第七章 专家系统

合集下载

北京交通大学研究生课程(神经网络、模糊控制与专家系统)第七章

北京交通大学研究生课程(神经网络、模糊控制与专家系统)第七章
uik表示与其连接的神经元的输出,wik表述相应的连接权系数; 最常用的神经元输入函数和激励函数是:
p
fi wkjiuik i1
aj
1
1 e
f
j
第二节 模糊神经网络控制
二、基本功能和函数关系
第一层:将输入变量值直接传送到下层
fj1 uj1 wj1i 1
aj1 fj1 uj1 xj j 1,2,L n
mji:一、二层神经元之间的连接权值wji2;
ji:看作是与S函数相类似的一个斜率参数。
注 : 若 用 一 组 节 点 完 成 一 个 隶 属 度 函 数 , 则 每 一 个 节 点 的 函 数 可 以 是 标 准 的 形 式 ( 如 S 函 数 ) , 且 整 个 子 网 络 用 标 准 学 习 算 法 ( 如 反 传 法 ) 进 行 离 线 训 练 实 现 期 望 的 隶 属 函 数 。
缺点: 当环境发生变化时,缺乏自我调节和自学习的能力。
解决方法之一:Sugeno提出将规则的自组织问题转化为参 数估计问题。但仍有主观性。
如何把学习机制引入到模糊控制中来?
第一节 集成智能控制系统简介
1. 模糊神经网络系统(FNN)
神经网络由大量连接的神经处理单元组成的,具有高 度的非线性映射能力和自学习能力,能够从样本数据中进 行学习和泛化,计算速度快。
f
5
j
wj5i ui5
(mj5i ji5)ui5
i
i
aj5
f
5
j
ji5ui5
i















7 第7章 智能控制

7 第7章 智能控制

PS NM NS NS ZO ZO
PM NB NB NM NM NS
PB NB NB NB NM NM
NB NS ZO PS PB
R1:如果E是NB 且 EC是NB,则U是NB
第一节 模糊控制 二.模糊控制器
3. 模糊推理
利用模糊规则和近似推理获得模糊控制作用
C ( z ) { [ A ( x ) A ( x )]} { [ B ( y ) B ( y )]} C ( z )
第二节 专家规则控制 二.专家系统

专家系统结构
第二节 专家规则控制 二.专家系统
(1) 知识库:存储某个具体领域的专门知识
产生式规则,if … then … (2) 数据库 表征应用对象的特性、状态、求解目标等 (3) 推理机:自动推理的计算机软件
运用知识库提供的知识,基于某种通用的问题 求解模型,自动推理、求解问题

情况
偏差及导数的变化、生产要求或负荷的变化、 设备情况的变化、环境条件的变化

规则 来自知识
如产生式规则:if … then …
第二节 专家规则控制
专家规则控制可在3个层次实施

基本控制层:用一组控制规则作为控制率,依 据工况的不同,选用不同的规则

特性监测控制层:依据控制过程情况,选用不 同的控制器参数,仍采用传统的控制器 监督层:进行有效的决策或选择适当的控制器 结构
x y
( 1 2 ) C 1 ( z )
ω1∧ω2表示“如果x 是A’且y是B’”对于“如果x 是A且y是B”的匹配程度,称为激励函数
第一节 模糊控制 一.模糊数学基础
模糊推理过程
μ A1 A’ μ min

第七章 专家系统

第七章 专家系统
在已知状况的分析,推断未来可能发生的情 况。预测专家系统具有下列特点:
(a) 系统处理的数据随时间变化,而且可 能是不准确和不完全的。
(b) 系统需要有适应时间变化的动态模型, 能够从不完全和不准确的信息中得出预报, 并达到快速响应的要求。
预测专家系统的例子有气象预报、军事 预测、人口预测、交通预测、经济预测和谷 物产量预测等。例如,恶劣气候(包括暴雨、 飓风、冰雹等)预报、战场前景预测和农作物 病虫害预报等专家系统。
❖ 当前提为真时,该规则将前提与一个行为结 合起来,否则与另一个行为结合起来,并且 可以用一个-1到+1之间的数字来表示在该前 提下行为的可信程度。如一条判断细菌类别 的规则可表示如下:
❖ 其含意如下: 如果培养物的部位是血液 细菌的类别确不知道 细菌的染色是革蓝氏阴性 细菌的外形是杆状 病人被严重地烧伤 那么以不太充分的证据(可信程度0.4)说
7.1 专家系统概述
❖ 研究背景
专家系统(expert system expert system),是人工 智能应用研究领域中非常活跃和非常广泛的课题 之一。
❖ 定义
专家系统是一个含有大量的某个领域专家水平的 知识与经验智能计算机程序系统,它能够利用人 类专家的知识和解决问题的方法来处理该领域问 题。
(4) 解释器(explanator) 解释器能够向用户解释专家系统的行为,
包括解释推理结论的正确性以及系统输出其 它候选解的原因。
(5) 接口(interface) 接口又称界面,它能够使系统与用户进
行对话,使用户能够输入必要的数据、提出 问题和了解推理过程及推理结果等。系统则 通过接口,要求用户回答提问,并回答用户 提出的问题,进行必要的解释。
监视专家系统可用于核电站的安全监视、 防空监视与警报、国家财政的监控、传染病 疫情监视及农作物病虫害监视与警报等。粘 虫测报专家系统是监视专家系统的一个实例。

