电大微积分基础期末试卷及答案_1801

合集下载

电大专科微积分初步期末考试试题及答案

电大专科微积分初步期末考试试题及答案

1微积分初步考试试题1填空题答案:f(x)=x 2—1X 2 -2x -3(6)函数y =的间断点是x +1答案:x = -11(7) lim xsin —= X答案:1(8)若 llm sln4x =2,贝y k = T sin kx答案:k = 2(9)曲线f(x)=JX+1在(1,2)点的切斜率是 1 答案:12(10)曲线f(x)=e X在(0,1)点的切线方程是答案:y =x +e(1) 函数f(X 2E 的定义域是答案:函数 f(X)= ---- 1-- +』4 -x 2In(X +2)的定义域是答案: (—2,—1)5—1,2]函数 f(X +2) = X 2+4x + 7,则 f(x) = 答案:f(X)= X 2+3(4)若函数f(X)= { i ■ 3 4 [xsi n —+1,! xX c 0 在X = 0处连续,则k =X >0 答案:k =1 (5)函数 f(X-1) =X 2-2x ,则(11)已知 f(X)=X 3 +3x,贝y f'(3) =答案:(13)若 f(X)=xe 」,则 f "(0)答案:f "(X)= —2e 」+xe 」f 70) = -2(16)若f (x)的一个原函数为ln X 2,则f (x)=2答案:-(17)若 J f (x)dx =sin 2x +c ,则 f (x)答案:2cos2x答案: f(X)=3x 2 +3XIn3f '(3)=27 (1+1 n3)(12)已知 f(X)=lnx ,贝U f “(x) =(14)2函数y=3(x-1)的单调增加区间是答案: (1,畑)(15) 2函数f(x)=ax +1在区间(0, +K )内单调增加,则a 应满足答案: a >0(18) 若 fcosxdx = 答案: sin X +c(19) 2答案:-X 丄 e +c(20)f(sin x) dx=答案:sin X +c (21) 若 J f (x)dx =F(x) +c ,贝U Jf(2x-3)dx =2方程是答案:y=2jx+1(27)由定积分的几何意义知, r J a 2 -x 2dx =答案:(29)微分方程y'+3y =0的通解为答案:y=ce°x(30)微分方程(y)3 +4xy ⑷=y 7sinx 的阶数为答案:42. 单项选择题e+e x答案:1F(2x-3) +c 2(22) 若 J f (x)dx = F(X)+c ,贝U Jxf (1 — x 2)dx答案: --F(1 -X 2) +C2 (23)12L(sin x cos2x - X + x)dx答案: —3de (24)dx1答案: 0(25)0 JU 52x dx =答案: 1(26)已知曲线y = f (x)在任意点x 处切线的斜率为1',且曲线过(4,5),则该曲线的(28) 微分方程y' = y, y(0)=i 的特解为答案:xy =e22+1)dx =(1)设函数y =,则该函数是( ).A.奇函数B.偶函数C非奇非偶函数 D .既奇又偶函数2A. d J f (x)dx = f (x) B . J f '(x)dx = f(X)答案:B(2)下列函数中为奇函数是( ). A . xsinx B . + e xC . ln(X + J 1+X 2) 2D . X +x答案:C (3)函数 x+4 + h (X + 5)的定义域为( ). A. X 答案: > -5 D B . XH -4 C . x>-5 且 XH O (4) f(x+1) =x 2-1, A. x(x +1) C .X(X-2) (x + 2)(x-1)答案:C (5)当 k时,函数 f(x)=r +2,L k,X 工0在x=0处连续.X =0B .C . 2答案:D(6)当 k时, 函数wf:1'HO ,在x=0处连续.=0 A. 0B .-1答案:B(7)函数 f(x) x 2-3x +2的间断点是(A. X = 1,x =2X =3C. X =1, X = 2, X= 3.无间断点答案:(8)若 f(X)= r cosx , 则 f(0) =).A. 2 答案:CB. 1C. -1D. -2(9)设 y =lg2x ,则 dy =( ).A 1 1 A.——dxB . ---------- d x2x xln10答案:BA . 2f(cos2x)dxf'(cos2x)sin2xd2xC . 2 f (cos2x)sin 2xdxD . - f \cos2x)sin2xd2x答案:D答案:D答案:C.f(x)在 ^x 0处连续,则一定在 x 0处可微. .f(x)在x = x 0处不连续,则一定在 x 0处不可导. .可导函数的极值点一定发生在其驻点上D.函数的极值点可能发生在不可导点上 答案:A (14) 下列函数在指定区间(亠,畑)上单调增加的是( A . sin X B答案:B(15) 下列等式成立的是((10)设y = f(x)是可微函数,则df(cos2x)=().D . -dx X⑴)若f(X)=sin X + a 3,其中a 是常数,则f "(X)=().2A . COSX + 3aB . sinx+6aC.-sinxcosx答案:C(1)函数y =(X+1)2在区间(—2,2)是( A.单调增加B .单调减少 C.先增后减D .先减后增(12)满足方程 f '(X)=0的点一定是函数 =f(x)的(A.极值点B .最值点C .驻点 D.间断点(13)下列结论中()不正确.).A. d J f (x)dx = f (x) B . J f '(x)dx = f(X)plC. f f (x)dx = f(X)dx 、答案:C(16) 以下等式成立的是(答案:D(17) Jxf7x)dx =答案:答案:.y=Cx B . y=x + C 答案:(22)下列微分方程中为可分离变量方程的是( D. Jdf(X)= f(X)A. In xdx = d(-)X.sin xdx=d(cosx)C.—仮v x.3X d^-^ In 3A. xf '(X)- f(X)+cB. xf '(X)+ cC. 1X 2f (X)+c 2答案:(18) D.(x +1) f \x )+c答案:J 』A下列定积分中积分值为X _xe -e , X2 兀 3f (x +cosx)dxJIA(19)设 A. 00的是().—x•[兀(x 2+si nx)dx• -JIf(x)是连续的奇函数,则定积分a -f (x)dx =()-aB. J a f (x)dx CJ0f(x)dx 0D. 2f a f(x)dx(20) 下列无穷积分收敛的是().A. -be J 。

