2017最新函数图像的对称问题(小结)

合集下载

函数的对称技巧

函数的对称技巧

函数的对称技巧
函数的对称技巧指的是一些可以用来判断函数是否具有对称性的方法和技巧。

以下是几种常见的函数对称技巧:
1. 偶函数:如果对于函数f(x),有f(x) = f(-x),则函数f(x)是偶函数。

偶函数的图像关于y轴对称。

2. 奇函数:如果对于函数f(x),有f(x) = -f(-x),则函数f(x)是奇函数。

奇函数的图像关于原点对称。

3. 周期函数:如果对于函数f(x),存在一个正周期T,使得对于任意x,有f(x) = f(x + T),则函数f(x)是周期函数。

周期函数的图像在每个周期内重复。

4. 对称中心:某些函数可能存在对称中心,即函数图像关于某个点对称。

可以通过绘制函数图像或观察函数表达式的特点来确定对称中心。

5. 对称轴:某些函数图像可能存在对称轴,即函数图像关于某条直线对称。

可以通过绘制函数图像或观察函数表达式的特点来确定对称轴。

这些对称技巧可以帮助我们更好地理解和分析函数的性质,同时也可以简化问题的解决方法和计算过程。

2017年高一预科第十一讲 函数对称性

2017年高一预科第十一讲 函数对称性

第十一讲 函数对称性[知识背景] 1.概念(定义,表示,分类与特征) 2.意义(解题)<一>对称与数学:对称是客观事物存在的一种形式.数学作为客观物体在量及形上的一种表达形式,必然会反映这种关系,如对称点、对称式、对称图、对称运算与对称命题.<二>数学对称:1.定义:对于构成原问题的元素顺序或运算形式或语言表达,通过取原元素中逆顺序或逆运算或具有相反意义的表述,实现对原问题的再改造,称为原问题的对称性问题,简述为数学问题的对称性构造.2.特征:外观结构对称(元素和运算功能,语言表达等),数量成对.3.分类:代数对称有正负对称,和差对称,互余对称,倒数对称,共轭对称; 图形对称有中心对称和轴对称.4.意义:整体转化.间接方法.(摘要自甘肃礼县一中刘国栋老师发表在《中学数学教学参考》1997年第7期39页的文章“数学问题的对称性构造与对称化方法”一文)[知识点] ⑴反函数 ,奇、偶函数 ⑵式对称[例题选讲]1.⑴已知f(x)=244+x x,求和式f(10011)+f(10012)+f(10013)+…+f(10011000)的值. ⑵已知f(x)=221x x +, 求和式f(1)+f(2)+f(21)+f(3)+f(31)+f(4)+f(41)的值. 2.⑴函数f(x)=111122+++-++x x x x 图象关于A.x 轴对称B. y 轴对称C. 原点对称D. 直线x=1对称 ⑵函数f(a-x)与f(x-b)图象关于直线l 对称,则直线方程 A.x=2b a - B.x=2b a + C.x=a-b D.x=a+b 3.⑴已知函数f(x)=mx x +-25图象关于直线y=x 对称,求实数m. ⑵若直线y=ax+1与直线y=-2x+b 关于直线y=x 对称,求a,b 值.4.二次函数f(x)=ax 2+bx+c(a ≠0) ,如果f(x 1)= f(x 2)(其中x 1≠x 2),则f(x 1+x 2)等于 A.-a b 2 B.-a b C.c D.a b ac 442-[巩固题组]1.⑴已知函数f(x)为奇函数,则F(x)= f(x-a)+b 图象关于点____对称⑵已知函数f(x)为偶函数,则F(x)= f(x-a)图象关于直线_____对称2.⑴设函数f(x)=132-+x x ,y=g(x)图象与y=f 1-(x+1)图象关于直线y=x 对称,求g(3)值. ⑵求证:函数y=2x 图象与函数y=log2x 图象对称.3.⑴设f(x)=2211x x -+,求证: ⑴ f(-x)= f(x) ⑵ f(x 1)= -f(x) ⑵设f(x)=xx +-11, 求值: ⑴ f(a+1) ⑵ f(a)+14.光线从点(-2,3)射到x轴上一点P(1,0)后被x轴反射,求反射光线所在直线方程.5.⑴已知点P(2,3),求其关于下列情形下的对称点⑴原点(0,0) ⑵x轴⑶y轴⑷直线y=x ⑸直线y=-x ⑹点(a,b)⑵已知直线3x-4y+5=0,求其在下列情形下的对称直线⑴原点(0,0) ⑵x轴⑶y轴⑷直线y=x ⑸直线y=-x ⑹点(a,b)。

函数的对称性与周期性(归纳总结)

函数的对称性与周期性(归纳总结)

函数的对称性与周期性(归纳总结)一、函数对称性:1.2.3.4.5.6.7.8.f(a+x)=f(a-x)==>f(x)关于x=a对称f(a+x)=f(b-x)==>f(x)关于x=(a+b)/2对称f(a+x)=-f(a-x)==>f(x)关于点(a,0)对称f(a+x)=-f(a-x)+2b==>f(x)关于点(a,b)对称f(a+x)=-f(b-x)+c==>f(x)关于点[(a+b)/2,c/2]对称y=f(x)与y=f(-x)关于x=0对称y=f(x)与y=-f(x)关于y=0对称y=f(x)与y=-f(-x)关于点(0,0)对称例1:证明函数y=f(a+x)与y=f(b-x)关于x=(b-a)/2对称。

【解析】求两个不同函数的对称轴,用设点和对称原理作解。

证明:假设任意一点P(m,n)在函数y=f(a+x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a+m)=f[b(2tm)] ∴b2t=a,==>t=(b-a)/2,即证得对称轴为x=(b-a)/2.例2:证明函数y=f(a-x)与y=f(xb)关于x=(a+b)/2对称。

证明:假设任意一点P(m,n)在函数y=f(a-x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a-m)=f[(2tm)b] ∴2t-b=a,==>t=(a+b)/2,即证得对称轴为x=(a+b)/2.二、函数的周期性令a,b均不为零,若:1、函数y=f(x)存在f(x)=f(x+a)==>函数最小正周期T=|a|2、函数y=f(x)存在f(a+x)=f(b+x)==>函数最小正周期T=|b-a|3、函数y=f(x)存在f(x)=-f(x+a)==>函数最小正周期T=|2a|4、函数y=f(x)存在f(x+a)=1/f(x)==>函数最小正周期T=|2a|5、函数y=f(x)存在f(x+a)=[f(x)+1]/[1f(x)]==>函数最小正周期T=|4a|这里只对第2~5点进行解析。

两类函数图象对称问题

两类函数图象对称问题

两类函数图象对称问题函数图象对称问题是函数部分的一个重要问题,大致有两类:一类是同一个函数图象自身的对称性;一类是两个不同函数之间的对称性。

定理1 若函数y=f(x) 对定义域中任意x 均有f(a+x)=f(b-x),则函数y=f(x)的图象关于直线2a b x +=对称。

定理2 若函数y=f(x)对定义域中任意x 均有f(x+a)+f(b-x)+c=0,则函数y=f(x)的图象关于点(,)22a b c +-成中心对称图形。

定理3 函数y=f(a+x)与函数y=f(b-x)的图象关于直线2b a x -=对称。

特别地,当a=-b 时,函数y=f(-b+x)与函数y=f(b-x)的图象关于直线x=b 对称。

定理4 函数()y f a x ω=+与函数()y f b x ω=-的图象关于直线2b a x ω-=对称 证明:()[()]a y f a x f x ωωω=+=+ , ()[()]b y f b x f x ωωω=-=-- 所以 ,将函数()y f x ω=的图象向左平移||aω个单位得()y f a x ω=+的图象;将函数()y f x ω=-的图象向右平移||bω个单位得函数()y f b x ω=-的图象,而()y f x ω=与()y f x ω=-的图象关于 y 轴对称,可得两函数图象关于直线 2b a x ω-=对称。

记忆技巧:令 a x b x ωω+=- ,易得2b a x ω-=。

[例1] 函数y=f(x+1)与函数y=f(3-x)的图象关于 __________对称解:由定理3知,两函数图象关于3112x -==,即关于直线x=1对称。

[例2] 若方程f(3+2x)=0有三个根,则方程f(1-2x)=0 有_____个根,两方程的所有的根之和为______解:设12(32),(12)y f x y f x =+=-,由定理知,两函数关于131222x -==-⨯对称。