智能控制第七章 专家系统

智能控制第七章 专家系统

7.4 专家控制系统
1、结构原理图
间接专家系统控制图2
7.4 专家控制系统
2、专家系统PLD控制结构设计
用专家系统实现智能PND控制的过程,实际上是模拟操作 人员调解PID参数判断和决策过程,是将数字PID控制方法 与专家系统融合起来,从模仿人征订参数的推理决策入手, 以经典Ziegler-Nichols相现在最优控制征订规则为基础,利 用实时控制信息和系统输出信息,将归纳为一系列征订规则, 并把征订过程分成预整定和自整定两部分,预整定运用于系 统初始投入运行且无法给出PID初始参数的场合,自整定运 用于系统正常运行时,不必再辨别对象特性和参数控制,只 需随对象特性的变化而进行迭代优化的场合。
7.2 专家系统的知识表示法
(1) 黑板:黑板用于存储所有知识源可访问的知识,它的全局数据结构被用 于组织问题求解数据,并处理各知识源之间的通讯问题。放在黑板上的对象 可以是输入数据、局部结果、假设、选择方案和最后结果等。各知识源之间 的交互作用是通过黑板执行的。一个黑板可被分割为无数个子黑板;也就是 说,按照求解问题的不同方面,可把黑板分为几个黑板层。 (2) 知识源:知识源是领域知识的自选模块;每个知识源可视为专门用于处 理一定类型的较窄领域信息或知识的独立程序,而且具有决定是否应当把自 身信息提供给问题求解过程的能力。黑板系统中的知识源是独立分开的,每 个知识源具有自己的工作过程或规则集合和自有的数据结构,包含知识源正 确运行所必须的信息。知识源的动作部分执行实际的问题求解,并产生黑板 的变化。知识源能够遵循各种不同的知识表示方法和推理机制。因此,知识 源的动作部分可为一个含有正向/逆向搜索的产生式规则系统,或者是一个 具有填槽过程的基于框架的系统。 (3) 控制器:黑板系统的主要求解机制是由某个知识源向黑板增添新的信息 开始的。然后,这一事件触发其它对新送来的信息感兴趣的知识源。接着, 对这些被触发的知识源执行某些测试过程,以决定它们是否能够被合法执行。 最后,一个被触发了的知识源被选中,执行向黑板增添信息的任务。这个循 环不断进行下去。

七章专家系统精品PPT课件精选全文完整版

七章专家系统精品PPT课件精选全文完整版

2024/10/16
5
专家系统的特点
(1)从处理问题的性质看:专家系统善于解决那些不 确定性的、非结构化的、没有算法解或虽有算法解 但在现有的机器上无法实施的困难问题。
(2)从处理问题的方法看:专家系统则是靠知识和推 理来解决问题,专家系统是基于知识的智能问题求 解系统。
(3)从系统的机构来看:专家系统则强调知识与推理 的分离,因而系统具有很好的灵活性和可扩充性。
和发展。 专家系统的形式也是普及科技知识的好
形式。
2024/10/16
22
专家系统的应用
(1)应用范围和应用领域不受限制 (2)专家系统的广泛应用产生了良好的
经济效益和社会效益。 (3)专家系统的应用实例以及在生产制
造领域中的广泛应用。
2024/10/16
23
专家系统的发展概况
20世纪60年代,DENDRAL的建成标志着专家系统的 诞生。


1
m
(1)实际问题错综复 杂,可能需要多次推 理,所以知识库是多 层的或多块的。 (2)实际问题往往 不仅需要推理,而且 还需要做一些处理, 所以增加处理模块。
2024/10/16
16
多 媒体 人 机界 面
方法 选择
参数 确定
图件 绘制
图形 评价
I
O 接口
方法 知识 库
动态 数据库
参数 知识 库
2024/10/16
13
专家系统的结构
概念结构 实际结构 网络与分布式结构 黑板模型
2024/10/16
14
概念结构
人机界面
推理机
解释模块
知识库
动态数据库
知识库管理系统 自学习模块

第七章专家系统

第七章专家系统
代表性:NOAH(机器人规划系统)、SECS(帮助化学家制定有机合成规划的专家系 统)、TATR(帮助空军制订攻击敌方机场计划的专家系统)等
控制型专家系统
能根据具体情况,控制整个系统的行为 代表性:YES/MVS(帮助监控和控制MVS操作系统)
本讲稿第十五页,共三十八页
专家系统的类型
监督型专家系统
(2) 知识库管理系统
对知识库中的知识组织、检索和维护
本讲稿第十八页,共三十八页
专家系统的一般结构
推理机
模拟领域专家的思维过程,控制并执行对问题的求解
推理机包括推理方法和控制策略两部分
推理方法有精确推理和不精确推理
控制策略主要指推理方向控制及推理规则选择策略
推理有正向推理、反向推理和正反向混合推理
解释机构 回答用户提出的问题,解释系统的推理过程,使系统对用户透明
本讲稿第二十页,共三十八页
专家系统的工作原理
根据知识库中的知识和用户提供的事实进行推 理,不断地由已知的前提推出未知的结论即中 间结果,并将中间结果放到数据库中,作为已 知的新事实进行推理,从而把求解的问题由求 知状态转换为已知状态
CASNET是一个几乎与MYCIN同时开发的专家系统,由拉特格尔(Rutger) 大学开发,用于青光眼诊断与治疗
AM系统是由斯坦福大学于1981年研制成功的专家系统
模拟人类进行概括、抽象和归纳推理,发现某些数论的概念和定理
本讲稿第五页,共三十八页
专家系统的产生和发展
第二阶段特点: (1) 单学科专业型专家系统; (2) 系统结构完整,功能较全面,移植性好; (3) 具有推理解释功能,透明性好; (4) 采用启发推理、不精确推理; (5) 用产生式规则、框架、语义网络表达知识; (6) 用限定性英语进行人—机交互