微积分期末考试试题及答案

微积分期末考试试题及答案

微积分期末考试试题及答案一、选择题(每题2分,共20分)1. 函数 \( f(x) = x^2 \) 在 \( x = 0 \) 处的导数是()A. 0B. 1C. 2D. -1答案:A2. 曲线 \( y = x^3 - 2x^2 + x \) 在 \( x = 1 \) 处的切线斜率是()A. 0B. 1C. -1D. 2答案:B3. 函数 \( f(x) = \sin(x) \) 的原函数是()A. \( -\cos(x) \)B. \( \cos(x) \)C. \( x - \sin(x) \)D. \( x + \sin(x) \)答案:A4. 若 \( \int_{0}^{1} f(x) \, dx = 2 \),且 \( f(x) = 3x^2 +1 \),则 \( \int_{0}^{1} x f(x) \, dx \) 等于()A. 3B. 4C. 5D. 6答案:C5. 函数 \( g(x) = \ln(x) \) 在 \( x > 0 \) 时的反导数是()A. \( e^x \)B. \( x^e \)C. \( e^{\ln(x)} \)D. \( x \ln(x) - x \)答案:D6. 若 \( \lim_{x \to 0} \frac{\sin(x)}{x} = 1 \),则\( \lim_{x \to 0} \frac{\sin(2x)}{x} \) 等于()A. 2B. 1C. 4D. 0答案:A7. 函数 \( h(x) = e^x \) 的泰勒展开式在 \( x = 0 \) 处的前三项是()A. \( 1 + x + \frac{x^2}{2} \)B. \( 1 + x + \frac{x^2}{2!} \)C. \( 1 + x + \frac{x^3}{3!} \)D. \( 1 + x + \frac{x^2}{3!} \)答案:B8. 若 \( \frac{dy}{dx} = 2y \),且 \( y(0) = 1 \),则 \( y(x) \) 是()A. \( e^{2x} \)B. \( e^{-2x} \)C. \( 2^x \)D. \( 2^{-x} \)答案:A9. 函数 \( F(x) = \int_{0}^{x} e^t \, dt \) 的导数是()A. \( e^x \)B. \( e^0 \)C. \( x \cdot e^x \)D. \( e^0 \cdot x \)答案:A10. 曲线 \( y = x^2 + 3x \) 与直线 \( y = 6x \) 交点的横坐标是()A. 0B. 3C. -1D. 2答案:C二、填空题(每空3分,共15分)11. 若 \( f(x) = 2x - 1 \),则 \( f''(x) \) 等于 _________。

2023年电大专科微积分初步考试复习试题与答案

2023年电大专科微积分初步考试复习试题与答案

《微积分初步》期末复习资料一、单项选择题 1. 函数1ln 4y x x =+-旳定义域为( D ) A. 0x > B. 4x ≠ C. 0x >且1x ≠ D. 0x >且4x ≠ 2. 函数()ln f x x =在点x e =处旳切线方程是( C ). A. 11y x e =+ B. 11y x e =- C. 1y x e = D. 11y x e e=-+ 3. 下列等式中对旳旳是( D )A. ()sin cos xdx d x =B. 1ln xdx d x ⎛⎫=⎪⎝⎭C. ()x x a dx d a = D.(d= 4. 下列等式成立旳是( A ) A.()()df x dx f x dx =⎰B. ()()f x dx f x '=⎰C. ()()d f x dx f x =⎰D.()()df x f x =⎰5. 下列微分方程中为可分离变量方程旳是( B ) A.dy x y dx =+ B. dy xy y dx =+ C. sin dy xy x dx =+ D. ()dy x y x dx=+ 6. 下列函数为奇函数旳是( D )A. sin x xB. ln xC. 2x x + D. (ln x +7. 当k =( C )时,函数()1,0, 0x e x f x k x ⎧+≠=⎨=⎩在0x =处持续.A. 0B. 1C. 2D. 1e + 8. 函数21y x =+在区间()2,2-是( B )A. 单调下降B. 先单调下降再单调上升C. 先单调上升再单调下降D. 单调上升9. 在切线斜率为2x 旳积分曲线族中,通过点()1,4旳曲线为(A ) A. 23y x =+ B. 24y x =+ C. 22y x =+ D. 21y x =+ 10. 微分方程y y '=,()01y =旳特解为( C ) A. 20.5y x = B. xy e -= C. xy e = D. 1xy e =+ 11. 设函数sin y x x =,则该函数是( B )A. 奇函数B. 偶函数C. 非奇非偶函数D. 既奇又偶函数12. 当k =( A )时,函数()21,0, 0x x f x k x ⎧+≠=⎨=⎩在0x =处持续.A. 1B. 2C. 1-D. 013. 满足方程()0f x '=旳点一定是函数()f x 旳( C ) A. 极值点 B. 最值点 C. 驻点 D. 间断点 14. 设()f x 是持续旳奇函数,则定积分()aaf x dx -=⎰( D )A. ()02af x dx -⎰B.()0af x dx -⎰C.()0af x dx ⎰ D. 015. 微分方程1y y '=+旳通解是( B ) A. 1Cx y e-= B. 1xy Ce =- C. y x C =+ D. 212y x C =+ 16. 设()211f x x +=-,则()f x =( C )A. ()1x x +B. 2x C. ()2x x - D. ()()21x x +-17. 若函数()f x 在点0x 处可导,则( B )是错误旳.A. 函数()f x 在点0x 处有定义B. ()0lim x x f x A →= ,但()0A f x ≠C. 函数()f x 在点0x 处持续D. 函数()f x 在点0x 处可微 18. 函数()21y x =+在区间()2,2-是(D )A. 单调增长B. 单调减少C. 先单调增长后单调减少D. 先单调减少后单调增长 19.()xf x dx ''=⎰( A )A. ()()xf x f x c '-+B. ()xf x c '+C.()212x f x c '+ D. ()()1x f x c '++ 20. 下列微分方程中为可分离变量方程旳是( B ) A.dy x y dx =+ B. dy xy y dx =+ C. sin dy xy x dx =+ D. ()dy x y x dx=+ 21. 函数()222x xf x -+=旳图形有关( C )对称A. y x =B. x 轴C. y 轴D. 坐标原点 22. ()sin 1xf x x=-当( D )时,()f x 为无穷小量。

