第4章图形与坐标复习课
新北师大版九年级数学上册第四章4.8图形的位似第1课时位似图形及其性质备课素材
第四章图形的相似8图形的位似第1课时位似图形及其性质素材一新课导入设计置疑导入复习导入类比导入悬念激趣问题1:观察下列图形,每一组图形都有什么特点?图4-8-1问题2:如图4-8-1(2),在图片①上取一点A,它与另一张图片(如图片②)上相应的点A′之间的连线是否经过镜头中心点O?在图片上换其他的点试一试,还有类似的规律吗?[说明与建议] 说明:通过用幻灯片展示生活中的图片,引入本节课的学习内容——图形的位似,让学生体会本节课学习的价值,激发学生的学习兴趣,启发学生寻找图形的特点.建议:可以让学生寻找身边类似的一组图形,以便理解位似的特征,为本节课的学习做好铺垫.请同学们观察一组图片,思考下列问题:图4-8-2(1)它们是相似图形吗?(2)图形位置间有什么关系?你能寻找出一些规律吗?归纳:一般地,如果两个相似多边形任意一组对应顶点P,P′所在的直线都经过同一点O,且有OP′=k·OP(k≠0),那么这样的两个多边形叫做位似多边形,点O叫做位似中心.[说明与建议] 说明:从发生在学生身边的事件入手,让学生体会数学来源于生活.通过观察图形,发现位似图形来源于相似图形,同时又特殊于相似图形.采取小组合作交流的方式,让学生充分研究,引发学生初步感知位似图形,思考位似图形的特征,激发学生的求知欲及学习兴趣.建议:在得到位似定义的时候要抓住两个关键点:一是特殊的相似,二是每一组对应点所在的直线都经过同一点.素材二教材母题挖掘113页例1如图4-8-3,已知△ABC,以点O为位似中心画△DEF,使它与△ABC位似,且相似比为2.图4-8-3【模型建立】根据位似的定义可知位似是一种特殊的相似,特殊在它任意一组对应顶点所在的直线都经过同一个点.因此,位似具有相似的所有性质.位似中心的确定就是根据它所特有的性质.【变式变形】1.如图4-8-4所示,以点P 为位似中心,把图形ABCDE 放大,使得放大前后对应线段的比为1∶2.图4-8-4[答案:略]2.你能把图4-8-5中的四边形ABCD 缩小到原来的12吗?试画出缩小后的四边形A′B′C′D′.图4-8-5[答案:能,画图略]3.如图4-8-6,五边形ABCDE 与五边形A ′B′C′D′E′是位似图形,点O 为位似中心,OD =12OD ′,则A′B′∶AB 是多少?图4-8-6[答案:2∶1]素材三 考情考向分析[命题角度1] 利用位似求点的坐标当把几何图形放在平面直角坐标系中求点的坐标时,可把问题转化为图形的位似来研究,利用位似的性质:位似图形的对应边成比例且对应点到位似中心的距离之比等于相似比,即可解决问题.例 [武汉中考] 如图4-8-7,线段AB 两个端点的坐标分别为A(6,6),B(8,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD ,则端点C 的坐标为(A )图4-8-7A .(3,3)B .(4,3)C .(3,1)D .(4,1) [命题角度2] 利用位似的性质求位似中心位似中心是位似图形上对应点所在直线的交点,因此在确定位似图形的位似中心时,通过作直线找到交点,即确定位似中心的位置.例 图4-8-8中两个四边形是位似图形,它们的位似中心是(D )图4-8-8A .点MB .点NC .点OD .点P[命题角度3] 利用位似的性质求图形面积位似是一种特殊的相似,故相似图形的一切性质都适用于位似图形.此类问题可以借助“相似多边形的面积比等于相似比的平方”来解决.例 如图4-8-9,△ABC 与△A′B′C′是位似图形,点O 是位似中心.若OA =2AA′,S △ABC =8,则S △A ′B ′C ′=__18__.图4-8-9素材四 教材习题答案 P114随堂练习已知点O 在△ABC 内,以点O 为位似中心画一个三角形,使它与△ABC 位似,且相似比为12.解:略.P115习题4.131.已知边长为1的正方形ABCD ,以它的两条对角线的交点为位似中心,画一个边长为2并与它位似的正方形.解:略.2.画一个任意四边形ABCD ,在它的内部任取一点O ,以点O 为位似中心,画一个四边形A ′B ′C ′D ′,使它与四边形ABCD 位似,且相似比为12.解:略.3.相似多边形都是位似多边形吗?若不是,请举反例;若是,请说明理由.解:略.4.九年级(1)班的同学们筹备一次主题班会,为了活跃气氛,他们想把下面的两个图样放大,使得放大前后对应线段的比为1∶2,然后做成各种彩纸图片.请你帮助他们画出放大后的图样.解:略.素材五图书增值练习素材六数学素养提升生活中的位似图形的应用应用之一:幻灯机幻灯机是教师常用的教具之一,它能把精致的图片投到银幕上.幻灯机的工作原理如图1,光源A就是位似中心,它发出的两条光线与幻灯片上图形的两点和银幕上图形的对应两点组成相似的△ABC和△ADE.如果给出某些量的数值,还可以计算其它量.例如给出如图2的数据,可以计算出银幕上图案的高度.应用之二:照相机照相机能够把大家美好的瞬间及时拍录下来,如图3 就是它的工作原理图.两条光线与相机透镜的交点A 就是位似中心,底片上的点B、C和对应大树上的点E、D以及点A组成的△ABC和△AED是相似三角形.例如若底片BC 的长度是3cm ,底片与相机透镜的距离是4cm ,大树高石15m ,你能求出相机透镜与大树的距离吗?(答案:20cm )应用之三:小孔成像小孔成像是光的直线传播中的典型现象.用一根蜡烛通过小孔成像的原理在暗箱里成一个倒立的像,如图4所示.小孔O 是位似中心,两条光线AD 和BC 形成了两个相似三角形△OAB 和△ODC.例 在小孔成像问题中, 根据如图4所示,若O 到AB 的距离是18cm ,O 到CD 的距离是6cm ,则像CD 的长是物AB 长的 ( )(A )3倍 (B )21(C )31 (D )不知AB 的长度,无法判断。
浙教版八年级数学上册第四章图形与坐标》课堂教学设计
浙教版八年级数学上册第四章图形与坐标》课堂教学设计4.1探索确定位置的方法教材分析作为本章的第一节课,它起着承上启下的作用。
一方面,小学教材中已介绍过确定物体位置的两种常用的方法,但是由于知识不足,学生对两类方法的认识非常肤浅,并没有形成坐标意识;另一方面,本节课设置的目的在于让学生了解探究的方法,更重要的是促使学生形成坐标意识,从而为引入直角坐标系作好铺垫,为今后学习函数及其图象的关系奠定基础。
学情分析学生已具备掌握探索确定位置的两种常用方法的知识与经验基础,但由于中学生数学思维还不是很严密,真正让学生掌握这两种常用方法,透彻了解它们的细节,并能学以致用还是存在一定的困难。
针对本课的两种常用方法的前提是在平面上,针对有序数对法中,学生易忽视起始位置的约定及有序性,本课利用“报座位起立”环节,让学生真真实实地感受到它们的重要性。
针对方向距离法中,学生易忽视参照点的选定,本课利用有效的问题让学生自然地领悟参照点的不可或缺。
教学目标1、探索确定平面上物体位置的方法;初步会用有序数对和方向、距离表示平面上的点的位置.2、体验用有序数对表示平面上点的位置的坐标思想,体验用方向和距离表示平面上点的位置的坐标思想;3、通过运用位置确定的方法解决实际问题,激发学生的学习兴趣.教学重点与难点教学重点:探索在平面上确定位置的两种常用方法.教学难点:本节“合作学习”涉及两种确定方法的运用,还涉及测量、比例计算等方面,是本节教学的难点.教学准备:教学课件,刻度尺,量角器教学过程:一、创设情境,引入新课(一)探索新知一:“有序数对”法1、问题:①A,B 两人能否找到属于自己的位置? ②假如A 要找到自己的位置,还需加什么条件? B 呢?③如果换两张电影票,A,B 能找到自己的位置吗? 电影院里的座位是如何确定的? ④如果将“6排3号”记作(6,3),那么3排6号如何表示?⑤在电影票上“6排3号”与“3排6号”中的“6”的含义有什么不同?⑥(5,6)表示什么含义?(6,5)又表示什么?这说明什么?二、师生合作,探究学习1、思考:(1)确定一个座位一般需要几个数据?为什么?(2)一对数如(5, 2)所表示的座位有几个?一个位置用几个数对来表示?这说明了什么? 小结: 为了表示简便,把第几排第几号记为数对形式,习惯上把排数写在前面,号数写在后面,再两头括号,中间逗号。
图形与位置复习教案
图形与位置【复习内容】:方向与路线,用数对表示位置【复习目标】:1、通过复习,使学生进一步理解和掌握确定物体位置的方法,并能综合运用所学的知识解决有关问题。
2、使学生深刻认识数学与人类生活的密切联系,认识到许多实际问题可以借助数学方法来解决。
【复习过程】:一、揭示课题《图形与位置》二、知识梳理,形成网络1、方向与路线⑴、填一填:⑵、说一说:①、让学生以教室为观察点,说一说学校周围的各建筑物所处的方向。
②、举例:从学校出发到你家的路线。
⑶、看图回答问题。
从少年宫出发到车站怎么走?从车站出发到少年宫怎么走?2、确定位置:◆出示课本例题。
①、用方向和距离来表示物体的准确位置可以将大鸣山作为参照点,正东方向和正北方向组成坐标系。
大本营在大鸣山东偏北37度,或者北偏东()度。
离大鸣山图上距离是()厘米,实际距离是()米。
师:那大本营的位置怎样描述?②、用数对来表示物体的准确位置可以将大鸣山作为参照点,水平、竖直方向组成直角坐标系。
大鸣山的位置(0,0)大本营的位置表示为(,)。
也就是从大鸣山向东行()米,再向北行()米到大本营。
师:那大本营的位置怎样描述?二、巩固与应用:教材第80~82页1~5题。
1、第1题。
对于路线图的描述,需要说清楚行进的方向和距离。
答案:⑴、淘气从胜利小学东门进入校园,向西走300米到圆形花坛,再向北走100米到综合楼,然后向西走300米才能到达活动场。
⑵、排球场在圆形花坛的东南方向200米处。
羽毛球场在圆形花坛的西南方向200米处。
教学楼在圆形花坛的南350米处。
2、第2题。
用数对表示物体的位置,要注意分清这两个数分别表示的意义。
学生独立完成后交流答案。
注意说说数对中每个数的含义。
3、第3题。
运用图形与位置的相关知识解决实际问题。
教师引导学生用方位角来描述。
如:以搜救船为中心,失事船只P的位置在东偏北30°,200海里处。
以搜救船为中心,失事船只P的位置在北偏东60°,200海里处。
2022-2022《三维设计》高三数学湘教版(文)一轮复习[精品讲义]选修4-4坐标系与参数方程
2022-2022《三维设计》高三数学湘教版(文)一轮复习[精品讲义]选修4-4坐标系与参数方程第一节坐标系1.平面直角坐标系中的坐标伸缩变换设点P(某,y)是平面直角坐标系中的任意一点,在变换某,λ>0,某′=λ·φ:的作用下,点P(某,y)对应到点P′(某′,y′),称φ为平面直y′=μ·y,μ>0角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系与极坐标(1)极坐标系:如图所示,在平面内取一个定点O,叫做极点,自极点O引一条射线O某,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标:设M是平面内一点,极点O与点M的距离|OM|叫做点M的极径,记为ρ;以极轴O某为始边,射线OM为终边的角某OM叫做点M的极角,记为θ.有序数对(ρ,θ)叫做点M的极坐标,记为M(ρ,θ).一般地,不做特殊说明时,我们认为ρ≥0,θ可取任意实数.3.极坐标与直角坐标的互化设M是坐标系平面内任意一点,它的直角坐标是(某,y),极坐标是(ρ,θ)(ρ≥0),于是极坐标与直角坐标的互化公式如下表:点M互化公式直角坐标(某,y)某=ρcoθρinθy=极坐标(ρ,θ)ρ=某+yytanθ=某某≠02224.常见曲线的极坐标方程曲线图形极坐标方程圆心在极点,半径为r的圆ρ=r(0≤θ<2π)ρ=2rco_θ圆心为(r,0),半径为r的圆-π≤θ≤π22ρ=2rin_θ(0≤θ<π)πr,,半径为r的圆圆心为2(1)θ=α(ρ∈R)或θ=π+α(ρ∈R)(2)θ=α(ρ≥0)和θ=π+α(ρ≥0)过极点,倾斜角为α的直线过点(a,0),与极轴垂直的直线πa,,与极轴平行的直线过点2ππ-<θ<ρco_θ=a22ρin_θ=a(0<θ<π)1.在将直角坐标化为极坐标求极角θ时,易忽视判断点所在的象限(即角θ的终边的位置).2.在极坐标系下,点的极坐标不惟一性易忽视.注意极坐标(ρ,θ)(ρ,θ+2kπ),(-ρ,π+θ+2kπ)(k∈Z)表示同一点的坐标.[试一试]1.点P的直角坐标为(1,-3),求点P的极坐标.π解:因为点P(1,-3)在第四象限,与原点的距离为2,且OP与某轴所成的角为-,3π2,-.