第七章_专家系统

第七章_专家系统
故具有小的状态空间,可以使用穷尽的逆向搜索方法(基于规则的逆向演 绎)。因此,只需简单的体系结构。 HEARSAY-Ⅱ——口语理解是一个相当复杂的任务,ES系统不仅要处理不可靠的 数据(语音分析的二意性和噪音),而且状态空间很大,要求更强有力的知 识组织和推理控制结构:知识源—黑板体系结构。
14
任务复杂程度和ES系 统体系结构间的相 关性 随问题求解 任务复杂程度的增 加,需要在体系结 构设计时渐增地采 用一些相适应的推 理技术。 不存在最好的 设计体系结构的通 用原则,再好的原 则也只能适用于一 定的范围。
3
1 ES系统的特点 1) 具有求解问题所需的专门知识:
应用领域的基本原理和常识——专门知识的主部,可以精确地定 义和使用,为普通技术人员所掌握,求解问题的基础;不与求解的问题 紧密结合,知识量大和推理步小,不能高效地支持问题求解。
领域专家求解问题的经验知识——对如何使用前者解决问题所作的 高度集中、抽象和浓缩的描述;使问题求解过程可以大踏步地发展, 高效高质地解决困难和复杂问题;使用这类知识的条件比较苛刻,条 件不满足时会导致不正确的解答甚至推理失败。
<条件> := <简单条件> |($OR {<简单条件>}+)
简单条件常用7类函数表示:(SAME <对象> <属性> <值>);
最常用的动作函数:(CONCLUDE <对象> <属性> <值> TALLY <结 论CF>);
TALLY——存放规则前提的可信度(CF—Certainty Factor);
用控制结构的基础上), * 能适用于较宽广的应用领域, * 增加了ES系统的开发和维护困难。 开发工具箱(开发环境): KEE

人工智能基础 第七章 专家系统

人工智能基础 第七章 专家系统

专家、知识工程师
用户
人机交互界面
专业知识
知识获取
机器能理解的 表达形式
知识库
解释器
综合数据 库
推理机
专家系统的工作过程
专家系统的基本工作过程是,用户通过人机界面回答系统的提 问,推理机将用户输入的信息与知识库中各个规则的条件进行匹 配,并把被匹配规则的结论存放到综合数据库中。最后,专家系 统将得出最终结论呈现给用户。
专家系统概述
专家系统定义
专家系统(Expert System,ES)是人工智能的一个重要分支, 也是目前人工智能中最活跃、最广泛、最有成效的应用研究领域。
专家可以很好地解决本领域的问题,是因为具有本领域的专门 知识。计算机系统将社会专家的专业领域知识进行充分的整理、 集中并总结表达出来,运用知识和推理来解决只有专家才能解决的 复杂问题,就是专家系统研究的目的。
专家系统概述
专家系统的类型




















































划修试型型型专专










专家系统的结构与工 作原理
专家系统的基本结构
专家系统因领域和功能特点不同,结构有一定差别,但专家系统通常由 人机接口、推理机、知识库及其管理系统、数据库及其管理系统、知识 获取机构、解释机构六个部分构成,如图所示。

