a ≠)的图象恒过定点A ,且点A 在角θ的终边上,则3πsin 2θ⎛⎫-= ⎪⎝⎭()A .B .CD 【正确答案】C【分析】求出点A 的坐标,利用三角函数的定义以及诱导公式可求得3πsin 2θ⎛⎫- ⎪⎝⎭的值.【详解】当240x +=,即2x =-时,4y =,所以()2,4A -,所以cos 5θ=-,由诱导公式可得3πsin cos 2θθ⎛⎫-=-= ⎪⎝⎭故选:C.3.已知12cos(),cos()33αβαβ+=-=,则cos cos αβ的值为()A .0B .12-C .12D .0或±12【正确答案】C【分析】利用两角和差的余弦公式结合条件即得.【详解】因为()1cos cos cos sin sin 3αβαβαβ+=-=()2cos cos cos sin sin 3αβαβαβ-=+=两式相加可得2cos cos 1αβ=,即1cos cos 2αβ=.故选:C.4.设集合{}2|42A y y x x a ==-+,{}2|sin 2sin B y y x x ==-+,若A B A ⋃=,则a 的取值范围是()A .1,2⎛⎤-∞ ⎥⎝⎦B .7,2⎛⎤-∞ ⎥⎝⎦C .(],1-∞D .[)7,+∞【正确答案】A【分析】分别求出集合A 、B 的范围,利用A B A ⋃=的性质即可求解.【详解】依题意,对于A 集合:()224222424y x x a x a a =-+=-+-≥-,所以{}|24A y y a =≥-;对于B 集合:()22sin 2sin sin 11y x x x =-+=--+,因为1sin 1x -≤≤,所以31y -≤≤,所以{}|31B y y =-≤≤;因为A B A ⋃=,所以B A ⊆,所以243a -≤-,解得12a ≤,故选:A.5.已知函数()2log f x x =,()2sin g x a x =-,若[]11,2x ∃∈,[]20,2πx ∃∈,使得()()12f x g x =,则实数a 的取值范围是()A .()(),23,-∞-⋃+∞B .(][),23,-∞-+∞C .()2,3-D .[]2,3-【正确答案】D【分析】求出函数()f x 在[]1,2上的值域为[]0,1,求出函数()g x 在[]0,2π上的值域为[]2,2a a -+,分析可知,[][]0,12,2a a -+≠∅ ,结合补集思想可求得实数a 的取值范围.【详解】当[]11,2x ∈时,()[]121log 0,1f x x =∈,当[]20,2πx ∈时,()[]222sin 2,2g x a x a a =-∈-+,因为[]11,2x ∃∈,[]20,2πx ∃∈,使得()()12f x g x =,所以,[][]0,12,2a a -+≠∅ ,考查[][]0,12,2a a -+=∅ 的情形,则20a +<或21a ->,解得2a <-或3a >,故当[][]0,12,2a a -+≠∅ 时,23a -≤≤.故选:D.6.已知5πsi 2n 3α⎛⎫-= ⎪⎝⎭,则πcos 23α⎛⎫+= ⎪⎝⎭()A .2125-B .1725-C .D 【正确答案】B【分析】利用诱导公式和倍角公式即可求解.【详解】依题意,πππcos 2cos 2πcos 2333ααα⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫+=-+=-- ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦22π21712135252sin α=⎛⎫⎛⎫--=⨯-=-⎪ ⎪⎝⎭⎝⎭,故选:B.7.函数()()()sin 20f x x ϕϕ=+>对任意实数x ,都有()8πf x f ⎛⎫≤ ⎪⎝⎭,则ϕ的最小值为()A .πB .π3C .π4D .π6【正确答案】C【分析】由已知()8πf x f ⎛⎫≤ ⎪⎝⎭得π8f ⎛⎫ ⎪⎝⎭是最大值或最小值,π8x =是函数图象的对称轴,利用正弦函数的对称轴可得结论.【详解】解:由()8πf x f ⎛⎫≤ ⎪⎝⎭知π8f ⎛⎫ ⎪⎝⎭是最大值或最小值,所以,π8x =是()f x 的一条对称轴的方程,所以,满足ππ2π82k ϕ⨯+=+,Z k ∈,所以()ππZ 4k k ϕ=+∈,因为0ϕ>,所以最小值为π4.故选:C.8.已知定义在R 上的奇函数,满足()()20f x f x -+=,当(]0,1x ∈时,()2log f x x =-,若函数()()()sin πF x f x x =-,在区间[]1,m -上有10个零点,则m 的取值范围是()A .[)3.5,4B .(]3.5,4C .(]5,5.5D .[)5,5.5【正确答案】A【分析】根据题意可知()f x 和()sin πx 都是周期为2的周期函数,因此可将()()()sin πF x f x x =-的零点问题转换为()f x 和()sin πx 的交点问题,画出函数图形,找到交点规律即可找出第10个零点坐标,而m 的取值范围就在第10个零点和第11个零点之间.【详解】由()()()()()2022f x f x f x f x f x -+=⇒=--=-得()f x 是一个周期为2的奇函数,当(]0,1x ∈时,()2log f x x =-,因此211log 122f ⎛⎫=-= ⎪⎝⎭,()10f =因为()f x 是奇函数,所以()00f =,112⎛⎫-=- ⎪⎝⎭f ,()10f -=且()()sin πg x x =的周期为2π2πT ==,且()10g -=,112g ⎛⎫-=- ⎪⎝⎭,()00g =,112g ⎛⎫= ⎪⎝⎭,()10g =求()()()sin πF x f x x =-的零点,即是()f x 与()g x 的交点,如图:为()f x 与()g x 在[]1,1-区间的交点图形,因为()f x 与()g x 均为周期为2的周期函数,因此交点也呈周期出现,由图可知()F x 的零点周期为12,若在区间[]1,m -上有10个零点,则第10个零点坐标为()3.5,0,第11个零点坐标为()4,0,因此3.54m ≤<故选:A二、多选题9.下列函数中,既为偶函数又在,02π⎛⎫- ⎪⎝⎭上单调递减的是()A .sin y x =B .sin y x=C .πcos 2y x ⎛⎫=- ⎪⎝⎭D .tan cos y x x=-【正确答案】AB【分析】逐项研究函数的奇偶性与单调性即可.【详解】对于A ,∵sin sin x x -=,且函数sin y x =的定义域为R ,∴函数sin y x =为偶函数,又0x >时,sin sin x x =,且函数sin y x =在0,2π⎛⎫⎪⎝⎭上单调递增,∴函数sin y x =在,02π⎛⎫- ⎪⎝⎭上单调递减,故A 符合题意;对于B ,∵()sin sin x x -=,且函数sin y x =定义域为R ,∴函数sin y x =为偶函数,当π,02x ⎛⎫∈- ⎪⎝⎭时,sin sin y x x ==-,且函数sin y x =-在π,02⎛⎫- ⎪⎝⎭上单调递减,∴函数sin y x =在π,02⎛⎫- ⎪⎝⎭上单调递减,故B 符合题意;对于C ,∵πcos sin 2y x x ⎛⎫=-= ⎪⎝⎭,∴函数πcos 2y x ⎛⎫=- ⎪⎝⎭在π,02⎛⎫- ⎪⎝⎭上单调递增,故C 不符合题意;对于D ,记()tan cos y f x x x ==-,则()()()tan cos tan cos f x x x x x -=---=--,∴()()f x f x -≠,∴函数tan cos y x x =-不是偶函数,故D 不符合题意.故选:AB.10.已知0log 2022log 2022a b <<,则下列说法正确的是()A .1b a >>B .22a b --<C .222b a a b+>D .若0m >,则b b ma a m+<+【正确答案】BCD【分析】根据题干条件得到1a b >>判断A ;由2y x -=在()0,∞+上单调性判断B ;由基本不等式得到222b a a b+>判断C ;作差法比较出b b m a a m +<+ D.【详解】解:因为0log 2022log 2022a b <<,所以1,1a b >>,不妨令0log 2022log 2022a b m <<=,则2022,2022m m a b >=,故1a b >>,故A 错误,因为2y x -=在()0,∞+上单调递减,故22a b --<,B 正确;因为22b a a b +>2>,故C 正确;若0m >,因为()()()()()0b a m a b m b a m b b m a a m a a m a a m +-+-+-==<+++,故b b ma a m+<+,D 正确.故选:BCD11.若函数()f x ,()g x 分别是R 上的偶函数、奇函数,且()()()2sin cos f x g x x x +=+,则()A .()cos 2f x x =B .()sin 2g x x =C .()()()()f g x g f x <D .()()()()f g x g f x >【正确答案】BD【分析】根据函数的奇偶性列出方程组即可分别求出()f x ,()g x 即可求解.【详解】依题意,因为函数()f x ,()g x 分别是R 上的偶函数、奇函数,所以()()=f x f x -,()()g x g x -=-,因为()()()2sin cos 1sin 2f x g x x x x +=+=+,所以()()1sin 2f x g x x -+-=-,所以()()1sin 2f x g x x -=-,由()()()()1sin 21sin 2f x g x x f x g x x ⎧+=+⎪⎨-=-⎪⎩,解得()1f x =,()sin 2g x x =,所以A 选项错误,B 选项正确;因为()()()sin 21f g x f x ==,()()()1sin 21g f x g ==<,所以()()()()f g x g f x >,所以C 选项错误,D 选项正确;故选:BD.12.下列说法正确的是()A .()lg ,f x x =且()(),f m f n =则10m n ⋅=B .πcos 34πlog 3,sin ,23a b c -===的大小关系为b a c>>C .请你联想或观察黑板上方的钟表:八点二十分,时针和分针夹角的弧度数为13π8D .函数2()ln(1)22x x f x x -=-++,则使不等式(1)(2)f x f x +<成立的x 的取值范围是(,2)(1,)-∞-+∞ 【正确答案】BD【分析】根据函数()lg ,f x x =的图象性质可求解A ,根据对数函数的性质结合三角函数的定义可比较B ,结合钟表图形可判断C ,利用函数的单调性和奇偶性解不等式可判断D.【详解】由()(),f m f n =可得lg lg m n =,不妨设m n <,则有lg lg m n -=,所以1⋅=m n ,A 错误;π1cos 32πsin 223b c --=====所以b c >,因为3223<=,所以44log log 32=<,所以c a <,因为02<<,所以2>,所以2444log log log32b ==>=,所以b a >,所以b a c >>,B 正确;八点二十分,如图,1812π25π32π,2π331218AOB AOC ∠=⨯=∠=⨯=,所以25π2π13π18318BOC ∠=-=,C 错误;2()ln(1)22x x f x x -=-++中,令210x ->解得1x <-或1x >,所以定义域为()(),11,-∞-⋃+∞,2()ln(1)22()x x f x x f x --=-++=,所以函数为偶函数,当1x >时,设22x t =>,此时122x xy t t-=+=+单调递增,再结合复合函数单调性可知2ln(1)y x =-单调递增,所以2()ln(1)22x x f x x -=-++在(1,)+∞单调递增,则在(),1-∞-单调递减,所以由(1)(2)f x f x +<可得112x x <+<即22321020x x x x ⎧-->⎨+>⎩,解得<2x -或1x >,故D 正确,故选:BD.三、填空题13.πtan8=______.1-##1-【分析】利用同角三角函数的商数关系及二倍角的正弦余弦公式,结合特殊角的三角函数值即可求解.【详解】ππππsin2sin sin1cos1π8884tan1ππππ8cos2cos s4in sin8882⋅-===-⋅.故答案为114.e 2.71828= 为自然对数的底数,则2ln sin30e︒=____________.【正确答案】14##0.25【分析】根据对数运算求解即可.【详解】解.2111ln2ln ln2ln sin302241e e e e4⎛⎫⎪︒⎝⎭====故1415.已知,αβ∈R,且满足22sin1αβ-=,则4sinαβ+的值域为______.【正确答案】1⎡-+⎣【分析】根据已知条件22sin1αβ-=,运用三角函数的有界性,可得α,再结合三角函数的单调性,即可求解值域.【详解】解:22sin1αβ-=,则22si1nαβ=-∴21112α--,可得α,2114sin422αβαα+=+-,α,设211()422fααα=+-,α()fα的对称轴为4α=-,()fα∴在区间⎡⎣上单调递增,∴()(1min f f α==-,()1max f f α==+4sin αβ∴+的值域为1⎡-+⎣.故1⎡-+⎣.16.鲁洛克斯三角形是一种特殊的三角形,指分别以正三角形的顶点为圆心,以其边长为半径作圆弧,由这三段圆弧组成的曲边三角形.它的特点是:在任何方向上都有相同的宽度,机械加工业上利用这个性质,把钻头的横截面做成鲁洛克斯三角形的形状,就能在零件上钻出正方形的孔来.如图,已知某鲁洛克斯三角形的一段弧 AB 的长度为2π,则该鲁洛克斯三角形的面积为______.【正确答案】(18π【分析】由弧长公式可求得等边ABC 的边长,再根据该鲁洛克斯三角形的面积等于三个扇形的面积减去2个ABC 的面积,结合扇形和三角形的面积公式即可得解.【详解】解:由题意可知π3ABC ACB BAC ∠=∠=∠=,设AB r =,则弧 AB 的长度为π2π3r =,所以6r =,设弧 AB 所对的扇形的面积为S ,1πsin23ABC S AB AC =⋅⋅⋅=则该鲁洛克斯三角形的面积为(21π3236218π23ABC S S -=⨯⨯⨯-⨯= .故答案为.(18π四、解答题17.已知ABC 为斜三角形.(1)证明:tan tan tan tan tan tan A B C A B C ++=;(2)若1sin cos 2A A +=,求tan A 的值.【正确答案】(1)证明见解析(2)【分析】(1)直接利用诱导公式与正切函数的和差公式即可求解.(2)式子1sin cos 2A A +=两边同时平方,求出3sin cos 8A A =-,再求出sin cosA A -=.【详解】(1)依题意,证明:180ABC +=- ,所以()tan tan A B C +=-.因为90C ≠ ,所以tan tan 1A B ≠,所以()tan tan tan 1tan tan A B A B A B ++=-.由tan tan tan 1tan tan A B C A B+=--,可得tan tan tan tan tan tan A B C A B C ++=.(2)因为1sin cos 2A A +=,所以221sin cos 2sin cos 4A A A A ++=,则3sin cos 8A A =-,又0πA <<,所以sin 0,cos 0A A ><,所以sin cos 2A A -=则sin ,cos tan A A A =⇒=18.已知函数()e cos 0x f x =-,e 为自然对数的底数e 2.71828= .(1)写出()f x 的单调区间;(2)若()()()1212f x f x x x =≠时,证明:120x x +<.【正确答案】(1)单调减区间为(,0)-∞,单调增区间为(0,)+∞(2)证明见解析【分析】根据()e 1,01e ,0x x x f x x ⎧-≥=⎨-<⎩,结合指数函数单调性求解即可;(2)不妨设12x x <,进而根据12e 1e 1x x t -=-=,结合指对互化得()()12ln 1,ln 1x t x t =-=+,01t <<,再结合t 的范围即可得答案.【详解】(1)解:因为函数()e 1,0e cos 0e 11e ,0x x xx x f x x ⎧-≥=-=-=⎨-<⎩所以,根据指数函数的单调性得,当0x ≥时,()f x 单调递增;当0x <时,()f x 单调递减;所以,()f x 的单调减区间为(,0)-∞,单调增区间为(0,)+∞(2)解:由(1)知,当0x <时,()()0,1f x ∈,当0x ≥时,()[)0,f x ∈+∞()()12f x f x = ,不妨设12x x <,∴120x x <<∴12e 1e 1x x t -=-=,01t <<,∴121e e 1x x t -=-=,即12e 1,e 1x x t t =-=+,∴两边取以e 为底的对数得()()12ln 1,ln 1x t x t =-=+,()212ln 1x x t ∴+=-01t << ,()2ln 10t-<,∴120x x +<19.已知函数()2ππ2cos cos 33f x x x x ⎛⎫⎛⎫=-++ ⎪ ⎪⎝⎭⎝⎭,x ∈R .(1)求函数()f x 的最小正周期;(2)若12π,,,3x x m ⎡⎤∃∈-⎢⎥⎣⎦()()12122()f x f x x x ==≠,求m 的最小值.【正确答案】(1)π(2)4π3【分析】(1)根据倍角公式、和差公式化简,代入周期公式即可求解.(2)利用整体换元思想,代入正弦函数最大值的相关性质即可求解.【详解】(1)依题意,由已知2π()cos 21)3f x x x =++2π2πcos 212coscos 2sin33x x x =++1π2cos 21sin(2)126x x x -+=-+,所以最小正周期是2ππ2T ==;(2)π,3x m ⎡⎤∈-⎢⎥⎣⎦时,π5ππ2,2666x m ⎡⎤-∈--⎢⎥⎣⎦,12π,,,3x x m ⎡⎤∃∈-⎢⎥⎣⎦()()12122()f x f x x x ==≠,等价于()f x 在区间π,3m ⎡⎤-⎢⎥⎣⎦上的有两最大值为2,则ππ22π62m -≥+,4π3m ≥,所以m 的最小值是4π3.20.已知函数()212x xf x a =++(1)若(1cos10tan10sin 50a ︒=︒︒,证明()f x 为奇函数;(2)若()0f x ≥在[]1,1x ∈-上恒成立,求a 的取值范围.【正确答案】(1)证明见解析(2)1,3⎡⎫-+∞⎪⎢⎣⎭【分析】(1)根据三角恒等变换得12a =-,()11212x f x =-+,再判断函数奇偶性即可;(2)由题知()min 0f x ≥,再令2x t =,进而得111y a t -=+++,1,22t ⎡⎤∈⎢⎥⎣⎦,再根据单调性求最值即可得答案.【详解】(1)解:(()a 1sin10cos10t n10tan 60sin 50sin n 5ta 100a ︒︒︒︒︒︒-⋅=-= sin10sin 60sin10cos10cos 60sin 50︒︒︒︒︒︒⎛⎫=-⋅ ⎪⎝⎭sin10cos 60sin 60cos10cos10cos 60cos10sin 50︒︒︒︒︒︒︒︒-=⋅sin(6010)cos1012cos 60cos10sin 50cos 60︒︒︒︒︒︒︒-=-⋅=-=-.所以,12a =-,即()21211111122122212x x x x xf x +-=-==-+++,定义域为R ,所以,()()2111122122x x x f x f x ---=-=-=-++,所以,()f x 为奇函数.(2)解:∵()0f x ≥在[]1,1x ∈-上恒成立,∴()min 0f x ≥.令2x t =,因为[]1,1x ∈-,所以1,22t ⎡⎤∈⎢⎥⎣⎦,所以,1111t y a a t t -=+=++++,1,22t ⎡⎤∈⎢⎥⎣⎦,因为111y a t -=+++在1,22⎡⎤⎢⎥⎣⎦单调递增,所以min 1111312y a a -=++=++,即()min 13f x a =+,所以103a +≥,解得13a ≥-,所以a 的取值范围是1,3⎡⎫-+∞⎪⎢⎣⎭.21.已知函数ππ()sin sin(π)4242x x f x x ⎛⎫⎛⎫=+--+ ⎪ ⎪⎝⎭⎝⎭,且函数()y g x =的图象与函数()y f x =的图象关于直线π4x =对称.(1)若R θ∃∈,使得()2cos g x θ<成立,求x 的集合;(2)若存在π0,2x ⎡⎤∈⎢⎥⎣⎦,使等式2[()]()20g x mg x -+=成立,求实数m 的最大值和最小值【正确答案】(1)π|2π(Z)3x x k k ⎧⎫≠+∈⎨⎬⎩⎭(2)最小值为.3【分析】(1)根据对称性求得()π2sin 6y g x x ⎛⎫==+ ⎪⎝⎭,进而将问题转化为πsin 16x ⎛⎫+≠ ⎪⎝⎭求解即可;(2)令()π2sin 6y g x x ⎛⎫==+ ⎪⎝⎭,进而将问题转换为方程2m y y =+,[]1,2y ∈有解,再结合基本不等式求解即可.【详解】(1)π()sin 2f x x x ⎛⎫=++ ⎪⎝⎭sin x x =+π2sin 3x ⎛⎫=+ ⎪⎝⎭.函数()y g x =的图象上取点(,)x y ,其关于直线π4x =对称点的坐标为π,2x y ⎛⎫- ⎪⎝⎭,代入π2sin 3y x ⎛⎫=+ ⎪⎝⎭,可得()5πππ2sin 2sin π2sin 666y g x x x x ⎛⎫⎛⎫⎛⎫==-=--=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因为R θ∃∈,使得()2cos g x θ<成立,所以,()2g x <,即πsin 16x ⎛⎫+< ⎪⎝⎭,故πsin 16x ⎛⎫+≠ ⎪⎝⎭,所以,ππ2π,Z 62x k k +≠+∈,解得π2π(Z)3x k k ≠+∈所以,x 的集合为π|2π(Z)3x x k k ⎧⎫≠+∈⎨⎬⎩⎭(2)解:因为()π2sin 6y g x x ⎛⎫==+ ⎪⎝⎭,π0,2x ⎡⎤∈⎢⎥⎣⎦,所以,ππ2π,,663x ⎡⎤+∈⎢⎥⎣⎦[]1,2y ∈,所以,等式2[()]()20g x mg x -+=,可化为2m y y =+,[]1,2y ∈,所以,存在π0,2x ⎡⎤∈⎢⎥⎣⎦,使等式2[()]()20g x mg x -+=成立时,方程2m y y=+,[]1,2y ∈有解,所以,由基本不等式的性质知,当y m 的最小值为1y =或2时,m 的最大值为3;所以,实数m 的最大值为3,最小值为.22.已知函数()ln f x x =,以下证明可能用到下列结论:(0,1)x ∈时,①sin tan <<x x x ;②ln 1x x <-.(1)(0,1)x ∈,求证:1ln1x x <-;(2)证明:()111sin sin sin ln 2,N 23n n n n+++<≥∈ .【正确答案】(1)证明见解析(2)证明见解析【分析】(1)利用(0,1)x ∈时,ln 1x x <-,通过多次代换即可证明;(2)首先(1)得1sin ln 1x x x <<-,令12x =,13x =L 1x n=得到一系列不等式,相加即可.【详解】(1)由已知(0,1)x ∈时,ln 1x x <-,用1x +代换x 得()ln 1x x +<,再以x -代换x 得()ln 1x x -<-,即()ln 1x x -->,即1ln 1x x>-,得证1ln .1x x <-(2)由(1)可知(0,1)x ∈时,1sin ln 1x x x<<-则1sin ln ,1(0,1)x x x <-∈,令12x =得11sin ln ln 21212<=-,令13x =得113sin ln ln 13213<=-,令x n =得11sin ln ln 111n n n n<=--,相加得111111sin sin sin ln ln ln 1112311123n n +++<+++--- 33ln 2ln ln ln 2ln 2121n n n n n =+++=⨯⨯⨯=-- ,(2,N n n ≥∈)。