所以点P的极坐标为32.求极坐标方程ρ=inθ+2coθ能表示的曲线的直角坐标方程.解:由ρ=inθ+2coθ,得ρ2=ρinθ+2ρcoθ,∴某2+y2-2某-y=0.故故极坐标方程ρ=inθ+2coθ表示的曲线直角坐标方程为某2+y2-2某-y=0.1.确定极坐标方程的四要素极点、极轴、长度单位、角度单位及其正方向,四者缺一不可.2.直角坐标(某,y)化为极坐标(ρ,θ)的步骤y(1)运用ρ=某2+y2,tanθ=(某≠0)某y(2)在[0,2π)内由tanθ=(某≠0)求θ时,由直角坐标的符号特征判断点所在的象限.某[练一练]1.在极坐标系中,求圆心在(2,π)且过极点的圆的方程.解:如图,O为极点,OB为直径,A(ρ,θ),则∠ABO=θ-90°,OBρ=22=,化简得ρ=-22coθ.inθ-90°π22.已知直线的极坐标方程为ρin(θ+)=,求极点到该直线的距离.4222π2in+co解:极点的直角坐标为O(0,0),ρin(θ+)=ρ=,∴ρinθ+4222ρcoθ=1,化为直角坐标方程为某+y-1=0.∴点O(0,0)到直线某+y-1=0的距离为d==π222θ+=的距离为.,即极点到直线ρin42222考点一平面直角坐标系中的伸缩变换1某′=2某,1.(2022·佛山模拟)设平面上的伸缩变换的坐标表达式为求在这一坐标变y′=3y,换下正弦曲线y=in某的方程.1某=2某′,某′=2某,解:∵∴1y=y′.y′=3y,3代入y=in某得y′=3in2某′.某′=2某,π2.求函数y=in(2某+)经伸缩变换14y′=y21某′=2某,某=2某′,解:由得①1y′=y,2y=2y′.π1π将①代入y=in(2某+),得2y′=in(2·某′+),4241π即y′=in(某′+).24后的解析式.某′=3某,y23.求双曲线C:某-=1经过φ:变换后所得曲线C′的焦点坐标.642y′=y21某=3某′,y22解:设曲线C′上任意一点P′(某′,y′),由上述可知,将代入某-=64y=2y′,某′24y′2某′2y′21得-=1,化简得-=1,964916某2y2即-=1为曲线C′的方程,可见仍是双曲线,则焦点F1(-5,0),F2(5,0)为所求.916[类题通法]某,λ>0某′=λ·平面图形的伸缩变换可以用坐标伸缩变换来表示.在伸缩变换下,直y′=μ·y,μ>0线仍然变成直线,抛物线仍然变成抛物线,双曲线仍然变成双曲线,圆可以变成椭圆,椭圆也可以变成圆.考点二极坐标与直角坐标的互化[典例](2022·石家庄模拟)在平面直角坐标系某Oy中,以坐标原点O为极点,某轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为3ρ2=12ρcoθ-10(ρ>0).(1)求曲线C1的直角坐标方程;某2y2(2)曲线C2的方程为+=1,设P,Q分别为曲线C1与曲线C2上的任意一点,求|PQ|164的最小值.[解](1)曲线C1的方程可化为3(某2+y2)=12某-10,2即(某-2)2+y2=.3(2)依题意可设Q(4coθ,2inθ),由(1)知圆C1的圆心坐标为C1(2,0).故|QC1|=4coθ-22+4in2θ=12co2θ-16coθ+8=222coθ-2+,33326,36.3|QC1|min=所以|PQ|min=[类题通法]直角坐标方程与极坐标方程的互化,关键要掌握好互化公式,研究极坐标系下图形的性质,可转化直角坐标系的情境进行.[针对训练](2022·安徽模拟)在极坐标系中,判断直线ρcoθ-ρinθ+1=0与圆ρ=2inθ的位置关系.解:直线ρcoθ-ρinθ+1=0可化成某-y+1=0,圆ρ=2inθ可化为某2+y2=2y,即某2+(y-1)2=1.圆心(0,1)到直线某-y+1=0的距离d=考点三|0-1+1|=0<1.故直线与圆相交.2极坐标方程及应用[典例](2022·郑州模拟)已知在直角坐标系某Oy中,曲线C的参数方程为某=2+2coθ,(θ为参数),在极坐标系(与直角坐标系某Oy取相同的长度单位,且以y=2inθπ原点O为极点,以某轴正半轴为极轴)中,直线l的方程为ρin(θ+)=22.4(1)求曲线C在极坐标系中的方程;(2)求直线l被曲线C截得的弦长.[解](1)由已知得,曲线C的普通方程为(某-2)2+y2=4,即某2+y2-4某=0,化为极坐标方程是ρ=4coθ.(2)由题意知,直线l的直角坐标方程为某+y-4=0,22某+y-4某=0,由得直线l与曲线C的交点坐标为(2,2),(4,0),所以所求弦长为22.某+y=4,π在本例(1)的条件下,求曲线C与曲线C1:ρcoθ=3(ρ≥0,0≤θ解:由曲线C,C1极坐标方程联立ρ=4coθ,33π∴co2θ=,coθ=±,又ρ≥0,θ∈[0,).422∴coθ=π3π23,.,θ=,ρ=23,故交点极坐标为626[类题通法]求曲线的极坐标方程的步骤(1)建立适当的极坐标系,设P(ρ,θ)是曲线上任意一点;(2)由曲线上的点所适合的条件,列出曲线上任意一点的极径ρ和极角θ之间的关系式;(3)将列出的关系式进行整理、化简,得出曲线的极坐标方程.[针对训练](2022·荆州模拟)在极坐标系中,求过圆ρ=6coθ的圆心,且垂直于极轴的直线的极坐标方程.解:ρ=6coθ在直角坐标系中表示圆心为(3,0),半径为3的圆.过圆心且垂直于某轴的直线方程为某=3,其在极坐标系下的方程为ρcoθ=3.[课堂练通考点]π1.(2022·南昌调研)在极坐标系中,求圆ρ=2coθ与直线θ=(ρ>0)所表示的图形的交4点的极坐标.π解:圆ρ=2coθ可转化为某2-2某+y2=0,直线θ=可转化为y =某(某>0),两个方程联4π立得交点坐标是(1,1),可得其极坐标是(2,).4ππ2.(2022·惠州模拟)在极坐标系中,已知两点A,B的极坐标分别为(3,)、(4,),求36△AOB(其中O为极点)的面积.ππ1解:由题意知A,B的极坐标分别为(3,)、(4,),则△AOB的面积S△AOB=OA·OB·in3621π∠AOB=某3某4某in=3.263.(2022·天津高考改编)已知圆的极坐标方程为ρ=4c oθ,圆心为C,点P的极坐标为4,π,求|CP|的值.3解:由ρ=4coθ可得圆的直角坐标方程为某2+y2=4某,圆心C(2,0).点P的直角坐标为(2,23),所以|CP|=23.4.在极坐标系中,求圆:ρ=2上的点到直线:ρ(coθ+3inθ)=6的距离的最小值.解:由题意可得,圆的直角坐标方程为某2+y2=4,圆的半径为r=2,直线的直角坐标|0+3某0-6|方程为某+3y-6=0,圆心到直线的距离d==3,所以圆上的点到直线的距2离的最小值为d-r=3-2=1.某=-t,π5.(2022·银川调研)已知直线l:(t为参数)与圆C:ρ=42co(θ-).4y=1+t(1)试判断直线l和圆C的位置关系;(2)求圆上的点到直线l的距离的最大值.解:(1)直线l的参数方程消去参数t,得某+y-1=0.π由圆C的极坐标方程,得ρ2=42ρco(θ-),化简得ρ2=4ρcoθ+4ρinθ,所以圆C4的直角坐标方程为某2+y2=4某+4y,即(某-2)2+(y-2)2=8,故该圆的圆心为C(2,2),半径r=22.|2+2-1|32从而圆心C到直线l的距离为d=22=2,1+132显然<22,所以直线l和圆C相交.232(2)由(1)知圆心C到直线l的距离为d=,所以圆上的点到直线l的距离的最大值为23272+22=.22[课下提升考能]1.在直角坐标系某Oy中,以O为极点,某轴的正半轴为极轴建立极坐标系.曲线C的πθ-=1,M,N分别为曲线C与某轴,y轴的交点.极坐标方程为ρco3(1)写出曲线C的直角坐标方程,并求点M,N的极坐标;(2)设MN的中点为P,求直线OP的极坐标方程.π13θ-=1得ρcoθ+inθ=1,解:(1)由ρco32213从而曲线C的直角坐标方程为某+y=1,即某+3y=2.22θ=0时,ρ=2,所以M(2,0).π2323πθ=时,ρ=,所以N.233,223(2)由(1)得点M的直角坐标为(2,0),点N的直角坐标为0,.3所以点P的直角坐标为1,323π,则点P的极坐标为,33,6π所以直线OP的极坐标方程为θ=,ρ∈(-∞,+∞).6π1,,点B在直线l:ρcoθ+ρinθ=0(0≤θ<2π)上运动,当2.在极坐标系中定点A2线段AB最短时,求点B的极坐标.解:∵ρcoθ+ρinθ=0,∴coθ=-inθ,tanθ=-1.3π∴直线的极坐标方程化为θ=(直线如图).4过A作直线垂直于l,垂足为B,此时AB最短.易得|OB|=22 .∴B点的极坐标为23π2,4.3.(2022·扬州模拟)已知圆的极坐标方程为:ρ2-42ρcoθ-π4+6=0.(1)将极坐标方程化为普通方程;(2)若点P(某,y)在该圆上,求某+y的最大值和最小值.解:(1)原方程变形为:ρ2-4ρcoθ-4ρinθ+6=0.某2+y2-4某-4y+6=0.(2)圆的参数方程为某=2+2coα,y=2+2inα(α为参数),所以某+y=4+2inα+π4.那么某+y的最大值为6,最小值为2.4.在同一平面直角坐标系中,已知伸缩变换φ:某′=3某,2y′=y.(1)求点A13,-2经过φ变换所得的点A′的坐标;(2)点B经过φ变换得到点B′-3,12,求点B的坐标;(3)求直线l:y=6某经过φ变换后所得到的直线l′的方程.某′=3某,解:(1)设A′(某′,y′),由伸缩变换φ:某′=3某,y′=y得到y′=12y,坐标为13,-2,于是某′=3某13=1,y′=12某(-2)=-1,∴A′(1,-1)为所求.(2)设B(某,y),由伸缩变换φ:某′=3某,某=3某′,y′=y得到y=2y′.由于点B′的坐标为-3,12,于是某=13某(-3)=-1,y=2某12=1,A的由于点∴B(-1,1)为所求.某=,某′=3某,3(3)由伸缩变换φ:得2y′=y,某′y=2y′.代入直线l:y=6某,得到经过伸缩变换后的方程y′=某′,因此直线l的方程为y=某.5.(2022·南京模拟)在极坐标系中,曲线C1,C2的极坐标方程分别为ρ=-2coθ,ρcoθ+π=1.3(1)求曲线C1和C2的公共点的个数;(2)过极点作动直线与曲线C2相交于点Q,在OQ上取一点P,使|OP|·|OQ|=2,求点P的轨迹,并指出轨迹是什么图形.解:(1)C1的直角坐标方程为(某+1)2+y2=1,它表示圆心为(-1,0),半径为1的圆,C23的直角坐标方程为某-3y-2=0,所以曲线C2为直线,由于圆心到直线的距离为d=>1,2所以直线与圆相离,即曲线C1和C2没有公共点.ρρ0=2,(2)设Q(ρ0,θ0),P(ρ,θ),则θ=θ0,2ρ0=ρ,即①θ0=θ.因为点Q(ρ0,θ0)在曲线C2上,πθ0+=1,②所以ρ0co3π2θ+=1,将①代入②,得coρ3π13θ+为点P的轨迹方程,化为直角坐标方程为某-2+y+2=1,因即ρ=2co32213此点P的轨迹是以,-为圆心,1为半径的圆.22π2θ-=.6.(2022·苏州模拟)在极坐标系下,已知圆O:ρ=coθ+inθ和直线l:ρin42(1)求圆O和直线l的直角坐标方程;(2)当θ∈(0,π)时,求直线l与圆O公共点的一个极坐标.解:(1)圆O:ρ=coθ+inθ,即ρ2=ρcoθ+ρinθ,圆O的直角坐标方程为:某2+y2=某+y,即某2+y2-某-y=0,π2θ-=,即ρinθ-ρcoθ=1,直线l:ρin42则直线l的直角坐标方程为:y-某=1,即某-y+1=0.22某+y-某-y=0,某=0,π1,.(2)由得故直线l与圆O公共点的一个极坐标为2某-y+1=0y =1,第二节参数方程1.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数某,y中的一个与参数t的关系,例如某=f(t),把它代入普通方程,求某=ft,出另一个变数与参数的关系y=g(t),那么,就是曲线的参数方程.y=gt2.常见曲线的参数方程和普通方程点的轨迹直线普通方程y-y0=tanα(某-某0)参数方程某=某0+tcoαy=y0+tinα(t为参数)圆某+y=r某2y2+=1(a>b>0)a2b2222某=rcoθ(θ为参数)y=rinθ某=acoφ(φ为参数)y=binφ椭圆某=某0+tcoα,1.不明确直线的参数方程中的几何意义导致错误,对于直线参数方程y=y0+tinα.(t为参数)注意:t是参数,α则是直线的倾斜角.2.参数方程与普通方程互化时,易忽视互化前后的等价性.[试一试]3.