专家系统知识题解答

专家系统知识题解答

第七章专家系统7.1.答:(1)专家系统的定义费根鲍姆(E.A.Feigenbaum):“专家系统是一种智能的计算机程序,它运用知识和推理步骤来解决只有专家才能解决的复杂问题”专家系统是基于知识的系统,用于在某种特定的领域中运用领域专家多年积累的经验和专门知识,求解需要专家才能解决的困难问题保存和大面积推广各种专家的宝贵知识博采众长比人类专家更可靠,更灵活(2)专家系统的特点①具有专家水平的专门知识专家系统中的知识按其在问题求解中的作用可分为三个层次:数据级、知识库级和控制级数据级知识(动态数据):具体问题所提供的初始事实及在问题求解过程中所产生的中间结论、最终结论数据级知识通常存放于数据库中知识库级知识:专家的知识,这一类知识是构成专家系统的基础一个系统性能高低取决于这种知识质量和数量控制级知识(元知识):关于如何运用前两种知识的知识在问题求解中的搜索策略、推理方法②能进行有效的推理推理机构——能根据用户提供的已知事实,通过运用知识库中的知识,进行有效的推理,以实现问题的求解.专家系统的核心是知识库和推理机③具有启发性除能利用大量专业知识外,还必须利用经验判断知识来对求解问题作出多个假设(依据某些条件选定一个假设,使推理继续进行)④ 能根据不确定(不精确)的知识进行推理综合利用模糊的信息和知识进行推理,得出结论⑤具有灵活性知识库与推理机相互独立,使系统易于扩充,具有较大的灵活性⑥具有透明性一般有解释机构,所以具有较好的透明性解释机构向用户解释推理过程,回答“Why ?”、“How ?”等问题⑦具有交互性一般都为交互式系统,具有较好的人机界面一方面它需要与领域专家或知识工程师进行对话以获取知识;另一方面它也需要不断地从用户处获得所需的已知事实并回答询问.7.2.答:专家系统的一般结构人机接口、推理机、知识库、动态数据库、知识获取机构、解释机构专人机接口解释机构知识获取机构知识库推理机数据库用户领域专家知识工程师家系统核心知识库:主要用来存放领域专家提供的专门知识(1) 知识表达方法的选择(最多的三种表示方法是产生式规则、框架和语义网络)①充分表示领域知识②能充分、有效地进行推理③便于对知识的组织、维护与管理④便于理解与实现(2) 知识库管理冗余和矛盾一致性和完整性安全性推理机模拟领域专家的思维过程,控制并执行对问题的求解能根据当前已知的事实,利用知识库中的知识,按一定的推理方法和控制策略进行推理,直到得出相应的结论为止推理机包括推理方法和控制策略两部分推理方法有精确推理和不精确推理(已在推理章节介绍)控制策略主要指推理方向控制及推理规则选择策略推理有正向推理、反向推理和正反向混合推理推理策略一般还与搜索策略有关(已在推理章节介绍)推理机性能/构造与知识的表示方法有关,但与知识的内容无关à保证推理机与知识库的独立性,提高灵活性知识获取机构“瓶颈”,是建造和设计专家系统的关键基本任务是为专家系统获取知识,建立起健全、完善、有效的知识库,以满足求解领域问题的需要要对知识进行一致性、完整性检测人机接口专家系统与领域专家、知识工程师、一般用户间进行交互的界面,由一组程序及相应的硬件组成,用于完成输入输出工作更新、完善、扩充知识库;推理过程中人机交互;结束时显示结果内部表示形式与外部表示形式的转换数据库又称“黑板”、“综合数据库”或“动态数据库”,主要用于存放用户提供的初始事实、问题描述及系统运行过程中得到的中间结果、最终结果等信息数据库是推理机不可缺少的工作场地,同时由于它可记录推理过程中的各种有关信息,又为解释机构提供了回答用户咨询的依据(需相应的数据库管理程序)解释机构:回答用户提出的问题,解释系统的推理过程,使系统对用户透明7.3答:(1) 传统程序是依据某一确定的算法和数据结构来求解某一确定的问题,而专家系统是依据知识和推理来求解问题,这是专家系统与传统程序的最大区别.传统程序= 数据结构+ 算法专家系统= 知识+ 推理(2) 传统程序把关于问题求解的知识隐含于程序中,而专家系统则将知识与运用知识的过程即推理机分离.(使专家系统具有更大的灵活性,使系统易于修改)(3) 从处理对象来看,传统程序主要是面向数值计算和数据处理,而专家系统则面向符号处理.传统程序处理的数据多是精确的,对数据的检索是基于模式的布尔匹配,而专家系统处理的数据和知识大多是不精确的、模糊的,知识的模式匹配也多是不精确的.(4) 传统程序一般不具有解释功能,而专家系统一般具有解释机构,可对自己的行为作出解释.(5) 传统程序因为是根据算法来求解问题,所以每次都能产生正确的答案,而专家系统则像人类专家那样工作,通常产生正确的答案,但有时也会产生错误的答案(这也是专家系统存在的问题之一).专家系统有能力从错误中吸取教训,改进对某一工作的问题求解能力.(6) 从系统的体系结构来看,传统程序与专家系统具有不同的结构.7.4答:可行性分析:威特曼(Watermam)从三方面研究如何选择适合专家系统开发的问题(1)什么情况下开发专家系统是可能的? (满足!)①问题的求解主要依靠经验性知识,而不需要大量运用常识性知识②存在真正的领域专家,这也是开发专家系统最重要的要求之一专家必须能够描述和解释他们用于解决领域问题的方法③一般某领域中有多个专家,他们应该对领域答案的选择和精确度有基本一致的看法④任务易,有明确的开发目标,且任务能被很好地理解(2)什么情况下开发专家系统是合理的?(之一!)①问题的求解能带来较高的经济效益②人类专家奇缺,但又十分需要,且十分昂贵③人类专家经验不断丢失④危险场合需要专门知识(3)什么情况下开发专家系统是合适的?(特征!)①本质——问题本质上必须能很自然地通过符号操作和符号结构来进行求解,且问题求解时需要使用启发式知识,需要使用经验规则才能得到答案②复杂性——问题不是太容易且较为重要③范围——问题需要有适当的范围.选择适当的范围是专家系统的关键,一般有两个原则:一是所选任务的大小可驾驭;二是任务要有实用价值.7.5答:专家系统的设计原则(1)专门任务领域大小(2)专家合作反复磋商,团结协作(3)原型设计从“最小系统”到“扩充式”开发(4)用户参与充实、完善知识库(5)辅助工具提高设计效率(6)知识库与推理机分离体现特征,灵活专家系统的开发步骤知识工程比软件工程更强调渐进性、扩充性重新描述(1) 问题识别阶段——知识工程师和专家确定问题的重要特点,抓住问题各主要方面的特征①确定人员和任务②问题识别:描述问题的特征及相应的知识结构,明确问题的类型和范围③确定资源:确定知识源、时间、计算设备以及经费等资源④确定目标:确定问题求解的目标(2) 概念化阶段——主要任务是揭示描述问题所需的关键概念、关系和控制机制,子任务、策略和有关问题求解的约束①什么类型的数据有用,数据之间的关系如何?②问题求解时包括哪些过程,这些过程中有哪些约束?③问题是如何划分成子问题的?④信息流是什么?哪些信息是由用户提供的,哪些信息是应当导出的?⑤问题求解的策略是什么?(3)形式化阶段——把概念化阶段概括出来的关键概念、子问题和信息流特征形式化地表示出来(究竟采用什么形式,要根据问题的性质选择适当的专家系统构造工具或适当的系统框架)三个主要的因素是:假设空间基本的过程模型数据形式化阶段假设空间①把概念描述成结构化的对象,还是处理成基本的实体?②概念之间的因果关系或时空关系是否重要,是否应当显式地表示出来?③假设空间是否有限?④假设空间是由预先确定的类型组成的,还是由某种过程生成的?⑤是否应考虑假设的层次性?⑥是否有与最终假设和中间假设相关的不确定性或其它的判定性因素?⑦是否考虑不同的抽象级别?形式化阶段基本的过程模型找到可以用于产生解答的基本过程模型是形式化知识的重要一步过程模型包括行为的和数学的模型(如果专家使用一个简单的行为模型,对它进行分析,就能产生很多重要的概念和关系)(数学模型可以提供附加的问题求解信息,或用于检查知识库中因果关系的一致性)形式化阶段数据的性质①数据是不足的、充足的还是冗余的?