国家开放大学系统国家开放大学微积分基础所有答案

国家开放大学系统国家开放大学微积分基础所有答案

国家开放大学系统国家开放大学微积分基础所有答案【考查知识点:积分计算】设a≠0,则∫ab9d=选择一项:a.1/10aab10b.1/10aab10Cc.1/10ab10C答案是:正确答案是:1/10aab10C【考查知识点:积分的几何意义】已知由一条曲线y=f与轴及直线=a,=6 所围成的曲边梯形的面积为A=∫|f|d,则以下说法正确的是选择一项:a若在区间上,f>=-∫d答案是:若在区间上,f>0,则A=∫fd【考查知识点:积分的几何意义】f闭区间上连续,则由曲线y=f与直线=a,=by=0 所围成平面图形的面积为选择一项a.∫|f|db.|∫fd|c.∫fdd.|答案是:|∫fd|【考查知识点:导数与积分】下列等式成立的是().选择一项:d/d∫fd=f)b∫df=fcd∫f=fd∫fd答案是:正确答案是:d/d∫fd=f)【考查知识点:导数与积分】以下等式成立的是()选择一项:d/12=d12a.3d=d3/ln3b.d√=d√c.lnd=d1/)答案是:正确答案是:3d=d3/ln3【考查知识点:微分方程】微分方程有(3y4sin-ey=0的阶数是__回答答案是:正确答案是:3【考查知识点:积分计算】∫|-2|d= )答案:答案是:正确答案是:4考查知识点:积分的应用】∫cos/12 d=回答答案是:正确答案是:0【考查知识点:计算】4e2d= d答案:答案是:正确答案是:2【考查知识点:微分方程】y=e2是微分方程yny1-6y=0的解。

选择一项:对错答案是:正确答案是“对”。

【考查知识点:积分的应用】已知曲线y=f在点处切线的斜率为2,且曲线过点1,0,则该曲线方程为y=2-1。

选择一项:对错答案是:正确答案是“对”。

【考查知识点:导数与积分】∫fd=f-c选择一项:对错答案是:正确答案是“对”。

【考查知识点:积分计算】定积分∫cossind=0选择一项:对错答案是:正确答案是“对”。

【免费下载】电大专科 微积分初步期末考试试题

【免费下载】电大专科 微积分初步期末考试试题
(2,2) .
⒋若 sinxdx cos x C .
⒈函数 f (x 1) x 2 2x ,则
f (x) x2 1.
⒉函数
f
(x)

x
sin
2 x

k,
x

0

2,
x0
x 0 处连续,则 k =2.
⒋ 1 (3x3 5x 2)dx 4 . 1
则 f (x) x2 + 1 .
9. (sinx)dx sinx + c.
⒈函数 f (x) 1 的定义域 ln(x 2)
是 (2,3) (3,) .
⒉函数 y x 2 2x 3 的间断 x 1
点是 x 1.
⒊曲线 f (x) x 1 在 (0,1) 点
阶数为 4 阶 .
(,) 上单调减少的是
(B).
二、单项选择题(每小题 4 分,本 题共 20 分)
⒈设函数 y ex e x ,则该函数 2
是(B ).
A. 奇函数 B.偶函数
A. cos x B. 5 x C. x 2 D. 2x


f (x)dx
ln x c ,则 x
7. d ex2 dx ex2 dx 8. (sin x)dx sin x c
9.若 f (x)dx F (x) c ,则
f (2x 3)dx 1 F 2x 3 c 2
切线方程是 y 1 1 (x 1) 即:
2
x 2y 3 0
⒈函数 f (x) x 的定义域
ln(x 2)
是( C ).
A.奇函数 B.偶函数 C.非 A.(-2,+∞) B.(-

2023-2024国家开放大学电大《微积分初步》期末试题及答案

2023-2024国家开放大学电大《微积分初步》期末试题及答案

2023-2024国家开放大学电大《微积分初步》期末试题及答案2023-2024国家开放大学电大《微积分初步》期末试题及答案盗传必究一、填空题(每小题4分,本题共20分) 1.函数的定义域是。

2.函数的间断点是= 。

3.函数的单调增加区间是。

4.若,则= 。

5.微分方程的阶数为。

二、单项选择题(每小题4分,本题共20分) 1.设函数,则该函数是()。

A.奇函数 B.偶函数 C.非奇非偶函数 D.既奇又偶函数 2.当时,下列变量中为无穷小量的是()。

A. B. C. D. 3.设,则()。

A. B. C. D. 4.在切线斜率为2x的积分曲线族中,通过点(1, 4)的曲线为()。

A. B. C.y = x2 + 3 D. y = x2 + 4 5.微分方程的通解是()。

A. B. C. D.三、计算题(本题共44分,每小题11分) 1.计算极限。

2.设,求。

3.计算不定积分。

4.计算定积分。

四、应用题(本题16分)欲做一个底为正方形,容积为32立方米的长方体开口容器,怎样做法用料最省?试题答案及评分标准(仅供参考)一、填空题(每小题4分,本题共20分)1. 2. 3. 4. 5.二、单项选择题(每小题4分,本题共20分) 1.B 2.C 3.D 4.C 5.A三、(本题共44分,每小题11分) 1.解:原式 11分 2.解: 9分 11分 3.解:= 11分 4.解: 11分四、应用题(本题16分)解:设底边的边长为,高为,用材料为,由已知令,解得是惟一驻点,易知是函数的极小值点,此时有,所以当,时用料最省。