高一数学上册期末考试试卷及答案解析(经典,通用)

高一数学上册期末考试试卷及答案解析(经典,通用)

高一数学上册期末考试试卷及答案解析一、单选题 1.设全集2,1,0,1,2U,集合{}{}0,1,21,2A =-,B=,则()U A B =( )A .{}01, B .{}0,1,2 C .{}1,1,2- D .{}0,1,1,2-2.“5x >”是“3x >”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分又不必要条件3.下列命题中正确的( ) ①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}; ③方程(x -1)2(x -2)=0的所有解的集合可表示为{1,1,2}; ④集合{x |4<x <5}可以用列举法表示. A .只有①和④ B .只有②和③ C .只有②D .以上语句都不对 4.下列命题中,既是全称量词命题又是真命题的是( ) A .矩形的两条对角线垂直 B .对任意a ,b ∈R ,都有a 2 + b 2≥ 2(a ﹣b ﹣1) C .∃x ∈R , |x | + x = 0 D .至少有一个x ∈Z ,使得x 2 ≤2成立5.已知02x <<,则y = )A .2B .4C .5D .66.若110a b <<,则下列结论不正确的是( ) A .22a b <B .1ba <C .2b aa b +>D .2ab b <7.命题p :“2R,240x ax ax ∃∈+-≥”为假命题的一个充分不必要条件是( ) A .40aB .40a -≤<C .30a -≤≤D .40a -≤≤8.集合{1,2,4}A =,{}2B x x A =∈,将集合A ,B 分别用如图中的两个圆表示,则圆中阴影部分表示的集合中元素个数恰好为4的是( ) A .B .C .D .二、多选题9.已知集合222{2,1,4},{0,2}A a a a B a a =+-=--,5A ∈,则a 为( ) A .2B .2-C .5D .1-10.若正实数,a b 满足1a b +=,则下列说法正确的是( ) A .ab 有最小值14 B C .1122a b a b +++有最小值43D .22a b +有最小值1211.下列命题为真命题的是( ). A .若a b >,则11b a >B .若0a b >>,0c d <<,则abd c < C .若0a b >>,且0c <,则22cc a b > D .若a b >,且11a b>,则0ab < 12.若“x M x x ∀∈>,”为真命题,“3x M x ∃∈>,”为假命题,则集合M 可以是( )A .()5-∞-,B .(]31--,C .()3+∞,D .[]03,三、填空题13.若命题2:0,30p x x ax ∀≥-+>,则其否定为p ⌝:__________________.14.已知:282p x -≤-≤,:1q x >,:2r a x a <<.若r 是p 的必要不充分条件,且r 是q 的充分不必要条件,则实数a 的取值范围为______. 15.设集合{}{}21,2,R (1)0A B x x a x a ==∈-++=,若集合C = A B ,且C 的子集有4个,则实数a 的取值集合为______________. 16.若a ∈R ,0b >,3a b +=,则当=a ______时,1||3||a a b +取得最小值.四、解答题17.求解下列问题:(1)已知0b a <<,比较1a 与1b 的大小; (2)比较()()37x x ++和()()46x x ++的大小.18.已知集合{|15}A x x =<≤,{}|04B x x =<<,{}|121C x m x m =+<<-. (1)求A B ,R ()A B ⋃: (2)若BC C =,求实数m 的取值范围.19.已知不等式20x ax b -+<的解集为{}17x x <<. (1)求实数,a b 的值.(2)求不等式101ax bx +>-的解集.20.已知0,0x y >>,且280x y xy +-=,求(1)xy 的最小值; (2)x y +的最小值. 21.22.“绿水青山就是金山银山”,为了保护环境,某工厂在政府部门的鼓励下进行技术改进,把二氧化碳化为某种化工产品,经测算,该处理成本y (单位:万元)与处理量x (单位:吨)之间的函数关系可近似表示为2401600y x x =-+,3050x ≤≤,已知每处理一吨二氧化碳可获得价值20万元的某种化工产品.(1)当处理量为多少吨时,每吨的平均处理成本最少?(2)判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元该工厂才不会亏损?参考答案:1.A 【分析】先求出UB ,再根据交集的定义可求()U A B ∩.【详解】{}2,0,1UB =-,故(){}0,1UAB =,故选:A.2.A 【分析】根据集合与充分必要条件的关系,判断选项. 【详解】{}5x x > {}3x x >,所以“5x >”是“3x >”的充分不必要条件. 故选:A3.C 【分析】由集合的表示方法判断①,④;由集合中元素的特点判断②,③.【详解】①{0}表示元素为0的集合,而0只表示一个元素,故①错误;②符合集合中元素的无序性,正确; ③不符合集合中元素的互异性,错误;④中元素有无穷多个,不能一一列举,故不能用列举法表示. 故选:C .4.B 【分析】根据全称量词和特称量词命题的定义判断,全称量词命题要为真命题必须对所以的成立,对选项逐一判断即可.【详解】A 选项为全称量词命题,却是假命题,矩形的两条对角线相等,并不垂直,故A 错误.C,D 选项是特称量词命题,故错误. B 选项是全称量词命题,用反证法证明, 因为()()2222222110a b a b a b +-++=-++≥所以对,a b ∀∈R ,()2221a b a b +--≥,故B 正确.故选:B. 5.【答案】A 【分析】设直角三角形的两个直角边为x ,y ,由此可得2225x y +=,又面积1=2S xy ,利用基本不等式可求面积的最大值. 【详解】设直角三角形的两个直角边为x ,y ,则2225x y +=, 又1=2S xy由基本不等式可得221125=2224x y S xy ⎛⎫+≤= ⎪⎝⎭(当且仅当x =y 立) 故选:A.6.B 【分析】由110a b <<得出0b a <<,再利用不等式的基本性质和基本不等式来判断各选项中不等式的正误. 【详解】110a b<<,0b a ∴<<,0b a ∴->->,22a b ∴<,A 选项正确;1b b a a-=>-,B 选项错误;由基本不等式可得2baa b +≥=,当且仅当1b a =时等号成立,1b a >,则等号不成立,所以2baa b +>,C 选项正确;0b a <<,2b ab ∴>,D选项正确.故选:B.【点睛】本题考查不等式正误的判断,涉及不等式的基本性质和基本不等式,考查推理能力,属于基础题.7.C 【分析】由题意,p ⌝为真命题,进而可得p ⌝为真命题时的充要条件,再根据充分与必要条件的性质判断选项即可. 【详解】命题2:R,240p x ax ax ∃∈+-≥为假命题,即命题2:R,240p x ax ax ⌝∀∈+-<为真命题.首先,0a =时,40-<恒成立,符合题意; 其次0a ≠时,则0a <且2(2)160a a ∆=+<,即40a ,综上可知,40a .结合选项可得,{}{}3040a a a a -≤≤⊆-<≤,即:30a -≤≤是40a 的一个充分不必要条件. 故选:C8.C 【分析】记U A B =⋃,然后分析每个选项对应的集合的运算并求解出结果进行判断即可.【详解】因为{}1,2,4A =,{}2B x x A=∈,所以{}2,B =--,记{}2,U AB ==--,对于A 选项,其表示(){}4U A B =,不满足;对于B 选项,其表示(){}2,U A B =--,不满足;对于C 选项,其表示(){2,U A B =--,满足;对于D 选项,其表示{}1,2A B =,不满足;故选:C.9.BC 【分析】结合元素与集合的关系,集合元素的互异性来求得a 的值.【详解】依题意5A ∈,当215a+=时,2a =或2a =-,若2a =-,则{}{}2,5,12,0,4A B ==,符合题意;若2a =,则220a a --=,对于集合B ,不满足集合元素的互异性,所以2a =不符合.当245a a -=时,1a =-或5a =,若1a =-,则212a +=,对于集合A ,不满足集合元素的互异性,所以1a =-不符合.若5a =,则{}{}2,26,5,0,18A B ==,符合题意. 综上所述,a 的值为2-或5. 故选:BC10.BCD 【分析】由已知结合基本不等式及其变形形式分别检验各选项即可判断.【详解】由正实数,a b 满足1a b +=,则2124a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当12a b ==时,等号成立,所以ab 的最大值为14,故A 选项错误;由()222a b a b =+++=12a b ==时,,故B 选项正确;由11111(33)22322a b a b a b a b a b ⎛⎫+=++ ⎪++++⎝⎭111[(2)(2)]3221222322a b a b a b a b a b a b a b a b ⎛⎫=++++ ⎪++⎝⎭++⎛⎫=++ ⎪++⎝⎭14233⎛≥+= ⎝,当且仅当12a b ==时,等号成立,所以1122a b a b +++有最小值43,故C 选项正确;由222222()1()2()2222a b a b a b a b ab a b ++⎛⎫+=+-≥+-⨯== ⎪⎝⎭,当且仅当12a b ==时,等号成立,所以22a b +有最小值12,故D 选项正确. 故选:BCD.11.BCD 【解析】举反例说明选项A 错误;利用不等式的性质证明出选项B ,C 正确;利用作差法证明出选项D 正确.【详解】选项A :当取1a =,1b =-时,11b a <,∴本命题是假命题. 选项B :已知0a b >>,0cd <<,所以110dc->->,∴abd c ->-,故abd c <,∴本命题是真命题. 选项C :222211000a b a b a b >>⇒>>⇒<<,∵0c <,∴22cca b >,∴本命题是真命题. 选项D :111100b aa b a b ab->⇒->⇒>, ∵a b >,∴0b a -<,∴0ab <,∴本命题是真命题. 故选:BCD【点睛】本题考查不等式的性质,考查命题的真假,属于基础题. 12.AB 【解析】根据假命题的否定为真命题可知3x M x ∀∈≤,,又x M x x ∀∈>,,求出命题成立的条件,求交集即可知M 满足的条件.【详解】3x M x ∃∈>,为假命题,3x M x ∴∀∈≤,为真命题,可得(,3]M ⊆-∞,又x M x x ∀∈>,为真命题, 可得(,0)M ⊆-∞, 所以(,0)M ⊆-∞,故选:AB【点睛】本题主要考查了含量词命题的真假,集合的包含关系,属于中档题.13.20,30x x ax ∃≥-+≤【分析】直接利用存在量词写出其否定即可. 【详解】因为命题2:0,30p x x ax ∀≥-+>, 所以其否定p ⌝:20,30x x ax ∃≥-+≤.故答案为:20,30x x ax ∃≥-+≤.14.()5,6【分析】根据充分与必要条件,可得p ,q ,r 中集合的包含关系,再根据区间端点列式求解即可.【详解】易得:610p x ≤≤.记p ,q ,r 中x 的取值构成的集合分别为A ,B ,C ,由于r 是p 的必要不充分条件,r 是q 的充分不必要条件,则AC ,CB ,则016210a a a >⎧⎪≤<⎨⎪>⎩,解得56a <<,即实数a 的取值范围是()5,6.故答案为:()5,615.{}1,2【分析】先求出集合B 中的元素,再由C 的子集有4个,可知集合C 中只有2个元素,然后分1,2a a ==和1a ≠且2a ≠三种情况求解即可.【详解】由2(1)0x a x a -++=,得1x =或x a =, 因为集合C = A B ,且C 的子集有4个, 所以集合C 中只有2个元素, ①当1a =时,{}1B =,因为{}1,2A =,所以{}1,2A B ⋃=,即{}1,2C =,所以1a =满足题意,②当2a =时,{}1,2B =,因为{}1,2A =,所以{}1,2A B ⋃=,即{}1,2C =,所以2a =满足题意, ③当1a ≠且2a ≠时,{}1,B a =, 因为{}1,2A =,所以{}1,2,A B a =,即{}1,2,C a =,不合题意,综上,1a =或2a =,所以实数a 的取值集合为{}1,2, 故答案为:{}1,216.32-【分析】由题知3a <,进而分0<<3a 和0a <两种情况,结合基本不等式求解即可.【详解】解:因为3a b +=,0b >,所以30b a =->,即3a <.当0<<3a 时,11173||99999a ab a b a a b a b a b ++=+=++≥+, 当且仅当34a =时取等号,所以当34a =时,13a a b+取得最小值79;当0a <时,11139999a a b a b a a ba b a b ++=--=---≥-+59=, 当且仅当32a =-时取等号,所以当32a =-时,13a a b+取得最小值59.综上所述,当32a =-时,13a a b+取得最小值.故答案为:32-17.(1)11a b <(2)()()()()3746x x x x ++<++【分析】(1)利用差比较法比较大小. (2)利用差比较法比较大小.(1)11110,0,0,0,b a b a ab b a a b ab a b-<<>-<-=<<.(2)()()()()()()()()4630,737634x x x x x x x x ++=-<-+<+++++.18.(1){|05}A B x x ⋃=<≤;R(){05}A B x x x ⋃=≤>∣或;(2)52m ≤. 【分析】(1)由并集的定义及补集的定义进行计算即可; (2)BC C =等价于C B ⊆,按B =∅和B ≠∅讨论,分别列出不等式,解出实数m 的取值范围. (1)∵集合{|15}A x x =<≤,{}|04B x x =<<, ∴{|05}A B x x ⋃=<≤;R(){05}A B x x x ⋃=≤>∣或.(2) 因为BC C =,所以C B ⊆,当B =∅时,则121m m +≥-,即2m ≤;当B ≠∅时,则12110214m m m m +<-⎧⎪+≥⎨⎪-≤⎩,解得522m <≤;综上,实数m 的取值范围为52m ≤.19.(1)8,7a b ==;(2)11(,)(,)87-∞-⋃+∞【分析】(1)由解集得到方程20x ax b -+=的根,利用韦达定理可求,a b .(2)利用(1)中的结果并把分式不等式转化为一元二次不等式可求解集.【详解】(1)因为不等式20x ax b -+<的解集是{}17x x <<. 所以20x ax b -+=的解是1和7.故1771ab +=⎧⎨⨯=⎩,解得 87a b =⎧⎨=⎩. (2)由101ax bx +>-得81071x x +>-,即()()81710x x +->, 解得18x <-或17x >,故原不等式的解集为11(,)(,)87-∞-⋃+∞. 20.(1)64;(2)18.【解析】(1)由280x y xy +-=,得到821x y +=,利用基本不等式,即可求解. (2)由280x y xy +-=,得821x y +=,根据8282()()10y xx y x y x y x y +=++=++,结合不等式,即可求解.【详解】(1)由280x y xy +-=,可得821x y +=,又由0,0x y >>,可得821x y =+≥,当且仅当82x y =,即4x y =时,等号成立,即64xy ≥, 所以xy 的最小值为64. (2)由280x y xy +-=,得821x y +=,因为0,0x y >>,可得8282()()101018y x x y x y x y x y +=++=++≥+, 当且仅当82y xx y =,即12,6x y ==时等号成立,所以x y +的最小值为18.【点睛】利用基本不等式求最值时,要注意其满足的三个条件:“一正、二定、三相等”:(1)“一正”:就是各项必须为正数;(2)“二定”:就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”:利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 21.(1)[0,254] (2){}|2a a <【分析】(1)首先求解集合A ,再求二次函数的值域;(2)首先将不等式,参变分离得2452x x a x -+-<-,转化为求函数的最值,即可求解. (1)2230x x --≤等价于()()2310x x -⋅+≤,.解得312x -≤≤所以3|12A x x ⎧⎫=-≤≤⎨⎬⎩⎭. ∴二次函数223253424y x x x ⎛⎫=-++=--+ ⎪⎝⎭, 函数在区间31,2⎡⎤-⎢⎥⎣⎦单调递增,所以当32x =时,y 取最大值为254, 当1x =-时,y 取最小值为0,所以二次函数234y x x =-++.x A ∈的值域是[0,254]. (2)由(1)知3|12A x x ⎧⎫=-≤≤⎨⎬⎩⎭ ∵()24520x a x a +-+->恒成立. 即24520x ax x a +-+->恒成立.∴()2245x a x x -⋅>-+-恒成立. .∵312x -≤≤.∴20x -<.()()222214545122222x x x x x a x x x x x-+-+--+∴<===-+----∵20x ->,∴()1222x x-+≥-.. 当且仅当122x x -=-且312x -≤≤时,即1x =时,等号成立,. ∴2a <,故a 的取值范围为{}|2a a < 22.(1)31a b ==, (2)32a -≤<-或45a <≤ (3)53a ≥-【分析】(1)根据二次函数与对应不等式和方程的关系,利用根与系数的关系,即可求出a 、b 的值;(2)由()1f x b <-得()23220x a x a -+++<,令()()2322h x x a x a =-+++,求出()0h x <解集中恰有3个整数时a 的取值范围即可.(3)由()f x b ≥在[]31x ∈--,上恒成立,知()23210x a x a -+++在[]31x ∈--,上恒成立,化简得()()222213122x x x x a x x -+---+=--,设[]253t x =-∈--,,()2111t t g t t t t+-==-+,求出()g t 的最大值,进一步求出实数a 的取值范围;(1)解:因为函数()()2321f x x a x a b =-++++,a ,b R ∈,又()0f x >的解集为{2|x x <或4}x >,所以2,4方程()23210x a x a b -++++=的两根,由()2432421a a b ⎧+=+⎨⨯=++⎩, 解得31;a b ==, (2)由()1f x b <-得()23220x a x a -+++<, 令()()2322h x x a x a =-+++,则()()()()12h x x a x =-+-,知()20h =,故()0h x <解集中的3个整数只能是3,4,5或1-,0,1;①若解集中的3个整数是3,4,5,则516a <+≤,得45a <≤;②解集中的3个整数是1-,0,1;则211a -≤+<-,得32a -≤<-;综上,由①②知,实数a 的取值范围为32a -≤<-或45a <≤. (3)因为函数()()2321f x x a x a b =-++++,a ,b R ∈,由()f x b 在[]31x ∈--,上恒成立,知()23210x a x a -+++在[]31x ∈--,上恒成立, 化简得()()222213122x x x x a x x -+---+=--,设[]253t x =-∈--,, 设()2111t t g t t t t +-==-+,因为在()g t 在[]53--,上单调递增, 即()153133g t --+=--,所以53a ≥-. 23.(1)40吨(2)不会获利,700万元【分析】(1)根据已知条件,结合基本不等式的公式,即可求解.(2)当3050x ≤≤时,该工厂获利S ,则()2220401600(30)700S x x x x =--+=---,再结合二次函数的性质,即可求解. (1)由题意可得,二氧化碳的平均处理成本1600()40yP x x x x==+-,3050x ≤≤,当3050x ≤≤时,1600()404040P x x x =+-≥=, 当且仅当1600x x=,即40x =等号成立, 故()P x 取得最小值为(40)40P =,故当处理量为40吨时,每吨的平均处理成本最少. (2)当3050x ≤≤时,该工厂获利S , 则()2220401600(30)700S x xx x =--+=---,当3050x ≤≤时,max 7000S =-<,故该工厂不会获利,国家至少需要补贴700万元,该工厂不会亏损.。