函数对称性的总结

函数对称性的总结

函数对称性的总结函数是数学中十分重要的概念之一,它描述了两个集合之间的关系。

而在函数的定义中,有一种特殊的性质被广泛研究和应用,那就是对称性。

函数的对称性是指函数图像关于某个中心轴或中心点具有对称性。

在实际问题中,对称性可以帮助我们简化问题、提取信息,以及更好地理解函数的性质。

在本文中,将对函数对称性进行总结和阐述。

函数对称性可以分为水平对称、垂直对称、中心对称以及零对称四种类型。

水平对称是指函数图像关于x轴对称。

具体而言,若函数f(x)满足对于任意x,f(x) = f(-x),则函数f(x)是水平对称的。

例如,函数y =x^2是一个典型的水平对称函数,其图像关于x轴对称。

水平对称函数在图像上旋转一定角度后,仍然与原图像重合,这种性质可以简化问题的解决过程。

比如在研究汽车的加速度与减速度时,我们可以利用水平对称性简化计算,因为加速度与减速度的变化规律是相似的。

垂直对称是指函数图像关于y轴对称。

具体而言,若函数f(x)满足对于任意x,f(x) = -f(-x),则函数f(x)是垂直对称的。

例如,函数y =sin(x)是一个典型的垂直对称函数,其图像关于y轴对称。

垂直对称函数在图像上左右移动一定距离后,仍然与原图像重合。

这种性质在处理对称结构时非常有用。

例如,在纺织品设计中,我们可以利用垂直对称性确定图案的左右对称部分,以减少设计成本和提高生产效率。

中心对称是指函数图像关于某个点对称。

具体而言,若函数f(x)满足对于任意x,f(x) = f(-x + a),其中a为常数,则函数f(x)是中心对称的。

例如,函数y = e^(-x^2)是一个典型的中心对称函数,其图像关于原点对称。

中心对称函数在图像上绕某个点旋转一定角度后,仍然与原图像重合。

这种性质在物理学中十分重要。

例如,在研究电场的分布时,我们可以利用中心对称性确定电场的中心位置和形状。

零对称是指函数图像关于原点对称。

具体而言,若函数f(x)满足对于任意x,f(x) = -f(-x),则函数f(x)是零对称的。

函数对称性的总结

函数对称性的总结

函数对称性的总结函数对称性是数学中的一个重要概念,它描述了函数图像在某些操作下的不变性。

函数对称性有多种形式,包括对称轴对称、点对称和周期性等。

这些对称性不仅仅是数学上的概念,它们在自然界和现实生活中也有广泛的应用。

在这篇文章中,我们将对函数对称性进行详细的总结和讨论。

首先,我们来谈谈对称轴对称性。

对称轴对称是指函数图像以某一直线为轴对称,即对于函数图像上的任意一点P,它关于对称轴上的另一点P'是关于对称轴对称的。

对称轴对称性在直角坐标系中通常体现为对称轴为y轴的情况,此时函数图像关于y轴对称。

也有一些例外,比如平方函数y = x^2关于x轴对称,开方函数y = √x关于y轴对称。

对称轴对称性常见于各种二次函数、三次函数等。

其次,点对称性是另一种常见的函数对称性。

点对称是指函数图像关于某个点对称,即对于函数图像上的任意一点P,它关于对称中心O的另一点P'是关于对称中心对称的。

对于点对称性来说,对称中心可以是任意点,不一定是坐标轴上的点。

点对称性常见于正弦函数、余弦函数等周期函数中。

接下来,我们来看一下周期性对称性。

周期性是指函数具有固定的周期,即对于函数中的任意一点P,在以周期为基准的一段距离内,P点和P'点的函数值相同。

周期函数是常见的具有周期性对称性的函数。

例如正弦函数y = sin(x)、余弦函数y = cos(x)、正切函数y = tan(x)等都具有周期性对称性。

除了以上三种常见的函数对称性,还有一些特殊的对称性值得关注。

例如,奇函数和偶函数是两种特殊的对称性形态。

奇函数是指满足f(-x) = -f(x)的函数,即函数图像关于坐标原点对称。

常见的奇函数有正弦函数和奇次多项式。

偶函数是指满足f(-x) = f(x)的函数,即函数图像关于y轴对称。

常见的偶函数有余弦函数和偶次多项式。

奇函数和偶函数的对称性在函数的定义和求解中有很多实际应用。

最后,函数对称性在数学中起着重要的作用。

函数对称性问题

函数对称性问题

函数对称性问题函数图象的对称性体现了数学对称美。

函数图象对称问题是函数部分的一个重要问题,也是高考的重点。

本文从两方面探讨函数的对称性。

命题1、函数y=f(a+x)与函数y=f(b-x)的图象关于直线x?b?a对称。

2特别地,当a=-b时,函数y=f(-b+x)与函数y=f(b-x)的图象关于直线x=b对称。

推论1、函数y?f(a??x)与函数y?f(b??x)的图象关于直线x?b?a对称 2?ab证明:?y?f(a??x)?f[?(x?)], y?f(b??x)?f[??(x?)]??所以,将函数y?f(?x)的图象向左平移|数y?f(??x)的图象向右平移|a?|个单位得y?f(a??x)的图象;将函b?|个单位得函数y?f(b??x)的图象,而y?f(?x)与y?f(??x)的图象关于 y轴对称,可得两函数图象关于直线x?b?ab?a对称。

记忆技巧:令 a??x?b,即对称轴方程。

?? x,易得x?2?2?命题2、若函数y=f(x) 对定义域中任意x均有f(a+x)=f(b-x),则函数y=f(x)的图象关于直线x?a?b对称。

反之亦然。

2推论2、若函数y=f(x) 对定义域中任意x均有f(a+mx)=f(b-mx),(m?0),则函数y=f(x)的图象关于直线x?a?b对称。

反之亦然。

2命题3、若函数y=f(x)对定义域中任意x均有f(x+a)+f(b-x)=c,则函数y=f(x)的图象关于点(a?bc,)成中心对称图形。

22下面举例说明其应用。

[例1] 函数y=f(x+1)与函数y=f(3-x)的图象关于 __________对称解:由命题1知,两函数图象关于x?3?1?1, 即关于直线x=1对称。

2[例2] 若方程f(3+2x)=0有三个根,则方程f(1-2x)=0 有_____个根,两方程的所有的根之和为______解:设y1?f(3?2x),y2?f(1?2x),由推广1知,两函数图象关于x?1?31??2?22对称,故两函数图象与x轴交点个数相同,方程f(1-2x)=0也有三个根,这六个跟之和为?1?6??3. 2?[例3] 函数y=f(x)对一切x满足f(x+a)=f(b-x)(1)若方程f(x)=0恰有2n(n?N)个根,则这些根的和为多少?1(2)若方程恰2n+1(n?N)个根,则这些根的和为多少?解:由命题2知,y=f(x)图象关于x??a?b对称。

函数的对称问题重点

函数的对称问题重点

函数的对称问题湖南彭向阳一、函数的自对称问题1.函数 y=f(x 的图象关于直线x=a 对称f(a+x=f(a-x ;特别,函数y=f(x 的图象关于y 轴对称f(x=f(-x.2.函数 y=f(x 的图象关于点(a,b 对称f(a+x+f(a-x=2b ;特别,函数y=f(x 的图象关于原点对称f(-x=-f(x.主要题型:1.求对称轴 (中心:除了三角函数y=sinx , y=cosx 的对称轴〔中心〕可以由以下结论直接写出来 (对称轴为函数取得最值时的x=,对称中心为函数与x 轴的交点外,其它函数的对称轴(中心就必须求解,求解有两种方法,一是利用对称的定义求解;二是利用图象变换求解.例 1 确定函数的图象的对称中心.解析 1 设函数的图象的对称中心为〔h, k〕,在图象上任意取一点P 〔x, y〕,它关于〔 h, k〕的对称点为Q〔 2h-x, 2k-y 〕, Q 点也在图象上,即有,由于,两式相加得,化简得〔*〕.由于 P 点的任意性,即〔 * 〕式对任意 x 都成立,从而必有 x 的系数和常数项都为 0,即h=1,k=1.所以函数的图象的对称中心为〔1,1〕.解析 2 设函数,那么g(x为奇函数,其对称中心为原点,由于,说明函数f(x 的图象是由g(x 的图象分别向右、向上平移 1 个单位得到,而原点向右、向上分别平移 1 个单位得到点 (1,1.所以函数的图象的对称中心为〔1,1〕.例 2 曲线 f(x=ax 3+bx2+cx ,当 x=1-时,f(x有极小值;当x=1+时,f(x有极大值,且在x=1 处切线的斜率为.(1 求 f(x ;(2 曲线上是否存在一点P,使得 y=f(x 的图象关于点P 中心对称?假设存在,求出点P 的坐标,并给出证明;假设不存在,请说明理由.解析 (1 =3ax2+2bx+c ,由题意知 1- 与 1+ 是 =3ax2+2bx+c=0 的根,代入解得 b=-3a, c=-6a.又 f(x 在 x=1 处切线的斜率为,所以,即3a+2b+c=,解得. 所以f(x .f(x0+x+f(x0-x=2y0 ,(2 假设存在P(x0 , y0,使得f(x 的图象关于点P 中心对称,那么即,化简得.由于是对任意实数x 都成立,所以,而 P在曲线y=f(x上.所以曲线上存在点P,使得y=f(x的图象关于点P 中心对称 .2.证明对称性:证明对称性有三种方法,一是利用定义,二是利用图象变换,三是利用前面的结论 ( 函数 y=f(x的图象关于点(a,b对称f(a+x+f(a-x=2b来解决.例 3 求证函数的图象关于点P〔 1,3 〕成中心对称.证明 1 在函数的图象上任意取一点A〔x, y〕,它关于点P〔 1,3 〕的对称点为 B〔2-x , 6-y 〕,因为,所以点 B 在函数的图象上,故函数的图象关于点P〔 1,3 〕对称 .证明2因为.由于是奇函数,所以的图象关于原点对称,将它的图象分别向右平移 1 个单位,向上平移 3 个单位,就得到函数的图象,所以的图象关于点P〔 1,3 〕对称 .所以的图象关于点 P〔 1,3 〕对称 .3.函数的对称性求函数的值或参数的值:由函数的对称性求值,关键是将对称问题转化为等式问题,然后对变量进行赋值求解. 例4 定义在R 上的函数f(x的图象关于点对称,且满足那么f(1+f(2+f(3++f(2005 的值为〔〕.A .解析由f(x 的图象关于点,即,即对称,那么说明函数,又,函数 f(x是偶函数是奇函数,也就是有,所以.所以,又,即 f(x 以 3 为周期, f(2=f(-1=1 , f(3=f(0=-2 ,所以 f(1+f(2+f(3+ +f(2005=668 〔 f(1+f(2+f(3 〕 +f(2005=f(2005=f(1=1 ,选 D.例 5 函数f(x=的图象关于点中心对称,求f(x.解析 1 设 f(x图象上任意一点A〔 x,y〕,它关于点的对称点为B,由于 A、 B 都在 f(x上,所以,相加整理得,解得 a=1.所以 f(x=.解析 2 由上面的公式有,代入化简整理得a=1.解析 3 由题意知将函数y=f(x的图象向左平移 1 个单位长度,向下平移个单位长度得y=的图象,它关于原点对称,即是奇函数,=,即 y=,它是奇函数必须常数项为0,即 a=1.二、函数的互对称问题1. y=f(x 与 y=g(x 的图象关于直线x=a 对称f(a+x=g(a-x ;2. y=f(x 与 y=g(x 的图象关于直线y=b 对称f(x+g(x=2b ;3. y=f(x 与 y=g(x 的图象关于点 (a , b 对称f(a+x+g(a-x=2b.4. y=f(x 与 y=g(x 的图象关于直线y=x 对称f(x 和 g(x 互为反函数 .记住这些结论不仅仅便于解决选择填空题,也便于解答题中的图象互相对称的函数解析式的求解问题 . 主要题型:1. 判断两个函数图象的对称关系例 6 在同一平面直角坐标系中,函数f(x=2x+1与g(x=21-x的图象关于(.A.直线x= 1 对称 B. x轴对称C.y轴对称D. 直线y=x对称解析作为一个选择题,可以取特殊点验证法,在f(x上取点(1,4,g(x上点(-1,4,而这两个点关于y 轴对称,所以选择 C.当然也可利用上面的结论解决,因为f(-x=2-x+1=g(x,所以f(x、g(x的图象关于y 轴对称,选 C.2.证明两个函数图象的对称性:一般利用对称的定义,先证明前一个函数图象上任意一点关于直线 ( 点的对称点在后一个函数的图象上,再证明后一个函数图象上任意一点关于直线( 点的对称点也在前一个函数的图象上,这两个步骤不能少.当然也可利用上面的结论来解决.例 7 函数f(x=x3-x,将y=f(x的图象沿x 轴、 y 轴正向分别平行移动t 、 s 单位,得到函数 y=g(x 的图象 . 求证: f(x和g(x的图象关于点A〔〕对称.解析由得g(x=(x-t3-(x-t+s.在 y=f(x的图象上任取一点P(x1,y1 ,设Q(x2,y2是P 关于点 A 的对称点,那么有,∴x1=t -x2, y1=s-y2.代入 y=f(x ,得 x2 和 y2 满足方程:s-y2=(t-x23-(t-x2,即y2=(x2-t3-(x2-t+s,可知点 Q(x2,y2 在 y=g(x 的图象上 .反过来,同样可以证明,在y=g(x的图象上的点关于点 A 的对称点也在y=f(x的图象上,因此,f(x和g(x的图象关于点A〔〕对称.3.由两个函数图象的对称性求参数值:首先必须根据对称性由函数求出另一函数的解析式,然后再由条件确定参数的值.例 8 f(x 是定义在上的偶函数,g(x的图象与f(x的图象关于直线x=1 对称,且当时, g(x=2a(x-2-3(x-23 ,其中为常数,假设f(x 的最大值为12,求 a 的值 .解析由于 g(x 的图象与 f(x 的图象关于直线x=1 对称,所以 f(1+x=g(1-x ,即 f(x=g(2-x.当时,,所以f(x=g(2-x= 2a(2-x-2-3(2-x-23=-2ax+3x3,因为f(x 是偶函数,所以当时,, f(x=f(-x=2ax-3x3.因为当时,=-2a+9x2 ≤ -2a+9<0,所以f(x 在上是减函数,从而f(x 在上是增函数,所以f(x 的最大值为f(1=f(-1=2a-3=12 ,即.。