(2022·合肥模拟)在平面直角坐标系中,直线l的参数方程为23y=+22t1某=t,2(t为参数),若以直角坐标系的原点O为极点,某轴非负半轴为极轴,且长度单位相同,建立极坐πθ-.若直线l与曲线C交于A,B两点,求|AB|的标系,曲线C的极坐标方程为ρ=2co4值.解:首先消去参数t,可得直线方程为3某-y+为某-2=0,极坐标方程化为直角坐标方程21-1062=.24222+y-2=1,根据直线与圆的相交弦长公式可得|AB|=2224.(2022·石家庄模拟)在平面直角坐标系某Oy中,以原点O为极点,某轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为:ρin2θ=coθ.(1)求曲线C的直角坐标方程;某=2-22t,(2)若直线l的参数方程为2y=2t点,求|AB|的值.(t为参数),直线l与曲线C相交于A,B两解:(1)将y=ρinθ,某=ρcoθ代入ρ2in2θ=ρcoθ中,得y2=某,∴曲线C的直角坐标方程为:y2=某.某=2-22t,(2)把2y=2t,代入y2=某整理得,t2+2t-4=0,Δ>0总成立.设A,B两点对应的参数分别为t1,t2,∵t1+t2=-2,t1t2=-4,∴|AB|=|t1-t2|=-22-4某-4=32.[课下提升考能]某=t+1,1.在平面直角坐标系某Oy中,直线l的参数方程为(t为参数),曲线C的y=2t2某=2tanθ,参数方程为(θ为参数).试求直线l和曲线C的普通方程,并求出它们的公共y=2tanθ点的坐标.某=t+1,解:因为直线l的参数方程为(t为参数),由某=t+1得t=某-1,代入y=y=2t2t,得到直线l的普通方程为2某-y-2=0.同理得到曲线C的普通方程为y2=2某.y=2某-1,1解方程组2得公共点的坐标为(2,2),(,-1).2y=2某,2.(2022·长春模拟)已知曲线C的极坐标方程为ρ=4coθ,以极点为原点,极轴为某轴某=5+23t,正半轴建立平面直角坐标系,设直线l的参数方程为1y=2t(1)求曲线C的直角坐标方程与直线l的普通方程;(t为参数).(2)设曲线C与直线l相交于P,Q两点,以PQ为一条边作曲线C的内接矩形,求该矩形的面积.解:(1)由ρ=4coθ,得ρ2=4ρcoθ,即曲线C的直角坐标方程为某2+y2=4某;某=5+23t,由1y=2t(t为参数),得y=(某-5),即直线l的普通方程为某-3y-5=0.3|2-3某0-5|3(2)由(1)可知C为圆,且圆心坐标为(2,0),半径为2,则弦心距d==,21+3弦长|PQ|=2某=2+2coφ,3.在直角坐标系某Oy中,圆C1和C2的参数方程分别是(φ为参数)和y=2inφ某=coφ,(φ为参数).以O为极点,某轴的正半轴为极轴建立极坐标系.y=1+inφ322-2=7,因此以PQ为一条边的圆C的内接矩形面积S=2d·|PQ|=37.2(1)求圆C1和C2的极坐标方程;(2)射线OM:θ=α与圆C1的交点为O,P,与圆C2的交点为O,Q,求|OP|·|OQ|的最大值.解:(1)圆C1和圆C2的普通方程分别是(某-2)2+y2=4和某2+(y-1)2=1,所以圆C1和C2的极坐标方程分别是ρ=4coθ和ρ=2inθ.(2)依题意得,点P,Q的极坐标分别为P(4coα,α),Q(2inα,α),所以|OP|=|4coα|,|OQ|=|2inα|.从而|OP|·|OQ|=|4in2α|≤4,当且仅当in2α=±1时,上式取“=”,即|OP|·|OQ|的最大值是4.4.(2022·福建模拟)如图,在极坐标系中,圆C的圆心坐标为(1,0),半径为1.(1)求圆C的极坐标方程;(2)若以极点O为原点,极轴所在直线为某轴建立平面直角坐标系.已知直线l某=-1+tco6,的参数方程为πy=tin6OM,BM,在Rt△OBM中,|OM|=|OB|co∠BOM,所以ρ=2coθ.π(t为参数),试判断直线l与圆C的位置关系.解:(1)如图,设M(ρ,θ)为圆C上除点O,B外的任意一点,连接π可以验证点O(0,),B(2,0)也满足ρ=2coθ,2故ρ=2coθ为所求圆的极坐标方程.(2)由πy=tin6π某=-1+tco,6(t为参数),得直线l的普通方程为y=3(某+1),3即直线l的普通方程为某-3y+1=0.由ρ=2coθ,得圆C的直角坐标方程为(某-1)2+y2=1.|1某1-3某0+1|因为圆心C到直线l的距离d==1,2所以直线l与圆C相切.5.(2022·郑州模拟)在直角坐标系某Oy中,直线l经过点P(-1,0),其倾斜角为α.以原点O为极点,以某轴非负半轴为极轴,与直角坐标系某Oy取相同的长度单位,建立极坐标系.设曲线C的极坐标方程为ρ2-6ρcoθ+5=0.(1)若直线l与曲线C有公共点,求α的取值范围;(2)设M(某,y)为曲线C上任意一点,求某+y的取值范围.解:(1)将曲线C的极坐标方程ρ2-6ρcoθ+5=0化为直角坐标方程为某2+y2-6某+5=0.某=-1+tcoα,直线l的参数方程为(t为参数).y=tinα某=-1+tcoα,将(t为参数)代入某2+y2-6某+5=0整理得,t2-8tcoα+12=0.y=tinα∵直线l与曲线C有公共点,∴Δ=64co2α-48≥0,∴coα≥33或coα≤-.22π50,∪∵α∈[0,π),∴α的取值范围是,.66(2)曲线C的方程某2+y2-6某+5=0可化为(某-3)2+y2=4,某=3+2coθ,其参数方程为(θ为参数).y=2inθ∵M(某,y)为曲线C上任意一点,π∴某+y=3+2coθ+2inθ=3+22in(θ+),4∴某+y的取值范围是[3-22,3+22].某=acoφ,6.(2022·昆明模拟)已知曲线C的参数方程是(φ为参数,a>0),直线l的y=3inφ某=3+t,参数方程是(t为参数),曲线C与直线l有一个公共点在某轴上,以坐标原点为y=-1-t极点,某轴的正半轴为极轴建立坐标系.(1)求曲线C的普通方程;(2)若点A(ρ1,θ),B(ρ2,θ+2π4π111),C(ρ3,θ+)在曲线C上,求的值.2+2+33|OA||OB||OC|2某2解:(1)直线l的普通方程为某+y=2,与某轴的交点为(2,0).又曲线C 的普通方程为2+ay2某2y2=1,所以a=2,故所求曲线C的普通方程是+=1.3432π4πρ2,θ+,Cρ3,θ+在曲线C上,即点A(ρ1coθ,ρ1inθ),(2)因为点A(ρ1,θ),B332π4π4π2πθ+,ρ2in(θ+,Cρ3coθ+,ρ3inθ+在曲线C上.Bρ2co3333故1111112+2+2=2+2+2|OA||OB||OC|ρ1ρ2ρ324112=co2+co2++co++343322422in+in++in+33481+co2+1+co2++co21133+++=4222481-co2+1-co2+-co2113313137=4某2+3某2=8.++3222。
第四章图形与坐标大单元教学设计浙教版八年级数学上册
《图形与坐标》单元教学设计
4.在同一直角坐标系中,感受图形经轴对称、平移后点的坐标的变化
(二)教学重点、难点
教学重点:平面直角坐标系和坐标平面内的图形的轴对称和平移
教学难点:理解图形的轴对称和平移与坐标变化之间的关系
单元知识
结构框架
及课时安
排
(一)单元知识结构框架
(二)课时安排
课时编号单元主要内容课时数
探索确定位置的方法 1
平面直角坐标系 2
坐标平面内图形的轴对称
和平移
2
达成评价课题课时目标达成评价评价任务
探索确定位置的方法1.探索确定平面上物
体位置的方法;
2.体验用有序实数对
表示平面上点的位置
的坐标思想,体验用方
向和距离表示平面上
点的位置的坐标思想;
3.初步会用有序实数
2.能够用方向和距
离表示平面上点的
位置
活动一:情景导入,
用生活的例子探究
确定物体位置的方
法
活动二:概念归纳,
学习有序数对法,能
够用有序实数对表
示平面上点的位置。
2022版高考数学(文理通用新课标)一轮复习教师用书:选修4-4 坐标系与参数方程 Word版含解析
选修4-4⎪⎪⎪坐标系与参数方程 第一节 坐 标 系突破点(一) 平面直角坐标系下图形的伸缩变换基础联通 抓主干学问的“源”与“流”设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λ·x (λ>0),y ′=μ·y (μ>0)的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.考点贯穿 抓高考命题的“形”与“神”平面直角坐标系下图形的伸缩变换典例] 求椭圆x 24+y 2=1,经过伸缩变换⎩⎪⎨⎪⎧x ′=12x ,y ′=y 后的曲线方程.解] 由⎩⎪⎨⎪⎧x ′=12x ,y ′=y得到⎩⎪⎨⎪⎧x =2x ′,y =y ′.①将①代入x 24+y 2=1,得4x ′24+y ′2=1,即x ′2+y ′2=1.因此椭圆x 24+y 2=1经伸缩变换后得到的曲线方程是x 2+y 2=1.方法技巧]应用伸缩变换公式时的两个留意点(1)曲线的伸缩变换是通过曲线上任意一点的坐标的伸缩变换实现的,解题时肯定要区分变换前的点P 的坐标(x ,y )与变换后的点P ′的坐标(X ,Y ),再利用伸缩变换公式⎩⎪⎨⎪⎧X =ax (a >0),Y =by (b >0)建立联系.(2)已知变换后的曲线方程f (x ,y )=0,一般都要改写为方程f (X ,Y )=0,再利用换元法确定伸缩变换公式.力量练通 抓应用体验的“得”与“失”1.在同一平面直角坐标系中,已知伸缩变换φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y .求点A ⎝⎛⎭⎫13,-2经过φ变换所得的点A ′的坐标.解:设A ′(x ′,y ′),由伸缩变换φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y ,得到⎩⎪⎨⎪⎧x ′=3x ,y ′=12y ,由于点A 的坐标为⎝⎛⎭⎫13,-2, 于是x ′=3×13=1,y ′=12×(-2)=-1,所以A ′(1,-1)为所求.2.求直线l :y =6x 经过φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y 变换后所得到的直线l ′的方程.解:设直线l ′上任意一点P ′(x ′,y ′), 由题意,将⎩⎪⎨⎪⎧x =13x ′,y =2y ′代入y =6x 得2y ′=6×⎝⎛⎭⎫13x ′, 所以y ′=x ′,即直线l ′的方程为y =x . 3.求双曲线C :x 2-y 264=1经过φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y 变换后所得曲线C ′的焦点坐标. 解:设曲线C ′上任意一点P ′(x ′,y ′), 由题意,将⎩⎪⎨⎪⎧x =13x ′,y =2y ′代入x 2-y 264=1得x ′29-4y ′264=1,化简得x ′29-y ′216=1,本节主要包括2个学问点: 1.平面直角坐标系下图形的伸缩变换; 2.极坐标系.即x 29-y 216=1为曲线C ′的方程,可见经变换后的曲线仍是双曲线, 则所求焦点坐标为F 1(-5,0),F 2(5,0).4.将圆x 2+y 2=1变换为椭圆x 29+y 24=1的一个伸缩变换公式为φ:⎩⎪⎨⎪⎧X =ax (a >0),Y =by (b >0),求a ,b 的值.解:由⎩⎪⎨⎪⎧X =ax ,Y =by知⎩⎨⎧x =1a X ,y =1b Y ,代入x 2+y 2=1中得X 2a 2+Y 2b2=1,所以a 2=9,b 2=4,即a =3,b =2.突破点(二) 极坐标系基础联通 抓主干学问的“源”与“流” 1.极坐标系的概念 (1)极坐标系如图所示,在平面内取一个定点O ,点O 叫做极点,自极点O 引一条射线Ox ,Ox 叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标一般地,没有特殊说明时,我们认为ρ≥0,θ可取任意实数. (3)点与极坐标的关系一般地,极坐标(ρ,θ)与(ρ,θ+2k π)(k ∈Z)表示同一个点,特殊地,极点O 的坐标为(0,θ)(θ∈R),和直角坐标不同,平面内一个点的极坐标有很多种表示.假如规定ρ>0,0≤θ<2π,那么除极点外,平面内的点可用唯一的极坐标(ρ,θ) 表示;同时,极坐标(ρ,θ)表示的点也是唯一确定的.2.