2023-2024学年云南省昆明市高一上册期末教学测评数学试题(含解析)

2023-2024学年云南省昆明市高一上册期末教学测评数学试题(含解析)

2023-2024学年云南省昆明市高一上册期末教学测评数学试题一、单选题1.设集合{}24xM x =≤,{}2430N x Z x x =∈-+≤,则M N ⋂=()A .[]1,2B .()1,3-C .{}1D .{}1,2【正确答案】D【分析】解集合M 和集合N 中的不等式,求两集合的交集.【详解】{}2M x x =≤,{}{}Z 131,2,3N x x =∈≤≤=,所以{}1,2M N = .故选:D .2.cos 12π=()A .4B .4C .4D .4-【正确答案】A 【分析】由1234πππ=-及余弦差公式求值.【详解】1cos cos 1234222πππ⎛⎫=-=⨯+= ⎪⎝⎭故选:A .3.如图是根据原卫生部2009年6月发布的《中国7岁以下儿童生长发育参照标准》绘制的我国7岁以下女童身高(长)的中位数散点图,下列可近似刻画身高y 随年龄x 变化规律的函数模型是()A .()0y mx n m =+>B .()0y n m =+>C .()0,1xy ma n m a =+>>D .4log 0,1y m x nm a =+>>【正确答案】B【分析】根据图象是否是线性增长,指数函数的图象与性质,对数函数的性质判断ACD ,再由选项B 中函数的性质判断后可得.【详解】A 选项,由散点图知身高y 随时间x 变化不是线性增长,故A 错误;C 选项,指数函数模型中y 随x 增长越来越快,与图象不符合;D 选项,对数函数模型在0x =时没有意义;B 选项符合散点图中y 随x 增长越来越慢,且在0x =时有意义,故选:B .4.在正三角形△ABC 中,2AB =,M ,N 分别为AB ,AC 的中点,则AM BN ⋅=()A .32-B .CD .32【正确答案】A【分析】由题可知,向量AM ,BN的夹角为150°,再由平面向量数量积的定义即可得出答案.【详解】由题知,1AM = ,BN =uuu r AM ,BN的夹角为150°,所以cos150AM BN AM BN ⋅=︒= 312⎛=- ⎝⎭.故选:A .5.某扇形的圆心角为2,弧长为4,则该扇形的面积为()A .1B .2C .4D .8【正确答案】C【分析】根据扇形的面积公式即可求解.【详解】由弧度制定义,该扇形的半径为422r ==,所以该扇形的面积为14242⨯⨯=,故选:C .6.设向量()1,cos a θ= ,()sin 2cos ,b θθ=- ,则“a b ⊥ ”是“1tan 2θ=”的()条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要【正确答案】B【分析】由向量垂直的坐标表示结合充分必要条件的定义判断.【详解】22sin 2cos 02sin cos cos 02sin cos a b θθθθθθθ⊥⇔-=⇔-=⇔=或1cos 0tan 2θθ=⇔=或cos 0θ=,故选:B .7.已知点π,012A ⎛⎫- ⎪⎝⎭,π,24B m ⎛⎫- ⎪⎝⎭,3π,8C m ⎛⎫- ⎪⎝⎭在函数()()sin f x x ωϕ=+的一个周期的图像上,其三个点的位置如图所示,则函数()f x 的单调递减区间为()A .π7π2π,2π2424k k ⎡⎤++⎢⎥⎣⎦,k ∈ZB .ππ2π,2π124k k ⎡⎤++⎢⎥⎣⎦,k ∈ZC .ππ7ππ,242242k k ⎡⎤++⎢⎥⎣⎦,k ∈Z D .ππππ,12242k k ⎡⎤++⎢⎥⎣⎦,k ∈Z【正确答案】C【分析】点B ,点C 关于点D 中心对称,求出点D 坐标,AD 为函数的半个周期,求出ω,由点π,012A ⎛⎫- ⎪⎝⎭在函数图像上得到函数解析式,利用整体代入法求单调递减区间.【详解】由图,点B ,点C 关于点D 中心对称,π3ππ24826-+=,故点π,06D ⎛⎫ ⎪⎝⎭,AD 为函数的半个周期,所以2T πππ6124⎛⎫=--= ⎪⎝⎭,π2T =,故4ω=,点π,012A ⎛⎫- ⎪⎝⎭在函数图像上,依题意有函数sin 4y x =的图像向左平移π12个单位得到()f x 的图像,故()ππsin 4sin 4123f x x x ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,由()ππ3π2π42π232k k x k +≤+≤+∈Z ,解得()ππ7ππ242242k k x k +≤≤+∈Z ,所以()f x 单调递减区间为7,242242k k ππππ⎡⎤++⎢⎥⎣⎦,k ∈Z ,故选:C .8.已知()f x 是R 上的偶函数,且()()20f x f x ++=,当01x ≤≤时,()21f x x =-,则()2023.5f =()A .-0.75B .-0.25C .0.25D .0.75【正确答案】D【分析】由条件可得()f x 是周期为4的函数,又()f x 是偶函数,所以()()()2023.50.50.5f f f =-=,代入已知解析式即可求解.【详解】由()()20f x f x ++=得()()2f x f x +=-,()()42f x f x +=-+,故()()4f x f x +=,所以4是()f x 的一个周期,故()()()()22023.5 3.50.50.510.50.75f f f f ==-==-=,故选:D .二、多选题9.关于函数()tan f x x =,下列选项正确的是()A .()f x 的定义域为ππ,Z 2x x k k ⎧⎫≠+∈⎨⎬⎩⎭B .()f x 是奇函数C .()f x 的最小正周期是πD .3π6π55f f ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭【正确答案】AC【分析】根据正切函数的性质判断A ,画出函数图象,结合图象判断B 、C ,根据奇偶性与单调性判断D.【详解】解:函数()f x 的定义域与tan y x =的定义域相同,即为ππ,Z 2x x k k ⎧⎫≠+∈⎨⎬⎩⎭,故A正确;由()()tan f x x f x -==及()f x 的定义域知()f x 是偶函数,故B 错误;作出的图象如图所示,由图可知函数的最小正周期为π,故C 正确;由于3π2π55f f ⎛⎫⎛⎫-=⎪ ⎪⎝⎭⎝⎭,6ππ55f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,且根据图象知()f x 在π0,2⎛⎫⎪⎝⎭上单调递增,所以2ππ55f f⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,即3π6π55f f ⎛⎫⎛⎫-> ⎪ ⎪⎝⎭⎝⎭,故D 错误.故选:AC .10.已知正实数x ,y 满足4x y +=,则下列选项正确的是()A .e e +x y 的最小值为22eB .lg lg x y +的最大值为lg 4C .22xy +的最小值为8D .()4x y +的最大值为16【正确答案】ABC【分析】对A 、B 、C :结合基本不等式分析判断;对D :由()4,0,4y x x =-∈代换,结合二次函数分析判断.【详解】对A :由于2e e 2e x y +≥==,当且仅当e e x y =,即2x y ==时取等号,故A 正确;对B :由基本不等式得242x y xy +⎛⎫≤= ⎪⎝⎭,故()lg lg lg lg 4x y xy +=≤,当且仅当2x y ==时取等号,故B 正确;对C :22x y +=()221628x y xy xy +-=-≥,当且仅当2x y ==时取等号,故C 正确;对D :由正实数x ,y 满足4x y +=,得()4,0,4y x x =-∈,故()()()()2484160,16x y x x x +=-=--+∈,故D 错误.故选:ABC .11.设a ,b是互相垂直的单位向量,2AB a b λ=+ ,()1AC a b λ=+- ,下列选项正确的是()A .若点C 在线段AB 上,则2λ=B .若AB AC ⊥,则23λ=C .当1λ=时,与AB+ D .当1λ=-时,a 在AC 上的投影向量为1255a b-【正确答案】ABD【分析】对A :根据向量共线分析运算;对B :根据向量垂直运算求解;对C :根据单位向量分析运算;对D :根据投影向量分析运算.【详解】由题意可得:221,0a b a b ==⋅=r r r r,对A :若点C 在线段AB 上,则[),1,AB k AC k =∈+∞uu u r uuu r,则()()211a b k a b ka k b λλλ⎡⎤+=+-=+-⎣⎦r r r r r r ,可得()12k k λλ=⎧⎨-=⎩,解得2k λ==或1k λ==-(舍去),故A 正确;对B :由AB AC ⊥,可得()()()()22221221320AB AC a b a b a a b b λλλλλλλ⎡⎤⋅=+⋅+-=+-+⋅+-=-=⎣⎦uu u r uuu r r r r r r r r r ,解得23λ=,故B 正确;对C :当1λ=时,则2AB a b =+===uu u r r r与AB共线的单位向量是⎫=±⎪⎪⎝⎭,故C 错误;对D :当1λ=-时,可得()22221,a AC a a b a a b AC ⋅=⋅-=-⋅====r uuu r r r r r r r uuu r 则a 在AC上的投影向量为()2112cos ,555AC a AC AC a AC a a AC a AC AC a bAC a ACAC AC⋅⋅<>====-uuu r r uuu ruuu r r uuu rr r uuu r r uuur uuu r r ruuu r r uuu ruuu r uuu r ,故D 正确.故选:ABD .12.已知函数()()πsin 04f x x ωω⎛⎫=+> ⎪⎝⎭在π2π,23⎡⎤-⎢⎥⎣⎦上只存在两个实数12,x x 满足()()121f x f x =-,则下列结论正确的是()A .12min8π15x x -=B .12max2π3x x -=C .()f x 在π0,6⎛⎫⎪⎝⎭上单调递增D .()f x 在π2π,23⎡⎤-⎢⎣⎦上有且仅有两个零点【正确答案】BD【分析】由题意得1x x =,2x x =是函数()f x 图象的相邻两条对称轴,结合正弦函数的对称性确定函数的周期的范围从而判断AB ,由正弦函数的单调性判断C ,由正弦函数的性质判断D .【详解】由题意,1x x =,2x x =是函数()f x 相邻的两条对称轴,当π3π42x ω+=-,解得7π4x ω=-,当ππ42x ω+=-,解得34πx ω=-,由题意7ππ3π424ωω-<--≤,解得3722ω<≤,当42ππx ω+≤,解得π4x ω=,当342ππx ω+=,解得5π4x ω=,由题意25434πππωω<≤,解得31588ω<≤,故31528ω<≤,故164153T ππ<≤,所以821523T ππ<≤,故A 错误,B 正确;当0,6x π⎛⎫∈ ⎪⎝⎭,315,28ω⎡⎫∈⎪⎢⎣⎭,故9,4416x πππω⎛⎫+∈ ⎪⎝⎭,9,,41622ππππ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭Ø,故C 错误;当0x >时,20,3x π⎛⎤∈ ⎥⎝⎦,315,28ω⎡⎫∈⎪⎢⎣⎭,故3,442x πππω⎛⎫+∈ ⎪⎝⎭,sin 0π=,故()f x 在20,3π⎛⎫ ⎪⎝⎭上有且仅有一个零点,当0x <时,,02x π⎡⎫∈-⎪⎢⎣⎭,315,28ω⎡⎫∈⎪⎢⎣⎭,故11,4164x πππω⎛⎫+∈-⎪⎝⎭,sin 00=,故()f x 在,02π⎡⎫-⎪⎢⎣⎭上有且仅有一个零点,所以()f x 在2,23ππ⎡⎤-⎢⎥⎣⎦上有且仅有两个零点,故D 正确,故选:BD .三、填空题13.已知函数()321f x x x =--在区间()1,2内存在一个零点,用二分法计算这个零点的近似值,其参考数据(函数值均保留四位小数)如下:()1.50.6250f =-()1.750.8594f =()1.6250.0410f =()1.56250.3103f =-()1.593750.1393f =-()1.6093750.0503f =-()1.61718750.0050f =-()1.621093750.0180f =则这个零点的近似值为________.(保留两位小数)【正确答案】1.62【分析】根据题意,由二分法分析可得函数()321f x x x =--在()1.6171875,1.62109375内存在零点,从而可得答案.【详解】由表可知,()1.61718750.00500f =-<,()1.621093750.01800f =>所以函数()321f x x x =--在区间()1.6171875,1.62109375内存在零点,这个零点保留两位小数后的近似值为1.62.故1.6214.在△ABC 中,点D 满足3BD DC =,若AC xAB y AD =+ ,则xy =________.【正确答案】49-【分析】由平面向量基本定理结合3BD DC = 可得1433AC AB AD =-+,即可求出,x y 的值,即可求出答案.【详解】由3BD DC = ,得4BC CD =-,所以()4AC AB AD AC -=-- ,即414AB AD AC -=- ,所以1433AC AB AD =-+ ,所以13x =-,43y =,故49xy =-.