②数据是否有不确定性?③对数据的解释是否依赖于出现的次序?④获取数据的代价是多少?⑤数据是如何得到的?⑥数据的可靠性和精确性如何?⑦数据是一致的和完整的吗?(4)实现阶段把形式化知识变成计算机的软体,即要实现知识库、推理机、人机接口和解释系统(知识的一致性和相容性)推理机应能模拟领域专家求解问题的思维过程和控制策略必须很快地实现(实现原型系统的目的之一是检查开发早期阶段的设计是否有效)(5)测试阶段通过运行实例评价原型系统以及用于实现它的表达形式,从而发现知识库和推理机制的缺陷性能不佳的因素:①输入输出特性,即数据获取与结论表示方面存在缺陷例如,提问难于理解、含义模糊,使得存在错误或不充分的数据进入系统;结论过多或者太少,没有适当地组织和排序,或者详细的程度不适当②推理规则有错误、不一致或不完备③控制策略问题,不是按专家采用的“自然顺序”解决问题测试的主要内容:①可靠性——通过实例的求解,检查系统所得出的结论是否与已知结论一致②知识的一致性——向知识库输入一些不一致、冗余等有缺陷的知识,检查是否可检测出来检查是否会给出不应给出的答案检测获取知识的正确性(如有某些自动获取知识功能)③运行效率——知识查询及推理方面的运行效率,找出薄弱环节及求解方法与策略方面的问题④解释能力——一是检测能回答哪些问题,是否达到了要求;二是检测回答问题的质量(说服力)⑤人机交互的便利性7.6答:专家系统种类解决的问题解释根据感知数据推理情况描述诊断根据观察结果推断系统是否有故障预测推导给定情况可能产生的后果设计根据给定要求进行相应的设计规划设计动作控制控制整个系统的行为监督比较观察结果和期望结果修理执行计划来实现规定的补救措施教学诊断、调整、修改学生行为调试建议故障的补救措施(1) 解释型专家系统能根据感知数据,经过分析、推理,从而给出相应解释.(必须能处理不完全、甚至受到干扰的信息,给出一致且正确的解释)代表性:DENDRAL(化学结构说明)、PROSPECTOR(地质解释)等(2) 诊断型专家系统能根据取得的现象、数据或事实推断出系统是否有故障,并能找出产生故障的原因,给出排除故障的方案(目前开发、应用得最多的一类)代表性:PUFF(肺功能诊断系统)、PIP(肾脏病诊断系统)、DART(计算机硬件故障诊断系统)等(3) 预测型专家系统能根据过去和现在信息(数据和经验)来推断可能发生和出现的情况(天气预报、市场预测、人口预测等)(4) 设计型专家系统能根据给定要求进行相应的设计(工程设计、电路设计、服装设计)代表性:XCON(计算机系统配置系统)、KBVLSI(VLSI电路设计专家系统)等(5) 规划型专家系统能按给定目标拟定总体规划、行动计划、运筹优化等(机器人动作控制、军事规划、城市规划等)代表性:NOAH(机器人规划系统)、SECS(帮助化学家制定有机合成规划的专家系统)、TATR (帮助空军制订攻击敌方机场计划的专家系统)等(6) 控制型专家系统能根据具体情况,控制整个系统的行为代表性:YES/MVS(帮助监控和控制MVS操作系统)(7) 监督型专家系统能完成实时的监测任务,并根据监测到的现象作出相应的分析和处理代表性:REACTOR(帮助操作人员检测和处理核反应堆事故)(8) 修理型专家系统能根据故障的特点制订纠错方案,并能实施该方案排除故障,当制订的方案失效或部分失效时,能及时采取相应的补救措施(9) 教学型专家系统能根据学生学习过程中所产生的问题进行分析、评价、找出错误原因,有针对性地确定教学内容或采取其它有效的教学手段代表性:GUIDON(讲授有关细菌感染性疾病方面的医学知识)(10) 调试型专家系统能根据相应的标准检测被测试对象存在的错误,并能从多种纠错方案中选出适用于当前情况的最佳方案,排除错误专家系统的应用领域已扩展到数学、物理、化学、医学、地质、气象、农业、法律、教育、交通运输、机械、艺术以及计算机科学本身,甚至渗透到政治、经济、军事等重大决策部门,产生了巨大的社会效益和经济效益,同时也促进了人工智能基本理论和基本技术的发展.7.7答:(1)正向推理:见教材P206图7.7(2)反向推理:见教材P212图7.127.8答:(1)知识获取的任务基本任务:为专家系统获取知识,建立起健全、完善、有效的知识库,以满足求解领域问题需要①抽取知识识别、理解、筛选、归纳等,及自学习②知识的转换第一步:从专家及文献资料处抽取的知识转换为某种知识表示模式,如产生式规则、框架等(知识工程师完成)第二步:该模式表示的知识转换为系统可直接利用的内部形式.(输入及编译实现)③知识的输入知识编辑器④知识的检测不一致、不完整等⑵知识获取的模式①非自动知识获取(人工移植)知识工程师知识编辑器②自动知识获取系统具有获取知识的能力,它不仅可以直接与领域专家对话,从专家提供的原始信息中学习到专家系统所需的知识,而且还能从系统自身的运行实践中总结、归纳出新的知识,发现知识中可能存在的错误,不断自我完善,建立起性能优良、知识完善的知识库➢具有识别语音、文字、图像的能力➢具有理解、分析、归纳的能力➢具有从运行实践中学习的能力③半自动知识获取7.9答:正确性(1)系统设计的正确性①系统设计思想的正确性如目标、原则等②系统设计方法的正确性如知识表达方法、知识推理方法、控制策略、解释方法等③设计开发工具的正确性如正确使用和正确维护(2)系统测试的正确性①测试目的、方法、条件的正确性②测试结果、数据、记录的正确性(3)系统运行的正确性①推理结论、求解结果、咨询建议的正确性②推理解释及可信度估算的正确性③知识库知识的正确性语法、语义和语用及专业内容有用性(1)推理结论、求解结果、咨询建议的有用性(2)系统的知识水平、可用范围、易扩充性、易更新性等(3)问题的求解能力(解题速度、推理效率),可能场合和环境(4)人机交互的友好性(5)运行可靠性、易维护性、可移植性(6)系统的经济性(软硬件投资、运行维护费用、设计开发费用和系统运行取得的直接或间接经济效益)7.10答:(1)四种主要的类型:①用于开发专家系统的程序设计语言②骨架系统③通用型知识表达语言④专家系统开发环境(2)专家系统开发环境(工具包)AGE是斯坦福大学研制的一个专家系统开发环境.AGE是典型的模块组合式开发工具,为用户提供了一个通用的专家系统结构框架,并将该框架分解为许多在功能和结构上较为独立的的组件部件,这些组件已预先编制成标准模块存在系统中.AGE采用了黑板模型来构造专家系统结构框架.可通过两条途径构造自己的专家系统:①用户使用AGE现有的各种组件作为构造材料,很方便地来组合设计自己所需的系统.②用户通过AGE的工具界面,定义和设计各种所需的组成部件,以构造自己的专家系统.应用AGE已经开发了一些专家系统,主要用于医疗诊断、密码翻译、军事科学等方面.7.11答:EMYCIN是由MYCIN系统抽去原有的医学领域知识,保留骨架而形成的系统(产生式规则表达知识、目标驱动的反向推理控制策略).EMYCIN具有MYCIN的全部功能:①解释程序——可以向用户解释推理过程.②知识编辑程序及类英语的简化会话语言——提供一开发知识库的环境,使得开发者可以使用比LISP更接近自然语言的规则语言来表示知识.③知识库管理和维护手段——所提供的开发知识库的环境还可以在进行知识编辑及输入时进行语法、一致性、是否矛盾和包含等检查.④跟踪和调试功能EMYCIN开发的一些专家系统(适合开发各种领域咨询、诊断型专家系统).EMYCIN帮通过解释呼吸分析并确定病通过解释油井预测麦田是否助决定解决结构分析问题的策略测试数据来诊断肺病人血液凝固机制中有无问题SACON钻探数据来鉴定地下岩层将受黑鳞翅目幼虫之害LIGHOPIANT/CDP。