极坐标与直角坐标的互化点M直角坐标(x ,y )极坐标(ρ,θ)互化公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ ⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=y x (x ≠0)考点贯穿 抓高考命题的“形”与“神”极坐标与直角坐标的互化1.极坐标方程化为直角坐标方程的步骤第一步推断极坐标的极点与直角坐标系的原点是否重合,且极轴与x 轴正半轴是否重合,若上述两个都重合,则极坐标方程与直角坐标方程可以互化其次步通过极坐标方程的两边同乘ρ或同时平方构造ρcos θ,ρsin θ,ρ2的形式,肯定要留意变形过程中方程要保持同解,不要消灭增解或漏解第三步 依据极坐标方程与直角坐标方程的互化公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ及ρ2=x 2+y 2将极坐标方程转化为直角坐标方程2.直角坐标方程化为极坐标方程或直角坐标系中的点的坐标化为极坐标(1)直角坐标方程化为极坐标方程较为简洁,只需将直角坐标方程中的x ,y 分别用ρcos θ,ρsin θ代替即可得到相应极坐标方程.(2)求直角坐标系中的点(x ,y )对应的极坐标的一般步骤:第一步,依据直角坐标系中两点间的距离公式计算该点与坐标原点的距离,即计算ρ;其次步,依据角θ的正切值tan θ=yx (x ≠0)求出角θ(若正切值不存在,则该点在y 轴上),问题即解.例1] 在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin ⎝⎛⎭⎫θ-π4=22. (1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 公共点的一个极坐标. 解] (1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ,圆O 的直角坐标方程为:x 2+y 2=x +y ,即x 2+y 2-x -y =0,直线l :ρsin ⎝⎛⎭⎫θ-π4=22,即ρsin θ-ρcos θ=1,则直线l 的直角坐标方程为:y -x =1,即x -y +1=0.(2)由⎩⎪⎨⎪⎧ x 2+y 2-x -y =0,x -y +1=0得⎩⎪⎨⎪⎧x =0,y =1,则直线l 与圆O 公共点的一个极坐标为⎝⎛⎭⎫1,π2. 方法技巧]1.应用互化公式的三个前提条件 (1)取直角坐标系的原点为极点. (2)以x 轴的正半轴为极轴. (3)两种坐标系规定相同的长度单位. 2.直角坐标化为极坐标时的两个留意点(1)依据终边相同的角的意义,角θ的表示方法具有周期性,故点M 的极坐标(ρ,θ)的形式不唯一,即一个点的极坐标有无穷多个.当限定ρ≥0,θ∈0,2π)时,除极点外,点M 的极坐标是唯一的.(2)当把点的直角坐标化为极坐标时,求极角θ应留意推断点M 所在的象限(即角θ的终边的位置),以便正确地求出角θ(θ∈0,2π))的值.极坐标方程的应用例2] (2021·福州五校联考)已知曲线C 的极坐标方程为ρ2-22ρcos ⎝⎛⎭⎫θ+π4-2=0.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系xOy .(1)若直线l 过原点,且被曲线C 截得的弦长最小,求直线l 的直角坐标方程; (2)若M 是曲线C 上的动点,且点M 的直角坐标为(x ,y ),求x +y 的最大值. 解] (1)ρ2-22ρcos ⎝⎛⎭⎫θ+π4-2=0,即ρ2-2ρcos θ+2ρsin θ-2=0, 将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入得曲线C 的直角坐标方程为(x -1)2+(y +1)2=4, 圆心C (1,-1),若直线l 被曲线C 截得的弦长最小,则直线l 与OC 垂直, 即k l ·k OC =-1,k OC =-1,因而k l =1,故直线l 的直角坐标方程为y =x .(2)由于M 是曲线C 上的动点,因而利用圆的参数方程可设⎩⎪⎨⎪⎧x =1+2cos φ,y =-1+2sin φ(φ为参数),则x +y =2sinφ+2cos φ=22sin ⎝⎛⎭⎫φ+π4,当sin ⎝⎛⎭⎫φ+π4=1时,x +y 取得最大值2 2.易错提示]用极坐标系解决问题时要留意题目中的几何关系,假如几何关系不简洁通过极坐标表示时,可以先化为直角坐标方程,将不生疏的问题转化为生疏的问题加以解决.力量练通 抓应用体验的“得”与“失”1.考点一、二]已知直线l 的极坐标方程为2ρsin ⎝⎛⎭⎫θ+π4=2,点A 的极坐标为A ⎝⎛⎭⎫22,7π4,求点A 到直线l 的距离.解:由2ρsin ⎝⎛⎭⎫θ+π4=2, 得2ρ⎝⎛⎭⎫22sin θ+22cos θ=2,由坐标变换公式,得直线l 的直角坐标方程为y +x =1,即x +y -1=0. 由点A 的极坐标为⎝⎛⎭⎫22,7π4得点A 的直角坐标为(2,-2),所以点A 到直线l 的距离d =|2-2-1|2=22.2.考点一]已知圆C 的极坐标方程为ρ2+22ρsin θ-π4-4=0,求圆C 的半径.解:以极坐标系的极点为平面直角坐标系的原点O ,以极轴为x 轴的正半轴,建立直角坐标系xOy . 圆C 的极坐标方程为ρ2+22ρ⎝⎛⎭⎫22sin θ-22cos θ-4=0,化简,得ρ2+2ρsin θ-2ρcos θ-4=0.由坐标变换公式,得圆C 的直角坐标方程为x 2+y 2-2x +2y -4=0, 即(x -1)2+(y +1)2=6, 所以圆C 的半径为 6.3.考点二]在极坐标系中,直线ρ(sin θ-cos θ)=a 与曲线ρ=2cos θ-4sin θ相交于A ,B 两点,若|AB |=23,求实数a 的值.解:直线的极坐标方程化为直角坐标方程为x -y +a =0,曲线的极坐标方程化为直角坐标方程为(x -1)2+(y +2)2=5,所以圆心C 的坐标为(1,-2),半径r =5,所以圆心C 到直线的距离为|1+2+a |2=r 2-⎝⎛⎭⎫|AB |22=2,解得a =-5或a =-1.故实数a 的值为-5或-1.4.考点一、二](2021·洛阳统考)已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-22ρcos ⎝⎛⎭⎫θ-π4=2. (1)将圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程.解:(1)由ρ=2知ρ2=4,由坐标变换公式,得x 2+y 2=4. 由于ρ2-22ρcos ⎝⎛⎭⎫θ-π4=2, 所以ρ2-22ρ⎝⎛⎭⎫cos θcos π4+sin θsin π4=2. 由坐标变换公式, 得x 2+y 2-2x -2y -2=0.(2)将两圆的直角坐标方程相减,得经过两圆交点的直线方程为x +y =1.化为极坐标方程为ρcos θ+ρsin θ=1,即ρsin ⎝⎛⎭⎫θ+π4=22. 全国卷5年真题集中演练——明规律]1.(2022·全国乙卷)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =1+a sin t (t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a . 解:(1)消去参数t 得到C 1的一般方程为x 2+(y -1)2=a 2, 则C 1是以(0,1)为圆心,a 为半径的圆.将x =ρcos θ,y =ρsin θ代入C 1的一般方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0. (2)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ. 若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0,由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0, 从而1-a 2=0,解得a =-1(舍去)或a =1.当a =1时,极点也为C 1,C 2的公共点,且在C 3上. 所以a =1.2.(2021·新课标全国卷Ⅰ)在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.解:(1)由于x =ρcos θ,y =ρsin θ, 所以C 1的极坐标方程为ρcos θ=-2, C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0. (2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-32ρ+4=0, 解得ρ1=22,ρ2= 2. 故ρ1-ρ2=2,即|MN |= 2. 由于C 2的半径为1, 所以△C 2MN 的面积为12.课时达标检测] 基础送分题——高考就考那几点,练通就能把分捡1.在极坐标系中,已知圆C 经过点P ⎝⎛⎭⎫2,π4,圆心为直线ρsin ⎝⎛⎭⎫θ-π3=-32与极轴的交点,求圆C 的极坐标方程.解:在ρsin ⎝⎛⎭⎫θ-π3=-32中,令θ=0,得ρ=1,所以圆C 的圆心坐标为(1,0). 由于圆C 经过点P ⎝⎛⎭⎫2,π4, 所以圆C 的半径PC = (2)2+12-2×1×2cos π4=1,于是圆C 过极点,所以圆C 的极坐标方程为ρ=2cos θ.2.设M ,N 分别是曲线ρ+2sin θ=0和ρsin ⎝⎛⎭⎫θ+π4=22上的动点,求M ,N 的最小距离. 解:由于M ,N 分别是曲线ρ+2sin θ=0和ρsin ⎝⎛⎭⎫θ+π4=22上的动点,即M ,N 分别是圆x 2+y 2+2y =0和直线x +y -1=0上的动点,要求M ,N 两点间的最小距离,即在直线x +y -1=0上找一点到圆x 2+y 2+2y =0的距离最小,即圆心(0,-1)到直线x +y -1=0的距离减去半径,故最小值为|0-1-1|2-1=2-1.3.在极坐标系中,求直线ρ(3cos θ-sin θ)=2与圆ρ=4sin θ的交点的极坐标. 解:ρ(3cos θ-sin θ)=2化为直角坐标方程为3x -y =2,即y =3x -2. ρ=4sin θ可化为x 2+y 2=4y , 把y =3x -2代入x 2+y 2=4y ,得4x 2-83x +12=0,即x 2-23x +3=0, 所以x =3,y =1.所以直线与圆的交点坐标为(3,1),化为极坐标为⎝⎛⎭⎫2,π6. 4.(2021·山西质检)在极坐标系中,曲线C 的方程为ρ2=31+2sin 2θ,点R ⎝⎛⎭⎫22,π4. (1)以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,把曲线C 的极坐标方程化为直角坐标方程,R 点的极坐标化为直角坐标;(2)设P 为曲线C 上一动点,以PR 为对角线的矩形PQRS 的一边垂直于极轴,求矩形PQRS 周长的最小值,及此时P 点的直角坐标.解:(1)曲线C :ρ2=31+2sin 2θ,即ρ2+2ρ2sin 2θ=3,从而ρ2cos 2θ3+ρ2sin 2θ=1. ∵x =ρcos θ,y =ρsin θ,∴曲线C 的直角坐标方程为x 23+y 2=1,点R 的直角坐标为R (2,2). (2)设P (3cos θ,sin θ),依据题意可得|PQ |=2-3cos θ,|QR |=2-sin θ, ∴|PQ |+|QR |=4-2sin ⎝⎛⎭⎫θ+π3, 当θ=π6时,|PQ |+|QR |取最小值2,∴矩形PQRS 周长的最小值为4, 此时点P 的直角坐标为⎝⎛⎭⎫32,12.5.(2021·南京模拟)已知直线l :ρsin ⎝⎛⎭⎫θ-π4=4和圆C :ρ=2k cos ⎝⎛⎭⎫θ+π4(k ≠0),若直线l 上的点到圆C 上的点的最小距离等于2.求实数k 的值并求圆心C 的直角坐标.解:圆C 的极坐标方程可化为ρ=2k cos θ-2k sin θ, 即ρ2=2kρcos θ-2kρsin θ,所以圆C 的直角坐标方程为x 2+y 2-2kx +2ky =0, 即⎝⎛⎭⎫x -22k 2+⎝⎛⎭⎫y +22k 2=k 2, 所以圆心C 的直角坐标为⎝⎛⎭⎫22k ,-22k .直线l 的极坐标方程可化为ρsin θ·22-ρcos θ·22=4,所以直线l 的直角坐标方程为x -y +42=0,所以⎪⎪⎪⎪22k +22k +422-|k |=2.