故答案为.49-15.函数()()()cos 20πf x x ϕϕ=+<<的图象向左平移π6个单位后与函数cos 2x y =-的图象重合,则ϕ=_________.【正确答案】2π3##2π3【分析】由三角函数图象的平移变换求出π6f x ⎛⎫+ ⎪⎝⎭,再由平移后图象重合,可得ππ2π,Z 3k k ϕ+=+∈,再结合0πϕ<<即可得出答案.【详解】()cos 2cos 2πx x -=+,πππcos 2cos 2663f x x x ϕϕ⎡⎤⎛⎫⎛⎫⎛⎫+=++=++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,因为平移后图象重合,故ππ2π,Z 3k k ϕ+=+∈,因为0πϕ<<,故23ϕπ=.故答案为.2π316.若函数()()()2πln sin cos 2f x x x a x x a ⎛⎫=-++∈ ⎪⎝⎭R 有唯一零点,则=a _____.【正确答案】π4【分析】令()2πln 2g x x x ⎛⎫=- ⎪⎝⎭,()()sin cos h x a x x =-+,()f x 有唯一零点等价于()g x ,()h x 图象有唯一交点,分别求出()g x 和()h x 单调性和对称性,结合图象求解即可.【详解】()2πln 2g x x x ⎛⎫=- ⎪⎝⎭,()()sin cos h x a x x =-+,则()f x 有唯一零点等价于()g x ,()h x 图象有唯一交点,因为()f x 的定义域为π0,2⎛⎫ ⎪⎝⎭,所以()g x 在π0,4⎛⎫ ⎪⎝⎭内单调递增,在ππ,42⎛⎫ ⎪⎝⎭内单调递减,其最大值为2πππln2ln 4164g ⎛⎫== ⎪⎝⎭.由于22ππln 416g x x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭为偶函数,ππ44g x g x ⎛⎫⎛⎫+=-+ ⎪ ⎪⎝⎭⎝⎭,故()g x 的图象关于π4x =对称.而()()πsin cos sin 4h x a x x x ⎛⎫=-+=+ ⎪⎝⎭,()h x 的图象也关于π4x =对称,结合如图所示的()g x ,()h x 图象可知,仅当π2ln 4=,即π4a =时,()g x ,()h x 图象有唯一交点,故π4a =.故答案为.π4四、解答题17.已知4tan 3θ=-.(1)若角θ的终边过点()6,P y -,求()sin sin 2πθπθ⎛⎫+-+ ⎪⎝⎭的值;(2)若将角θ的终边顺时针旋转4π得到角ϕ的终边,求sin cos sin cos ϕϕϕϕ+-的值.【正确答案】(1)15(2)43【分析】(1)由任意角的三角函数的定义求出8y =,再结合诱导公式化简()sin sin 2πθπθ⎛⎫+-+ ⎪⎝⎭,代入即可得得出答案.(2)由题意求出tan 7ϕ=,然后sin cos sin cos ϕϕϕϕ+-的分子分母同除cos ϕ,化简代入即可得出答案.【详解】(1)由三角函数的定义得4tan 63y θ==--,解得8y =,所以()2263cos 10568θ==-=--+,()2284sin 10568θ===-+,故()341sin sin cos sin 2555πθπθθθ⎛⎫+-+=+=-+= ⎪⎝⎭.(2)由题得4πϕθ=-,故tan 1tan tan 741tan πθϕθθ-⎛⎫=-== ⎪+⎝⎭,所以sin cos tan 1714sin cos tan 1713ϕϕϕϕϕϕ+++===---.18.已知向量()2,a t t = ,()3,2b =- ,()3,1c =- .(1)求a b + 的最小值及相应t 的值;(2)若b a - 与c 共线,求a 与c 的夹角.【正确答案】(1)45t =(2)4π【分析】(1)求出向量a b + 的坐标,再由向量的模长公式求出a b + ,根据二次函数求最值,即可得出答案.(2)由b a - 与c 共线可求出t ,再由向量的夹角公式即可得出答案.【详解】(1)因为()2,a t t = ,()3,2b =- ,所以()23,2a b t t +=-+ ,所以a b +===≥= 当且仅当45t =取“=”,即a b +,此时45t =.(2)因为()32,2b a t t -=--- ,()3,1c =- ,所以由b a - 与c 共线得()()()033212t t ⨯---⨯-=-,解得35t =,此时63,55a ⎛⎫= ⎪⎝⎭ ,设a ,c 的夹角为θ,则()633155cos 2a c a c θ⨯+⨯-⋅== ,又[]0,πθ∈,故a 与c 的夹角为4π.19.设函数()()222sin cos sin f x x x x =--.(1)求()f x 的最小正周期及对称轴方程;(2)若()f x 在[],a a -上单调递增,求a 的最大值.【正确答案】(1)最小正周期T π=,对称轴方程为382k x ππ=+,k ∈Z (2)8π【分析】(1)由三角恒等变换化简解析式,由整体法求对称轴方程,由公式求得周期;(2)判断0a >,由整体法,结合函数单调区间建立不等式组求解即可.【详解】(1)()()221cos 22sin cos sin 21sin 2sin 2cos 2224x f x x x x x x x x π-⎛⎫=--=⋅-+=-=- ⎪⎝⎭,所以()f x 的最小正周期22T ππ==,由242x k πππ-=+,k ∈Z 得382k x ππ=+,k ∈Z .所以()f x 的对称轴方程为382k x ππ=+,k ∈Z ;(2)由题意0a >,因为[],x a a ∈-,故22,2444x a a πππ⎡⎤-∈---⎢⎥⎣⎦,则有22422242a k a k ππππππ⎧--≥-+⎪⎪⎨⎪-≤+⎪⎩,k ∈Z ,解得838a k a k ππππ⎧≤-⎪⎪⎨⎪≤+⎪⎩,因为0a >,故0k =,所以08a π<≤.故a 的最大值为8π.20.已知函数()31log 1f x x ⎛⎫=- ⎪⎝⎭.(1)求()f x 的定义域D ,并证明:x D ∀∈,都有1x D -∈,且()()1f x f x +-为定值;(2)若不等式()0f x m -≥在11,42⎡⎤⎢⎥⎣⎦上有解,求实数m 的取值范围.【正确答案】(1)证明见解析(2)(],1-∞【分析】(1)根据对数函数的性质,建立不等式,求得定义域;根据对数运算,可得答案;(2)根据复合函数的单调性,结合反比例函数以及对数函数的单调性,可得函数()f x 的单调性,从而求得最值,由题意,建立不等式,可得答案.【详解】(1)由110x->,解得01x <<,故()f x 的定义域D 为()0,1.当()0,1x ∈时,()1,0x -∈-,故()10,1x -∈,且()()333331111log 1log 1log log log 1011x x f x f x x x x x -⎛⎫⎛⎫+-=-+-=+== ⎪ ⎪--⎝⎭⎝⎭.(2)令11u x =-,则()f x 可以看做函数11u x=-与3log y u =复合而成.因为11u x =-在11,42⎡⎤⎢⎣⎦上单调递减,3log y u =在()0,∞+上单调递增,所以()f x 在11,42⎡⎤⎢⎥⎣⎦上单调递减.故()3max 1log 314f f x ⎛⎫=== ⎪⎝⎭.而不等式()0f x m -≥在11,42⎡⎤⎢⎥⎣⎦上有解等价于()max 1m f x =≤,所以实数m 的取值范围为(],1-∞.21.数学与音乐之间有着密切联系,如在一首乐曲中常常会有一段音符反复出现,这就是它的主旋律,从数学上看,乐曲的主旋律就是通过周期性表达的,可以用三角函数来表示.某乐曲的一个音量y (单位:分贝)关于时间x (单位:秒)的函数模型为1240sin 40sin y x x ωω=+,它可以看做是由纯音140sin y x ω=与240sin y x ω=合成的.(1)已知在一个周期内,正的最强音出现一次.若1πω=,22πω=,则在三分钟内出现了几次正的最强音?(2)当弹奏两个频率很接近的纯音时,合成出来的音听上去时有时无,好像某人在以一个固定的频率调大和调小音量,这种现象叫做差拍,我们可以利用三角函数中的和差化积公式解释它,1240sin 40sin x x ωω+=121280sin cos 22x x ωωωω+-⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,由此我们可以认为是对声音1240sin 2y x ωω+⎛⎫= ⎪⎝⎭的周期性放缩,故缩倍数为()122cos 2g x x ωω-⎛⎫= ⎪⎝⎭.若1x =秒时放缩倍数与2x =秒时放缩倍数相同(假设放缩倍数为正数),1π3ω=,2π02ω<<,则2x =秒时音量为多少分贝?【正确答案】(1)90次(2)【分析】(1)根据2为函数40sin πy x =的一个周期,1为函数40sin 2πy x =的一个周期,可得2为函数40sin π40sin 2πy x x =+的一个周期,再设T 是函数的一个周期,02T <<,从而可求得T ,进而可得出答案;(2)由题意,()()12g g =,设12cos 2t ωω-⎛⎫= ⎪⎝⎭,求出t ,从而可求得2ω,从而可得出答案.【详解】(1)因为2为函数40sin πy x =的一个周期,1为函数40sin 2πy x =的一个周期,所以2为函数40sin π40sin 2πy x x =+的一个周期,令()40sin π40sin 2πf x x x =+,设T 是()f x 的一个周期,02T <<,则由()()()()011f T f f T f ⎧=⎪⎨+=⎪⎩,得40sin π40sin 2π040sin π40sin 2π0T T T T +=⎧⎨-+=⎩,故sin π0T =,解得1T =,但()()140sin π40sin 2πf x x x f x +=-+≠,故1T =不是()f x 的周期,所以2是()f x 的最小正周期,由于在一个周期内,正的最强音出现一次,360902⨯=,所以在三分钟内出现了90次正的最强音;(2)由题意,()()12g g =,故()12122cos 2cos 2ωωωω-⎛⎫=- ⎪⎝⎭,所以21212cos 2cos 122ωωωω--⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,设12cos 2t ωω-⎛⎫= ⎪⎝⎭,12t <≤,故2210t t --=,解得1t =,12t =-(舍),所以12cos 12ωω-⎛⎫= ⎪⎝⎭,因为1π3ω=,2π02ω<<,故1202ωω-=,所以2π3ω=,2π2π40sin sin33⎛⎫+= ⎪⎝⎭,则2x =秒时音量为22.设函数()1421x x f x a +=-⋅+,a ∈R .(1)当0a =时,证明:方程()12log f x x =在()0,1上有唯一实根;(2)是否存在实数a ,满足:对于任意[]12,1,2x x ∈,都有()()121f x f x -≤?若存在,求出所有满足条件的a ;若不存在,请说明理由.【正确答案】(1)证明见解析(2)存在,3a =【分析】(1)问题转化,构造函数24log 1x y x =++,由函数单调性结合零点存在定理证明;(2)分类讨论求得()f x 在[1,2]是最大值和最小值,由最大值与最小值的差不大于1可得.【详解】(1)当0a =时,()41x f x =+,方程()12log f x x =在()0,1上有唯一实根等价于函数24log 1x y x =++在()0,1上有唯一零点.令()24log 1x g x x =++,()0,1x ∈,因为11842114log 122088g ⎛⎫=++=-< ⎪⎝⎭,()150g =>,所以()g x 在1,18⎛⎫ ⎪⎝⎭存在零点.又()24log 1x g x x =++在()0,1上单调递增,所以()g x 在()0,1上有唯一零点,故方程()12log f x x =在()0,1上有唯一实根.(2)对于任意,[]12,1,2x x ∈,都有()()121f x f x -≤的充要条件是()()max min 1f x f x -≤,令2x t =,则原函数可化为221y t at =-+,[]2,4t ∈,记()221h t t at =-+,[]2,4t ∈,则()h t 开口向上,对称轴为x a =,①当2a ≤时,2()21h t t at =-+在[]2,4t ∈上是增函数,所以()()max 4178f x h a ==-,()()min 254f x h a ==-,故()()178541a a ---≤,解得114a ≥,这种情况无解;②当4a ≥时,2()21h t t at =-+在[]2,4t ∈上是减函数,所以()()max 254f x h a ==-,()()min 4178f x h a ==-,故()()541781a a ---≤,解得134a ≤,这种情况也无解;③当24a <<时,2()21h t t at =-+在[2,]a 上单调递减,在[,4]a 上单调递增,所以()()(){}{}max max 2,4max 54,178f x h h a a ==--,()()2min 1f x h a a ==-,故()()25411a a ---≤且()()217811a a ---≤,解得13a ≤≤且35a ≤≤,故3a =;综上,存在实数3a =,满足:对于任意[]12,1,2x x ∈,都有()()121f x f x -≤.。