第七章 人工智能与教育(二)

第七章  人工智能与教育(二)

(四)人工神经网络的局限性 人工神经网络是一个新兴学科,还存在许多问题。 其主要表现有。 (1)受到脑科学研究的限制 由于生理实验的困难性,目前人类对思维和记忆机制 的认识还很肤浅,还有很多问题需要解决。例如,脑的层 次结构是怎样形成的?脑是怎样学习的?不同类型的知识 在脑中是如何组织的?脑神经元在思维记忆中起什么作用? 脑神经网络中神经元之间的突触联系强度是如何修正、保 持的?等等。这些问题如果能够得到解决,将极大地促进 人工神经网络的发展。 (2)还没有完整成熟的理论体系 虽然目前已有许多人工神经网络模型,但这些模型的 学习策略却各不相同,还无法统一到一个完整的理论框架 中,因而也无法形成一个成熟的理论体系。
(3)诊断型专家系统 诊断型专家系统的任务是根据观察到的情况来推断 出某个对象机能失常的原因。其主要特点有:第一,能 够了解被诊断对象和客体各组成部分的特性,以及它们 之间的联系;第二,能够区分一种现象及其所掩盖的另 一种现象;第三,能够向用户提出测量的数据,并从不 确切信息中得出尽可能正确的诊断。 诊断型专家系统的例子特别多,有医疗诊断、电子 或机械故障诊断以及材料失效诊断等。著名的血液病诊 断专家系统MYCIN、青光眼治疗专家系统CASNET等都属 于这类专家系统。
二、专家系统
(一)专家系统的基本概念 目前,对什么是专家系统还没有一个严格公认的形 式化定义。作为一种一般的解释,可以认为专家系统是一 种具有大量专门知识与经验的智能程序系统,它能运用领 域专家多年积累的经验和专门知识,模拟领域专家的思维 过程,解决该领域中需要专家才能解决的复杂问题。 从上述解释可以看出,专家系统包括以下三个方面 的含义: (1)专家系统是一种程序系统,但又具有智能,因 此它不同于一般的程序系统,而是一种能运用专家知识和 经验进行推理的启发式程序系统。

第七章专家系统习题解答

第七章专家系统习题解答

第七章专家系统7.1.答:(1)专家系统的定义费根鲍姆(E.A.Feigenbaum):“专家系统是一种智能的计算机程序,它运用知识和推理步骤来解决只有专家才能解决的复杂问题”专家系统是基于知识的系统,用于在某种特定的领域中运用领域专家多年积累的经验和专门知识,求解需要专家才能解决的困难问题保存和大面积推广各种专家的宝贵知识博采众长比人类专家更可靠,更灵活(2)专家系统的特点①具有专家水平的专门知识专家系统中的知识按其在问题求解中的作用可分为三个层次:数据级、知识库级和控制级数据级知识(动态数据):具体问题所提供的初始事实及在问题求解过程中所产生的中间结论、最终结论数据级知识通常存放于数据库中知识库级知识:专家的知识,这一类知识是构成专家系统的基础一个系统性能高低取决于这种知识质量和数量控制级知识(元知识):关于如何运用前两种知识的知识在问题求解中的搜索策略、推理方法②能进行有效的推理推理机构——能根据用户提供的已知事实,通过运用知识库中的知识,进行有效的推理,以实现问题的求解。

专家系统的核心是知识库和推理机③具有启发性除能利用大量专业知识外,还必须利用经验判断知识来对求解问题作出多个假设(依据某些条件选定一个假设,使推理继续进行)④能根据不确定(不精确)的知识进行推理综合利用模糊的信息和知识进行推理,得出结论⑤具有灵活性知识库与推理机相互独立,使系统易于扩充,具有较大的灵活性⑥具有透明性一般有解释机构,所以具有较好的透明性解释机构向用户解释推理过程,回答“Why?”、“How?”等问题⑦具有交互性一般都为交互式系统,具有较好的人机界面一方面它需要与领域专家或知识工程师进行对话以获取知识;另一方面它也需要不断地从用户处获得所需的已知事实并回答询问。