即|k +4|=2+|k |, 两边平方,得|k |=2k +3,所以⎩⎪⎨⎪⎧ k >0,k =2k +3或⎩⎪⎨⎪⎧k <0,-k =2k +3,解得k =-1,故圆心C 的直角坐标为⎝⎛⎭⎫-22,22. 6.已知圆C :x 2+y 2=4,直线l :x +y =2.以O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系.(1)将圆C 和直线l 方程化为极坐标方程;(2)P 是l 上的点,射线OP 交圆C 于点R ,又点Q 在OP 上,且满足|OQ |·|OP |=|OR |2,当点P 在l 上移动时,求点Q 轨迹的极坐标方程.解:(1)将x =ρcos θ,y =ρsin θ分别代入圆C 和直线l 的直角坐标方程得其极坐标方程为C :ρ=2,l :ρ(cos θ+sin θ)=2.(2)设P ,Q ,R 的极坐标分别为(ρ1,θ),(ρ,θ),(ρ2,θ),则由|OQ |·|OP |=|OR |2,得ρρ1=ρ22. 又ρ2=2,ρ1=2cos θ+sin θ,所以2ρcos θ+sin θ=4,故点Q 轨迹的极坐标方程为ρ=2(cos θ+sin θ)(ρ≠0).7.(2021·贵州联考)已知在一个极坐标系中点C 的极坐标为⎝⎛⎭⎫2,π3. (1)求出以C 为圆心,半径长为2的圆的极坐标方程(写出解题过程);(2)在直角坐标系中,以圆C 所在极坐标系的极点为原点,极轴为x 轴的正半轴建立直角坐标系,点P 是圆C 上任意一点,Q (5,-3),M 是线段PQ 的中点,当点P 在圆C 上运动时,求点M 的轨迹的一般方程.解:(1)如图,设圆C 上任意一点A (ρ,θ),则∠AOC =θ-π3或π3-θ.由余弦定理得,4+ρ2-4ρcos θ-π3=4,所以圆C 的极坐标方程为ρ=4cos ⎝⎛⎭⎫θ-π3. (2)在直角坐标系中,点C 的坐标为(1,3),可设圆C 上任意一点P (1+2cos α,3+2sin α), 又令M (x ,y ),由Q (5,-3),M 是线段PQ 的中点, 得点M 的轨迹的参数方程为⎩⎪⎨⎪⎧x =6+2cos α2,y =2sin α2(α为参数),即⎩⎪⎨⎪⎧x =3+cos α,y =sin α(α为参数), ∴点M 的轨迹的一般方程为(x -3)2+y 2=1.8.在平面直角坐标系中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos φ,y =sin φ(φ为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2是圆心在极轴上且经过极点的圆,射线θ=π3与曲线C 2交于点D ⎝⎛⎭⎫2,π3. (1)求曲线C 1的一般方程和曲线C 2的直角坐标方程;(2)已知极坐标系中两点A (ρ1,θ0),B ⎝⎛⎭⎫ρ2,θ0+π2,若A ,B 都在曲线C 1上,求1ρ21+1ρ22的值. 解:(1)∵C 1的参数方程为⎩⎪⎨⎪⎧x =2cos φ,y =sin φ,∴C 1的一般方程为x 24+y 2=1.由题意知曲线C 2的极坐标方程为ρ=2a cos θ(a 为半径), 将D ⎝⎛⎭⎫2,π3 代入,得2=2a ×12, ∴a =2,∴圆C 2的圆心的直角坐标为(2,0),半径为2, ∴C 2的直角坐标方程为(x -2)2+y 2=4.(2)曲线C 1的极坐标方程为ρ2cos 2θ4+ρ2sin 2θ=1,即ρ2=44sin 2θ+cos 2θ. ∴ρ21=44sin 2θ0+cos 2θ0,ρ22=44sin 2⎝⎛⎭⎫θ0+π2+cos 2⎝⎛⎭⎫θ0+π2=4sin 2θ0+4cos 2θ0.∴1ρ21+1ρ22=4sin 2θ0+cos 2θ04+4cos 2θ0+sin 2θ04=54. 其次节 参数方程突破点(一) 参数方程基础联通 抓主干学问的“源”与“流”1.参数方程一般地,在平面直角坐标系中,假如曲线上任意一点的坐标x ,y 都是某个变数t 的函数:⎩⎪⎨⎪⎧x =f (t ),y =g (t ),并且对于t 的每一个允许值,由方程组⎩⎪⎨⎪⎧x =f (t ),y =g (t )所确定的点M (x ,y )都在这条曲线上,那么方程⎩⎪⎨⎪⎧x =f (t ),y =g (t )就本节主要包括2个学问点: 1.参数方程;2.参数方程与极坐标方程的综合问题.叫做这条曲线的参数方程,变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做一般方程.2.直线、圆、椭圆的参数方程(1)过点M (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).(2)圆心在点M 0(x 0,y 0),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数).(3)椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数).考点贯穿 抓高考命题的“形”与“神”参数方程与一般方程的互化1.参数方程化为一般方程基本思路是消去参数,常用的消参方法有:①代入消元法;②加减消元法;③恒等式(三角的或代数的)消元法;④平方后再加减消元法等.其中代入消元法、加减消元法一般是利用解方程的技巧,三角恒等式消元法常利用公式sin 2θ+cos 2θ=1等.2.一般方程化为参数方程 (1)选择参数的一般原则曲线上任意一点的坐标与参数的关系比较明显且关系相对简洁;当参数取某一值时,可以唯一确定x ,y 的值;(2)具体步骤第一步,引入参数,但要选定合适的参数t ;其次步,确定参数t 与变量x 或y 的一个关系式x =f (t )(或y =φ(t ));第三步,把确定的参数与一个变量的关系式代入一般方程F (x ,y )=0,求得另一关系y =g (t )(或x =ψ(t )),问题得解.例1] 将下列参数方程化为一般方程.(1)⎩⎨⎧x =1t,y =1tt 2-1(t 为参数);(2)⎩⎪⎨⎪⎧x =2+sin 2θ,y =-1+cos 2θ(θ为参数). 解] (1)∵⎝⎛⎭⎫1t 2+⎝⎛⎭⎫1t t 2-12=1, ∴x 2+y 2=1.∵t 2-1≥0,∴t ≥1或t ≤-1.又x =1t ,∴x ≠0. 当t ≥1时,0<x ≤1, 当t ≤-1时,-1≤x <0,∴所求一般方程为x 2+y 2=1,其中⎩⎨⎧0<x ≤1,0≤y <1或⎩⎪⎨⎪⎧-1≤x <0,-1<y ≤0.(2)∵y =-1+cos 2θ=-1+1-2sin 2θ=-2sin 2θ,sin 2θ=x -2, ∴y =-2x +4,∴2x +y -4=0. ∵0≤sin 2θ≤1,∴0≤x -2≤1,∴2≤x ≤3,∴所求的一般方程为2x +y -4=0(2≤x ≤3). 易错提示](1)将曲线的参数方程化为一般方程时务必要留意x ,y 的取值范围,保证消参前后的方程的全都性. (2)将参数方程化为一般方程时,要留意参数的取值范围对一般方程中x ,y 的取值范围的影响.直线与圆锥曲线的参数方程及应用1第一步,把直线和圆锥曲线的参数方程都化为一般方程; 其次步,依据直线与圆锥曲线的位置关系解决问题.2.当直线经过点P (x 0,y 0),且直线的倾斜角为α,求直线与圆锥曲线的交点、弦长问题时,可以把直线的参数方程设成⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数),交点A ,B 对应的参数分别为t 1,t 2,计算时把直线的参数方程代入圆锥曲线的直角坐标方程,求出t 1+t 2,t 1·t 2,得到|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1·t 2.例2] (2021·豫南九校联考)在直角坐标系xOy 中,设倾斜角为α的直线l :⎩⎨⎧x =2+t cos α,y =3+t sin α(t 为参数)与曲线C :⎩⎪⎨⎪⎧x =2cos θ,y =sin θ(θ为参数)相交于不同的两点A ,B .(1)若α=π3,求线段AB 的中点M 的坐标;(2)若|PA |·|PB |=|OP |2,其中P (2,3),求直线l 的斜率. 解] (1)将曲线C 的参数方程化为一般方程是x 24+y 2=1.当α=π3时,设点M 对应的参数为t 0.直线l 的方程为⎩⎨⎧x =2+12t ,y =3+32t(t 为参数),代入曲线C 的一般方程x 24+y 2=1,得13t 2+56t +48=0,设直线l 上的点A ,B 对应参数分别为t 1,t 2. 则t 0=t 1+t 22=-2813,所以点M 的坐标为⎝⎛⎭⎫1213,-313.(2)将⎩⎪⎨⎪⎧x =2+t cos α,y =3+t sin α代入曲线C 的一般方程x 24+y 2=1,得(cos 2α+4sin 2α)t 2+(83sin α+4cos α)t +12=0, 由于|PA |·|PB |=|t 1t 2|=12cos 2α+4sin 2α,|OP |2=7, 所以12cos 2α+4sin 2α=7,得tan 2α=516.由于Δ=32cos α(23sin α-cos α)>0, 故tan α=54.所以直线l 的斜率为54.方法技巧]1.解决直线与圆的参数方程的应用问题时一般是先化为一般方程再依据直线与圆的位置关系来解决问题.2.对于形如⎩⎪⎨⎪⎧x=x 0+at ,y =y 0+bt(t 为参数)的直线的参数方程,当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题.1.考点一]将下列参数方程化为一般方程.(1)⎩⎨⎧x =3k1+k 2,y =6k21+k2(k 为参数);(2)⎩⎪⎨⎪⎧x =1-sin 2θ,y =sin θ+cos θ(θ为参数). 解:(1)两式相除,得k =y 2x ,将其代入x =3k1+k 2得x =3·y2x 1+⎝⎛⎭⎫y 2x 2,化简得4x 2+y 2-6y =0,由于y =6k 21+k 2=6-11+k 2,所以0<y <6,所以所求的一般方程是4x 2+y 2-6y =0(0<y <6). (2)由(sin θ+cos θ)2=1+sin 2θ=2-(1-sin 2θ) 得y 2=2-x .又x =1-sin 2θ∈0,2], 得所求的一般方程为y 2=2-x ,x ∈0,2].2.考点二](2021·唐山模拟)已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =6cos θ,y =4sin θ(θ为参数),在同一平面直角坐标系中,将曲线C 上的点按坐标变换⎩⎨⎧x ′=13x ,y ′=14y得到曲线C ′.(1)求曲线C ′的一般方程;(2)若点A 在曲线C ′上,点D (1,3).当点A 在曲线C ′上运动时,求AD 中点P 的轨迹方程.解:(1)将⎩⎪⎨⎪⎧x =6cos θ,y =4sin θ代入⎩⎨⎧x ′=13x ,y ′=14y ,得曲线C ′的参数方程为⎩⎪⎨⎪⎧x ′=2cos θ,y ′=sin θ,∴曲线C ′的一般方程为x 24+y 2=1.(2)设点P (x ,y ),A (x 0,y 0),又D (1,3)且AD 的中点为P ,∴⎩⎪⎨⎪⎧x 0=2x -1,y 0=2y -3.又点A 在曲线C ′上,∴将A 点坐标代入C ′的一般方程x 24+y 2=1,得(2x -1)2+4(2y -3)2=4,∴动点P的轨迹方程为(2x -1)2+4(2y -3)2=4.3.考点二](2021·郑州模拟)将曲线C 1:x 2+y 2=1上全部点的横坐标伸长到原来的2倍(纵坐标不变)得到曲线C 2,A 为C 1与x 轴正半轴的交点,直线l 经过点A 且倾斜角为30°,记l 与曲线C 1的另一个交点为B ,与曲线C 2在第一、三象限的交点分别为C ,D .(1)写出曲线C 2的一般方程及直线l 的参数方程; (2)求|AC |-|BD |.解:(1)由题意可得C 2:x 22+y 2=1,对曲线C 1,令y =0,得x =1,所以l :⎩⎨⎧x =1+32t ,y =12t(t 为参数).(2)将⎩⎨⎧x =1+3t 2,y =12t代入x 22+y 2=1,整理得5t 2+43t -4=0.设点C ,D 对应的参数分别为t 1,t 2,则t 1+t 2=-435,且|AC |=t 1,|AD |=-t 2.又|AB |=2|OA |cos 30°=3,故|AC |-|BD |=|AC |-(|AD |-|AB |)=|AC |-|AD |+|AB |=t 1+t 2+3=35. 