高一上期末数学试卷带答案

高一上期末数学试卷带答案

一、选择题(每题5分,共50分)1. 下列各数中,绝对值最小的是()A. -3B. 2C. -1/2D. 0答案:D2. 若函数f(x) = x^2 - 4x + 4的图像的对称轴是()A. x = 2B. y = 2C. x = -2D. y = -2答案:A3. 已知等差数列{an}的前三项分别是2,5,8,则该数列的公差是()A. 1B. 2C. 3D. 4答案:B4. 在三角形ABC中,若角A、B、C的对边分别为a、b、c,且a^2 + b^2 = c^2,则三角形ABC是()A. 等腰三角形B. 直角三角形C. 等边三角形D. 无法确定答案:B5. 下列函数中,在定义域内单调递减的是()A. y = x^2B. y = 2xC. y = -x^2D. y = x^3答案:C6. 已知等比数列{an}的前三项分别是1,2,4,则该数列的公比是()A. 1B. 2C. 4D. 1/2答案:D7. 在直角坐标系中,点P(2,3)关于直线y=x的对称点是()A. (3,2)B. (2,3)C. (3,3)D. (2,2)答案:A8. 若函数f(x) = |x| + 1在x=0处的导数等于()A. 1B. 0C. -1D. 不存在答案:A9. 在等差数列{an}中,若a1 = 3,d = 2,则第10项an等于()A. 19B. 20C. 21D. 22答案:C10. 已知函数f(x) = x^3 - 3x + 2,则f'(x) =()A. 3x^2 - 3B. 3x^2 - 2C. 3x^2 + 3D. 3x^2 + 2答案:A二、填空题(每题5分,共50分)11. 函数y = (x - 1)^2 + 2的最小值是__________。

答案:212. 等差数列{an}的前10项和S10 = 110,则第5项a5 =__________。

答案:1113. 若等比数列{an}的首项a1 = 3,公比q = 2,则第4项a4 =__________。

2023-2024学年四川省泸州市高一上册期末数学试题(含解析)

2023-2024学年四川省泸州市高一上册期末数学试题(含解析)

2023-2024学年四川省泸州市高一上册期末数学试题第Ⅰ卷(选择题共60分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1.πcos3的值为()A.12B.2C.2D.【正确答案】A【分析】根据特殊角的三角函数值判断即可.【详解】π1cos 32=.故选:A2.不等式2210x x --<的解集是()A.11,2⎛⎫- ⎪⎝⎭B.()1,2- C.1,12⎛⎫-⎪⎝⎭D.()2,1-【正确答案】C【分析】利用了一元二次不等式的解法求解.【详解】解:不等式2210x x --<,可化为(1)(21)0x x -+<,解得112x -<<,即不等式2210x x --<的解集为1,12⎛⎫- ⎪⎝⎭.故选:C .3.设全集U 及集合M 与N ,则如图阴影部分所表示的集合为()A.M N ⋂B.M N ⋃C.U M Nð D.()U M N ð【正确答案】D【分析】根据集合并集,补集的定义即可判断.【详解】依题意图中阴影部分所表示的集合为()U M N ð.故选:D .4.命题[]:1,2p x ∀∈,210x -≥,则p ⌝是()A.[]1,2x ∀∉,210x -≥ B.[]1,2x ∀∈,210x -<C.[]01,2x ∃∉,2010x -≥ D.[]01,2x ∃∈,2010x -<【正确答案】D【分析】由全称量词命题的否定为存在量词命题,分析即可得到答案.【详解】由题意,命题[]:1,2p x ∀∈,210x -≥,由全称命题的否定为存在命题,可得:p ⌝为[]01,2x ∃∈,2010x -<,故选:D .5.已知函数()121,02,0x x x f x x -⎧⎪-≥=⎨⎪<⎩,则()()4f f 的值是()A.2B.C.12D.2【正确答案】A【分析】根据分段函数解析式计算即可.【详解】因为()121,02,0x x x f x x -⎧⎪-≥=⎨⎪<⎩,所以()1211441122f -=-=-=-,所以()()12124222f f f -⎛⎫=-== ⎪⎝⎭.故选:A6.如图(1)(2)(3)(4)中,不属于函数15log y x =,17log y x =,5log y x =的一个是()A.(1)B.(2)C.(3)D.(4)【正确答案】B【分析】根据对数函数的性质判断即可.【详解】因为111775111log log log 575<=,∴(3)是17log y x =,(4)是15log y x =,又155log log x x y -==与5log y x =关于x 轴对称,∴(1)是5log y x =.故选:B .7.函数()30y a x x x=-->在x m =3a m -的值为()A.3 B.33C.23D.3【正确答案】C【分析】利用基本不等式求出323x x+≥,得出函数3y a x x=--的最大值为3a -,从而求出a 和m 的值.【详解】解:因为0x >时,33223x x x x+≥⋅=当且仅当3x x =,即3x ==”,所以函数33233y a x a x a x x ⎛⎫=--=-+≤-= ⎪⎝⎭,解得33a =,3m =,所以33323a m -=-=.故选:C .8.北京时间2021年10月16日0时23分,搭载神舟十三号载人飞船的长征二号F 遥十三运载火箭,在酒泉卫星发射中心按照预定时间精准点火发射,约582秒后,神舟十三号载人飞船与火箭成功分离,进入预定轨道,顺利将翟志刚、王亚平、叶光富3名航天员送入太空,发射取得圆满成功.据测算:在不考虑空气阻力的条件下,火箭的最大速度v (单位:m /s )和燃料的质量M (单位:kg )、火箭的质量(除燃料外)m (单位:kg )的函数关系是2000ln 1Mm ν⎛⎫=+⎪⎝⎭.当火箭的最大速度达到11.5km /s 时,则燃料质量与火箭质量之比约为()(参考数据: 5.75e 314≈)A.314B.313C.312D.311【正确答案】B【分析】根据题意将11.5km /s v =代入2000ln 1M v m⎛⎫=+⎪⎝⎭即可得解.【详解】由题意将11.5km /s v =代入2000ln 1M v m⎛⎫=+⎪⎝⎭,可得11.510002000ln 1Mm ⎛⎫⨯=+⎪⎝⎭,ln 1 5.75M m ⎛⎫∴+= ⎪⎝⎭, 5.751314M e m ∴+==.313Mm∴=.故选:B.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.给出下列四个结论,其中正确的结论有()A.{}0∅=B.若a ∈Z ,则a -∈ZC.集合{}2,y y x x =∈Q 是无限集D.集合{}12,x x x -<<∈N 的子集共有4个【正确答案】BCD【分析】根据已知条件,结合空集、子集的定义,以及Z ,Q 的含义,即可求解.【详解】对于A :∅是指不含任何元素的集合,故A 错误;对于B :若Z a ∈,则Z a -∈,故B 正确;对于C :有理数有无数个,则集合{}2,y y x x =∈Q 是无限集,故C 正确;对于D :集合{}{}12,0,1x x x -<<∈=N 元素个数为2个,故集合{}12,x x x -<<∈N 的子集共有224=个,故D 正确.故选:BCD .10.下列论述中,正确的有()A.正切函数的定义域为RB.若α是第一象限角,则2α是第一或第三象限角C.第一象限的角一定是锐角D.圆心角为60︒且半径为2的扇形面积是2π3【正确答案】BD【分析】根据正切函数的定义判断A ,根据象限角的定义判断B ,C ,根据扇形面积公式判断D.【详解】对于A :正切函数tan y x =的定义域为π|π,Z 2x x k k ⎧⎫≠+∈⎨⎬⎩⎭,故A 错误;对于B :若α是第一象限角,则()π2π2πZ 2k k k α<<+∈,可得()πππZ 24k k k α<<+∈,所以2α表示第一或第三象限角,故B 正确;对于C :390︒是第一象限角,但不是锐角,故C 错误;对于D :圆心角为60︒且半径为2的扇形面积21π2π2233S =⨯⨯=,故D 正确.故选:BD .11.下列命题中是假命题的有()A.“a b >”是“22a b >”的充分但不必要条件B.“a b >”是“22ac bc >”的必要但不充分条件C.“11x>”是“1x <”的既不充分也不必要的条件D.“m 1≥”是“不等式220x x m -+≥在R 上恒成立”的充要条件【正确答案】AC【分析】利用特例及充分条件、必要条件的定义判断即可.【详解】对于A :若1a =,1b =-满足a b >,但22a b =不满足22a b >,反之,若22a b >,例如2221()->,令2a =-,1b =,显然不满足a b >,所以“a b >”是“22a b >”的既不充分也不必要条件,故A 错误;对于B :当0c =时,由a b >得不到22ac bc >,即充分性不成立,反之,若22ac bc >,可得a b >,即必要性成立,所以“a b >”是“22ac bc >”的必要不充分条件,故B 正确;对于C :1110x x x--=>,可得(1)0x x -<,01x ∴<<,因为()0,1(),1-∞,所以“11x>”是“1x <”的充分不必要条件,故C 错误;对于D :220x x m -+≥在R 上恒成立,则440m ∆=-≤,1m ∴≥,则“m 1≥”是“不等式220x x m -+≥在R 上恒成立”的充要条件,故D 正确.故选:AC .12.已知函数()f x 在()1,+∞上单调递增,且()1y f x =+是偶函数,奇函数()g x 在()0,∞+上的图象与函数()f x 的图象重合,则下列结论中正确的有()A.()()412log 32f f f ⎛⎫<< ⎪⎝⎭B.函数()f x 的图象关于y 轴对称C.函数()g x 在(),1-∞-上是增函数D.若1a b >>,则()()()()f a g b f b g a +->+-【正确答案】ACD【分析】根据函数的奇偶性、对称性和单调性的综合性质,逐个选项判断即可.【详解】对于B 选项,因为()1y f x =+是偶函数,所以()()11f x f x -=+,所以函数()y f x =关于直线1x =对称,且()f x 在()1,+∞上单调递增,故B 错误;对于A 选项,由上知4115log 222f f f ⎛⎫⎛⎫⎛⎫=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()f x 在()1,+∞上单调递增,所以()()5232f f f ⎛⎫<< ⎪⎝⎭,即有()()412log 32f f f ⎛⎫<< ⎪⎝⎭,故A 正确;对于C 选项,因为奇函数()g x 在()0,∞+上的图象与函数()f x 的图象重合,()f x 在()1,+∞上单调递增,即()g x 在()1,+∞上单调递增,由奇函数性质知,()g x 在(),1-∞-上单调递增,故C 正确;对于D 选项,由1a b >>得1a b -<-<-,又()f x 在()1,+∞上单调递增,()g x 在(),1-∞-上单调递增,所以()()f a f b >,()()g b g a ->-,所以()()()()f a g b f b g a +->+-,故D 正确.故选:ACD .第Ⅱ卷(非选择题共90分)注意事项:(1)非选择题的答案必须用0.5毫米黑色签字笔直接答在答题卡上,作图题可先用铅笔绘出,确认后再用0.5毫米黑色签字笔描清楚,答在试题卷和草稿纸上无效.(2)本部分共10个小题,共90分.三、填空题:本题共4小题,每小题5分,共20分.13.已知{}(1,2)(,)230x y x ay ∈+-=,则a 的值为______.【正确答案】12##0.5【分析】根据元素与集合的关系,把点坐标代入直线方程运算即可求得a 的值.【详解】因为{}(1,2)(,)230x y x ay ∈+-=,所以2230a +-=,解得:12a =,故答案为:12.14.写出使“不等式2x x a a -<对一切实数x 都成立”的a 的一个取值______.【正确答案】12(答案不唯一)【分析】由指数函数的单调性和不等式的性质,可得所求取值.【详解】解:当1a >时,x y a =在R 上单调递增,由2x x >-,可得2x x a a ->;当01a <<时,x y a =在R 上单调递减,由2x x >-,可得2x x a a -<.因为不等式2x x a a -<对一切实数x 都成立,所以01a <<,所以a 的取值可为12.故12(答案不唯一).15.已知角α的顶点在平面直角坐标系原点,且始边与x 轴的非负半轴重合,现将角α的终边按顺时针方向旋转π2后与角β的终边重合,且与单位圆交于点34,55⎛⎫-- ⎪⎝⎭,则cos α的值______.【正确答案】45##0.8【分析】由题意利用任意角的三角函数的定义以及诱导公式即可求解.【详解】解:因为β的终边与单位圆交于点34,55⎛⎫--⎪⎝⎭,故3cos 5β=-,4sin 5β=-,又由题意可得π2αβ=+,所以π4cos cos sin 25αββ⎛⎫=+=-= ⎪⎝⎭.故45.16.若函数()()2,113,1ax x x f x a x a x ⎧-<⎪=⎨--≥⎪⎩满足对1x ∀,2x ∈R ,且12x x ≠,都有()()12120f x f x x x -<-成立,则实数a 的取值范围是______.【正确答案】21,52⎡⎤⎢⎥⎣⎦【分析】首先判断函数是单调递减函数,根据分段函数单调递减的性质,列式求解.【详解】根据题意,任意实数12x x ≠都有()()12120f x f x x x -<-成立,所以函数()f x 是R 上的减函数,则分段函数的每一段单调递减且在分界点处113a a a -≥--,所以0112130113a aa a a a≥⎧⎪-⎪-≥⎪⎨⎪-<⎪-≥--⎪⎩,解得2152a ≤≤,所以实数a 的取值范围是21,52⎡⎤⎢⎥⎣⎦.故21,52⎡⎤⎢⎥⎣⎦四、解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.已知集合{}24A x x =<<,15B x y x ⎧⎫==⎨⎬-⎩⎭.(1)求A B ⋂;(2)若集合{}1C x a x a =<<+,在①A C A ⋃=;②x C ∈是x A ∈的充分条件,这两个条件中任选一个作为条件,求实数a 的取值范围.注:如果选择多个条件分别解答,按第一个解答计分.【正确答案】(1){}34A B x x ⋂=≤<(2)[]2,3【分析】(1)根据分母不为零且偶次方根的被开方数非负得到不等式组,即可求出集合B ,再根据交集的定义计算可得;(2)根据所选条件得到C A ⊆,即可得到不等式组,从而求出参数的取值范围.【小问1详解】∵15y x =+-,∴3050x x -≥⎧⎨-≠⎩,∴3x ≥且5x ≠,∴1{|35B x y x x x ⎧⎫===≥⎨⎬-⎩⎭且5}x ≠,又{}24A x x =<<,∴{}34A B x x ⋂=≤<;【小问2详解】若选①A C A ⋃=,则C A ⊆,∵{}1C x a x a =<<+且1a a +>,∴C ≠∅,∴214a a ≥⎧⎨+≤⎩,∴23a ≤≤,∴实数a 的取值范围为[]2,3;若选②x C ∈是x A ∈的充分条件,则C A ⊆,∵{}1C x a x a =<<+且1a a +>,∴C ≠∅,∴214a a ≥⎧⎨+≤⎩,∴23a ≤≤,∴实数a 的取值范围为[]2,3.18.已知函数()()()sin 2πcos π9πsin 2f αααα-+=⎛⎫+ ⎪⎝⎭.(1)求证:()sin f αα=;(2)若()35f α=且α为第二象限角,求tan 1α-的值.【正确答案】(1)证明见解析(2)54-【分析】(1)利用诱导公式对()f α进行化简即可得证;(2)利用平方关系与商数关系结合α所在象限进行运算求解即可.【小问1详解】证明:()()()sin 2πcos π9πsin 2f αααα-+=⎛⎫+ ⎪⎝⎭()()sin cos sin cos αααα--==,得证;【小问2详解】因为()3sin 5f αα==且α为第二象限角,所以4cos 5α==-,所以sin 3tan cos 4ααα==-,所以35tan 1144α⎛⎫-=-=- ⎪⎝⎭.19.已知函数()()2f x x a b x a =-++.(1)若关于x 的不等式()0f x <的解集为{}13x x -<<,求a ,b 的值;(2)当1b =时,解关于x 的不等式()0f x >.【正确答案】(1)3a =-,5b =(2)当1a <时,解集为{x x a <或}1x >,当1a =时,解集为{}1x x ≠,当1a >时,解集为{1x x <或}x a >.【分析】(1)由一元二次不等式的解集与一元二次方程根的关系,结合韦达定理解方程组即可;(2)当1b =时,()()210f x x a x a =-++>,即()()10x a x -->,分类讨论1a <、1a =和1a >三种情况下,即可求出一元二次不等式的解集.【小问1详解】因为不等式()0f x <的解集为{}13x x -<<,所以1-,3是()20x a b x a -++=的两根,所以1323a b a +=-+=⎧⎨=-⎩,解得35a b =-⎧⎨=⎩;【小问2详解】当1b =时,()()210f x x a x a =-++>,即()()10x a x -->,当1a <时,解得x a <或1x >,当1a =时,解得1x ≠,当1a >时,解得1x <或x a>综上可得,当1a <时,不等式的解集为{x x a <或}1x >,当1a =时,不等式的解集为{}1x x ≠,当1a >时,不等式的解集为{1x x <或}x a >.20.行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离称为刹车距离,在某种路面上,经过多次实验测试,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时,0120x ≤≤)的一些数据如表.为了描述汽车的刹车距离y (米)与汽车的车速x (千米时)的关系,现有三种函数模型供选择:()20y px mx n p =++≠,0.5x y a =+,log a y k x b =+.x 0406080y 08.418.632.8(1)请选出你认为最符合实际的函数模型,并求出相应的函数解析式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度.【正确答案】(1)()20y px mx m p =++≠最符合实际的函数模型,211200100y x x =+,()0120x ≤≤;(2)70千米/时.【分析】(1)结合表格数据选出最符合实际的函数模型,然后列方程组01600408.436006018.6n p m p m =⎧⎪+=⎨⎪+=⎩求解即可;(2)令21125.2200100x x+≤,结合二次不等式的解法求解,再结合0120x ≤≤,即可求出x 的取值范围,即可得解.【小问1详解】结合表格数据可得()20y px mx n p =++≠最符合实际的函数模型,将0x =,0y =;40x =,8.4y =;60x =,18.6y =分别代入上式可得01600408.436006018.6n p m p m =⎧⎪+=⎨⎪+=⎩,解得120011000p m n ⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩,即所求的函数解析式为211200100y x x =+,()0120x ≤≤;【小问2详解】令21125.2200100x x +≤,即2250400x x +-≤,解得7270x -≤≤,又0120x ≤≤,所以070x ≤≤,即要求刹车距离不超过25.2米,则行驶的最大速度为70千米/时.21.已知函数()()()22log 2log 2x x f x =--+.(1)用定义证明()f x 在定义域上是减函数;(2)若函数()()g x f x x a =-+在20,3x ⎡⎤∈⎢⎥⎣⎦上有零点,求实数a 的取值范围.【正确答案】(1)证明见解析(2)220,log 53⎡⎤+⎢⎥⎣⎦【分析】(1)先求函数的定义域,再根据减函数的定义证明即可;(2)由(1)知,函数()f x 在定义域为()2,2-上的减函数,从而()()g x f x x a =-+为减函数,故只需满足()00203g g ⎧≥⎪⎨⎛⎫≤ ⎪⎪⎝⎭⎩,解不等式组即可求得a 的取值范围.【小问1详解】证明:根据题意,函数()()()22log 2log 2x x f x =--+,则有2020x x ->⎧⎨+>⎩,解可得22x -<<,即函数的定义域为()2,2-,设1222x x -<<<,则()()()12212log 2log f x f x x -=--()()()122222log 2log 2x x x +--++,()()()()1221222log 22x x x x -+=+-,因为1222x x -<<<,所以1212422x x x x -+->21124220x x x x -+->,()()()()12122222x x x x -++-12122112422422x x x x x x x x -+-=-+-,所以()()()()121222122x x x x -+>+-,故()()()()()()121221222log 022x x f x f x x x -+-=>+-,即()()12f x f x >则函数()f x 在定义域上是减函数;【小问2详解】根据题意,由(1)的结论,函数()f x 在定义域为()2,2-上的减函数,则()()g x f x x a =-+为减函数,若函数()()g x f x x a =-+在20,3x ⎡⎤∈⎢⎥⎣⎦上有零点,则()()2000022212log 033353g f a g f a a ⎧=-+≥⎪⎨⎛⎫⎛⎫=-+=-+≤ ⎪ ⎪⎪⎝⎭⎝⎭⎩,解可得:220log 53a +≤≤,故a 的取值范围为220,log 53⎡⎤+⎢⎥⎣⎦.22.已知函数()f x 为偶函数,函数()g x 为奇函数,且满足()()()11x f x g x mm --=>.(1)求函数()f x ,()g x 的解析式;(2)若函数()()()11h x f x g x m =+-⎡⎤⎣⎦,且方程()()2212016h x kh x k -+-=⎡⎤⎣⎦恰有三个解,求实数k 的取值范围.【正确答案】(1)()()1112x x f x m m -+=+,()()1112x x g x m m +-=-(2)135,444⎧⎫⎡⎫⎨⎬⎪⎢⎩⎭⎣⎭【分析】(1)由()()1x f x g x m--=及函数奇偶性得到()()1x f x g x m ++=,联立方程组求解即可;(2)由(1)得到()h x 的解析式,画出其图象,求出方程()()2212016h x kh x k -+-=⎡⎤⎣⎦的两个解,数形结合即可得到实数k 的取值范围.【小问1详解】因为()f x 是偶函数,()g x 是奇函数,且()()1x f x g x m --=,①所以()()f x f x -=,()()g x g x -=-,所以()()1x f x g x m+---=,即()()1x f x g x m ++=,②由①+②解得()()1112x x f x m m -+=+,①-②解得()()1112x x g x m m +-=-;【小问2详解】由(1)得()()()()111111122x x x x x f x g x m m m m m -+-+++=++-+=,所以()()1x f x g x m m +=⎡⎤⎣⎦,所以()()()111x h x f x g x mm =+-=⎡⎤⎦-⎣,1m >,作出()h x的图象,如图所示:因为方程()()2212016h x kh x k -+-=⎡⎤⎣⎦恰有三个解,即方程()()2112044h x kh x k k ⎛⎫⎛⎫-+-+=⎡⎤ ⎪⎪⎣⎦⎝⎭⎝⎭恰有三个解,所以()()11044h x k h x k ⎡⎤⎡⎤⎛⎫⎛⎫----= ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦恰有三个解,解得()14h x k =-或()14h x k =+,又因为1144k k -<+,结合图形可得:1041014k k ⎧-=⎪⎪⎨⎪<+<⎪⎩或1014114k k ⎧<-<⎪⎪⎨⎪+≥⎪⎩,解得14k =或3544k ≤<.所以实数k的取值范围为135, 444⎧⎫⎡⎫⎨⎬⎪⎢⎩⎭⎣⎭.。