16分。

电大专科-微积分初步期末考试试题

电大专科-微积分初步期末考试试题

1微积分初步一、填空题(每小题4分,本题共20分)⒈函数xx f -=51)(的定义域是)5,(-∞. ⒉=∞→xx x 1sin lim 1 .⒊已知x x f 2)(=,则)(x f ''=2)2(ln 2x . ⒋若⎰+=c x F x x f )(d )(,则⎰=-x x f d )32(c x F +-)32(21. ⒌微分方程y x x y y x +='+'''e sin )(4的阶数是 3 . ⒈函数)2ln(1)(+=x x f 的定义域是),1()1,2(+∞-⋃--⒉=→xx x 2sin lim 0 2 .⒋=⎰-x x d e d 2x x d e 2-.⒌微分方程1)0(,=='y y y 的特解为x y e =.⒈函数x x x f 2)1(2+=+,则=)(x f 12-x .⒊曲线x y =在点)1,1(处的切线方程是2121+=x y . ⒋若⎰+=c x x x f 2sin d )(,则=')(x f in2x 4s -.⒌微分方程x y xyy cos 4)(7)5(3=+''的阶数为 5 .⒈函数241)(x x f -=的定义域是)2,2(-.⒋若⎰=x x s d in C x +-cos .6. 函数24)2(2+-=-x x x f ,则=)(x fx 2 -2 .7 . 若函数⎪⎩⎪⎨⎧=≠+=0,0,13sin )(x k x xx x f ,在0=x处连续,则=k 1 .8. 曲线x y =在点)1,1(处的切线斜率是21.9. =-⎰-x x x x d )2cos (sin 21132-. 10. 微分方程x y xyy sin 4)(653=+'')(的阶数为5 .6. 函数22)1(2+-=-x x x f ,则=)(x f x 2 + 1 .9.='⎰x x s d )in (sinx + c .⒈函数)2ln(1)(-=x x f 的定义域 是),3()3,2(+∞⋃.⒉函数1322+--=x x x y 的间断点是.⒊曲线)1,0(点的斜率是21.⒋若⎰+=c x x x f 2cos d )(,则)(x f '=x 2cos 4-.⒌微分方程0)(3='+''y y x 的阶数是 2 .⒈函数x x x f 2)1(2+=+,则=)(x f 12-x .⒉函数⎪⎩⎪⎨⎧=≠+=0,20,2sin )(x x k xx x f 在0=x 处连续,则k =2. ⒋=+-⎰-x x x d )253(113 4 .⒌微分方程0sin )(3=-'+''y y y x的阶数是 2 .3.函数24)2ln(1)(x x x f -++=的定义域是]2,1()1,2(-⋃-- 4.函数72)1(2+-=-x x x f , 则=)(x f 62+x5.函数⎩⎨⎧>≤+=0e02)(2x x x x f x ,则 =)0(f 2 .6. 函数x x x f 2)1(2-=-,则=)(x f 12+x7.函数1322+--=x x x y 的间断点是1-=x9.若2sin 4sin lim 0=→kx x x ,则=k210.若23sin lim 0=→kx x x ,则23=k1.曲线1)(+=x x f 在)2,1(点的斜率是21)1(='=f k 2.曲线x x f e )(=在)1,0(点的切线方程是1+=x y3.曲线21-=x y 在点)1,1(处的切线方程是)1(211--=-x y 即:032=-+y x4.')2(x5.若y = x (x – 1)(x – 2)(x – 3),则y '(0) = -66.已知xx x f 3)(3+=,则)3(f '3ln 2727+=7.已知x x f ln )(=,则21)(x x f -='' 8.若xx x f -=e)(,则='')0(f 2- 9.函数y x =-312()的单调增加区间是),1[+∞10.函数1)(2+=ax x f 在区间),0(∞+内单调增加,则a 应满足0≥a1.若)(x f 的一个原函数为2ln x ,则=)(x f 2ln 2x x x c -+2.若)(x f 的一个原函数为x x 2e --,则=')(x f 24x e --3.若⎰+=c x x x f xe d )(,则=)(xf ()1x x e +4.若⎰+=c x x x f 2sin d )(,则)(x f =2cos 2x5.若c x x x x f +=⎰ln d )(,则=')(x f 1x6.若⎰+=c x x x f 2c os d )(,则=')(x f 4cos2x -7.=⎰-x x d e d 22x e dx -8.='⎰x x d )(sin sin x c +9.若⎰+=c x F x x f )(d )(,则⎰=-x x f d )32(()1232F x c -+10.若⎰+=c x F x x f )(d )(,则⎰=-x xxf d )1(2()2112F x c --+1.32d )2cos (sin 112-=-⎰-x x x x 2.=+-⎰-x x x x d )cos 4(225ππ 2 3.已知曲线)(x f y =在任意点x 处切线的斜率为x ,且曲线过)5,4(,则该曲线的方程是313223-=x y4.若=+-⎰-dx x x )235(113 4 . 5.由定积分的几何意义知,x x a a d 022⎰-241a π= 6.=+⎰e12d )1ln(d dx x x 07.x xd e 02⎰∞-=218.微分方程1)0(,=='y y y的特解为xe y =9.微分方程03=+'y y 的通 解为xce y 3-=10.微分方程x y xy y sin 4)(7)4(3=+''的阶数为 4阶 .二、单项选择题(每小题4分,本题共20分)⒈设函数2e e xx y +=-,则该函数是(B ).A . 奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数⒈设函数2e e xx y --=,则该函数是(A ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数⒊下列结论中( C )正确.A .)(x f 在0x x =处连续,则一定在0x 处可微.B .函数的极值点一定发生在其驻点上. C .)(x f在0x x =处不连续,则一定在0x 处不可导. D .函数的极值点一定发生在不 可导点上.⒋如果等式⎰+-=c x x f x x 11e d e )(,则=)(x f ( D ) A.x 1- B. 21x -C. x 1D. 21x⒊下列函数在指定区间(,)-∞+∞上单调减少的是(D ). A .x sin B .x eC .2x D .x -3 ⒈设函数x x y sin =,则该函数是(B ).A .奇函数B .偶函数C .非奇非偶函数 D .既奇又偶函数⒊下列函数在指定区间(,)-∞+∞上单调减少的是(B ). A .x cos B .x -5C .2x D .x2⒋ 设cxx x x f +=⎰ln d )(,则=)(x f (C ). A. x ln ln B.xx lnC .2ln 1x x - D.x 2ln⒌下列微分方程中,(A )是 线性微分方程.A .x y y x y x ln e sin ='-''B .x xy y y e 2=+'C .y y x y e ='+''2D . y y yx '=+ln 2⒊满足方程0)(='x f 的点一 定是函数)(x f 的( C )。