函数图像的对称问题(小结)

函数图像的对称问题(小结)

函数图像的对称问题潘建荣函数问题的对称性问题是函数性质的一个重要方面,也是历年高考热点问题之一,除了常见的自身对称(奇偶函数的对称性),两函数图像对称(原函数与反函数的对称性)以外,函数图象的对称性还有一些图像关于点对称和关于直线对称的两类问题,在这里,两函..数图象关于某直线对称或关于某点...............成.中心对称....与函数自身的对称轴或对称中心.............是有本质区别的,注意不要把它们相混淆。

造成解题失误,下面就这些问题给出一般结论,希望对同学们有帮助。

一、 同一个函数图象关于直线的对称设a,b 均为常数,函数)(x f y = 对一切数学x 都满足)()(x b f x a f -=+,则函数的图象关于直线2b a x +=对称。

推论1:在直角坐标系中,满足)()(x a f x a f -=+的函数y=f(x)关于直线x=a 对称(其中a 为常数).推论2:在直角坐标系中,满足)()(a x f x a f -=-的函数 的图象关于直线x=0对称。

例1 已知函数的定义域为R ,且对于一切实数x 满足),7()7(),2()2(x f x f x f x f -=+-=+, ,当]7,2[∈x 时, , f(x)2)2(-=x 当]20,16[∈x 时,求函数)(2)(x f x x g -=的表达式。

解析 由 )7()7(),2()2(x f x f x f x f -=+-=+知,函数)(x f y =的图象关于直线x=2和x=7对称,且有)10()]3(7[)]3(7[)4()]2(2[]2)2[()(+=++=+-=-=--=+-=x f x f x f x f x f x f x f )()10(x f x f =-∴当]17,16[∈x 时, ]7,6[10∈-x ,此时22)12()210()10()(-=--=-=x x x f x f ; 当x ]20,17(∈时,],7,4[)20(4),0,3(20∈---∈-x x22)22(]2)20(4[)]20(4[)20()(-=---=--=-=∴x x x f x f x f ,g(x)=⎪⎩⎪⎨⎧≤--≤≤--)2017()22(2)1716()12(222x x x x x x 二、两个函数图象关于直线的对称在同一直角坐标系中,函数)(x a f y +=与函数)(x b f y -=的图象关于直线2a b x -=对称(其中a ,b 均为常数)推论1:在直角坐标系中,函数)(x a f y +=与函数)(x a f y -=的图象关于直线x=0对称。

函数对称的知识点总结

函数对称的知识点总结

函数对称的知识点总结函数对称是数学中的一个重要概念,它在代数、几何和分析等各个领域都有着重要的应用。

函数对称可以由函数的图像、函数表达式和函数的性质来描述。

在本文中,我们将探讨函数对称的各种类型和性质,并且将介绍函数对称在各种数学问题中的应用。

一、基本概念1.1 函数的对称性在数学中,函数的对称性是指函数图像相对于某个直线或者点的对称性质。

常见的对称性包括关于x轴的对称、关于y轴的对称、关于原点的对称以及关于直线y=x的对称等。

1.2 函数的图像和对称性根据函数的图像可以很直观地判断函数的对称性。

例如,当函数的图像关于y轴对称时,函数的表达式一般可以表示为f(x)=f(-x);当函数的图像关于x轴对称时,函数的表达式一般可以表示为f(x)=-f(-x);当函数的图像关于原点对称时,函数的表达式一般可以表示为f(-x)=-f(x)。

1.3 函数的性质和对称性函数的对称性也可以由函数的性质来判断。

例如,奇函数具有关于原点对称的性质,即f(-x)=-f(x);偶函数具有关于y轴对称的性质,即f(-x)=f(x)。

二、函数的对称类型2.1 奇函数奇函数是指满足f(-x)=-f(x)的函数。

奇函数的图像关于原点对称。

常见的奇函数包括正弦函数、余弦函数、和函数等。

2.2 偶函数偶函数是指满足f(-x)=f(x)的函数。

偶函数的图像关于y轴对称。

常见的偶函数包括幂函数、指数函数、对数函数等。

2.3 周期函数周期函数是指函数f(x)满足f(x+T)=f(x),其中T为正常数。

周期函数的图像在某个区间上有重复的规律。

常见的周期函数包括正弦函数、余弦函数、正切函数、三角函数等。

2.4 对称关于y轴的函数函数关于y轴对称的性质是指f(x)=f(-x)。

常见的对称关于y轴的函数包括二次函数、幂函数、指数函数等。

2.5 对称关于x轴的函数函数关于x轴对称的性质是指f(x)=-f(-x)。

常见的对称关于x轴的函数包括一次函数、双曲函数、指数函数等。

关于函数对称点的两个结论及应用举例

关于函数对称点的两个结论及应用举例

对称,由定理1得函数f(x)的图象关于点
( ) 仔 ,仔 中心对称. 2
因 为 f (倩1) +f (倩2) + … +f (倩5) =5仔 =
( ) 5f
仔 2
,由定理2得倩3=
仔 2
.
所 以 咱 f ( 倩3) ]
( ) ( ) 2-倩1倩5=仔2-
仔-仔 24
仔 + 仔 = 13仔2 . 2 4 16
襛 结论的应用举例
题目1 已知实数倩,b 满足倩3-3倩2+ 5倩=1,b3-3b2+5b=5,求倩+b的值.
解:设f(x)=x3-3x2+5x, 则f 忆(x)=3x2-6x+5. 因为函数f 忆(x)的图象关于直线x=1
(下转第 64 页)
62
试题研究 >知识延伸
蓡 蓘 ) 姨_ 5 是上凸函数, 在 姨_ 5 ,+肄 是
(1,3)对称.
所以f(倩)+f(2-倩)=6_(1),
因为f(倩)+f(b)=6_(2),
(1)-(2)得f(2-倩)=f(b).
因为f 忆(x)=3x2-6x+5=3(x-1)2+2>0,
所以f(x)在(-肄,+肄)上为增函数,
由f(2-倩)=f(b)可得2-倩=b,
所以倩+b=2.
题目2 已知f(x)=2x-cosx,喳倩n札是公
题目2 已知f(x)=2x-cosx,喳倩n札是公
差为
仔 8
的 等 差 数 列 , f ( 倩1 ) + f ( 倩2) + 噎 +
f(倩5)=5仔,则[f(倩3)]2-倩1倩5等于( )

函数图像的对称性问题

函数图像的对称性问题

x=1 对称,故 xi= ×2=m,
故选:B 【2016 全国卷 2 理】 12.( 5 分 )已 知 函 数 f( x)( x∈R)满 足 f( ﹣ x)=2﹣ f( x),若 函 数 y= 与 y=f( x) 图 象 的 交 点 为 ( x1, y1),( x2, y2), …,( xm,
ym), 则 ( xi+yi) =(
2
2
(b-x),由轴对称的定义可知:点(a+x,f(a+x))与点(b-x,f(b
-x))关于直线成轴对称,又由 x 的任意性可知:函数 y =f(x)关于直线
成轴对称。反之亦然。
特例: 函数 y f (x) 的图象关于直线 x a 对称
f (a x) f (a x) f (2a x) f (x)
A.关于直线 x=0 对称
B.关于直线 x=1 对称
C.关于(1,0)点对称
D.关于(0,1)点对称
解:D
【依题意,将 h(x)=2sin(2x+π)的图象向右平移π个单位,再向
4
4
上平移 2 个单位后得 y=2sin[2(x-π)+π]+2,即 f(x)=2sin(2x-π)
44
4
+2 的图象,又∵h(-x)+f(x)=2,∴函数 f(x)的图象与函数 h(x)的图象
图象关于
对称
解:由 f(x)+f(2-x)+2 = 0 得:f(x)+1 = -[f(2-x)+1]
令φ(x)= f(x)+1,则φ(2-x)=f(2-x)+1
∴φ(x)=-φ(2-x)
∴ φ(x)关于点(1,0)对称,又 f(x)=φ(x)-1
故由平移知识可得:f(x)关于点(1,-1)对称。 典例 5:【可不看】已知函数 f (x) a x 的反函数 f 1(x) 的图象的对称中心