高一数学上学期期末考试试卷含答案(共3套)

高一数学上学期期末考试试卷含答案(共3套)

高一级第一学期期末考试数学试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列四组函数,表示同一函数的是()A. B.C. D.2. 平行于同一平面的两条直线的位置关系是()A. 平行B. 相交C. 异面D. 平行、相交或异面3. 已知集合,,则()A. B. C. D.4. 图中的直线的斜率分别是,则有()A. B. C. D.5. 设,,则()A. B. C. D.6. 方程在下面哪个区间内有实根()A. B. C. D.7. 一个几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.8. 一圆锥的侧面展开图是一个半圆,则这个圆锥的母线与底面所成角是()A. B. C. D.9. 若函数的值域为,则实数的取值范围是()A. B. C. D.10. 如图,二面角的大小是,线段,,与所成的角为,则与平面所成的角的余弦值是()A. B. C. D.11. 正四面体中,是棱的中点,是点在底面内的射影,则异面直线与所成角的余弦值为()A. B. C. D.12. 已知函数在闭区间上的值域为,则满足题意的有序实数对在坐标平面内所对应点组成图形为()A. B.C. D.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知,则__________.14. 已知两条平行直线分别过点,,且的距离为5,则直线的斜率是__________.15. 已知函数,若函数有3个零点,则实数的取值范围是__________.16. 如图,将一边为1的正方体沿相邻三个面的对角线截出一个棱锥,则三棱锥的内切球半径是__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 求值或化简:(1);(2).18. 如图,正三角形的边长为6,,,点分别在边上,且,,相交于.(1)求点的坐标;(2)判断和是否垂直,并证明.19. 已知函数.(1)求函数的定义域;(2)判断函数的奇偶性,并证明你的结论;(3)在函数图像上是否存在两个不同的点,使直线垂直轴,若存在,求出两点坐标;若不存在,说明理由.20. 如图,在四棱锥中,底面,,,,为棱的中点.(1)求证:;(2)试判断与平面是否平行?并说明理由.21. 《中华人民共和国个人所得税法》规定,公民全月工资、薪金(扣除三险一金后)所得不超过3500元的部分不必纳税,超过3500元的部分为全月应纳税所得额个人所得税计算公式:应纳税额=工资-三险一金=起征点. 其中,三险一金标准是养老保险8%、医疗保险2%、失业保险1%、住房公积金8%,此项税款按下表分段累计计算:(1)某人月收入15000元(未扣三险一金),他应交个人所得税多少元?(2)某人一月份已交此项税款为1094元,那么他当月的工资(未扣三险一金)所得是多少元?22. 设,函数,其中.(1)求的最小值;(2)求使得等式成立的的取值范围.参考答案1【答案】D【解析】试题分析:A.,对应法则不同;B.,定义域不同;C.,定义域不同;故选D。

高一数学第一学期期末考试试卷(共5套,含参考答案)

高一数学第一学期期末考试试卷(共5套,含参考答案)

高一第一学期期末考试数学试卷 满分:150分 时间: 120分钟一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}|27,|1,A x x B x x x N =-<<=>∈,则AB 的元素的个数为( )A.3B.4C.5D.62.两条直线a ,b 满足a ∥b ,b α⊂,则a 与平面α的关系是( ) A.a ∥α B.a 与α相交 C.a 与α不相交 D.a α⊂3.方程的1xe x =的根所在的区间是( ). A.)21,0( B.)1,21( C.)23,1( D.)2,23(4.函数y=x (x 2-1)的大致图象是( )5.如图所示,已知正四棱锥S —ABCD 侧棱长为2,底面边长为3,E 是SA 的中点,则异面直线BE 与SC 所成角的大小为( ) A.90°B.60°C.45°D.30°6.长方体1111ABCD A B C D -中,2AB =,1AA =3AD =,则 长方体1111ABCD A B C D - 的外接球的直径为 ( ) A.2 B.3 C.4 D.57.圆锥的表面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为( ) A.120° B.150° C.180° D.240°8.如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是( ) A.BD ∥平面CB 1D 1 B.AC 1⊥BDC.AC 1⊥平面CB 1D 1D.异面直线AD 与CB 1角为60°9.若方程1ln 02xx a ⎛⎫-+= ⎪⎝⎭有两个不等的实数根,则a 的取值范围是( )A.1,2⎛⎫+∞ ⎪⎝⎭B.()1,+∞C.1,2⎛⎫-∞ ⎪⎝⎭D.(),1-∞10.某几何体的三视图如图所示(单位: cm ),则该几何体的表面积是( )A.65B.6C.2D.511.已知函数()22log f x x x =+,则不等式()()120f x f +-<的解集为( )A. ()(),13,-∞-⋃+∞B. ()(),31,-∞-⋃+∞C. ()()3,11,1--⋃-D. ()()1,11,3-⋃12.已知()()()2,log 0,1x a f x ag x x a a -==>≠,若()()440f g ⋅-<,则y=()f x ,y=()g x 在同一坐标系内的大致图象是( )二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知不等式062<-+px x 的解集为{|32}x x -<<,则p = .14.2lg 2= _________15.函数()lg 21y x =+的定义域是______________________. 16.函数x21f x =-log x+23⎛⎫⎪⎝⎭()()在区间[-1,1]上的最大值为________. 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分10分)全集R U =,函数()lg(3)f x x =+-的定义域为集合A ,集合{}02<-=a x x B .(1)求U A ð; (2)若A B A = ,求实数a 的取值范围.18.(本题满分12分)已知函数⎪⎩⎪⎨⎧>-+≤-=)0(,1)1(log )0(,2)21()(2x x x x f x(1)求)(x f 的零点; (2)求不等式()0f x >的解集.19.(12分)如图,在直角梯形ABCD 中,AD ∥BC ,AD =AB ,∠A =90°,BD ⊥DC ,将△ABD 沿BD 折起到△EBD 的位置,使平面EBD ⊥平面BDC. (1) 求证:平面EBD ⊥平面EDC ; (2) 求ED 与BC 所成的角.20.(12分)一块边长为10 cm 的正方形铁块按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器.(1)试把容器的容积V 表示为x 的函数; (2)若x =6,求图2的正视图的面积.21.(本小题满分12分)在三棱柱111C B A ABC -中,侧面11A ABB 为矩形,1AB =,1AA ,D 为1AA 的中点,BD 与1AB 交于点O ,⊥CO 侧面11A ABB .(Ⅰ)证明:1AB BC ⊥; (Ⅱ)若OA OC =,求点1B 到平面ABC 的距离.1A A1B B1C COD22.(本小题满分12分)已知函数4()log (41)x f x kx =++(k ∈R ),且满足(1)(1)f f -=. (1)求k 的值;(2)若函数()y f x =的图象与直线12y x a =+没有交点,求a 的取值范围; (3)若函数1()2()421f x xx h x m +=+⋅-,[]20,log 3x ∈,是否存在实数m 使得()h x 最小值为0,若存在,求出m 的值;若不存在,请说明理由.高一第一学期期末考试 数学试卷参考答案一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 1 14. 2 15. 16. 316.解析:∵y =⎝ ⎛⎭⎪⎫13x 和y =-log 2(x +2)都是[-1,1]上的减函数,∴f(x)=⎝ ⎛⎭⎪⎫13x-log 2(x +2)在区间[-1,1]上是减函数,∴函数f(x)在区间[-1,1]上的最大值为f(-1)=3.答案:3三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.解:(1)∵⎩⎨⎧>->+0302x x ∴23x -<<…………………………………3分∴A=(-2,3) ∴(][)23u C A =-∞-+∞,,……………………………5分 (2)当0≤a 时,φ=B 满足A B A = ……………………………6分当0>a 时,)(a a B ,-= ∵AB A = ∴A B ⊆[]∴⎪⎩⎪⎨⎧≤-≥-32a a , ∴40≤<a ……………………………9分 综上所述:实数a 的范围是4≤a ……………………………………10分18.解:(1)由0)(=x f 得,⎪⎩⎪⎨⎧=-≤02)21(0x x 或⎩⎨⎧=-+>01)1(log 02x x ,解得1-=x 或1=x .所以,函数)(x f 的零点是—1,1..................................6分(2)由()0f x >得,01()202xx ≤⎧⎪⎨->⎪⎩或20log (1)10x x >⎧⎨+->⎩,解得1x <-或1x >.所以,不等式1)(>x f 的解集是{x |1x <-或1x >}.................................12分19.(1) 证明:∵平面EBD ⊥平面BDC ,且平面EBD ∩平面BDC =BD ,CD ⊥BD , ∴CD ⊥平面EBD , ∵CD 平面EDC ,∴平面EBD ⊥平面EDC.……………………………6分 (2) 解:如答图,连接EA ,取BD 的中点M ,连接AM ,EM , ∵AD ∥BC ,∴∠EDA 即为ED 与BC 所成的角. 又∵AD =AB ,∴ED =EB. ∴EM ⊥BD ,∴EM ⊥平面ABCD.设AB =a ,则ED =AD =a ,EM =MA , ∴AE =a ,∴∠EDA =60°.即ED 与BC 所成的角为60°……………………………12分20.(12分)解 (1)设所截等腰三角形的底边边长为x cm. 在Rt △EOF 中,EF =5 cm ,OF =12x cm ,所以EO =25-14x 2.于是V =13x225-14x 2(cm 3).依题意函数的定义域为{x|0<x<10}.……………………………6分(2)正视图为等腰三角形,腰长为斜高,底边长=AB =6, 底边上的高为四棱锥的高=EO =25-14x 2=4,S =4×62=12(cm 2).……………………………12分21.解:(1),由 得又即又又BD 与CO 交于O 点,又……………………………6分(2),,又AB=1,可得,由得……………………………12分22.解析:(1)(1)(1)f f -=,即144log (41)log (41)k k -+-=++444512log log 5log 144k ∴=-==- ∴12k =- ………………………………………………………………………… ………5分(2)由题意知方程411log (41)22x x x a +-=+即方程4=log (41)x a x +-无解, 令4()log (41)x g x x =+-,则函数()y g x =的图象与直线y a =无交点444411()log 41)log log (1)44x x x xg x x +=+-==+( 任取1x 、2x ∈R ,且12x x <,则12044x x <<,121144x x ∴>. 12124411()()log 1log 1044x x g x g x ⎛⎫⎛⎫∴-=+-+> ⎪ ⎪⎝⎭⎝⎭,()g x ∴在(),-∞+∞上是单调减函数.1114x +>, 41()log 104xg x ⎛⎫∴=+> ⎪⎝⎭. ∴a 的取值范围是(],0.-∞ ……………………………………………………………… 9分注意:如果从复合函数角度分析出单调性,给全分。