(2021更新)国家开放大学电大《微积分初步》2021-2022期末试题及答案

(2021更新)国家开放大学电大《微积分初步》2021-2022期末试题及答案

国家开放大学电大《微积分初步》2021-2022期末试题及答案一、填空题(每小题4分,本题共20分)1・函数,(x + 2) = X?+4x—2,则/(%) = _______________2.当X—> __________ 时,/(x) = xsin —为无穷小量。

3.若y - x (* - 1)(* - 2)(才-3),则(1) = _______________________4.j,(5x3-3x + l)dx= ______________o5.微分方程y f = y,y(O) = l的特解为__________ 。

二、单项选择题(每小题4分,本题共20分)1.------------------------------ 函数/(x) = 的定义域是(ln(x-l)A.(l,+oo)B・(0,1) D (l,+oo)C・(1,2) u (2,BD. (0,2)u(2,+oo)2.曲线j/ = e2x+l在x = 2处切线的斜率是( )。

A. 2B.e2D. 2e43.下列结论正确的有( )。

A.若尸(xo) = 0,则Xo必是f (x)的极值点。

B.*。

是f (%)的极值点,且尸(x。

)存在,则必有尸(x。

)= OoC・X。

是f (%)的极值点,则Xo必是f (%)的驻点。

D.使尸(x)不存在的点X。

,一定是f 3的极值点。

4.下列无穷积分收敛的是( )。

r+8 1C.I 一dx Ji xr +°° . D . sinxdx Jo5.微分方程(/)3+y 4) cosx = /lnx 的阶数为(A.B.C.D.三、计算题(本题共44分,每小题11分)2. 设 v = sin5x + cos 3 x ,求 。

4.计算定积分匚成心&。

四、应用题(本题16分)用钢板焊接一个容积为4n?的底为正方形的无盖水箱,已知钢板每平方米10元,焊接费40元, 问水箱的尺寸如何选择,可使总费最低?最低总费是多少? 试题答案及评分标准(仅供参考)一、填空题(每小题4分,本题共20分)二、单项选择题(每小题4分,本题共20分)三、(本题共44分,每小题11分)解:y f = 5cos5x + 3cos 2 x(-sinx) = 5cos5x - 3sin xcos 2 xdy = (5cos5x-3sinxcos x)dr □四、应用题(本题16分)1 .计算极限—6XT - 2 X 2 —43.计算不定积分广履+面、 dxo1. x 2 -62. 03. -24. 25. y = e x1. C2. D3. B4. A5. D1. (X—3)(x +2) x-3 5解:lim ■ V -7X ~6 = lim'" 小 '=lim x ,2 x 2 -4 (x 一2)(x + 2) XT -2 x 一2 42. 3. 解:「-V7 + xsinx危 31^-2 —x 2-cosx + c3 4. 解:[―sin xdx =- — xcosx Jo 2 2 1 M [ TC 1 . + — cosxdr =———sinx2Jo 2 2 71解:设水箱的底边长为x,高为h,表面积为S,且有力=9x z所以S(x)=亍 + 4xh = x2 + —, S'(x) = 2x _ 兽x x令S'(x) = O,得x = 2,因为本问题存在最小值,且函数的驻点唯一,所以,当x = 2,h = 1时水箱的表面积最小,此时的费用为5(2)x10+40=160 (元)。

2021-2022国家开放大学电大《微积分初步》期末试题及答案

2021-2022国家开放大学电大《微积分初步》期末试题及答案

2021-2022国家开放大学电大《微积分初
步》期末试题及答案
2021-2022国家开放大学电大《微积分初步》期末试题及答案盗传必究一、填空题(每小题4分,本题共20分)⒈函数,则.⒉.⒊曲线在点处的切线的斜率是.⒋.⒌微分方程的阶数为.二、单项选择题(每小题4分,本题共20分)⒈函数的定义域是(). A. B. C. D.⒉当()时,函数在处连续. A.0 B.1 C. D.⒊下列结论中正确的是(). A.是的极值点,则必是的驻点 B.使不存在的点一定是的极值点. C.若,则必是的极值点 D.是的极值点,且存在,则必有⒋若函数,则(). A. B. C. D. ⒌微分方程的通解为(). A. B. C. D.三、计算题(本题共44分,每小题11分)⒈计算极限.⒉设,求. ⒊计算不定积分⒋计算定积分四、应用题(本题16分)用钢板焊接一个容积为4的底为正方形的无盖水箱,已知钢板每平方米10元,焊接费40元,问水箱的尺寸如何选择,可使总费最低?最低总费是多少?试题答案及评分标准(仅供参考)一、填空题(每小题4分,本题共20分)⒈⒉ 3 ⒊⒋⒌ 2
二、单项选择题(每小题4分,本题共20分)⒈C ⒉B ⒊
D ⒋A ⒌B 三、计算题(本题共44分,每小题11分)⒈解:原式 11分⒉解:
9分 11分⒊解:
11分⒋解:
11分四、应用题(本题16分)解:设水箱的底边长为,高为,表面积为,且有所以令,得, 10分因为本问题存在最小值,且函数的驻点唯一,所以,当时水箱的
表面积最小. 此时的费用为(元) 16分。