函数对称性知识点归纳总结

函数对称性知识点归纳总结

函数对称性知识点归纳总结函数对称性是数学中一个重要的概念,它涉及到函数图像在某种变换下的性质和特点。

本文将针对函数对称性的相关知识进行归纳总结,包括函数关于x轴对称、y轴对称和原点对称的特点以及应用。

希望通过本文的介绍,读者能够全面了解函数对称性,并能够应用到实际问题中。

1. 函数关于x轴对称函数关于x轴对称是指函数图像在x轴旋转180度后重合。

具体表现为当函数中的每一个点(x, y)都对应于另一个点(x, -y)。

如果函数的表达式为f(x),那么函数关于x轴对称可以表示为f(x) = f(-x)。

常见的函数关于x轴对称的例子有二次函数和正弦函数。

2. 函数关于y轴对称函数关于y轴对称是指函数图像在y轴旋转180度后重合。

具体表现为当函数中的每一个点(x, y)都对应于另一个点(-x, y)。

如果函数的表达式为f(x),那么函数关于y轴对称可以表示为f(x) = f(-x)。

常见的函数关于y轴对称的例子有二次函数和余弦函数。

3. 函数关于原点对称函数关于原点对称是指函数图像以原点为对称中心,旋转180度后重合。

具体表现为当函数中的每一个点(x, y)都对应于另一个点(-x, -y)。

如果函数的表达式为f(x),那么函数关于原点对称可以表示为f(x) = -f(-x)。

常见的函数关于原点对称的例子有奇次函数和正切函数。

除了以上三种常见的对称性,函数还可能具有其他特殊的对称性,比如关于直线y=x的对称性、关于直线y=-x的对称性等。

这些对称性在函数的研究和应用中都有重要的意义。

函数对称性的应用十分广泛。

其中一项重要的应用是利用对称性来求函数的零点。

如果函数关于x轴对称,也就是满足f(x) = f(-x),那么我们可以通过找到函数图像上的一个零点,得到一个对称的零点。

这是因为如果f(x) = 0,则f(-x) = 0,对称点也是零点。

同样,对于关于y 轴对称或原点对称的函数,我们也可以利用对称性来求解零点。

高中数学中的对称问题小结

高中数学中的对称问题小结

对称问题一、要点梳理1. 对称问题的核心是点关于点的中心对称和点关于直线的轴对称,要充分利用转化的思想将问题转化为这两类对称中的一种加以处理.2.解决最值问题最常用的方法是目标函数法和几何法。

3.求对称曲线的常用思想方法:代入转移法4.许多问题中都隐含着对称性,要注意挖掘、充分利用对称变换来解决,如角平分线、线段中垂线、光线反射等二、基础练习1、已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为 ( )A.(x +1)2+y 2=1B.x 2+y 2=1C.x 2+(y +1)2=1D.x 2+(y -1)2=1 2、方程|2x+y|+|2x-y|=4表示的曲线曲线 ( )A.关于x 轴对称但不关于y 轴对称B.关于y 轴对称但不关于x 轴对称C.关于原点对称D.以上都不对 3、函数y =-e x 的图象 ( )A.与y =e x 的图象关于y 轴对称B.与y =e x 的图象关于坐标原点对称C.与xy e -=的图象关于y 轴对称 D.与xy e -=的图象关于坐标原点对称4、曲线x 2+4y 2=4关于点M (3,5)对称的曲线方程为___________.5、光线从点A (-3,4)发出,经过x 轴反射,再经过y 轴反射,光线经过点B (-2,6),求射入y 轴后的反射线的方程。

变式:已知直线l 1: x+my+5=0和直线l 2:x+ny+P=0,则l 1、l 2关于y 轴对称的充要条件是( )A 、npm =5 B 、p=-5 C 、m=-n 且p= -5 D 、nm 11-=且p=-5 6. 直线0632=-+y x 交x 、y 轴于A 、B 两点,试在直线x y -=上求一点P ,使B P A P 11+最小,则P 点的坐标是_______ 思考、已知函数321()3f x x x x =++的图象C 上存在一定点P 满足:若过点P 的直线l 与曲线C 交于不同于P 的两点1122(,),(,)M x y N x y ,且恒有12y y +为定值0y ,则0y 的值为( ) A. 13-B. 23-C. 43- D. 2- 7、已知点M (3,5),在直线:022=+-y x 和y 轴上各找一点P 和Q ,使MPQ ∆的周长最小。

函数图像的对称性

函数图像的对称性

函数图像的对称性一、 点的对称1、在平面直角坐标系中,已知点P ),(b a ,则(1) 点P 到x 轴的距离为b ; (2)点P 到y 轴的距离为a ; (3) 点P 到原点O 的距离为PO = 22b a +2、平行直线上的点的坐标特征:a) 在与x 轴平行的直线上, 所有点的纵坐标相等;点A 、B 的纵坐标都等于m ;b) 在与y 轴平行的直线上,所有点的横坐标相等;点C 、D 的横坐标都等于n ;3、对称点的坐标特征:c) 点P ),(n m 关于x 轴的对称点为),(1n m P -, 即横坐标不变,纵坐标互为相反数;d) 点P ),(n m 关于y 轴的对称点为),(2n m P -, 即纵坐标不变,横坐标互为相反数;e) 点P ),(n m 关于原点的对称点为),(3n m P --,即横、纵坐标都互为相反数;关于x 轴对称 关于y 轴对称 关于原点对称 4、 两条坐标轴夹角平分线上的点的坐标的特征:f) 若点P (n m ,)在第一、三象限的角平分线上,则n m =,即横、纵坐标相等;g) 若点P (n m ,)在第二、四象限的角平分线上,则n m -=,即横、纵坐标互为相反数;在第一、三象限的角平分线上 在第二、四象限的角平分线上二、(一次函数): 1、若直线与直线关于(1)x 轴对称,则直线l 的解析式为 (2)y 轴对称,则直线l 的解析式为(3)原点对称,则直线l 的解析式为P (b a ,)abxy OXYABm XYCDn Xy P1Pn n -mO XyP2P mm -nOXyP3Pmm -nOn -XyPmnOyPmnOXab(4)直线y =x 对称,则直线l 的解析式为(5)直线对称,则直线l 的解析式为2、直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系 (1)两直线平行⇔21k k =且21b b ≠(2)两直线相交⇔21k k ≠(3)两直线重合⇔21k k =且21b b =(4)两直线垂直⇔121-=k k 三、二次函数:二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+; ()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-;()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-;4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.注意:本部分内容的理解最好结合图形。

函数对称性的总结

函数对称性的总结

参考一:函数对称性总结函数的对称性一、三角函数图像的对称性1、y =f (x ) 与y =-f (x ) 关于x 轴对称。

换种说法:y =f (x ) 与y =g (x ) 若满足f (x ) =-g (x ) ,即它们关于y =0对称。

2、y =f (x ) 与y =f (-x ) 关于Y 轴对称。

换种说法:y =f (x ) 与y =g (x ) 若满足f (x ) =g (-x ) ,即它们关于x =0对称。

3、y =f (x ) 与y =f (2a -x ) 关于直线x =a 对称。

换种说法:y =f (x ) 与y =g (x ) 若满足f (x ) =g (2a -x ) ,即它们关于x =a 对称。

4、y =f (x ) 与y =2a -f (x ) 关于直线y =a 对称。

换种说法:y =f (x ) 与y =g (x ) 若满足f (x ) +g (x ) =2a ,即它们关于y =a 对称。

5、y =f (x ) 与y =2b -f (2a -x ) 关于点(a , b ) 对称。

换种说法:y =f (x ) 与y =g (x ) 若满足f (x ) +g (2a -x ) =2b ,即它们关于点(a , b ) 对称。

6、y =f (a -x ) 与y =f (x -b ) 关于直线x =二、单个函数的对称性一、函数的轴对称:定理1:如果函数y =f (x )满足f (a +x )=f (b -x ),则函数y =f (x )的图象关于直线x =a +b2a +b 2对称。

对称.推论1:如果函数y =f (x )满足f (a +x )=f (a -x ),则函数y =f (x )的图象关于直线x =a 对称. 推论2:如果函数y =f (x )满足f (x )=f (-x ),则函数y =f (x )的图象关于直线x =0(y 轴)对称. 特别地,推论2就是偶函数的定义和性质. 它是上述定理1的简化.二、函数的点对称:定理2:如果函数y =f (x )满足f (a +x )+f (a -x )=2b ,则函数y =f (x )的图象关于点(a , b )对称.推论3:如果函数y =f (x )满足f (a +x )+f (a -x )=0,则函数y =f (x )的图象关于点(a , 0)对称.推论4:如果函数y =f (x )满足f (x )+f (-x )=0,则函数y =f (x )的图象关于原点(0, 0)对称. 特别地,推论4就是奇函数的定义和性质. 它是上述定理2的简化.性质5:函数y =f (x ) 满足f (a +x ) +f (b -x ) =c 时,函数y =f (x ) 的图象关于点(a +b ,c )对称。

高考数学 函数图像的对称问题专题总结

高考数学 函数图像的对称问题专题总结

函数图像的对称专题一、图像的对称变换(1)函数|()|y f x =的图像可以将函数()y f x =的图像____ 去下翻上_____得到;“去下翻上”详解:x 轴及其上方的图像不动,x 轴下方的图像(如果有的话)沿x 轴对称翻折到x 轴上方. (2)函数(||)y f x =的图像可以将函数()y f x =的图像______去左翻右____得到。