高一数学第一学期期末试卷及答案5套

高一数学第一学期期末试卷及答案5套

高一数学第一学期期末试卷及答案5套(满分:100分 时间:90分钟)一、选择题(每题4分,共40分)1.设集合{}{}3,22,1,0==B A ,,则=⋃B A ( ) {}3,2,1,0.A {}3,1,0.B {}1,0.C {}2.D2.(普通班)直线AB 的倾斜角为ο45,则直线AB 的斜率等于( )1.A 1.-B 5.C 5.-D(兰天班)已知直线0y =++C B Ax 不经过第一象限,且C B A ,,均不为零,则有( )0.<C A 0.>C B 0.>BC C 0.<BC D3.下列函数中,既是奇函数又是增函数的是( )3.x y A = 1.-=x y B x y C 3log .= xy D ⎪⎭⎫⎝⎛=21.4.若直线02=++a y x 经过圆04222=-++y x y x 的圆心,则a 的值为( ) 4.A 0.B 4.-C 3.D5.下列说法中,正确的是( ).A 经过不同的三点有且只有一个平面 .B 分别在两个平面内的两条直线是异面直线 .C 垂直于同一个平面的两条直线平行.D 垂直于同一个平面的两个平面平行6.已知一个几何体的三视图如图所示,则该几何体的体积为( )π12.A π8.B π38.C π320.D7.点()1,2-P 为圆()25122=+-y x 的弦AB 的中点,则直线AB 的方程为( ) 01.=-+y x A 032.=-+y x B 03.=--y x C 052.=--y x D8.(普通班)圆02:22=-+x y x A 和圆04:22=-+y y x B 的公切线条数是( ) A .4条 B .3条 C .2条 D .1条(兰天班)已知半径为1的动圆与定圆()()167522=++-y x 相切,则动圆圆心的轨迹方程是()()()2575.22=++-y x A ()()()()1575375.2222=++-=++-y x y x B 或()()975.22=++-y x C ()()()()9752575.2222=++-=++-y x y x D 或9.已知点()b a M ,在直线1543=+y x 上,则22b a +的最小值为( )2.A3.B415.C 5.D10.定义在R 上的奇函数()x f ,满足()01=f ,且在()∞+,0上单调递增,则()0>⋅x f x 的解集为( ){}11.>-<x x x A 或 {}0110.<<-<<x x x B 或{}110.-<<<x x x C 或 {}101.><<-x x x D 或二、填空题(每题4分,共16分)11.(普通班)在正方体1111D C B A ABCD -中,异面直线C B AD 11,所成的角的大小为 . (兰天班)直三棱柱111C B A ABC -中,1AA AB AC ==,且异面直线B A AC 11与所成角为ο60,则CAB ∠等于 .12. 若直线()03412:1=+-+m y x m l 与直线()035:2=-++m y m x l 平行,则m 的值为 .13. (普通班)一个正方体的顶点都在同一个球面上,且棱长为4,这个球的体积为 . (兰天班)球的内接圆柱的底面积为π4,侧面积为π12,则该球的表面积为 . 14. 设点()()2,2,5,3---B A ,直线l 过点()1,1P 且与线段AB 相交,则直线l 的斜率k 的取值范围是(用区间表示) .三、解答题(共44分)15.(10分)已知圆()()()025522>=-+-a y a x ,截直线05=-+y x 的弦长为25.(1)求圆的一般式方程;(2)求过点()15,10P 的圆的切线所在的直线一般式方程.16.(10分)(普通班)如图,在三棱锥ABC V -中,ABC 平面平面⊥VAB ,VAB ∆为正三角形,2==⊥BC AC BC AC 且,M O 、分别为VA AB 、的中点 .(1)求证:MOC VB 平面//; (2)求证:VAB MOC 平面平面⊥ .(兰天班)已知椭圆C 的中心在原点,焦点在x 轴上,左右焦点分别为21,F F ,且221=F F ,点⎪⎭⎫ ⎝⎛23,1在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)过1F 的直线l 与椭圆C 相交于B A ,两点,且B AF 2∆的面积为7212,求以2F 为圆心与直线l 相切的圆的方程.17.(12分)如图,边长为2的正方形中,BC BF BE 41==,M 是BD 和EF 的交点,将DCF AED ∆∆、分别沿DF DE 、折起,使C A 、两点重合与点A '. (1)求证:MD A EF '⊥面; (2)求三棱锥EFD A -'的体积;(3)求二面角E DF A --'的平面角的余弦值.18. (12分)已知函数()11log 21--=x axx f ,其中a 为常数且0<a ,若函数的图像关于原点对称. (1)求a 的值;(2)当()+∞∈,1x 时,()()mx x f <-+1log 21恒成立,求实数m 的取值范围;(3)若关于x 的方程()()k x x f +=21log 在[]3,2上有解,求k 的取值范围.答案一、 选择题1、A2、A C3、A4、B5、C6、D7、C8、CD9、B 10、A 二、填空题11、(普通班)60°(兰天班)90°12、m=﹣ , 13、32π. 25π 14、K -3或k 1三、解答题15、(1)解:,圆心 到直线距离,,圆的一般式方程为(2)解:若切线斜率不存在, ,符合若切线斜率存在,设,切线:或切线的一般式方程为x-10=0或16、(普通班)(1)证明:因为O ,M 分别为AB ,VA 的中点, 所以OM ∥VB .又因为OM ⊂平面MOC ,VB ⊄平面MOC ,所以VB ∥平面MOC .(2)证明:因为AC=BC ,O 为AB 中点, 所以OC ⊥AB .因为平面VAB ⊥平面ABC ,平面VAB∩平面ABC=AB ,OC ⊂平面ABC ,所以OC ⊥平面VAB .因为OC ⊂平面MOC ,所以平面MOC ⊥平面VAB(兰天班)(1)设椭圆的方程为, 由题意可得:椭圆C 两焦点坐标分别为,所以,所以,又,17、18、(1)解:∵函数f(x)的图象关于原点对称,∴函数f(x)为奇函数,∴f(﹣x)=﹣f(x),即log =﹣log = log ,解得:a=﹣1或a=1(舍)(2)解:f(x)+ log (x-1)= log (1+x),x>1时,它是减函数,log (1+x)<﹣1,∵x∈(1,+∞)时,f(x)+ log (x﹣1)<m恒成立,∴m≥﹣1;(3)解:由(1)得:f(x)= log (x+k),即log = log (x+k),即=x+k,即k= ﹣x+1在[2,3]上有解,g(x)= ﹣x+1在[2,3]上递减,g(x)的值域是[﹣1,1],∴k∈[﹣1,1]高一数学第一学期期末试卷及答案一.选择题:共12小题,每小题5分,共60分。

2023-2024学年天津市高一上册期末数学试题3(含解析)

2023-2024学年天津市高一上册期末数学试题3(含解析)