国家开放大学《微积分基础》下载作业参考答案

国家开放大学《微积分基础》下载作业参考答案

国家开放大学《微积分基础》下载作业参考答案提交作业方式有以下三种,请务必与辅导教师沟通后选择:1. 将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅.2. 在线提交word 文档.3. 自备答题纸张,将答题过程手工书写,并拍照上传.一、计算题(每小题5分,共60分)⒈计算极限. 解:原式= 2.计算极限. 解:原式 3.计算极限. 解:。

4.设,求.解:y '=32x12―4cos4xdy =(32x 12―4cos4x )dx5.设,求. 解:dy =(1x +1+1(x +1)2)dx632lim 223----→x x x x x 54)2()1(lim )2)(3()1)(3(lim 33=++=+-+-→→x x x x x x x x 2211lim 23x x x x →----11(1)(1)11lim lim (1)(3)32x x x x x x x x →-→-+--===+--46lim 222----→x x x x 46lim 222----→x x x x 4523lim )2)(2()2)(3(lim 22=--=+-+-=-→-→x x x x x x x x x x x y 4sin +=y d ln(1)1xy x x =+-+y d6.设,求. 解:dy =e x 2x ―1x7.计算不定积分 解:=―12∫xdcos2x =―12xcos2x +12∫cos2xdx=―12xcos2x +14sin2x +c8.计算不定积分.解:12∫d x 2+1x 2+1=12ln (x 2+1)+c9.计算不定积分 解:2∫de x =2e x +c10.计算定积分解:2∫10xde x =2|xe x |10―∫10e x dx =2(e x ―e x )10=2 11.计算定积分.解:=(x ln x )e 1=112.计算定积分. 解:=―∫π0xdsinx =―(xsinx |π0―∫π0sinxdx)=∫π0sinxdx=―cosx |π0=1+1=2二、应用题(每小题10分,共40分)1.欲做一个底为正方形,容积为108立方米的长方体开口容器,怎样做法用料最省? 解:设底边的边长为,高为,用材料为,由已知令,解得是唯一驻点, 1y x=+y d xx x d 2sin ⎰x x x d 2sin ⎰2d 1x x x +⎰x x x d e ⎰x x x d e 210⎰e1ln d x x ⎰e 1ln d x x ⎰π0cos d x x x ⎰π0cos d x x x ⎰x h y 22108,108xh h x ==x x x x x xh x y 432108442222+=⋅+=+=043222=-='xx y 6=x且,说明是函数的极小值点,所以当,时用料最省。

2025-2026国家开放大学电大《微积分初步》期末试题及答案

2025-2026国家开放大学电大《微积分初步》期末试题及答案

2025-2026国家开放大学电大《微积分初
步》期末试题及答案
2025-2026国家开放大学电大《微积分初步》期末试题及答案盗传必究一、填空题(每小题4分,本题共20分)⒈函数,则.⒉.⒊曲线在点处的切线方程是.⒋.⒌微分方程的阶数为.二、单项选择题(每小题4分,本题共20分)⒈下列函数()为奇函数. A. B. C. D.⒉当()时,函数在处连续. A.0 B.1 C. D.⒊函数在区间是() A.单调增加 B.单调减少 C.先增后减 D.先减后增⒋若,则(). A. B. C. D.⒌微分方程的通解为(). A. B. C. D.三、计算题(每小题11分,本题共44分)⒈计算极限.⒉设,求. ⒊计算不定积分⒋计算定积分四、应用题(本题16分)欲做一个底为正方形,容积为32立方米的长方体开口容器,怎样做法用料最省?试题答案及评分标准(仅供参考)一、填空题(每小题4分,本题共20分)⒈⒉⒊⒋⒌ 4 二、单项选择题(每小题4分,本题共20分)⒈D ⒉B ⒊D ⒋A ⒌C 三、计算题(每小题11分,本题共44分)⒈解:原式⒉解:
⒊解:= 4.解:
四、应用题(本题16分)解:设底的边长为,高为,用材料为,由已知,于是令,解得是唯一驻点,易知是函数的极小值点,也就是所求的最小值点,此时有,所以当,时用料最省.
1。

电大微积分初步专科期末复习题

电大微积分初步专科期末复习题

微积分初步一、填空题⒈函数)2ln(1)(-=x x f 的定义域是 .答案:),3()3,2(+∞⋃⒉函数1322+--=x x x y 的间断点是= .答案:1-=x⒊曲线1)(+=x x f 在)1,0(点的斜率是 .答案:21 ⒋若⎰+=c x x x f 2cos d )(,则)(x f ' .答案:x 2cos 4-⒌微分方程0)(3='+''y y x 的阶数是 2 .6.函数x x x f 2)1(2+=+,=)(x f .答案:12-x7.函数⎪⎩⎪⎨⎧=≠+=0,20,2sin )(x x k xx x f 在0=x 处连续,则k = 2 .8.曲线1)(+=x x f 在)1,0(点的斜率是 .答案:21 9.=+-⎰-x x x d )253(113 .答案:410.微分方程0sin )(3=-'+''y y y x 的阶数是 .答案:2 11.函数241)(xx f -=的定义域是 .答案:)2,2(-12.若24sin lim0=→kxxx ,则=k .答案:213.已知x x f ln )(=,则)(x f ''= .答案:21x - 14.若⎰=x x s d in .答案:c x +-cos 15.微分方程yx ex y y x +='+'''sin )(4的阶数是 3 .16.函数x x x f -++=4)2ln(1)(的定义域是(-2,-1)∪(-1,4】.17.若24sin lim 0=→kxxx ,则=k 2.18.曲线x y e =在点)1,0(处的切线方程是_y=x+1__.19.=+⎰e 12d )1ln(d d x x xﻩ0 .20.微分方程1)0(,=='y y y 的特解为 y =e的x 次方 . 21.函数24)2ln(1)(x x x f -++=的定义域是]2,1()1,2(-⋃-- .22.若函数⎩⎨⎧=≠+=0,0,2)(2x k x x x f ,在0=x 处连续,则=k 2 .23.曲线x y =在点)1,1(处的斜率是ﻩ21ﻩ.24.=⎰x xd 2c x+2ln 2ﻩ .25.微分方程x y 2='满足初始条件1)0(=y 的特解为12+=x y .26.函数)2ln(1)(-=x x f 的定义域是 . 答案:),3()3,2(+∞⋃27.函数x x f -=51)(的定义域是 . 答案:)5,(-∞28.函数24)2ln(1)(x x x f -++=的定义域是 .答案:]2,1()1,2(---29.函数72)1(2+-=-x x x f ,则=)(x f ﻩﻩ. 答案:62+x30.函数⎩⎨⎧>≤+=0e 02)(2x x x x f x,则=)0(f . 答案:231.函数x x x f 2)1(2-=-,则=)(x f . 答案: 12-x32.函数1322+--=x x x y 的间断点是 . 答案: 1-=x33.=∞→x x x 1sin lim . 答案: 134.若2sin 4sin lim0=→kx xx ,则=k .答案: 235.若23sin lim0=→kx xx ,则=k . 答案: 2336.曲线1)(+=x x f 在)2,1(点的斜率是21. 37.曲线x x f e )(=在)1,0(点的切线方程是1+=x y .38.曲线21-=x y 在点)1,1(处的切线方程是2321+-=x y .39.=')2(xx x 22ln 21. 40.若y = x (x – 1)(x – 2)(x – 3),则y '(0) =ﻩ-6ﻩ.41.已知x x x f 3)(3+=,则)3(f '=)3ln 1(27+. 42.已知x x f ln )(=,则)(x f ''=21x -. 43.若xx x f -=e )(,则='')0(f -2ﻩ. 44.函数1)(2+=ax x f 在区间),0(∞+内单调增加,则a 应满足 大于零ﻩ45.若)(x f 的一个原函数为2ln x ,则=)(x f 。