“去左翻右”详解:y 轴及其右边的图像不动,y 轴左边的图像(如果有的话)去掉 ,并将y 轴右边的图像沿y 轴对称翻折到y 轴左边.(3)关于,(,)x a y b y x a b ===,, 的对称翻折见二(二) 【例1】(1)2()2||3f x x x 的增区间是_________________.(1,0),(1,)(2)2()|2||3|f x x x k 的增区间是________________;(3,1),(0,1),(3,)(3)若2()|2||3|f x x x k 有6个零点,则k 的取值范围是________.(3,4)二、 图像的对称(一)自对称图一图二 图三1.基本结论:(1)若()y f x =满足()()f a x f b x +=-,则()y f x =的图象关于直线2a bx +=成轴对称(图一). 特殊化: ()()f a x f a x -=+⇔()y f x =的图象关于直线x a =对称; 再特殊化: ()()f x f x -=⇔()y f x =的图象关于直线0x =对称;(2)若()y f x =满足()()f a x f b x +=--,则()y f x =的图象关于点(,0)2a b+成中心对称(图二). 特殊化: ()()f a x f a x -=-+⇔()y f x =的图象关于点(,0)a 对称; 再特殊化: ()()f x f x -=-⇔()y f x =的图象关于点(0,0)对称.一般化:()()2()2()f a x f a x b f a x b f a x -++=⇔-=-+()2(2)f x b f a x ⇔=--()y f x ⇔=的图象关于点(,)a b 对称(图三).2.核心原理:中点坐标公式.从而易得()(2)f x f a x =-()()f a x f a x ⇔-=+3.梳理成表格:一般情况关于直线___对称)()(x b f x a f -=+差个 负号 ↔ )()(x b f x a f --=+关于点___对称 特殊化:上式b a =时 关于直线___对称 )()(x a f x a f -=+ 差个 负号 ↔ )()(x a f x a f --=+关于点___对称 更特殊:上式0=a 时关于 ___对称 )()(x f x f -=差个 负号 ↔)()(x f x f --=关于 ___对称3.核心原理:中点坐标公式【例2】(1)若函数()f x 满足:(1)(1)0f x f x +--=,则()f x 的图象的对称轴为________;1x = (2)若函数()f x 满足:()(4)f x f x -=-,则()f x 的图象的对称轴为________;2x =-(3)若函数()f x 满足:(22)(22)0f x f x +--=,则()f x 的图象的对称轴为________.2x = (4)若函数()f x 满足:(1)(1)0f x f x ++-=,则()f x 的图象的对称中心为________;(10), (5)若函数()f x 满足:()(4)f x f x -=--,则()f x 的图象的对称中心为________;(20)-, (6)若函数()f x 满足:(2)(2)2f x f x ++-=,则()f x 的图象的对称中心为________.(21), (7)已知函数1(bx f x x a-=-满足6)2()(=-+x f x f ,则=a ________;=b _________.1,3 (8)已知函数1312()(1)12x x f x x ---=+-++,则(2)()f x f x -+=______________.2 (9)已知函数()y f x =的图象关于1(,)2对称,则1()()...20222022f +2020...()2022f +2021()2022f +=_________.20212. (二)两个函数图像的对称初步(1)函数()y f x =-的图像与函数()y f x =的图像关于_______对称; (2)函数()y f x =-的图像与函数()y f x =的图像关于________对称; (3)函数()y f x =--的图像与函数()y f x =的图像关于______对称; (4)函数)2(x a f y -=的图像与函数()y f x =的图像关于______对称(图四); (5)函数2()y b f x 的图像与函数()y f x =的图像关于_______对称(图四);图四(6)函数2(2)ybf a x 的图像与函数()y f x =的图像关于_________对称(图四);(7)函数)(y f x =的图像与函数()y f x =的图像关于直线_________对称. 核心原理仍然是_____中点坐标公式______(图四).【例3】(1) 函数1lg600100y x=-与 x y lg =的图像关于______对称.(3,1)-(2)已知x x g lg )(=, )(x f 的图像与)(x g 的图像关于)1,2(对称,则)(x f 的解析式是________. (3)若函数y =f (x )的图象如图所示,则函数y =-f (x +1)的图象大致为( )解析:C 由y =f (x )的图象得到y =-f (x +1)的图象,需要先将y =f (x )的图象关于x 轴对称得到y =-f (x )的图象,然后再向左平移一个单位得到y =-f (x +1)的图象,根据上述步骤可知C 正确.三、图像的应用(综合练习与巩固)【1】将函数()f x 的图象关于y x =对称,然后向右平移1个单位,所得图象与曲线e x y =关于y 轴对称,则()f x 的解析式为()BA .()ln 1f x x =-B .()ln 1f x x =--C .()1ln f x x =-D .()1e xf x --=【2】若函数y =f (2x +1)是偶函数,则函数y =f (x )图象的对称轴方程是( ) A .x =1 B .x =-1 C .x =2 D .x =-2解析:A 因为f (2x +1)是偶函数,所以f (2x +1)=f (-2x +1),所以f (x )=f (2-x ), 所以f (x )图象的对称轴为直线x =1.【3】对于函数f (x )=lg(|x -2|+1),给出如下三个命题:①f (x +2)是偶函数;②f (x )在区间(-∞,2)上是减函数,在区间(2,+∞)上是增函数;③f (x )没有最小值.其中正确是_______________. 解析: ①②.作出f (x )的图象,可知f (x )在(-∞,2)上是减函数,在(2,+∞)上是增函数;由图象可知函数存在最小值0.所以①②正确.【4】已知()f x 是定义在R 上的偶函数,()g x 是定义在R 上的奇函数,且()()1g x f x =-,则()()20172019f f +的值为__________.0A .1-B .1C .0D .无法计算解析:由题意,得(()1)g x f x ---=,∵()f x 是定义在R 上的偶函数,()g x 是定义在R 上的奇函数, ∴()()g x g x -=-,()()f x f x -=,∴()()11f x f x =--+,∴()(2)f x f x +=-,∴()()4f x f x =+,∴()f x 的周期为4,∴()20171f f =(),()()20193(1)f f f ==-,又∵()1100()f f g -===(),∴()()201720190f f +=.【5】若函数()f x 满足:()(4)f x f x -=-+,且与直线2y kx k =-交于四个点,则这四个点的横坐标之和x 1 +x 2 +x 3 +x 4 =__________.8.【6】已知函数满足22|1|,1(43,1x f x x x x -+<⎧=⎨-+≥⎩则方程()12xf x -=的解的个数为______. 3 【变式一】已知函数满足22|1|,1(43,1x f x x x x -+<⎧=⎨-+≥⎩则方程[()]0f f x =的解的个数为______. 5 【变式二】 已知函数满足22|1|,1(43,1x f x x x x -+<⎧=⎨-+≥⎩则方程[()]0f f x ≤的解集为__________. (,6][2,0][22,4]-∞--+【7】已知函数2()2||1f x x x =+-,则对任意x 1,x 2∈R ,若0<|x 1|<|x 2|,下列不等式成立的是( )A .f (x 1)+f (x 2)<0B .f (x 1)+f (x 2)>0C .f (x 1)-f (x 2)>0D .f (x 1)-f (x 2)<0解析:D.函数f (x )的图象如图实线部分所示,且f (-x )=f (x ),从而函数f (x )是偶函数且在[0,+∞)上是增函数,又0<|x 1|<|x 2|,∴f (x 2)>f (x 1), 即f (x 1)-f (x 2)<0.思考: 若上题的函数改为f (x )=⎩⎪⎨⎪⎧x 2+2x -1,x ≥0,x 2-2x -1,x <0,呢?【8】已知当[]0,1x ∈时,函数21()y mx =-的图象与y x m =+的图象有且只有一个交点,则正实数m 的取值范围是( )A .(0,1][23,+)∞B .(0,1][3,)+∞C .(0,2][23,+)∞D .(0,2][3,+)∞解析:B.在同一直角坐标系中,分别作出函数221()(1)f x mx m x m ⎛=-=-⎝与()g x x m =+的大致图象.分两种情形: (1)当01m <≤时,11m≥,如图①,当[]0,1x ∈时,()f x 与()g x 的图象有一个交点,符合题意. (2)当1m >时,10m<<,如图②,要使()f x 与()g x 的图象在[]0,1上只有一个交点,只需()()11g f ≤,即211()m m +≤-,解得3m ≥或0m ≤(舍去).综上所述,(][0,13),m ∈+∞.故选B .【9】函数0.5()|log |2x f x x -=的零点个数为________.解析:2.由()0f x =,得0.51|log |2x x ⎛⎫= ⎪⎝⎭,作出函数105log ||y x =.和212xy ⎛⎫=⎪⎝⎭的图象, 由上图知两函数图象有2个交点,故函数()f x 有2个零点.【变式一】函数f (x )=2x |log 0.5x |-1的零点个数为________. 解析:2.由f (x )=0,得|log 0.5x |=⎝⎛⎭⎫12x.【变式二】0.5()|log |(0)f x x k k =->的零点是1,x x ,则( )A A.11x x = B.11x x < C.11x x > D.112x x <【变式三】0.5()|log |2xf x x -=的零点是1,x x ,则( )B A.11x x = B.11x x < C.11x x > D.112x x <【10】(波浪锯齿形)若定义在R 上的偶函数f (x )满足(2)()f x f x -=,且当x ∈[0,1]时,f (x )=x ,则函数y =f (x )-log 3|x |的零点有_______个.解析: 4.因为偶函数f (x )满足f (x +2)=f (x ),故函数的周期为2.当x ∈[0,1]时,f (x )=x ,故当x ∈[-1,0]时,f (x )=-x .函数y =f (x )-log 3|x |的零点的个数等于函数y =f (x )的图象与函数y =log 3|x |的图象的交点个数.在同一个坐标系中画出函数y =f (x )的图象与函数y =log 3|x |的图象,如图所示.显然函数y =f (x )的图象与函数y =log 3|x |的图象有4个交点,故选B.【11】(波浪锯齿形)定义在R 上的奇函数f (x ),满足(2)()f x f x -=,且f (x )在区间[0,1]上 是减函数,则( )C .A .f (x )的图象关于直线x =2对称B .f (x )的图象关于直线(3,0)-对称C .(3)(2018)(2019)f f f -<<D .[11,12] 是f (x )的一个单调增区间 【12】已知函数f (x )=2x ,x ∈R .(1)当m 取何值时,方程|f (x )-2|=m 有一个解?两个解?(2)若不等式[f (x )]2+f (x )-m >0 在 R 上恒成立,求m 的取值范围. 解:(1)令 F (x )=|f (x )-2|=|2x -2|,G (x )=m ,画出 F (x )的图象如图所示,由图象看出,当m =0或m ≥2时,函数F (x )与G (x )的图象只有一个交点,即原方程有一个解; 当0<m <2时,函数F (x )与G (x )的图象有两个交点,即原方程有两个解.(2)令f (x )=t (t >0),H (t )=t 2+t ,因为H (t )=⎝⎛⎭⎫t +122-14在区间(0,+∞)上是增函数, 所以H (t )>H (0)=0.因此要使t 2+t >m 在区间(0,+∞)上恒成立, 应有m ≤0,即所求m 的取值范围为(-∞,0].四、真题赏析(全国卷中的对称)全国卷是“对称热爱狂”.新课标高考十六年以来(2007-2022)的和新高考三年以来(2020-2022),全国卷函数小题大约有共120道左右的,和对称有关的真题超过40道,占三分之一,是函数板块第一高频考点.现积累如下. 1.基础的对称【1】(2007全国一,文9,理9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( )A .充要条件B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件【2】(2014全国一,文5,理3)设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是( C ) A. )()(x g x f 是偶函数 B. )(|)(|x g x f 是奇函数 C. |)(|)(x g x f 是奇函数D. |)()(|x g x f 是奇函数【3】(2014全国二,文15)偶函数)(x f y =的图像关于直线2=x 对称,3)3(=f ,则)1(-f =________.3【4】(2008全国一,理9)设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( D )A .(10)(1)-+∞,,B .(1)(01)-∞-,,C .(1)(1)-∞-+∞,,D .(10)(01)-,,解析:由奇函数()f x 可知()()2()0f x f x f x xx-<,而(1)0f =,则(1)(1)0f f -=-=,当0x >时,()0(1)f x f <=;当0x <时,()0(1)f x f >=-,又()f x 在(0)+∞,上为增函数,则奇函数()f x 在(,0)-∞上为增函数,01,10x x <<-<<或.【5】(2014全国二,理15)已知偶函数()f x 在[)0,+∞单调递减,()20f =.若()10f x ->,则x 的取值范围是__________.(1,3-)【6】(2020新高考全国一卷8)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是( )A. [)1,1][3,-+∞B. 3,1][,[01]--C. [1,0][1,)-⋃+∞D. [1,0][1,3]-⋃【答案】D【解析】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =, 所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞时,()0f x <,所以由(10)xf x -≥可得:021012x x x <⎧⎨-≤-≤-≥⎩或或001212x x >⎧⎨≤-≤-≤-⎩或或0x =解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃,故选:D.【7】(2004全国一,理2,文,2)已知函数=-=+-=)(.)(.11lg)(a f b a f x xx f 则若( ) A .b B .-b C .b 1D .-b1【8】(2009全国二,文3)函数22log 2xy x-=+的图像(A )(A ) 关于原点对称 (B )关于主线y x =-对称 (C ) 关于y 轴对称 (D )关于直线y x =对称【9】(2017全国一,文9)已知函数()ln ln(2)f x x x =+-,则( C ) A .()f x 在(0,2)单调递增 B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称【10】(2018全国三,文7)下列函数中,其图像与函数ln y x =的图像关于直线1x =对称 的是(B )A .ln(1)y x =-B .ln(2)y x =-C .ln(1)y x =+D .ln(2)y x =+【11】(2021全国乙,文理4)设函数1(1xf x x-=+,则下列函数中为奇函数的是( ) A. ()11f x -- B. ()11f x -+ C. ()11f x +- D. ()11f x ++【答案】B【解析】由题意可得1()11xf x x-==-++,对于A ,()2112fx --=-不是奇函数;对于B ,()211f x x -=+是奇函数; 对于C ,()21122f x x +-=-+,定义域不关于原点对称,不是奇函数; 对于D ,()212f x x ++=+,定义域不关于原点对称,不是奇函数.故选:B【12】(2015全国一,理13)若函数()ln(f x x x =+为偶函数,则a =.【13】(2021新高考全国一,13)已知函数()()32xx a f x -=⋅-是偶函数,则a =______.【答案】1【解析】因为()()32xx a f x -=⋅-,故()()32xf x x a --=-⋅-,因为()f x 为偶函数,故()()f x f x -=,时()()32222xx x x xa x a -⋅-=-⋅-,整理得到()()12+2=0x x a --,故1a =,故答案为:1【14】(2007全国一,文、理14)函数()y f x =的图像与函数3log (0)y xx =>的图像关于直线y x =对称,则()f x =__________.【15】(2008全国一,文8、理6)若函数(1)y f x =-的图像与函数ln 1y x =+的图像关于直线y x =对称,则()f x =( B )A .21x e -B .2xe C .21x e +D .22x e +【16】(2008全国二,文4、理3)函数1()f x x x=-的图像关于( C ) A .y 轴对称 B . 直线x y -=对称 C . 坐标原点对称 D . 直线x y =对称【17】(2012全国新课标,理12)设点P 在曲线12x y e =上,点Q 在曲线ln(2)y x =上,则PQ 最小值为( A )()A 1ln 2- ()B2(1ln 2)-()C 1ln 2+ ()D 2(1ln 2)+解析:函数12xy e =与函数ln(2)y x =互为反函数,图象关于y x =对称 函数12x y e =上的点1(,)2x P x e 到直线y x =的距离为122x e d -=,设函数min min 111ln 2()()1()1ln 222x g x e x g x e g x d -'=-⇒=-⇒=-⇒=由图象关于y x =对称得:PQ 最小值为min 22(1ln 2)d =-【18】(2015全国一,文12)设函数()y f x =的图像与2x ay +=的图像关于直线y x =-对称,且(2)(4)1f f -+-=,则a =(C )(A ) 1- (B )1 (C )2 (D )4此题的出现,提醒我们,理解到本质最重要.