7.2.答:专家系统的一般结构人机接口、推理机、知识库、动态数据库、知识获取机构、解释机构知识库:主要用来存放领域专家提供的专门知识(1) 知识表达方法的选择(最多的三种表示方法是产生式规则、框架和语义网络) ①充分表示领域知识② 能充分、有效地进行推理③ 便于对知识的组织、维护与管理 ④ 便于理解与实现(2) 知识库管理冗余和矛盾一致性和完整性安全性 推理机模拟领域专家的思维过程,控制并执行对问题的求解能根据当前已知的事实,利用知识库中的知识,按一定的推理方法和控制策略进行推理,直到得出相应的结论为止推理机包括推理方法和控制策略两部分推理方法有精确推理和不精确推理(已在推理章节介绍) 控制策略主要指推理方向控制及推理规则选择策略 推理有正向推理、反向推理和正反向混合推理推理策略一般还与搜索策略有关(已在推理章节介绍)推理机性能/构造与知识的表示方法有关,但与知识的内容无关 保证推理机与知识库的独立性,提高灵活性知识获取机构“瓶颈”,是建造和设计专家系统的关键基本任务是为专家系统获取知识,建立起健全、完善、有效的知识库,以满足求解领域问题的需要要对知识进行一致性、完整性检测 人机接口专家系统与领域专家、知识工程师、一般用户间进行交互的界面,由一组程序及相应的硬件组成,用于完成输入输出工作 更新、完善、扩充知识库;推理过程中人机交互;结束时显示结果内部表示形式与外部表示形式的转换数据库又称“黑板”、“综合数据库”或“动态数据库”,主要用于存放用户提供的初始事实、问题描述及系统运行过程中得到的中间结果、最终结果等信息 数据库是推理机不可缺少的工作场地,同时由于它可记录推理过程中的各种有关信息,又为解释机构提供了回答用户咨询的依据(需相应的数据库管理程序)解释机构:回答用户提出的问题,解释系统的推理过程,使系统对用户透明 7.3答:(1) 传统程序是依据某一确定的算法和数据结构来求解某一确定的问题,而专家系统是依据知识和推理来求解问题,这是专家系统与传统程序的最大区别。

第七章专家系统

第七章专家系统
推理策略一般还与搜索策略有关(已在推理章节介绍)
知识获取机构
“瓶颈”,是建造和设计专家系统的关键 基本任务是为专家系统获取知识,建立起健全、完善、有效的知识库,
以满足求解领域问题的需要 要对知识进行一致性、完整性检测
现在学习的是第19页,共38页
专家系统的一般结构
人机接口
专家系统与领域专家、知识工程师、一般用户间进行交互的界面 由一组程序及相应的硬件组成,用于完成输入输出工作 更新、完善、扩充知识库;推理过程中人机交互;结束时显示结果 数据库
保存和大面积推广各种专家的宝贵知识
博采众长
比人类专家更可靠,更灵活
现在学习的是第3页,共38页
专家系统的产生和发展
第一阶段(60年代末—70年代初)
第一个里程碑:斯坦福大学费根鲍姆等人于1968年研制成功的DENDRAL— —分析化合物分子结构的专家系统分析
利用质谱和核磁共振等化学实验数据推断出未知化合物的可能分子结构 MYCSYMA系统是由麻省理工学院(MIT)于1971年开发成功并投入应用
传统程序处理的数据多是精确的,对数据的检索是 基于模式的布尔匹配,而专家系统处理的数据和知 识大多是不精确的、模糊的,知识的模式匹配也多 是不精确的
传统程序一般不具有解释功能,而专家系统一 般具有解释机构,可解释自己的行为
现在学习的是第10页,共38页
专家系统与传统程序的区别
⑤ 传统程序根据算法求解问题,每次都能产生正 确答案,专家系统像人类专家那样工作,通常 产生正确的答案,但有时也会产生错误的答 案
现在学习的是第7页,共38页
专家系统的特点
具有专家水平的专门知识 能进行有效的推理 具有启发性 能根据不确定(不精确)的知识进行推理 具有灵活性 具有透明性 具有交互性

专家系统

专家系统

图6 反向推理原理图
3.正反向混合推理 基本思想: 先根据原始数据通过正向推理帮助推理提出假 设,再用反向推理进一步寻找支持假设的证据,反 复这个过程。根据问题已有数据进行推理,但不期 望这种推理能达到总目标;而同时从目标出发进行 反向推理,也不期望该推理一直进行到每个子目标 能被上下文匹配或否定,而是期望两种推理在某些 子目标处接合起来。 集中了正向和反向推理的优点,但其控制策略 较前两者复杂。适用于数据充分、解空间不大的精 确推理。
图5 正向推理原理图
2.反向推理 先提出假设,然后由此出发,进一步寻找支持假设的证据,即所谓目 标驱动方式,当证据与用户提出 的原始信息匹配时,推理成功。 推理过程: 由用户或系统首先提出一批假设,然后系统逐一验证这些假设的真假 性。 适用于结论单一或直接提出结论要求证实的系统,并且初始数据 (事实)量很大的场合。
决策型
控制型 调试型
通常完成实时控制任务 制定并实施纠正某类故障的规划,亦称为排错型或维 修型
YES/MVS TIMM/TUNER
3. 专家系统的工作原理
用户 领域专家(DE) 知识工程师(KE) 人 机 接 口
推理机
解释机
解释机制
知识获取机制
性能系统
综合数据 库
知识库
图2 专家系统的一般结构
一个完整的专家系统通常由6个部分组成: 1.知识库 存放系统求解问题所需要的知识 2.推理机 负责使用知识库中的知识去解决实际问题 3.综合数据库 用于存放系统运行中所需要和产生的所有信息,包括问题的描述、 中间结果,解题过程的记录等信息。在专家系统中,数据的表示与组 织应做到与知识的表示组织相容。 4.知识 获取机制 负责管理知识库中的知识,包括根据需要修改、删除或添加知识及由此 引起怕一切必要的改动,维持知识库的一致性、完整等方面,是系统灵活 性的主要部件。 5.解析机制 负责回答用户提出的各种问题,包括系统与系统运行有关的问题和 与系统运行无关的关于系统自身的一些问题,是实现透明性的主要部件。 6.人机接口 把用户输入的信息转换成系统的内部表示形式,然后把这些内部表示 交给相应的部件去处理。系统输出的内部信息也由人机接口转换成用户 易于理解的外部表示显示给用户。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本概念
PROSPECTOR系统 它是地质勘探专家系统,已在发现大型钼矿 藏中起了重要的咨询作用。 SOPHIE系统 它是智能化计算机辅助教学系统,能起电 子实验室辅导教师作用。 HEARSAY-Ⅱ和HARPPY系统 二者都是引人注目的实验性言语理解系统。
基本概念
专家系统分类 按特性及处理问题的类型: 解释型 诊断型 预测型 设计型 规划型 控制型 监测型 维修型 教育型 调试型
基本概念
MACSYMA系统 70年代为了帮助天文、物理方面的应用数学家从 事符号微积分运算和简化公式推演研制的专家系 统。 CADUCEUS系统 原名INTERNIST,70年代后期开始研制的、期望能 对整个内科领域85%疾病(包括并发症)进行诊断 治疗,它的知识库已包含100000条法则,是迄今 为止最大的专家系统之一。
专家系统
基本概念 一般结构 知识获取 知识的检测与求精
第七章