4.考点二]设直线l 的参数方程为⎩⎪⎨⎪⎧x =3+t cos α,y =4+t sin α(t 为参数,α为倾斜角),圆C 的参数方程为⎩⎪⎨⎪⎧x =1+2cos θ,y =-1+2sin θ(θ为参数). (1)若直线l 经过圆C 的圆心,求直线l 的斜率;(2)若直线l 与圆C 交于两个不同的点,求直线l 的斜率的取值范围.解:(1)由已知得直线l 经过的定点是P (3,4),而圆C 的圆心是C (1,-1),所以,当直线l 经过圆C 的圆心时,直线l 的斜率为k =52.(2)将圆C 的参数方程⎩⎪⎨⎪⎧x =1+2cos θ,y =-1+2sin θ,化成一般方程为(x -1)2+(y +1)2=4,① 将直线l 的参数方程代入①式,得 t 2+2(2cos α+5sin α)t +25=0.②当直线l 与圆C 交于两个不同的点时,方程②有两个不相等的实根,即Δ=4(2cos α+5sin α)2-100>0, 即20sin αcos α>21cos 2α,两边同除以cos 2α, 由此解得tan α>2120,即直线l 的斜率的取值范围为⎝⎛⎭⎫2120,+∞.突破点(二) 参数方程与极坐标方程的综合问题将极坐标方程与参数方程、一般方程交织在一起,考查极坐标方程与参数方程的综合应用.将各类方程相互转化是求解该类问题的前提.,解决问题时要留意:(1)解题时,易将直线与圆的极坐标方程混淆.要娴熟把握特殊直线、圆的极坐标方程的形式.(2)应用解析法解决实际问题时,要留意选取直角坐标系还是极坐标系,建立极坐标系要留意极点、极轴位置的选择,留意点和极坐标之间的“一对多”关系.(3)求曲线方程,常设曲线上任意一点P (ρ,θ),利用解三角形的学问,列出等量关系式,特殊是正弦、余弦定理的应用.圆的参数方程常和三角恒等变换结合在一起,解决取值范围或最值问题.(4)参数方程和一般方程表示同一个曲线时,要留意其中x ,y 的取值范围,即留意两者的等价性.考点贯穿 抓高考命题的“形”与“神”参数方程与极坐标方程的综合问题典例] (2021·长沙模拟)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =-1+cos α,y =sin α(α为参数),以原点O 为极点,x 轴正半轴为极轴,建立极坐标系,直线l 的极坐标方程为ρ(cos θ+k sin θ)=-2(k 为实数).(1)推断曲线C 1与直线l 的位置关系,并说明理由;(2)若曲线C 1和直线l 相交于A ,B 两点,且|AB |=2,求直线l 的斜率.解] (1)由曲线C 1的参数方程⎩⎪⎨⎪⎧x =-1+cos α,y =sin α可得其一般方程为(x +1)2+y 2=1.由ρ(cos θ+k sin θ)=-2可得直线l 的直角坐标方程为x +ky +2=0. 由于圆心(-1,0)到直线l 的距离d =11+k 2≤1,所以直线与圆相交或相切,当k =0时,d =1,直线l 与曲线C 1相切; 当k ≠0时,d <1,直线l 与曲线C 1相交. (2)由于曲线C 1和直线l 相交于A ,B 两点, 且|AB |=2,故圆心到直线l 的距离d =11+k 2=1-⎝⎛⎭⎫222=22, 解得k =±1,所以直线l 的斜率为±1. 方法技巧]处理极坐标、参数方程综合问题的方法(1)涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为一般方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.(2)数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,能达到化繁为简的解题目的.1.已知曲线C 的参数方程为⎩⎨⎧x =3+10cos α,y =1+10sin α(α为参数),以直角坐标系原点为极点,x 轴正半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程,并说明其表示什么轨迹;(2)若直线的极坐标方程为sin θ-cos θ=1ρ,求直线被曲线C 截得的弦长.解:(1)∵曲线C 的参数方程为⎩⎪⎨⎪⎧x =3+10cos α,y =1+10sin α(α为参数),∴曲线C 的一般方程为(x -3)2+(y -1)2=10,①曲线C 表示以(3,1)为圆心,10为半径的圆.将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入①并化简,得ρ=6cos θ+2sin θ, 即曲线C 的极坐标方程为ρ=6cos θ+2sin θ. (2)∵直线的直角坐标方程为y -x =1, ∴圆心C 到直线的距离为d =322, ∴弦长为210-92=22.2.在极坐标系中,圆C 的方程为ρ=2a cos θ(a ≠0),以极点为坐标原点,极轴为x 轴正半轴建立平面直角坐标系,设直线l 的参数方程为⎩⎪⎨⎪⎧x =3t +1,y =4t +3(t 为参数).(1)求圆C 的标准方程和直线l 的一般方程;(2)若直线l 与圆C 恒有公共点,求实数a 的取值范围.解:(1)由ρ=2a cos θ,ρ2=2aρcos θ,又ρ2=x 2+y 2,ρcos θ=x ,所以圆C 的标准方程为(x -a )2+y 2=a 2.由⎩⎪⎨⎪⎧x =3t +1,y =4t +3,得⎩⎪⎨⎪⎧x -13=t ,y -34=t ,因此x -13=y -34,所以直线l 的一般方程为4x -3y +5=0.(2)由于直线l 与圆C 恒有公共点,所以|4a +5|42+(-3)2≤|a |,两边平方得9a 2-40a -25≥0,所以(9a +5)(a-5)≥0,解得a ≤-59或a ≥5,所以a 的取值范围是⎝⎛⎦⎤-∞,-59∪[)5,+∞.全国卷5年真题集中演练——明规律] 1.(2022·全国甲卷)在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25. (1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.解:(1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程为ρ2+12ρcos θ+11=0. (2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R).设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11. |AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=144cos 2α-44.由|AB |=10得cos 2α=38,tan α=±153.所以直线l 的斜率为153或-153. 2.(2022·全国丙卷)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝⎛⎭⎫θ+π4=2 2. (1)写出C 1的一般方程和C 2的直角坐标方程;(2)设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时P 的直角坐标. 解:(1)C 1的一般方程为x 23+y 2=1,C 2的直角坐标方程为x +y -4=0.(2)由题意,可设点P 的直角坐标为(3cos α,sin α).由于C 2是直线,所以|PQ |的最小值即为P 到C 2的距离d (α)的最小值, d (α)=|3cos α+sin α-4|2=2⎪⎪⎪⎪sin ⎝⎛⎭⎫α+π3-2, 当且仅当α=2k π+π6(k ∈Z)时,d (α)取得最小值,最小值为2,此时P 的直角坐标为⎝⎛⎭⎫32,12. 3.(2021·新课标全国卷Ⅱ)在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数,t ≠0),其中0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值. 解:(1)曲线C 2的直角坐标方程为x 2+y 2-2y =0, 曲线C 3的直角坐标方程为x 2+y 2-23x =0.联立⎩⎪⎨⎪⎧ x 2+y 2-2y =0,x 2+y 2-23x =0,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎨⎧x =32,y =32.所以C 2与C 3交点的直角坐标为(0,0)和⎝⎛⎭⎫32,32.(2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中0≤α<π. 因此A 的极坐标为(2sin α,α),B 的极坐标为(23cos α,α).所以|AB |=|2sin α-23cos α|=4⎪⎪⎪⎪sin ⎝⎛⎭⎫α-π3. 当α=5π6时,|AB |取得最大值,最大值为4.4.(2022·新课标全国卷Ⅰ)已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的一般方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数).直线l 的一般方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为d =55|4cos θ+3sin θ-6|.则|PA |=d sin 30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|PA |取得最大值,最大值为2255.当sin(θ+α)=1时,|PA |取得最小值,最小值为255.5.(2022·新课标全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎡⎦⎤0,π2. (1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,依据(1)中你得到的参数方程,确定D 的坐标.解:(1)C 的一般方程为(x -1)2+y 2=1(0≤y ≤1).可得C 的参数方程为⎩⎪⎨⎪⎧x =1+cos t ,y =sin t (t 为参数,0≤t ≤π).(2)设D (1+cos t ,sin t ).由(1)知C 是以G (1,0)为圆心,1为半径的上半圆.由于C 在点D 处的切线与l垂直,所以直线GD 与l 的斜率相同,tan t =3,t =π3.故D 的直角坐标为⎝⎛⎭⎫1+cos π3,sin π3,即⎝⎛⎭⎫32,32.6.(2021·新课标全国卷Ⅰ)已知曲线C 1的参数方程为⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t , (t 为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ .(1)把C 1的参数方程化为极坐标方程; (2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).解:(1)将⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t消去参数t ,化为一般方程(x -4)2+(y -5)2=25,即C 1:x 2+y 2-8x -10y +16=0.将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入x 2+y 2-8x -10y +16=0 得ρ2-8ρcos θ-10ρsin θ+16=0.所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. (2)C 2的一般方程为x 2+y 2-2y =0.由⎩⎪⎨⎪⎧ x 2+y 2-8x -10y +16=0,x 2+y 2-2y =0,解得⎩⎪⎨⎪⎧ x =1,y =1,或⎩⎪⎨⎪⎧x =0,y =2.所以C 1与C 2交点的极坐标分别为⎝⎛⎭⎫2,π4,⎝⎛⎭⎫2,π2. 课时达标检测] 基础送分题——高考就考那几点,练通就能把分捡1.(2021·郑州模拟)已知曲线C 1的参数方程为⎩⎨⎧x =-2-32t ,y =12t ,曲线C 2的极坐标方程为ρ=22cos θ-π4,以极点为坐标原点,极轴为x 轴正半轴建立平面直角坐标系. (1)求曲线C 2的直角坐标方程;(2)求曲线C 2上的动点M 到曲线C 1的距离的最大值. 