否则纲貌似超了,说不超说超纲也不超.【19】(2013全国一,理16)若函数()f x =22(1)()x x ax b -++的图像关于直线2x =-对称,则()f x 的最大值是______.16【20】(2018全国二,文12,理11)已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=…(C )A .50-B .0C .2D .50【21】(2021全国甲,理12)设函数()f x 的定义域为R ,()1fx +为奇函数,()2f x +为偶函数,当[]1,2x ∈时,2()f x ax b =+.若()()036f f +=,则92f ⎛⎫= ⎪⎝⎭( )A. 94-B. 32-C.74D.52【答案】D 【解析】因为()1f x +是奇函数,所以()()11f x f x -+=-+①;因为()2f x +是偶函数,所以()()22f x f x +=-+②.令1x =,由①得:()()()024f f a b =-=-+,由②得:()()31f f a b ==+,因为()()036f f +=,所以()462a b a b a -+++=⇒=-,令0x =,由①得:()()()11102f f f b =-⇒=⇒=,所以()222f x x =-+.思路一:从定义入手.955122222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,133512222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭511322=2222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=--+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以935222f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭. 思路二:从周期性入手由两个对称性可知,函数()f x 的周期4T =.所以91352222f f f ⎛⎫⎛⎫⎛⎫==-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:D .2.和零点有关的对称问题(或利用对称性求值)见下:1.具体函数对称性【22】(2010全国一理10)已知函数()|lg |f x x =,若0a b <<,且()()f a f b =,则2a b +的取值范围是( A )(A))+∞ (B))+∞ (C)(3,)+∞ (D)[3,)+∞【23】(2010全国一文7)已知函数()|lg |f x x =.若a b ≠且,()()f a f b =,则a b +的取值范围是(C )(A)(1,)+∞ (B)[1,)+∞(C) (2,)+∞ (D) [2,)+∞【24】(2011全国新课标文12)已知函数()y f x =的周期为2,当[1,1]x ∈-时2()f x x =, 那么函数()y f x =的图象与函数|lg |y x =的图象的交点共有(A )A .10个B .9个C .8个D .1个【25】(2010全国一理15)直线1y =与曲线2y x x a =-+有四个交点,则a 的取值范围是. (1,5)4解析:在同一直角坐标系内画出直线1y =与曲线2y x x a =-+,观图可知,a 的取值必须满足1,414a a >⎧⎪⎨-<⎪⎩解得514a <<. 【26】(2015全国二文12)设函数()()2111ln x x x f +-+=,则使得()()12->x f x f 成立的x 的取值范围是( A )A.⎝ ⎛⎭⎪⎫13,1B.()∞+⋃⎪⎭⎫ ⎝⎛∞,,131- C.⎝ ⎛⎭⎪⎫-13,13 D.⎪⎭⎫ ⎝⎛∞+⋃⎪⎭⎫ ⎝⎛∞,,3131--【27】(2016全国二文12)已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数y =|x 2-2x -3| 与y =f (x ) 图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则1=mi i x =∑ (B)(A)0 (B)m (C) 2m (D) 4m【28】(2020全国二理9)设函数()ln |21|ln |21|f x x x =+--,则f (x )( ) A. 是偶函数,且在1(,)2+∞单调递增B. 是奇函数,且在1(,)2-单调递减 C. 是偶函数,且在1(,)2-∞-单调递增D. 是奇函数,且在1(,)2-∞-单调递减【答案】D【解析】由()ln 21ln 21f x x x =+--得()f x 定义域为12x⎫≠±⎨⎩,关于坐标原点对称, 又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-,()f x ∴为定义域上的奇函数,可排除AC ;当1,2x ⎛∈-⎪⎝时,()()()ln 21ln 12f x x x =+--,()ln 21y x =+在1,2⎛-⎪⎝上单调递增,()ln 12y x =-在1,2⎛-⎪⎝上单调递减,()f x ∴在1,2⎛-⎪⎝上单调递增,排除B ;当1,2x ⎛∈-∞-⎪⎝时,()()()212ln 21ln 12ln ln 12121x f x x x x +⎛=----==+⎪-⎝,2121x μ=+-在1,2⎛-∞- ⎪⎝上单调递减,()ln f μμ=在定义域内单调递增,根据复合函数单调性可知:()f x 在1,2⎛-∞- ⎪⎝上单调递减,D 正确. 故选:D.【29】(2020全国三理16)关于函数f (x )=1sin sin x x+有如下四个命题:①f (x )的图像关于y 轴对称.②f (x )的图像关于原点对称.③f (x )的图像关于直线x =2π对称.④f (x )的最小值为2.其中所有真命题的序号是__________. 【答案】②③【解析】对于命题①,12622f π⎛⎫=+=⎪⎝⎭,12622f π⎛⎫-=--=- ⎪⎭,则6f π⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛-=-+=--=-+=- -⎝,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,1sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎝⎭⎝⎭- ⎪⎝,1sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎝⎭⎝⎭+ ⎪⎝,则2f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,所以,函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<, 命题④错误.故答案为:②③. 【30】(2022全国甲文理5)函数()33cos x x x -=-在区间ππ,2⎡-⎥⎣的图象大致为( )A. B.C. D.【答案】A【解析】令()()33cos ,,2xxf x x x ππ-⎤=-∈-⎥⎦, 则()()()()()33cos 33cos xx x x f x x x f x ---=--=--=-,所以()f x 为奇函数,排除BD ;又当0,2x π⎛⎫∈⎪⎝时,330,cos 0xx -->>,所以()0f x >,排除C.故选:A.【31】(2022全国新高考全国一卷9)记函数()sin (0)4f x x b πωω⎛=++> ⎝的最小正周期为T .若23T ππ<<,且()y f x =的图象关于点3,22π⎛⎫⎝中心对称,则2f π⎛⎫= ⎪⎝⎭( ) A. 1 B.32C.52D. 3【答案】A【解析】由函数的最小正周期T 满足23T ππ<<,得23πππω<,解得23ω<<,又因为函数图象关于点3,22π⎛⎫⎝对称,所以3,2k k Z ππωπ+=∈,且2b =,所以2,6k k Z ω=-+∈,所以52ω=,5()sin 22f x x π⎛=++ ⎝, 所以5sin 21244f ππ⎛⎫⎛⎫=++=⎪ ⎪⎝⎭⎝⎭.故选:A【32】(2022全国新高考全国二卷9)函数()sin(2)(0π)f x x ϕϕ=+<<的图象以2π,03⎛ ⎝中心对称,则( )A. y =()f x 在5π0,12⎛ ⎝单调递减B. y =()f x 在π11π,1212⎛-⎪⎝有2个极值点C. 直线7π6x =是一条对称轴 D. 直线2y =是一条切线【答案】AD【解析】由题意得:2π4πsin 03f ϕ⎛⎫⎛⎫=+= ⎪⎪⎝⎭⎝⎭,所以4ππ3k ϕ+=,k ∈Z , 即4ππ,3k k ϕ=-+∈Z ,又0πϕ<<,所以2k =时,2π3ϕ=,故2π()sin 23f x x ⎛= ⎝.对A ,当5π0,12x ⎛∈⎪⎝时,2π2π3π2332x ⎛+⎪⎝,由正弦函数sin y u =图象知()y f x =在5π0,12⎛ ⎝上是单调递减;对B ,当π11π,1212x ⎛∈-⎪⎝时,2ππ5π2322x ⎛+⎪⎝,由正弦函数sin y u =图象知()y f x =只有1个极值点,由2π3π23x +,解得5π12x =,即5π12x =为函数的唯一极值点; 对C ,当7π6x =时,2π2π3x +,7π()06f =,直线7π6x =不是对称轴;对D ,由2π2cos 213y ⎛'=+=- ⎝得:2π1cos 23x ⎛+=- ⎝, 解得2π2π2π3x +=+或2π4π2π,3x k k +=+∈Z ,从而得:πx k =或ππ,3x k k =+∈Z ,所以函数()y f x =在点0,2⎛ ⎝处的切线斜率为02π2cos13x k y =='==-,切线方程为:(0)2y -=--即2y =.故选:AD .【33】(2022全国新高考全国一卷10)已知函数3()1f x x x =-+,则( )A. ()f x 有两个极值点B. ()f x 有三个零点C. 点(0,1)是曲线()y f x =的对称中心D. 直线2y x =是曲线()y f x =的切线【答案】AC【解析】由题,()231f x x '=-,令()0f x '>得3x >或3x <-,令()0f x '<得3x -<<,所以()f x 在(上单调递减,在(,-∞,)+∞上单调递增,所以x =是极值点,故A 正确;因(103f -=+>,103f =->,()250f -=-<,所以,函数()f x 在,⎛-∞ ⎝上有一个零点,当x ≥()03f x f ⎛≥ ⎝,即函数()f x 在3⎛∞ ⎝上无零点,综上所述,函数()f x 有一个零点,故B 错误;令3()h x x x =-,该函数的定义域为R ,()()()()33h x x x x x h x -=---=-+=-,则()h x 是奇函数,(0,0)是()h x 的对称中心,将()h x 的图象向上移动一个单位得到()f x 的图象, 所以点(0,1)是曲线()y f x =的对称中心,故C 正确; 令()2312f x x '=-=,可得1x =±,又()(1)11f f =-=,当切点为(1,1)时,切线方程为21y x =-,当切点为(1,1)-时,切线方程为23y x =+, 故D 错误.故选:AC2.抽象函数对称性(或虽为具体函数但是具体函数虚晃一枪的对称)【34】(2009全国一,理11)函数()f x 的定义域为R ,若(1)f x +与(1)f x -都是奇函数,则( D ) (A) ()f x 是偶函数(B) ()f x 是奇函数 (C) ()(2)f x f x =+ (D) (3)f x +是奇函数【35】(2021新高考全国二8)已知函数()f x 的定义域为R ,()2f x +为偶函数,()21f x +为奇函数,则( ) A. 102f ⎫-= ⎪⎭B. ()10f -=C. ()20f =D. ()40f =【答案】B【解析】因为函数()2f x +为偶函数,则()()22f x f x +=-,可得()()31f x f x +=-,因为函数()21f x +为奇函数,则()()1221f x f x -=-+,所以,()()11f x f x -=-+,所以,()()()311f x f x f x +=-+=-,即()()4f x f x =+,故函数()f x 是以4为周期的周期函数,因为函数()()21F x f x =+为奇函数,则()()010F f ==,故()()110f f -=-=,其它三个选项未知.故选:B.【36】(2011全国新课标理12)函数11y x =-的图像与函数2sin (24)y x x π=-≤≤的图像所有交点的横坐标之和等于(D) (A )2 (B) 4 (C) 6(D)8总结:换元后提取对称性【37】(2012全国新课标文16)设函数()f x =(x +1)2+sin x x 2+1的最大值为M ,最小值为m ,则M+m =____解析()f x =22sin 11x x +++,设()g x =()1f x -=22sin 1xx ++,则()g x 是奇函数, ∵()f x 最大值为M ,最小值为m ,∴()g x 的最大值为M-1,最小值为m -1, ∴110M m -+-=,M m +=2. 总结:拆分后提取对称性【38】(2016全国二,理12)已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m x y x y x y ⋅⋅⋅则1)mi i xy ==∑ (B )(A )0 (B )m (C )2m (D )4m总结:换元后提取对称性【39】(2017全国三,理11,文12)已知函数211()2()x f x x x a e e --+=-++有唯一零点,则a =(C )A .12-B .13C .12D .1总结:换元后提取对称性,背景在课本《必修一》P83,B 组4.【40】(2018全国三文16)已知函数())1f x x =+,()4f a =,则()f a -= ______.2-【41】(2022全国乙卷理12)已知函数(),()f x g x 的定义域均为R ,且()(2)5,()(4)7f x g x g x f x +-=--=.若()y g x =的图像关于直线2x =对称,(2)4g =,则221(k f k==∑( )A. 21-B. 22-C. 23-D. 24-【答案】D【解析】因为()y g x =的图像关于直线2x =对称,所以()()22g x g x -=+,因为()(4)7g x f x --=,所以(2)(2)7g x f x +--=,即(2)7(2)g x f x +=+-, 因为()(2)5f x g x +-=,所以()(2)5f x g x ++=, 代入得[]()7(2)5f x f x ++-=,即()(2)2f x f x +-=-,所以()()()()35212510f f f +++=-⨯=-,()()()()46222510f f f +++=-⨯=-.因为()(2)5f x g x +-=,所以(0)(2)5f g +=,即()01f =,所以()(2)203f f =--=-.因为()(4)7g x f x --=,所以(4)()7g x f x +-=,又因为()(2)5f x g x +-=, 联立得,()()2412g x g x -++=,所以()y g x =的图像关于点()3,6中心对称,因为函数()g x 的定义域为R ,所以()36g =因为()(2)5f x g x ++=,所以()()1531f g =-=-.所以()()()()()()()()221123521462213101024.(k f f f f f f f f f k=+++++++++=----=-⎡⎤⎡⎤⎣⎦⎣⎦=∑【42】(2022全国新高考全国一卷12)已知函数()f x 及其导函数()'f x 的定义域均为R ,记()()g x f x '=,若322f ⎛- ⎪⎝,(2)g x +均为偶函数,则( )A. (0)0f =B. 102g ⎛-= ⎪⎝ C. (1)(4)f f -= D. (1)(2)g g -=【答案】BC 【解析】因为322f ⎛-⎪⎝,(2)g x +均为偶函数, 所以322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭即32f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,(2)(2)g x g x +=-,所以()()3f x f x -=,(4)()g x g x -=,则(1)(4)f f -=,故C 正确;函数()f x ,()g x 的图象分别关于直线3,2x =对称,又()()g x f x '=,且函数()f x 可导,所以()()30,32g g x g x ⎛⎫=-=-⎪⎝⎭,所以()(4)()3g x g x g x -==--,所以()(2)(1)g x g x g x +=-+=,所以102g ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,()()()112g g g -==-,故B 正确,D 错误;若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误.故选:BC.【43】(2022全国新高考全国二卷8)若函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221(k f k ==∑( )A. 3-B. 2-C. 0D. 1【答案】A【解析】因为()()()()f x y f x y f x f y ++-=,令1,0x y ==可得,()()()2110f f f =,所以()02f =,令0x =可得,()()()2f y f y f y +-=,即()()f y f y =-,所以函数()f x 为偶函数,令1y =得,()()()()()111f x f x f x f f x ++-==,即有()()()21f x f x f x ++=+,从而可知()()21f x f x +=--,()()14f x f x -=--,故()()24f x f x +=-,即()()6f x f x =+,所以函数()f x 的一个周期为6.因为()()()210121f f f =-=-=-,()()()321112f f f =-=--=-,()()()4221f f f =-==-,()()()5111f f f =-==,()()602f f ==,所以一个周期内的()()()1260f f f +++=.由于22除以6余4,所以()()()()()221123411213k f k f f f f ==+++=---=-∑.故选:A .。