2023-2024学年天津市高一上册期末数学试题一、单选题1.已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T Ç=()A .∅B .SC .TD .Z【正确答案】C【分析】分析可得T S ⊆,由此可得出结论.【详解】任取t T ∈,则()41221t n n =+=⋅+,其中Z n ∈,所以,t S ∈,故T S ⊆,因此,S T T = .故选:C.2.已知x ∈R ,条件p :2x x <,条件q :11x>,则p 是q 的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【正确答案】C分别求两个命题下的集合,再根据集合关系判断选项.【详解】201x x x <⇔<<,则{}01A x x =<<,1101x x>⇔<<,则{}01B x x =<<,因为A B =,所以p 是q 的充分必要条件.故选:C3.已知0.1536log 2,3,log sin7a b c π⎛⎫=== ⎪⎝⎭,则,,a b c 大小关系为()A .c a b <<B .c b a<<C .a c b<<D .b c a<<【正确答案】A【分析】将,,a b c 分别与中间量进行比较,即可得出c a b <<.【详解】因为555log 1log 2log 5<<,所以01a <<;100.313b >==,即1b >;由6sin17π<,所以336log sinlog 107c π⎛⎫=<= ⎪⎝⎭,即0c <.综上.c a b<<故选:A4.函数222()cos x xf x x x--=+在[,]-ππ的图象大致为()A .B .C .D .【正确答案】B【分析】根据函数为奇函数以及函数值的正、负,就中得到正确答案.【详解】因为()222()cos()()x xf x f x x x ---==--+-,所以函数为奇函数,故排除A,D 选项;当(,0)x π∈-时,2220,cos 0x x x x --<+>,所以()0f x <,故排除C ;故选:B.方法点睛:求解时要充分利用选项中的图象,提取有用的信息,并利用排除法得到正确选项.5.函数()()212log 4f x x =-的单调递增区间为()A .()0,∞+B .(),0∞-C .()2,∞+D .(),2-∞-【正确答案】D【分析】求出函数()()212log 4f x x =-的定义域,利用复合函数法可求得函数()f x 的增区间.【详解】对于函数()()212log 4f x x =-,有240x ->,解得<2x -或2x >,故函数()f x 的定义域为()(),22,-∞-+∞ ,内层函数24u x =-在(),2-∞-上单调递减,在()2,∞+上单调递增,外层函数12log y u =为减函数,由复合函数的单调性可知,函数()()212log 4f x x =-的单调递增区间为(),2-∞-.故选:D.6.下列函数中最小值为4的是()A .224y x x =++B .2y 22x x -=+C .4sin sin y x x=+D .4ln ln y x x=+【正确答案】B【分析】根据一元二次函数知识或均值不等式分别求解每个选项中函数的最小值,注意均值不等式使用条件以及等号取得条件,即可判断答案.【详解】对于2224(1)3y x x x =++=++,当=1x -时,函数最小值为3,A 错误;24y 22242x x x x -=+=+≥,当且仅当1x =时取得等号,B 正确;4sin 4sin y x x =+≥,当且仅当4sin sin x x =时取等号,由于4sin sin x x=时,|sin |2x =,根据正弦函数性质可知|sin |2x =不成立,故4sin 4sin y x x=+≥取不到等号,C 错误;对于4ln ln y x x =+,由于ln x 可能小于0,即4ln ln y x x=+函数值可能为负值,故其最小值为4不成立,D 错误,故选:B7.要得到函数y x 的图象,只需将函数)4y x π=+的图象上所有的点的A .横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动4π个单位长度B .横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动8π个单位长度C .横坐标缩短到原来的12倍(纵坐标不变),再向左平行移动8π个单位长度D .横坐标缩短到原来的12倍(纵坐标不变),再向右平行移动4π个单位长度【正确答案】A 【详解】令,当函数图象上所有的点横坐标伸长到原来的2倍(纵坐标不变)时,函数为,若图象再向左平行移动4π个单位长度,则函数为,于是选A.8.下列命题中正确的个数是()①命题“0x ∃>,2sin 0x x +<”的否定是“0x ∀>,2sin 0x x +≥”;②幂函数的图象一定不会出现在第四象限;③函数()23log f x x x=-的零点所在区间是()2,3,且()f x 只有一个零点;④函数sin y x =是最小正周期为π的周期函数;⑤()f x =ππ2π2π,42x k x k k ⎧⎫+≤<+∈⎨⎬⎩⎭Z ;⑥在锐角三角形ABC 中,不等式sin sin cos cos A B A B +>+恒成立.A .3B .4C .5D .6【正确答案】B【分析】对①:根据特称命题的否定分析判断;对②:根据幂函数的图象和性质分析判断;对③:根据函数单调性结合零点存在性定理分析判断;对④:取特值结合诱导公式分析判断;对⑤:根据题意结合正切函数图象与性质运算求解;对⑥:根据题意利用正弦函数的单调性结合诱导公式分析运算.【详解】对①:命题“0x ∃>,2sin 0x x +<”的否定是“0x ∀>,2sin 0x x +≥”,①正确;对②:当0x >时,则0y x α=>,故幂函数的图象一定不会出现在第四象限,②正确;对③:∵函数()23log f x x x=-在()0,+∞上单调递减,且()()2120,31log 302f f =>=-<,故函数()23log f x x x=-的零点所在区间是()2,3,且()f x 只有一个零点,③正确;对④:∵πππππsinsin 1,sin πsin πsin 122222⎛⎫==+=+=-=- ⎪⎝⎭,即ππsin sin π22≠+,∴函数sin y x =不是最小正周期为π的周期函数,④错误;对⑤:由题意可得:tan 10x -≥,即tan 1x ≥,解得ππππ,Z 42k x k k +≤<+∈,∴()f x =ππ|ππ,42x k x k k ⎧⎫+≤<+∈⎨⎬⎩⎭Z ,⑤错误;对⑥:在锐角三角形ABC 中,π2A B +>,即π2A B >-,∵π,0,2A B ⎛⎫∈ ⎪⎝⎭,则ππ0,22B ⎛⎫-∈ ⎪⎝⎭,且sin y x =在π0,2⎛⎫⎪⎝⎭上单调递增,∴πsin sin cos 2A B B ⎛⎫>-= ⎪⎝⎭,同理可得:sin cos B A >,则不等式sin sin cos cos A B A B +>+恒成立,⑥正确;故选:B.二、填空题9.51log 22661611742log 3log 4cos4953π-⎛⎫⎛⎫⨯++-+= ⎪ ⎪⎝⎭⎝⎭__________.【正确答案】9【分析】由指数与对数的运算法则以及诱导公式即可求解.【详解】原式512266log 2414[()]log 9log 4cos(6)753-π=⨯++-+π-16414()log 36cos723-π=⨯+-+1172922=+-+=故910.已知扇形AOB 的面积为8,且圆心角弧度数为2,则扇形AOB 的周长为______.【正确答案】【分析】由扇形面积公式求出扇形半径,再由弧长公式求出弧长即可得到扇形周长.【详解】因为212S R α=,其中8,2S α==,所以R ===代入弧长l R α=中,得2l R α==⨯=所以周长为22R l +=⨯=故答案为.11.已知πtan 24α⎛⎫-= ⎪⎝⎭,则25sin2sin αα-=______.【正确答案】3910-## 3.9-【分析】先利用正切的和差公式求得tan α,再结合二倍角公式与同角三角函数的基本关系式即可得解.【详解】因为πtan 24α⎛⎫-= ⎪⎝⎭,所以ππtan tanππ2144tan tan 3ππ441211tan tan 44αααα⎛⎫-+ ⎪+⎛⎫⎝⎭=-+===- ⎪-⨯⎛⎫⎝⎭-- ⎪⎝⎭,所以222210sin cos sin 5sin 2sin sin cos ααααααα--=+()()()2222103310tan tan 39tan 11031ααα⨯----===-+-+.故答案为.3910-12.设x ,y ∈R ,1a >,1b >,若3x y a b ==,a b +=11x y+的最大值为______.【正确答案】3【分析】有基本不等式得27ab ≤,由3x y a b ==得311log ab x y+=即可计算最值.【详解】∵1a >,1b >,∴a b +=≥∴27ab ≤,∵3x y a b ==,∴log 3,log 3a b x y ==;∴3311log ,log a b x y==;∴333311log log log log 273a b ab x y+=+=≤=,故313.天津之眼,全称天津永乐桥摩天轮,是世界上唯一一个桥上瞰景的摩天轮.如图,已知天津之眼的半径是55m ,最高点距离地面的高度为120m ,开启后按逆时针方向匀速转动,每30min 转动一圈.喜欢拍照的南鸢同学想坐在天津之眼上拍海河的景色,她在距离地面最近的舱位进舱.已知在距离地面超过92.5m 的高度可以拍到最美的景色,则在天津之眼转动一圈的过程中,南鸢同学可以拍到最美景色的时间是_________分钟.【正确答案】10【分析】借助三角函数模型,设()sin H A t k ωϕ=++,以轴心O 为原点,与地面平行的直线为x 轴,建立直角坐标系,由题意求出解析式,再令()sin 92.5H A t k ωϕ=++≥,解三角不等式即可得答案.【详解】解:如图,设座舱距离地面最近的位置为点P ,以轴心O 为原点,与地面平行的直线为x 轴,建立直角坐标系.设0min t =时,南鸢同学位于点()0,55P -,以OP 为终边的角为π2-,根据摩天轮转一周大约需要30min ,可知座舱转动的角速度约为πmin 15rad ,由题意,可得πππ55sin 6555cos 6515215H t ⎛⎫=-+=-+ ⎪⎝⎭,030t ≤≤,令π55cos 6592.515H t =-+≥,030t ≤≤,可得1020t ≤≤,所以南鸢同学可以拍到最美景色的时间是201010-=分钟,故10.14.给出下列命题:①若角α的终边过点()()3,40P k k k ≠,则4sin 5α=;②若α,β是第一象限角,且αβ>,则sin sin αβ>;③函数()π4sin 23f x x ⎛⎫=+ ⎪⎝⎭的图象关于点π,06⎛⎫- ⎪⎝⎭对称;④若函数()()3cos 32f x x ϕ=+是奇函数,那么ϕ的最小值为π4;⑤若角C 是ABC 的一个内角,且1sin cos 2C C +=,则ABC 是钝角三角形;⑥已知函数()()2sin 0f x x ωω=>在区间ππ,34⎡⎤-⎢⎥⎣⎦单调递增,则02ω<≤.其中正确命题的序号是______.【正确答案】③⑤【分析】根据角的中边上的点可求角的三角函数值,判断①;根据象限角的含义举反例,判断②;采用代入验证的方法可判断③;根据函数()()3cos 32f x x ϕ=+是奇函数,利用奇函数定义可求得ππ,Z 42k k ϕ=+∈,即可判断④;根据1sin cos 2C C +=,采用平方法判断C 的范围,判断⑤;利用正弦函数的单调性,求得ω的范围,判断⑥.【详解】①,若角α的终边过点()()3,40P k k k ≠,则P到原点距离为5,055,0k k r k k k >⎧==⎨-<⎩,故44sin |5|5k k α==±,①错误;②α,β是第一象限角,且αβ>,不妨取13ππ,66αβ==,但sin sin αβ=,②错误;③当π6x =-,函数πππ4sin[2()]0663f ⎛⎫-=-+= ⎪⎝⎭,即函数()π4sin 23f x x ⎛⎫=+ ⎪⎝⎭的图象关于点π,06⎛⎫- ⎪⎝⎭对称,③正确;④若函数()()3cos 32f x x ϕ=+是奇函数,则()()()(),3cos 323cos 32f x f x x x ϕϕ-=-∴-+=-+,即cos3cos 20x ϕ=,因为x ∈R ,故cos20ϕ=,则πππ2π,Z,,Z 242k k k k ϕϕ=+∈∴=+∈,那么ϕ的最小正值为π4,无最小值,④错误;⑤若角C 是ABC 的一个内角,且1sin cos 2C C +=,即21(sin cos )12sin s 4coso C C C C +=+=,即sin cos 38C C =-,由于(0,π)C ∈,故sin 0,cos 0C C ><,故C 为钝角,ABC 是钝角三角形,⑤正确;⑥已知函数()()2sin 0f x x ωω=>在区间ππ,34⎡⎤-⎢⎥⎣⎦单调递增,则,π4π3x ωωω⎡⎤∈-⎢⎥⎣⎦,可得ππ32ππ32ωω⎧-≥-⎪⎪⎨⎪≤⎪⎩,解得302ω<≤,⑥错误,故③⑤三、解答题15.已知()()π1sin sin π23πcos 2f αααα⎛⎫++-+ ⎪⎝⎭=⎛⎫- ⎪⎝⎭.(1)若α是第三象限角,且3cos 5α=-,求()f α的值;(2)若()4f α=-,求sin 1cos αα-的值.【正确答案】(1)12-(2)3【分析】(1)利用诱导公式化简得到()1cos sin sin f αααα++=-,根据α是第三象限角,且3cos 5α=-求出sin α,代入即可;(2)根据()4f α=-得到1cos 3sin αα+=,再利用同角三角函数关系变形得到sin 1cos 31cos sin αααα+==-.【详解】(1)()()π1sin sin π1cos sin 23πsin cos 2f ααααααα⎛⎫++-+ ⎪++⎝⎭=-⎛⎫- ⎪⎝⎭,因为α是第三象限角,且3cos 5α=-,所以sin 54α==-,故()3411cos sin 1554sin 25f αααα--++===--(2)()1cos sin 4sin f αααα++==--,故1cos 3sin αα+=,由于sin α位于分母的位置,故sin 0α≠,故1cos 0α+≠,故()()()()()22sin 1cos sin 1cos sin 1cos sin 1cos 31cos 1cos 1cos 1cos sin sin αααααααααααααα++++=====--+-.16.已知函数()()2π2sin πcos 2f x x x x ⎛⎫=+-+ ⎪⎝⎭(1)求()f x 的最小正周期及单调递减区间;(2)当ππ,42x ⎡⎤∈⎢⎥⎣⎦时,求()f x 的最大值和最小值,以及相应x 的值;(3)若0π14625f x ⎛⎫-= ⎪⎝⎭,03π,π4x ⎡⎤∈⎢⎥⎣⎦,求0sin2x 的值.【正确答案】(1)π;5π11ππ,π(Z)1212k k k ⎡⎤++∈⎢⎥⎣⎦(2)当5π12x =时,max ()2f x =;当π4x =时,min ()1f x =(3)1450+-【分析】(1)利用三角恒等变换化简()f x ,再利用三角函数的性质即可得解;(2)利用正弦函数的性质即可得解;(3)由题意可得02πsin 232514x ⎛⎫-= ⎪⎝⎭,从而利用基本关系式与正弦函数的和差公式即可得解.【详解】(1)因为()()2π2sin πcos 2f x x x x ⎛⎫=+-+ ⎪⎝⎭22sin cos x x x =+)22sin cos 12sin x x x =-πsin 222sin 23x x x ⎛⎫==- ⎪⎝⎭,所以()f x 的最小正周期2ππ2T ==,由ππ3π2π22π,Z 232k x k k +≤-≤+∈,得5π11πππ,Z 1212k x k k +≤≤+∈,所以()f x 的单调递减区间为5π11ππ,π(Z)1212k k k ⎡⎤++∈⎢⎥⎣⎦.(2)由(1)知()f x 的单调递减区间为5π11ππ,π(Z)1212k k k ⎡⎤++∈⎢⎥⎣⎦,因为ππ,42x ⎡⎤∈⎢⎥⎣⎦,所以()f x 在π5π,412⎡⎤⎢⎥⎣⎦上单调递增,在5ππ,122⎡⎤⎢⎥⎣⎦上单调递减,又5πππππ2π2sin 2,2sin 1,2sin1224623f f f ⎛⎫⎛⎫⎛⎫===== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以当5π12x =时,max ()2f x =,当π4x =时,min ()1f x =.(3)因为0π14625f x ⎛⎫-= ⎪⎝⎭,所以02πsin 232514x ⎛⎫-= ⎪⎝⎭,又03π,π4x ⎡⎤∈⎢⎥⎣⎦,则02π5π4π2363x ⎡⎤-∈⎢⎥⎣⎦,则02πcos 203x ⎛⎫-< ⎝⎭,所以02πcos 23x ⎛⎫-== ⎪⎝⎭,所以002π2πsin 2sin 233x x ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦002π2π2π2πsin 2cos cos 2sin 3333x x ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭1411425225250⎛⎫+⎛⎫=⨯-+-⨯=- ⎪ ⎪ ⎪⎝⎭⎝⎭.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D C
A
B 8 8
8 8
4
4
4
4
x
x
y y y y O
O
O
O
A 、
B 、
C 、
D 、
数学部分
一、选择题
1、如图,两直线a ∥b ,与∠1相等的角的个数为(C )
A 、1个
B 、2个
C 、3个
D 、4个 2、不等式组的解集是( A )
A 、
B 、
C 、
D 、无解
3、如果,那么下列各式中正确的是( D )
A 、
B 、
C 、
D 、
4、如图所示,由∠D=∠C,∠BAD=∠ABC 推得△ABD ≌△BAC ,所用的的判定定理的简称是( A )
A 、AAS
B 、ASA
C 、SAS
D 、SSS
5、已知一组数据1,7,10,8,x ,6,0,3,若=5,则x 应等于( B )
A 、6
B 、5
C 、4
D 、2 6、下列说法错误的是( B )
A 、长方体、正方体都是棱柱;
B 、三棱住的侧面是三角形;
C 、六棱住有六个侧面、侧面为长方形;
D 、球体的三种视图均为同样大小的图形;
7、△ABC 的三边为a 、b 、c ,且
,则( D )
A 、△ABC 是锐角三角形;
B 、c 边的对角是直角;
C 、△ABC 是钝角三角形;
D 、a 边的对角是直角;
8、为筹备班级的初中毕业联欢会,班长对全班学生爱吃哪几种水果作了民意调查,那么最终买什么水果,下面的调查数据中最值得关注的是( C )
A 、中位数;
B 、平均数;
C 、众数;
D 、加权平均数;
六个面上都按9、如右图,有三个大小一样的正方体,每个正方体的字,并且把标
照相同的顺序,依次标有1,2,3,4,5,6这六个数有“6”的面都放在左边,那么它们底面所标的3个数字之和等于( A )
A 、8
B 、9
C 、10
D 、11
10、为鼓励居民节约用水,北京市出台了新的居民用水收费标准:(1)若每月每户居民用水不超过4立方米,则按每立方米2米计算;(2)若每月每户居民用水超过4立方米,
则超过部分按每立方米4.5米计算(不超过部分仍按每立方米2元计算)。

现假设该市
1
a
b
4
1
3 2 1 2
6
A
B
C
D
E
F
A B
O C
D
y x
5
20 21
12
某户居民某月用水x 立方米,水费为y 元,则y 与x 的函数关系用图象表示正确的是( C )
二、填空题(每小题4分,共32分) 11、不等式
的解集是____X >2______________;
12、已知点A 在第四象限,且到x 轴,y 轴的距离分别为3,5,则A 点的坐标为__(5,-3)_______;
13、为了了解某校初三年级400名学生的体重情况,从中抽查了50名学生的体重进行统计分析,在这个问题中,总体是指__某校初三年级400名学生体重情况的全体______;
14、某班一次体育测试中得100分的有4人,90分的有11人,80分的有11人,70分的有8人,60分的有5人,剩下的8人一共得了300分,则中位数是____80分_________。

15、如图,已知∠B=∠DEF ,AB=DE ,请添加一个条件使△ABC ≌△DEF ,则需添加的条件是___BC=EF_______;
16、如图,AD 和BC 相交于点O ,OA=OD ,OB=OC ,若∠B=40°,∠AOB=110°,则∠D=___80_____度;
17、弹簧的长度y(cm)与所挂物体的质量x (kg)的关系是一次函数, 图象如右图所示,则弹簧不挂物体时的长度是_____9______cm ;
第15题图第16题图第17题图
18、如下图所示,图中是一个立体图形的三视图,请你根据视图,说出立体图形的名称:
对应的立体图形是_________四菱形或五面体_______的三视图。

三、解答题(共78分) 19、(8分)解不等式,并把解集在数轴上表示出来。

解:
主视图
左视图
俯视图
S(千米)
7.5
10
22
)
20、(8分)填空(补全下列证明及括号内的推理依据): 如图:已知:AD ⊥BC 于D ,EF ⊥BC 于F ,∠1=∠3,
求证:AD 平分∠BAC 。

证明:∵AD ⊥BC ,EF ⊥BC 于F(已知) ∴AD ∥EF(同位角相等,两直线平等或在同一平面内,垂直于同一条干线的两条直线
平行)
∴∠1=∠E(两条直线平行,同位角相等) ∠2=∠3(两条直线平行,内错角相等) 又∵∠3=∠1(已知) ∴∠1=∠2(等量代换)
∴AD 平分∠BAC(AD 平分∠BAC ∵∠1=∠2,AD 为∠BAC 平分线) 21、画出下图的三视图(9分)
22、(9分)已知点A(10,0),B(10,8),C(5,0),D(0,8),E(0,0),请在下面的平面直角坐标系中,
(1)分别描出A 、B 、C 、D 、E 五个点,并顺次连接这五个点,观察图形像什么字母;
M
(2)要图象“高矮”不变,“胖瘦”变为原来图形的一半,坐标值应发生怎样的变化?
缩小一半
1
2 3
A B
C
D
E
F
23、(10分)如图,l A,l B分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系。

(1)B出发时与A相距____10_____千米。

(2)走了一段路后,自行车发生故障,进行修理,所用的时间是___1_________小时。

(3)B出发后____3_____小时与A相遇。

(4)若B的自行车不发生故障,保持出发时的速度前进,几小时与A相遇,相遇点离B的出发点多少千米。

在图中表示出这个相遇点C,并写出过程。

解:设相遇点为C。

l A的函数关系式:
的函数关系:
解得
24、(10分)已知:如图,RtABC≌Rt△ADE,∠ABC=∠ADE=90°,试以图中标有字母的点为端点,连结两条线段,如果你所连结的两条线段满足相等、垂直或平行关系中的一种,。

(1)连结CD、EB,则有CD=EB;
(2)连结AF、BD,则有AF⊥BD;
(3)连结BD、EC,则有BD∥EC
26、(14分)(1)为保护环境,某校环保小组成员小敏收集废电池,第一天收集1号电池4节、5号电池5节,总重量460克;第二天收集1号电池2节、5号电池3节,总重量240克。

①求1号和5号电池每节分别重多少克?
②学校环保小组为估算四月份收集废电池的总重量,他们随意抽取了该月腜 5天每天收集废电池的数量,如下表:
1号废电池(单位:节)29303228
3
1
5号废电池(单位:节)515347
4
9
5
分别计算两种电池的样本平均数,并由此估算该月(30天)环保小组收集废电池的总重量是多少千克?
解:(1)①设1号电池每节重量为x克,5号电池每节重量为y克;
由题意可得:解得:,答:1号电池每节重量为90克,5号电池每节重量为20克;
(2)18,30,
(2)如图,用正方体石墩垒石梯,下图分别表示垒到一、二、三阶梯时的情况,那么照这样垒下去,
①填出下表中未填的两空,观察规律。

阶梯级数一

二级三级四级
石墩
块数
391830。

相关文档
最新文档