解:(1)ρ=22cos ⎝⎛⎭⎫θ-π4=2(cos θ+sin θ), 即ρ2=2(ρcos θ+ρsin θ),可得x 2+y 2-2x -2y =0, 故C 2的直角坐标方程为(x -1)2+(y -1)2=2.(2)C 1的一般方程为x +3y +2=0,由(1)知曲线C 2是以(1,1)为圆心,以2为半径的圆,且圆心到直线C 1的距离d =|1+3+2|12+(3)2=3+32,所以动点M 到曲线C 1的距离的最大值为3+3+222.2.在极坐标系中,已知三点O (0,0),A ⎝⎛⎭⎫2,π2,B ⎝⎛⎭⎫22,π4. (1)求经过点O ,A ,B 的圆C 1的极坐标方程;(2)以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,圆C 2的参数方程为⎩⎪⎨⎪⎧x =-1+a cos θ,y =-1+a sin θ(θ是参数),若圆C 1与圆C 2外切,求实数a 的值.解:(1)O (0,0),A ⎝⎛⎭⎫2,π2,B ⎝⎛⎭⎫22,π4对应的直角坐标分别为O (0,0),A (0,2),B (2,2),则过点O ,A ,B 的圆的一般方程为x 2+y 2-2x -2y =0,将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入可求得经过点O ,A ,B 的圆C 1的极坐标方程为ρ=22cos ⎝⎛⎭⎫θ-π4. (2)圆C 2:⎩⎪⎨⎪⎧x =-1+a cos θ,y =-1+a sin θ(θ是参数)对应的一般方程为(x +1)2+(y +1)2=a 2,圆心为(-1,-1),半径为|a |,而圆C 1的圆心为(1,1),半径为2,所以当圆C 1与圆C 2外切时,有2+|a |=(-1-1)2+(-1-1)2,解得a =±2.3.(2021·太原模拟)在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立的极坐标系中,直线l 的极坐标方程为θ=π4(ρ∈R),曲线C 的参数方程为⎩⎨⎧x =2cos θ,y =sin θ.(1)写出直线l 的直角坐标方程及曲线C 的一般方程;(2)过点M 且平行于直线l 的直线与曲线C 交于A ,B 两点,若|MA |·|MB |=83,求点M 轨迹的直角坐标方程.解:(1)直线l 的直角坐标方程为y =x ,曲线C 的一般方程为x 22+y 2=1.(2)设点M (x 0,y 0),过点M 的直线为l 1:⎩⎨⎧x =x 0+22t ,y =y 0+22t (t 为参数),由直线l 1与曲线C 相交可得:3t 22+2tx 0+22ty 0+x 20+2y 20-2=0,由|MA |·|MB |=83,得t 1t 2=⎪⎪⎪⎪⎪⎪⎪⎪x 20+2y 20-232=83,即x 20+2y 20=6,x 2。
北师大版七年级数学下册教案(含解析):第四章三角形章末复习
北师大版七年级数学下册教案(含解析):第四章三角形章末复习一. 教材分析北师大版七年级数学下册第四章《三角形》章末复习部分,主要对三角形的相关知识进行总结和复习。
内容包括:三角形的性质、三角形的分类、三角形的判定、三角形的角的性质、三角形的边的关系等。
这部分内容是学生进一步学习几何的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析学生在学习本章内容前,已经掌握了平面几何的基本知识,如线的性质、角的性质等。
但部分学生对于三角形的性质和判定仍存在理解上的困难,对于三角形的角的性质和边的关系掌握不够扎实。
因此,在复习过程中,需要注重巩固基础知识,提高学生的应用能力。
三. 教学目标1.知识与技能:使学生掌握三角形的性质、分类、判定等基本知识,提高学生的空间想象能力和逻辑思维能力。
2.过程与方法:通过复习,培养学生独立思考、合作交流的能力,提高学生分析问题和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心,使学生感受到数学的价值。
四. 教学重难点1.重点:三角形的性质、分类、判定等基本知识。
2.难点:三角形的角的性质和边的关系的运用。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等,引导学生主动参与课堂,提高学生的学习兴趣和积极性。
六. 教学准备1.教师准备:整理和准备相关的教学案例、习题等资源。
2.学生准备:完成本章的学习任务,准备好相关的学习资料。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾三角形的基本概念,激发学生的学习兴趣。
2.呈现(10分钟)教师利用多媒体展示三角形的相关性质、分类和判定等知识,引导学生总结和归纳。
3.操练(10分钟)教师提出问题,学生分组讨论,通过实际操作和举例来巩固三角形的相关知识。
4.巩固(10分钟)教师给出一些练习题,学生独立完成,检验自己对三角形知识的掌握程度。
5.拓展(10分钟)教师提出一些综合性的问题,引导学生运用所学的三角形知识解决问题,提高学生的应用能力。
浙教版数学八年级上册第4章图形与坐标复习(课件)
(x,y)(kx,ky) 形状不变,放大或缩小k倍;
y
● (0,y)
●
3
(1)x轴上的点纵坐标
(a,-a)2
1
(● 2,y) 都为0,即:(x,0) 平行x轴的直线上的
-4 -3 -2 -1
0
●
1 2(x,0)x
点纵坐标相同。
-1
(2)y轴上的点横坐标
-2
●(a,a)-3
-4
●
3.若点B在x轴下方,y轴左侧,并且到x轴、y轴距 离分别是2、4个单位长度,则点B的坐标是(__-_4_,__-2_)_。
4、点P(a-1,a2-9)在x轴负半轴上,则P点坐标 是_(__-_4_,__0_)_。
5.在平面直角坐标系内,已知点P (a ,b),且a b < 0 ,则点P的位置在___第__二__或__四__象_。限
13.若ab>0,则点p(a,b)位于第_一__,_三_象限.
14.若 a ,0则点p(a,b)位于_____y_轴___(__除__(___0_,__0_)__上)。
b
注:判断点的位置关键抓住象限内或坐标轴上
点的坐标的符号特征。
15.已知点A(m,-2),点B(3,m-1), (1)若直线AB∥x轴,则m=__-_1__ (2)若直线AB∥y轴,则m=___3____
19.点(4,3)与点(4,-3)的关系是_关_于_x轴_对_称
20.点(m,-1)和点(2,n)关于x轴对称,则mn等于( )B A.-2 B.2 C.1 D.-1
21.如果点M(1-x,1-y)在第二象限,那么N(1-x,y-1)关 于原点的对称点P在第__一___象限.
22.点A(2,3)到x轴的距离为_3____;点B(-4,0)到y轴 的距离为____4__;点C到x轴的距离为1,到y轴的距离为3,且在 第三象限,则C点坐标是__(__-_3_,___-1__)_。
精选2019-2020年浙教版初中数学八年级上册第4章 图形与坐标4.1 探索确定位置的方法复习巩固十五
精选2019-2020年浙教版初中数学八年级上册第4章图形与坐标4.1 探索确定位置的方法复习巩固十五第1题【单选题】如图所示,如果张力的位置可表示为(2,3),则王红的位置应表示为( )A、(4,1)B、(4,2)C、(2,4)D、(3,4)【答案】:【解析】:第2题【单选题】如下图所示,一方队正沿箭头所指的方向前进,A的位置为三列四行,表示为(3,4),那么B的位置是( )A、(4,5)B、(5,4)C、(4,2)D、(4,3)【答案】:【解析】:第3题【单选题】课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )?A、(5,4)B、(4,5)C、(3,4)D、(4,3)【答案】:【解析】:第4题【单选题】如图,若在中国象棋盘上建立平面直角坐标系,使“帅”位于点(﹣1,﹣2),“马”位于点(2,﹣2),则“兵”位于点( )A、(﹣1,1)B、(﹣2,﹣1)C、(﹣3,1)D、(1,﹣2)【答案】:【解析】:第5题【单选题】下列数据不能确定物体位置的是( )A、北偏东30°B、祥云花园4楼8号C、希望路25号D、东经118°,北纬40°【答案】:【解析】:第6题【单选题】如图是丁丁画的一张脸的示意图,如果用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成( )A、(1,0)B、(-1,0)C、(-1,1)D、(1,-1)【答案】:【解析】:第7题【单选题】已知点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,这个函数图象可以是( ) A、B、C、D、【答案】:【解析】:第8题【单选题】如下图,以中心广场为坐标原点,建立如图所示的平面直角坐标系,已知牡丹园的坐标是(30,30),那么游乐园的坐标是( )A、(-20,20)B、(20,-20)C、(200,-200)D、(100,-100)【答案】:【解析】:第9题【单选题】如图所示为某战役潜伏敌人防御工亭坐标地图的碎片,一号暗堡的坐标为(4,2),四号暗堡的坐标为(-2,4),由原有情报得知:敌军指挥部的坐标为(0,0),你认为敌军指挥部的位置大概( )A、A处B、B处C、C处D、D处【答案】:【解析】:第10题【单选题】如图所示,三架飞机P,Q,R保持编队飞行,某时刻在坐标系中的坐标分别为(﹣1,1),(﹣3,1),(﹣1,﹣1),30秒后,飞机P飞到P′(4,3)位置,则飞机Q,R的位置Q′,R′分别为( )A、Q′(2,3),R′(4,1)B、Q′(2,3),R′(2,1)C、Q′(2,2),R′(4,1)D、Q′(3,3),R′(3,1)【答案】:【解析】:第11题【填空题】有一个英文单词的字母顺序对应如图中的有序数对分别为(2,1),(2,2),(4,2),(5,1),请你把这个英文单词写出来(或者翻译成中文)为______。
上册第四章第13课图形的相似单元复习-北师大版九年级数学全一册课件
解:由题意可得,△DEF∽△DCA,
∵DE=0.5米,EF=0.25米,DG=1.5米, DC=20米,
解得AC=10. ∴AB=AC+BC=10+1.5=11.5(米). 答:旗杆的高度为11.5米.
15. 如图,花丛中一根灯杆AB上有一盏路灯A,灯 光下,小明在点D处的影长DE=3米,沿BD方向 走到点G,DG=5米,这时小明的影长GH=4米, 如果小明的身高为1.7米,求路灯A离地面的高 度.
cm/s,它们同时出发,当有一点到达所在线段的 (2,2) D.
如图,在△ABC中,DE∥BC,
DE=4,则BC的长是( )
第13课 图形的相似单元复习
端点时,就停止运动. 设运动时间为t s. 如图,花丛中一根灯杆AB上有一盏路灯A,灯光下,小明在点D处的影长DE=3米,沿BD方向走到点G,DG=5米,这时小明的影长
10. 在平面直角坐标系中,已知点E(-4,2),F(-2,
-2),以原点O为位似中心,相似比为
,把
△EFO缩小,则点E的对应点E′的坐标是( D )
A. (-2,1)
B. (-8,4)
C. (-8,4)或(8,-4)
D. (-2,1)或(2,-1)
11. 在Rt△ABC中,AD是斜边BC上的高,BD=4,CD=9, 则AD= 6 .
CB向点B方向运动,如果点P的速度是4 cm/s,点Q的速度是2 cm/s,它们同时出发,当有一点到达所在线段的端点时,就停止运动.
向运动,动点Q从点C出发,沿线段CB向点B方向 第13课 图形的相似单元复习
已知△ABC∽△A′B′C′,且
则S△ABC:S△A′B′C′为( )
如图,在△ABC中,DE∥BC,
浙教版数学八年级上册第4章《4.3 坐标平面内图形的轴对称和平移(1)》课件
探索新知
【探究1】(1)写出点A的坐标. (2)分别作点A关于x轴,y轴的对称点,并写出它们的坐标. (3)比较点A与它关于x轴的对称点的坐标,点A与它关于y轴的对称点的坐标, 你发现什么规律?
解:(1)A(1.5,3) (2)点A关于x轴的对称点:(1.5,-3). 关于y轴的对称点:(-1.5,3).
(3)关于x轴的对称点的坐标,横坐标相等, 纵坐标互为相反数; 关于y轴的对称点的坐标,纵坐标相等,横坐 标互为相反数.