浅谈函数图像的两种对称问题

浅谈函数图像的两种对称问题

安徽省濉溪职教中心 李磊邮政编码:235100E-mail : 电话:0561-浅谈函数图像的两种对称问题函数是中学数学的核心内容,也是整个高中数学的基础。

函数的对称性是函数的一个基本性质,它广泛存在于数学问题中,同时也体现了数学之美,是高考的常考内容,本文主要从函数自身以及两个函数之间两个方面来探讨有关函数对称的性质。

一、自身的对称问题定理1:函数)(x f y =的图像关于直线2b a x +=对称的充要条件是)()(x b f x a f -=+ 证明:必要性:设点),(y x P 是函数)(x f y =图像上的任意一点,由于点),(y x P 关于直线2b a x +=的对称点),(y x b a Q -+也在函数)(x f y =图像上,所以有)(x b a f y -+=,即)()(x b a f x f -+=,用x a +替换x 得:)()(x b f x a f -=+,故必要性得证。

充分性:设点),(00y x P 是函数)(x f y =图像上的任意一点,则)(00x f y =。

由于)()(x b f x a f -=+,故)()(00x b f x a f -=+,用a x -0替换0x 得:)()(00x b a f x f -+=,即)(00x b a f y -+=,也就是说),(00y x b a Q -+也在函数)(x f y =图像上,又因为点P 与点Q 关于直线2b a x +=对称,由点P 的任意性可知函数)(x f y =的图像关于直线2b a x +=对称,充分性得证。

定理1常用结论: 函数)(x f y =的图像关于直线a x =对称⇔)()(x a f x a f -=+)()2(x f x a f -=+⇔)()2(x f x a f =-⇔推论:函数)(x f y =的图像关于y 轴对称的充要条件是)()(x f x f -=定理2:函数)(x f y =的图像关于点),(b a A 成中心对称的充要条件是b x a f x f 2)2()(=-+证明:必要性:设点),(y x P 是函数)(x f y =图像上的任意一点,由于点),(y x P 关于点),(b a A 的对称点(2,2)Q a x b y --也在函数)(x f y =图像上,故有)2(2x a f y b -=-,即b x a f x f 2)2()(=-+,必要性得证。