电大《微积分初步》(15春)期末复习考试试题及参考答案

电大《微积分初步》(15春)期末复习考试试题及参考答案

电大《微积分初步》(15春)期末复习考试试题及参考答案电大微积分初步(15春)期末复习考试试题及参考答案一. 填空题函数,则若,则1 曲线在处的切线斜率是若是的一个原函数,则为4 阶微分方程.6.函数,则7.若函数,在处连续,则38.曲线在点处的切线方程是19.10.微分方程的阶数为311.函数的定义域是12.若,则213.曲线在点处的切线方程是14. 015.微分方程的特解为16.函数的定义域是17.函数的间断点是18.函数的单调增加区间是19.若,则20.微分方程的阶数为21.函数的定义域是23.若函数,在处连续,则224.曲线在点处的斜率是25.26.微分方程满足初始条件的特解为27.函数,则28.当0时,为无穷小量.29.若y x x1x2x3,则130.31.微分方程的特解为 .32.函数的定义域是33.若函数,在处连续,则134.曲线在点处的切线方程是35.36.微分方程的阶数为37函数,则38.39.曲线在点处的切线方程是40.若,则51.微分方程的阶数为5二.单项选择题函数的图形关于(B)对称 A。

坐标原点 B。

轴 C轴 D。

当( C )时,函数在处连续. A0 B1 C D 函数在区间是( D ) A单调减少 B单调增加 C先减后增 D先增后减下列等式成立的是(A) A B C D 微分方程的通解为(B)A. ;B. ;C. ;D.6.设函数,则该函数是(A) A奇函数 B偶函数C非奇非偶函数 D既奇又偶函数7.已知,当( D )时,为无穷小量. A B C D8.函数在区间是( C ) A单调增加 B单调减少 C先增后减D先减后增9.以下等式成立的是( A ) A B C D10.下列微分方程中为可分离变量方程的是(B)A. ;B. ;C. ;D.11.设函数,则该函数是(A) A偶函数B奇函数C非奇非偶函数 D既奇又偶函数12.当( C )时,函数,在处连续. A0 B1 C D14.下列结论中( C )正确 A在处连续,则一定在处可微. B 函数的极值点一定发生在其驻点上. C在处不连续,则一定在处不可导. D函数的极值点一定发生在不可导点上.15.下列等式中正确的是(D)A .B.C.D.16.微分方程的阶数为(B)A.2;B.3;C.4;D.5 设函数,则该函数是(B) A奇函数 B偶函数C非奇非偶函数 D既奇又偶函数17.当时,下列变量中为无穷小量的是(C ). A B C D18.设,则(D ) A B C D19.在切线斜率为2x的积分曲线族中,通过点(1,4)的曲线为( C ) A B Cy x23 D y x2420.微分方程的通解是(A)A. ;B. ;C. ;D.21.设,则( D ) A B C D22.若函数f x在点x0处可导,则 B 是错误的 A函数f x在点x0处有定义 B,但 C函数f x在点x0处连续 D函数f x在点x0处可微33.函数在区间是( A ) A先减后增 B先增后减 C单调减少D单调增加34.若,则( B ).A.B.C.D.35.微分方程的阶数为(C)A.1B.2C.3D.536.函数的定义域是(C) A B C D37.曲线在处切线的斜率是( D ) A B C D38.下列结论正确的有( B ) A若x0 0,则x0必是f x的极值点 Bx0是f x的极值点,且x0存在,则必有x0 0 Cx0是fx的极值点,则x0必是f x的驻点 D使不存在的点x0,一定是f x的极值点39.下列无穷积分收敛的是(A) A B C D40.微分方程的阶数为(D)A.1;B.2;C.3;D.441.设,则( C ) A B C D42.若函数f x在点x0处可导,则 B是错误的 A函数f x在点x0处有定义 B,但 C函数f x在点x0处连续 D函数f x在点x0处可微43.函数在区间是( D) A单调增加 B单调减少 C先增后减D先减后增44.( A )A.B.C.D.45.下列微分方程中为可分离变量方程的是(B)A. ;B. ;C. ;D.46.设函数,则该函数是(d) A非奇非偶函数B既奇又偶函数C偶函数 D奇函数47.当时,下列变量中为无穷小量的是( c ). A B C D48.下列函数在指定区间上单调减少的是( b ) A B C D49.设,则(c )A.B.C.D.50.下列微分方程中,(a )是线性微分方程 A B C D三.计算题计算极限设,求. 计算不定积分计算定积分5.计算极限6.设,求.7.计算不定积分8.计算定积分9.计算极限解原式10.设,求. 解11.计算不定积分解12.计算定积分解13.计算极限解原式14.设,求. 解9分15.计算不定积分解16.计算定积分解17.计算极限解原式18.设,求. 解19.计算不定积分解20.计算定积分解21.计算极限解22.设,求. 解23.计算不定积分解24.计算定积分解25.计算极限解原式26.设,求. 解9分27.计算不定积分解28.计算定积分解29.计算极限解原式30.设,求. 解31.计算不定积分解32.计算定积分解四.应用题1.某制罐厂要生产一种体积为V的有盖圆柱形容器,问容器的底半径与高各为多少时可使用料最省2.欲做一个底为正方形,容积为32立方米的长方体开口容器,怎样做法用料最省3.欲做一个底为正方形,容积为108立方米的长方体开口容器,怎样做法用料最省解设底边的边长为,高为,用材料为,由已知令,解得是唯一驻点,且,说明是函数的极小值点,所以当,时用料最省。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