探索新知
【新知】关于坐标轴对称的点的坐标关系:
【练习】在平面直角坐标系中,点A的坐 标是(2,-3),作点A关于x轴的对称点, 得到点A′,再作点A′关于y轴的对称点, 得到点A″,则点A″的坐标是_________. 解:∵点A′与点A(2,-3)关于x轴对称, ∴点A′(2,3). ∵点A″与点A′关于y轴对称,∴点A″(-2,3).
度取10mm.
(2)各转折点的坐标依次为:(2.5,0),
O x
(2.5,4),(0.5,4),(1,1),(-2.5,0),(-2.5,4),
(-0.5,4),(-1,1).
课堂练习
【1】在平面直角坐标系中,已知点M(m﹣1,2m+3).若点N(﹣3,
2),且MN∥y轴.
(1)m=
.
(2)点M关于y轴对称的点的坐标为
课堂练习
【4】教材上曾让同学们探索过线段的中点坐标:在平面直角坐标系
中,有两点A(x1,y1)、B(x2,y2),所连线段AB的中点是M,则
M的坐标为(
,
),如:点A(1,2)、点B(3,6),
则线段AB的中点M的坐标为( , ),即M(2,4).利用
以上结论解决问题:平面直角坐标系中,若E(a﹣1,a),F(b,
平面解析几何初步一轮复习-(有答案)
第四章 平面解析几何初步 第1课时 直线的方程1.倾斜角:对于一条与x 轴相交的直线,把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角α叫做直线的倾斜角.当直线和x 轴平行或重合时,规定直线的倾斜角为0°.倾斜角的范围为________.斜率:当直线的倾斜角α≠90°时,该直线的斜率即k =tanα;当直线的倾斜角等于90°时,直线的斜率不存在.2.过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式 .若x 1=x 2,则直线的斜率不存在,此时直线的倾斜角为90°. 3.直线方程的五种形式名称 方程 适用范围 斜截式 点斜式 两点式 截距式 一般式例1。
已知直线(2m 2+m -3)x +(m 2-m)y =4m -1.① 当m = 时,直线的倾斜角为45°.②当m = 时,直线在x 轴上的截距为1.③ 当m = 时,直线在y 轴上的截距为-23.④ 当m = 时,直线与x 轴平行.⑤当m = 时,直线过原点.解:(1) -1 ⑵ 2或-21⑶31或-2 ⑷-23⑸ 41变式训练1.(1)直线3y + 3 x +2=0的倾斜角是 ( )A .30°B .60°C .120°D .150° (2)设直线的斜率k=2,P 1(3,5),P 2(x 2,7),P (-1,y 3)是直线上的三点,则x 2,y 3依次是 ( )A .-3,4B .2,-3C .4,-3D .4,3(3)直线l 1与l 2关于x 轴对称,l 1的斜率是-错误!,则l 2的斜率是 ( )A .7B .-77 C .77D .-错误! (4)直线l 经过两点(1,-2),(-3,4),则该直线的方程是 .解:(1)D .提示:直线的斜率即倾斜角的正切值是-33. (2)C .提示:用斜率计算公式1212y y x x --. (3)A .提示:两直线的斜率互为相反数.(4)2y +3x +1=0.提示:用直线方程的两点式或点斜式典型例题 基础过关例2. 已知三点A (1,—1),B (3,3),C (4,5). 求证:A 、B 、C 三点在同一条直线上. 证明 方法一 ∵A (1,—1),B(3,3),C (4,5), ∴k AB =1313-+=2,k BC =3435--=2,∴k AB =k BC ,∴A 、B 、C 三点共线.方法二 ∵A (1,-1),B(3,3),C (4,5), ∴|AB|=25,|BC |=5,|AC |=35, ∴|AB |+|BC |=|AC |,即A 、B 、C 三点共线. 方法三 ∵A(1,—1),B (3,3),C (4,5), ∴AB =(2,4),BC =(1,2),∴AB =2BC . 又∵AB 与BC 有公共点B,∴A 、B 、C 三点共线.变式训练2。
第4章相似三角形复习课件(浙教版)
全效学习 学案导学设计
画一画研一研
检查视力时,规定人与视力表之间的距离 应为5米.如图4-11(1),现因房间两面墙的距离为3米, 因此使用平面镜来解决房间小的问题.若使墙面镜子能呈 现完整的视力表,如图4-11(2),由平面镜成像原理,作 出了光路图,其中视力表A,B的上下边沿A,B发出的光 线经平面镜MM′的上下边沿反射后射入人眼C处.如果视 力表的全长为0.8米,请计算出镜长至少为多少米?
A.ac=db C.a+b2b=c+d 2d
B.badc=bc D.a+b b=c+d b
全效学习 学案导学设计
( C)
画一画 研一研
1.在同一时刻,身高1.6米的小强在阳光下
的影长为0.8米,一棵大树的影长为4.8米,则树的高度为
( C)
A.4.8米
B.6.4米
C.9.6米
D.10米
【解析】 设树高为 x,则10..68=4x.8,x=9.6(米),故选 C.
全效学习 学案导学设计
图4-3
画一画 研一研
(1)求证:△EDM∽△FBM; (2)若DB=9,求BM. 【解析】 ∵AB=2CD,E是AB的中点,可先证明四 边形BCDE是平行四边形,然后就证得△EDM∽△FBM. 解:(1)∵E是AB的中点,∴AB=2EB.∵AB=2CD, ∴CD=EB. 又∵AB∥CD,∴四边形CBED是平行四边形, ∴CB∥DE,∴∠DEM=∠BFM,∠EDM= ∠FBM, ∴△EDM∽△FBM.
3.如图4-9所示,△ABC中,CD⊥AB,垂足为D. 下列条件中,能证明△ABC是直角三角形的有__①__②__④___.
23.6.1图形与坐标(用坐标确定位置)
此课件下载可自行编辑修改,供参考! 感谢你的支持,我们会努力做得更好!
23.6.1图形与坐标(用坐标确定位置 )
2、已知点M 3a9,1a请根据下列条件分别
求出a的值.
①点M与点N b,2 关于x轴对称;
②点M 向右平移3个单位后落在y轴上; ③ 在第三象限的角平分线上;
④若点M 3a9,1a是第三象限的整点。
23.6.1图形与坐标(用坐标确定位置 )
23.6.1图形与坐标(用坐标确定位置 )
23.6.1图形与坐标(用坐标确定位置 )
左图是国际象棋的棋盘,E2在什么 位置?又如何描述A、B、C的位置 ?
23.6.1图形与坐标(用坐标确定位置 )
左图是国际象棋的棋盘,E2在什么位置? 又如何描述A、B、C的位置?
C8
E4
E3
23.6.1图形与坐标(用坐标确定位置 )
我们还可以用其他方式来表示物体的位置.
23.6.1图形与坐标(用坐标确定位置 )
令全中国人骄傲和自豪的神州五号飞船成 功着陆,地面搜寻人员如何迅速的确定着陆的 精确地点?
23.6.1图形与坐标(用坐标确定位置 )
实际上这都有赖于“卫星全球定位仪 ”——GPS,因为全球任何一个地方都存 在唯一的经度和纬度。我们可以通过目标 物如神州五号飞船的返回仓发出的信号, 利用GPS“卫星全球定位仪”测得它的经纬 度.
yy
x x
23.6.1图形与坐标(用坐标确定位置 )
有了平面直角坐标系,我们可以毫不费 力地在平面上确定一个点的位置.现实 生活中我们能看到许多这种方法的应用: 1、 如用经度和纬度来表示一个地点在 地球上的位置。 2、电影院的座位用几排几座来表示。 3、国际象棋中竖条用字母表示,横条用 数字表示等.
初中数学课件:图形与坐标复习(2021年浙教版)
y
7
6
5 •G •A
4
3
•B 2
•E
1O
-6-5-4-3-2-1-1 1
•M2•H3
4 •5C 6 x
-2 •F
-3
-4
-5
•D -6
-7
6.一个零件如图,请选择合适的比例在方格纸上建立直
角坐标系,在直角坐标系转折点的坐标。
y
600
单位mmG
F2 D
-2
-3
-4
-5
-6
-7
获得了第一个宝物,小聪又在提示下开始寻找
第二、三个宝物,已知第二、三两个宝物的坐标为
B(-3,2)、C(5,0),为了快速找到宝物,如
果你是小聪,你会先做什么工作呢?
y
7
6
5
•A
4
3
•B 2
1O
-6 -5 -4 -3 -2 -1-1 1
2
3
4
5•C6
x
-2
-3
-4
-5
-6
-7
(A)关于原点对称 (B)关于 x轴对称 (C)关于 y轴对称 (D)不能构成对称关系
5.点A(1-a,5),B(3 ,b)关于y轴对称,
则a=__4_,b=__5__。
随着寻宝活动的持续,难度也慢慢加大了,已知
接下去要找的宝物所在点的横坐标为1,且宝物所在 点与点B、点E所构成的三角形的面积为9个平方单位, 你能帮小聪找出宝物吗?
你知道第四个宝物在哪里吗?
y
7
6
5
•A
4
3
•B 2
1O
-6-5-4-3-2-1-1 1
2
3
4 •5C 6 x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(5)点A向右平移3个单位长度到点B.
如图,在Rt△ABC中,∠B=90°,∠C=30°,AB=2,
在原图中建立适当的直角坐标系,并写出A,B,C
点的坐标.
y
A (0,2)
2
4 21
-2
-1
B
01
(0,0) 2
2
3
300
(
3
2 3 ,0)
C4 x
-1
-2
变式1:在该直角坐标系中找点P,使得△PBC与
运动,设运动时间为t秒(0<t<2 3 ),在此运动过程中,
当t的取值满足什么条件时,长方形EFGH的边与Rt△ABC
的AC边有交点.(1)当t为何值时,只有一个交点.
y
(2)当
3
2 <t< 2
3 时,有
几个交点?你会表示吗?
A ( 3 , 3)
E
2 H2
13
2
M (t, 2 3 t ) 3
F
-2
1
B -1
0
N-1
-2
ቤተ መጻሕፍቲ ባይዱME
1
2
300 2 3
3 C4
x
P3( 3 ,-1)
变式3:若有一个直角三角形与Rt△ABC全等,且
它们有一条公共边,求这个直角三角形未知顶点
的个数.
y
P4
P6
A
2
P1
P7
-3
-2
1
B -1
01
2
-1
P5 -2 P3
23
3 C4
x
P2
变如图式所4:示有,长若为该2长3方,形宽向为右23以的每长秒方1个形单EF位GH长,度起的始速位度置
G2
tB -1
03 1
C 300 2 3
2
3
4
x
-1 2
这节课你有何收获, 能与大家分享、交流你的感受吗?
第二象限 3 (-,+) 2
1
第一象限 (+,+) X轴
(x,0)
-3 -2 -1 0 1 2 3 4
第三象限 -1
第四象限
x
(-,-) -2
(+,-)
问题二:在直角坐标系中有一点A (-3,4) , 你能想到它的哪些 信息?
A(-3,4)y 4 3
梳理2: 1.距离 P(a,b)
2.对称
P(a,-b)
问题一:某城市的区域简图如图所示。
(1)若以学校为中心,用方位法的表示新华书店的位置?
(2)若以超市为中心,建立坐标系如图。说出各点的坐标与象限。
y
北
4
博物馆
3
2 少年宫
1
学校
超市
-3 -2 -1 0 1 2 3 4
-1 市政府
x
-2
新华书店
梳理1: 平面直角坐标系中,象限与点坐标的特点.
y y轴 4 (0,y)
Rt △ABC全等.
y
求出点P的坐标.
A
2
P1 ( 2 3,2)
-3
-2
1
B -1
01
-1
C 2
300
3
23
4
x
-2
P3
(0,-2)
P2 ( 2 3,-2)
变式2:在该直角坐标系中找点P,使得△PAC与
Rt △ABC全等.
y
求出点P的坐标.
D A
2
P2 ( 3 ,3) P1( 2 3,2)
-3
-2
2
P(a,b)
P(-a,b)
1
-3 -2 -1 0 -1
-2
3.平移
P(-a,-b)
1 2 3 4x
P(a,b+h)
左h
P(a-h,b)
上h
P(a,b)右
hP
下 h (a+h,b)
P(a,b-h)
已知点A(a, 3-b),B(3,2b),根据下列要求, 确定a,b满足的条件. (1)点A在第一象限. (2)点A在y轴上,点B在x轴上. (3)点A到y轴距离是2,点B到x轴的距离是4.