专家系统
基本概念 一般结构 知识获取 知识的检测与求精
知识获取

任务
把蕴涵于知识源种的知识抽取出来,以便用于建立数据库
抽取知识 知识的转换
把知识由一种表示形式变换为另一种表示形式
知识的输入
把用适当模式表示的知识经编辑,编译送入知识库
基本概念


基本特征:
具有专家水平的专门知识 能进行有效的推理 具有获取知识的能力 具有灵活性 具有透明性 具有交互性 具有实用性 具有一定的复杂及难度
基本概念
数据级 知识的三个层次 知识库级 控制级
基本概念

专家系统与常规计算机程序的区别
专家系统
知识+推理 数据级,知识库级,控制级 面向符号处理,有灵活性 不精确,模糊 具有解释机构 常规计算机程序 数据结构+算法 数据级,程序级
第七章

专家系统
基本概念 一般结构 知识获取 知识的检测与求精
第七章

专家系统
基本概念 一般结构 知识获取 知识的检测与求精
专家系统的一般结构
用户 领域专家 知识工程师
人机接口
解释机构 数据库及其 管理系统 推理机 知识获取机构 知识库及其 管理系统
第七章


基本概念
专家系统的分类 按系统的体系结构 集中式专家系统 分布式专家系统 神经网络专家系统 符号系统与神经网络相结合的专家系统

基本概念

专家系统实例
营养专家系统(通用版) 适用于各个年龄段的营养分析和评价指导,可广 泛应用于临床科室的临床营养分析、临床营养师 的配餐管理,以及相关营养机构、医疗机构的日 常工作中。
பைடு நூலகம்
基本概念
CASNET系统 70年代研制成的用于青光眼的诊断医疗系统,但 是设计的指导思想是企图模拟一般的疾病而并不 局限于青光眼。根据这种思想建立了适用于 CASNET型系统的、称为EXPERT的专用语言,可 用来构筑其他专家系统,例如风湿病和内分泌疾患 的医疗诊断系统。CASNET系统采用因果联系网 络(associational networks)来表示知识法则,这 同DENDRAL、MYCIN中用产生式规则来表示知 识法则有所不同。
知识的检测 在上述环节中及时检测并纠正错误
知识获取

方式 非自动知识获取
阅读 对话
科技文献 领域专家
知识 工程师
知识 编辑器
知识库
知识获取

方式 自动知识获取
文字图像识别 语音识别 理解 归纳 翻译 知识库
文字,图像 领域专家
第七章

专家系统
基本概念 一般结构 知识获取 知识的检测与求精
第七章

专家系统
基本概念 一般结构 知识获取 知识的检测与求精
第七章

专家系统
基本概念 一般结构 知识获取 知识的检测与求精
基本概念

什么是专家系统
一种在相关领域中具有专家水平解题能力的智 能程序系统.能运用领域专家多年积累的经验与专 门知识,模拟人类专家的思维过程,求解需要专家才 能解决的困难问题. 1968年,由斯坦福大学化学家勒德贝格与费根 鲍姆等人建成的DENDRAL专家系统,标志着人工 智能德一个新的领域--------专家系统的诞生.
把问题求解的领域知识组成知识库 把有关问题求解的知识隐含于程序
面向数值计算和数据处理
精确 不具有解释功能
PS:专家系统与常规计算机程序有不同的体系结构
基本概念
若干典型的专家系统 DENDRAL系统 60年代后期在美国研制成功而且目前仍在使用的 专家系统。知识工程的基本思想就起源于这一系 统。DENDRAL包括DENDRAL和META- DENDRAL两个子系统。 DENDRAL根据核磁共 振分析仪和其他化学试验的测定数据对未知化合 物的分子结构式进行预测;META-DENDRAL则 向DENDRAL提供关于有机化合物结构的裂解公 式。
第七章

专家系统
基本概念 一般结构 知识获取 知识的检测与求精
知识的检测与求精

知识的一致性与完整性 知识冗余 矛盾 从属 环路 不完整
知识的检测与求精
知识求精 找出产生错误的知识并予以改进,以提高知 识库的可靠性. 错判:对给定的不应产生某一结论的条件,经系统运

行却得出了这一结论. 漏判:在给定条件下把本来应该推出的结论没有推出 来.
相关文档
最新文档