户 Xdx = 主二 lna +c(a > 0 且 α# 1)
j内 == e I 十 C
(e)' =ex
(1唱 Z)F=J 一 xlna
(l nx)'
=~ z
f ~ d卢nlxl 十 C
f
(sinx )' = cosx
si 叫x =-cosx +c
(cosx)' = - sinx
fco 叫x =sinx +c
B. sinx 十 cosx
nL
LK
fJ
z
--- 'AU
n 一亏一
e
Z
-,
e-'"
z
4f nu

z
nu
3. 函数 y=(X+ 1) 2 在区间〈一 2 , 2) 是(
4 若 Jf 叫工 =x 2 e 2 .r 十 c ,则 f(x)=(
A. 2xe2z
C. 2x e 2
:&
5. 微分方程 y'=O 的通解为(
7. 2
1
8.
v=~x 十一
1
1
2
2-
,
9. e- x ' dx
10. 4
三、计算题(每小题 11 分,本题共 44 分}
(z 十 5) (x-3 )
1 1.解:原式工 lim ----,----,--一 ~'-'3 (x-3)(x 十 3) 3
4
(1 1 分)
1 1 12. 解 zj=-sinJZ· 一τ=+ 一 2 ,J x x
6. 函数 f(x- l) =x 2 -2x 十 7 ,则 f(x)=
7. lim
.<-0
8. 曲线 y= ;7在点(1,1)处的切线方程是
切 9. 斗牛 dj 户 fe 扩户 一叮 x2
刊 1 O. 微分方程 (y")3 十 4xy(4) =y6 sinx 的阶数为一一一一一-





ห้องสมุดไป่ตู้

4 丰叶
试卷代号 :2437
座位号E口
国家开放大学(中央广播电视大学 )2017 年秋季学期"开放专科"期末考试
微积分基础试题
2018 年 1 月
附表
E
积分基本公式 z

E
导数基本公式:
(c)'=o
(x 寸 αx o - 1
j协 =c
j
ad x
fl c( α 手一1) →-一十 α 十1
(a
X
)'
=axlna( α>0 且 α 手1)
|.
I
-z
三、计算题{每小题 11 分,本题共 44 分}
11. 计算极限 h
J 叫积分 m
撞 计计 nL

z 2+2 ,x -15 tR9
AMZ +rjlz'
A 呻 1-zd7 叫 LM m-z
冒 y 不定 算算
节dT
定积

|得分|评卷人|
aan
FL

|
四、应用题{本题 16 分}
15. 欲做一个底为正方形,容积为 32 立方米的最方体开口容器,怎样做法用料最省?
1
sin 气 Z
(9 分〉
dy=( 一一一一七=- )dx
x
2 ,J x
(1 1 分)
叫 :f~二~dx= 十→(~ )= - sin 二十 C
14 解 f> 巾 =xe 1: 一 f: 巾 =e-el:=l
850
(1 1 分)
01 分)
四、应用题(本题 16 分)
15 解 z 设底的边长为 x , 高为 h , 用材料为 y , 由己知山 =32 , h= 豆,于是
y=x 2 十 4xh=x 2 +4x. 一τ=zz 十÷二
32
. 128
x
x.
令 y'=2x 一 .--2-=0 ,解得 x=4 是唯一驻点,易知 x=4 是函数的极小值点,也就是所求

128
的最小值点,此时有 h= 一 =2 ,所以当工 =4 , h=2 时用料最省.
32
42
06 分)
851
(tarωF= 」「 cosx
f~二EZdz=tanz+C
pttot-d
IZn
(cotx)' =_
1 sm-x
-G -Z z
ou

847
|得分|评卷人| il|
1.下列函数(
一、单项选择题(每小题 4 分,本题共 20 分)
幢 陌
)为奇函数.
A. x 2 COSX
Cx~nx
ZLκ 、 flJil
l

同口
一-
一-
Z
AO
&1
C.2
A 单调增加 c 先增后减
D.-1
).
B. 单调减少 D. 先减后增
)
(1 十 x)
B.2x 2 e2.r
D. x e 2x
).
A.y=O C.y=c
B.
y=cx
D.y= 二r+c
二、填空题{每小题 4 分,本题共 20 分)
Slnx
-~一=
c, x
848
|得分|评卷入|
849
试卷代号 :2437
国家开放大学(中央广播电视大学 )2017 年秋季学期"开放专科"期末考试
微积分基础
试题答案及评分标准
(供参考)
2018 年 1 月
一、单项选择题(每小题 4 分,本题共 20 分)
l. D
2. B
3. D
4.A
5. C
二、填空题{每小题 4 分,本题共 20 分}
6.
x2 十6
相关文档
最新文档