函数图像的对称性问题

函数图像的对称性问题

函数图像的对称性问题函数图象的对称性反映了函数的特性,是研究函数性质的一个重要方面,现通过函数自身的对称性和不同函数之间的对称性这两个方面来探讨函数对称性有关的性质。

1.函数自身的对称性探究(1)奇函数的图象关于原点成中心对称;偶函数的图象关于y 轴对称.45.8.4.2.ππππ==-=-=x D x C x B x A 解:函数252sin(π+=x y 的图像的所有对称轴的方程是2252πππ+=+k x ,所以ππ-=2k x ,显然取1=k 时的对称轴方程是2π-=x ,故选(A )。

()(b )()()f a x f x f a b x f x ⇔-=+⇔+-=证明:对任意x∈R,都有f(a+x)=f(b-x)时,有点(a+x,f(a +x))与点(b-x,f(b-x))存在关系:22b a x b x a +=-++,f(a+x)=f (b-x),由轴对称的定义可知:点(a+x,f(a+x))与点(b-x,f(b -x))关于直线成轴对称,又由x 的任意性可知:函数y =f(x)关于直线成轴对称。

反之亦然。

特例:函数)(x f y =的图象关于直线a x =对称)()2()()(x f x a f x a f x a f =-⇔-=+⇔函数)(x f y =的图像关于y 轴对称⇔)()(x f x f -=【偶函数是4的特例】典例2:二次函数f (x )满足f (2+x )=f (2-x ),又f (2)=1,f (0)=3,若在[0,m]有最小值1,最大值3,则的取值范围()(A )0<m ≤2(B )m ≥2(C )m >0(D )2≤m ≤4解:由函数的轴对称性可知:二次函数f (x )关于直线x =2对称,又f (2)=1,f (0)=3,∴f (x )在[0,2]上是减函数,∴f (x )在[2,+∞)上增函数,又由轴对称可知:f (2+2)=f (2-2)即f (4)=f (0)∵f (x )在[0,m]上有最小值1,最小值3,∴2≤m ≤4选(D )典例3:函数f (x )对一切实数x 都满足)43()41(x f x f -=+,并且f (x )=0有3个实根,求这3个实根之和。

函数图像对称知识点总结

函数图像对称知识点总结

函数图像对称知识点总结一、关于x轴对称1. 函数图像关于x轴对称的条件:若对于函数y=f(x),对于任意x,有f(x)=f(-x),则函数图像关于x轴对称。

2. 关于x轴对称的函数图像特点:(1)对称轴:x轴(2)当函数关于x轴对称时,若知道函数在对称轴上的图像,就知道了整个图像。

(3)在x轴对称的函数中,如果点(x,y)在曲线上,那么点(-x,-y)也在曲线上。

示例:y=x^2,关于x轴对称。

二、关于y轴对称1. 函数图像关于y轴对称的条件:若对于函数y=f(x),对于任意x,有f(x)=f(-x),则函数图像关于y轴对称。

2. 关于y轴对称的函数图像特点:(1)对称轴:y轴(2)当函数关于y轴对称时,若知道函数在对称轴上的图像,就知道了整个图像。

(3)在y轴对称的函数中,如果点(x,y)在曲线上,那么点(-x,y)也在曲线上。

示例:y=x^3,关于y轴对称。

三、关于原点对称1. 函数图像关于原点对称的条件:若对于函数y=f(x),对于任意x,有f(x)=-f(-x),则函数图像关于原点对称。

2. 关于原点对称的函数图像特点:(1)对称中心:原点O(2)当函数关于原点对称时,若知道函数在对称中心(原点)上的图像,就知道了整个图像。

(3)在原点对称的函数中,如果点(x,y)在曲线上,那么点(-x,-y)也在曲线上。

示例:y=sin(x),关于原点对称。

四、利用函数关于轴或点对称的特点求函数图像1. 利用对称性质可方便地求出函数图像上的对应图像点。

例如,已知函数图像上有点A(x,y),则它在对称轴上的对应点一定也在函数图像上。

2. 利用对称性质可以方便地求出函数图像的对称中心或对称轴。

例如,对于函数y=f(x),如果对称于x轴,则对称轴为x轴;如果对称于y轴,则对称轴为y轴。

3. 利用对称性质可以方便地求出函数的奇偶性。

若函数图像关于原点对称,则该函数为奇函数;若函数关于y轴对称,则为偶函数。

五、函数图像对称应用举例1. 已知函数y=f(x)关于y轴对称,求f(x)的解析式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解填空题常用到的几个公式
1. AB 和平面M 所成的角为α,AC 在平面M 内,AC 和AB 在平面M 内的射影AB 1所成的角是β,设∠BAC=θ,则βαθcos cos cos =
2. 在二面角N l M --的面M 内,有直角三角形ABC,斜边BC 在棱上,若A 在平面内N 的射影为D,且∠ACD=1θ,∠ABD=2θ,二面角为θ,则22
122sin sin sin θθθ+= 3. 设F 1,F 2为椭圆122
22=+b
y a x (a>b>0)的焦点,M 是椭圆上一点,若∠F 1MF 2=θ
则21MF F S ∆=2tan 2θ
b , 21e a
b -= . 4. 设F 1,F 2为双曲线122
22=-b
y a x (a>b>0)的焦点,M 是双曲线上一点,若∠F 1MF 2=θ,则21MF F S ∆=2cot 2θ
b , 12-=e a
b . 5.已知椭圆122
22=+b
y a x (a>b>0)上一点,F 1,F 2为左右两焦点,∠PF 1F 2=α, ∠P F 2F 1=β,则2
cos 2cos βαβα-+==a c e . 6.设直线b kx y +=与椭圆12222=+b y a x (双曲线122
22=-b
y a x )相交于不同的两点A ),(11y x ,B ),(22y x ,AB 的中点为M ),(00y x ,则0202y a x b k -=(0
202y a x b k =). 7.过抛物线两点,的直线交抛物线于作倾斜角为的焦点B A F p px y ,)0(22θ>=
θ2sin 2P
AB =则线段
函数图像的对称问题(小结)
函数问题的对称性问题是函数性质的一个重要方面,也是历年高考热点问题之一,除了常见的自身对称(奇偶函数的对称性),两函数图像对称(原函数与反函数的对称性)以外,函数图象的对称性还有一些图像关于点对称和关于直线对称的两类问题,在这里,两函..数图象关于某直线对称或关于某点...............成.中心对称....与函数自身的对称轴或对称中心.............
是有本质区别的,注意不要把它们相混淆。

造成解题失误,下面就这些问题给出一般结论,希望对同学们有帮助。

一、 同一个函数图象关于直线的对称
结论1:设a,b 均为常数,函数)(x f y = 对一切数学x 都满足)()(x b f x a f -=+,则函数的图象关于直线2
b a x +=对称。

推论1:在直角坐标系中,满足)()(x a f x a f -=+的函数y=f(x)关于直线x=a 对称(其中a 为常数)
推论2:在直角坐标系中,满足)()(a x f x a f -=-的函数 的图象关于直线x=0对称。

例1 已知函数的定义域为R ,且对于一切实数x 满足
),7()7(),2()2(x f x f x f x f -=+-=+,
,当]7,2[∈x 时, , f(x)2)2(-=x 当]20,16[∈x 时,求函数)(2)(x f x x g -=的表达式。

解:由 )7()7(),2()2(x f x f x f x f -=+-=+知,函数)(x f y =的图象关于直线x=2和x=7对称,且有
)10()]3(7[)]3(7[)4()]2(2[]2)2[()(+=++=+-=-=--=+-=x f x f x f x f x f x f x f )()10(x f x f =-∴
当]17,16[∈x 时, ]7,6[10∈-x ,此时2
2)12()210()10()(-=--=-=x x x f x f ; 当x ]20,17(∈时,],7,4[)20(4),0,3(20∈---∈-x x 22)22(]2)20(4[)]20(4[)20()(-=---=--=-=∴x x x f x f x f ,
g(x)=⎪⎩⎪⎨⎧≤--≤≤--)
2017()22(2)1716()12(222x x x x x x π 二、两个函数图象关于直线的对称
结论2:在同一直角坐标系中,函数)(x a f y +=与函数)(x b f y -=的图象关于直线2
a b x -=对称(其中a ,b 均为常数) 推论1:在直角坐标系中,函数)(x a f y +=与函数)(x a f y -=的图象关于直线x=0对称。

推论2:在直角坐标系中,函数)(x a f y -=与函数)(a x f y -=的图象关于直线x=a 对称(其中a 为常数)。

例2 设函数f(x)x x x g -+==112)(,2,则它们的图象( )
A .关于原点中心对称
B .关于直线x=0对称
C .关于直线x=1对称
D .既不成中心对称也不成轴对称
解析:由推论1知,这两个函数图象的对称轴方程为x=0,即y 轴,故应选B 。

三、 同一个函数图象关于点成中心对称
结论3:设a ,b 均为常数,函数)(x f y =对一切实数x 都满足b x a f x a f 2)()(=-++,则函数)(x f y =的图象关于点(a,b)成中心对称图形。

例2 已知函数)(x f y =满足2002)()(=-+x f x f ,求)2002()(11x f x f -+--的值。

解:由已知,在等式b x a f x a f 2)()(=-++中,令a=0,2b=2002,则函数)(x f y =关于点(0,1001)对称,根据原函数与其反函数的关系,知函数)(1x f y -=关于点(1001,0)对称。

0)1001()1001(11=-++∴--x f x f
将上式中的x 用x -1001换,得)2002()(11x f x f -+--=0 。

四、 两个函数图象关于点成中心对称
结论4:设a ,b ,c 均为常数,则函数 )(x a f y += 与)(x b f c y --= 关于点(2,2c a b -)成中心对称图形。

例4 已知函数)(x f y =是定义在实数集R 上的函数,那么)6(x f y -=与)4(+-=x f y 的图象( )
A .关于直线x=5对称
B .关于直线x=1对称
C .关于点)0,5(对称
D .关于点(1,0)对称
解析:由题意,已知式变形为)4(+=-x f y ,)6(x f y --=-,则有a=4,b=6,c=0。

由结论4知,)6(x f y -=与)4(+-=x f y 关于点(
2
0,246-)成中心对称,即关于点 (1,0)对称,故应选择D 。

相关文档
最新文档