反比例函数图像与性质教学设计
反比例函数的图象与性质教案
反比例函数的图象与性质教案•相关推荐反比例函数的图象与性质教案范文(通用8篇)作为一名教师,时常会需要准备好教案,教案是教学蓝图,可以有效提高教学效率。
那么大家知道正规的教案是怎么写的吗?下面是小编精心整理的反比例函数的图象与性质教案范文,欢迎阅读与收藏。
反比例函数的图象与性质教案篇1教学目标知识与技能:1、进一步熟悉作函数图象的主要步骤,会作反比例函数的图象。
2、体会函数的三种表示方法的相互转换,对函数进行认识上的整合。
3、培养学生从函数图象中获取信息的能力,初步探索反比例函数的性质。
过程与方法:通过学生自己动手列表,描点,连线,提高学生的作图能力;通过观察图象,概括反比例函数图象的有关性质,训练学生的概括总结能力、情感、态度与价值观:让学生积极参与到数学学习活动中去,增强他们对数学学习的好奇心和求知欲。
教学重难点1) 重点:画反比例函数图象并认识图象的特点。
2)难点:画反比例函数图象。
教学关键:教师画图中要规范,为学生树立一个可以学习的模板。
教学方法:激发诱导,探索交流,讲练结合三位一体的教学方式。
教学手段:教师画图,学生模仿。
教具:三角板,小黑板。
学法:学生动手、动眼,、动耳、采用自主,合作、探究的学习方法。
教学过程一:课前检测:1、什么叫做反比例函数;(一般地,如果两个变量x、y之间的关系可以表示成y= (k为常数,k0)的形式,那么称y是x的反比例函数。
)2、反比例函数的定义中需要注意什么?(1)k为常数,k0(2)从y= 中可知x作为分母,所以x不能为零。
二:激发兴趣导入新课问题1:对于一次函数 y = kx + b ( k 0 )的图象与性质,我们是如何研究的?y=kx+b y=kxK0 一、二、三一、三b0 一、三、四K0 一、二、四二、四b0 二、三、四问题2:对于反比例函数 y=k/x ( k是常数,k 0 ),我们能否象一次函数那样进行研究呢?可以问题3:画图象的步骤有哪些呢?(1)列表(2)描点(3)连线(教学片断:师:上一节课我们研究了反比例函数,今天我们继续研究反比例函数,下面哪位同学说一下自己对反比例函数的了解。
反比例函数的图象和性质优秀教案
欧姆定律
在电路中,利用反比例函 数表示电阻、电流和电压 之间的关系。
万有引力定律
描述两物体间引力与它们 质量、距离之间的关系时 ,可以使用反比例函数。
在经济问题中应用
供需关系
劳动生产率
通过反比例函数表示商品价格与需求 量之间的关系,以及价格与供应量之 间的关系。
在经济学中,可以用反比例函数来表 示劳动生产率与劳动投入量之间的关 系。
反比例函数的图象和性质 优秀教案
汇报人:XXX 2024-01-22
目录
• 课程介绍与目标 • 反比例函数基本概念 • 反比例函数图像绘制方法 • 反比例函数性质分析 • 反比例函数应用举例 • 课程总结与拓展延伸
01
课程介绍与目标
教学目标
知识与技能
使学生理解反比例函数的概念,掌握反比例 函数的图象特征及其性质,能利用反比例函 数的性质解决简单问题。
感谢您的观看
THANKS
采用启发式、探究式、讨论式等 多种教学方法,引导学生主动思 考、积极探究。
教学手段
利用多媒体课件、几何画板等教 学工具辅助教学,提高教学效果 。
02
反比例函数基本概念
反比例函数定义
一般形式
$y = frac{k}{x}$ (其中 $k$ 是非零 常数)
变量关系
当 $x$ 增大时,$y$ 减小;当 $x$ 减 小时,$y$ 增大。
工程中的应用
探讨反比例函数在工程领域的应 用,如电阻、电容、电感等电子 元件的特性描述。
社会科学Байду номын сангаас的应用
讨论反比例函数在社会科学中的 应用,如人口增长模型、传播模 型等。
01
物理中的应用
介绍反比例函数在物理中的应用 ,如万有引力定律、库仑定律等 。
初中数学《反比例函数的图象和性质》教学设计
初中数学《反比例函数的图象和性质》教学设计一. 教材分析《反比例函数的图象和性质》是初中数学的重要内容,主要让学生了解反比例函数的图象和性质,理解反比例函数在实际生活中的应用。
通过学习,学生能够掌握反比例函数的定义,了解反比例函数的图象特点,理解反比例函数的性质,并能运用反比例函数解决实际问题。
二. 学情分析学生在学习《反比例函数的图象和性质》之前,已经学习了函数的概念,比例函数和一次函数的图象和性质。
但学生在学习过程中可能对反比例函数的概念和性质理解不深,对反比例函数的图象特点把握不准。
因此,在教学过程中,教师要注重引导学生理解反比例函数的概念,通过实际例子让学生感受反比例函数的图象和性质。
三. 教学目标1.了解反比例函数的定义,理解反比例函数的图象和性质。
2.能够运用反比例函数解决实际问题。
3.培养学生的数学思维能力和解决问题的能力。
四. 教学重难点1.反比例函数的定义2.反比例函数的图象和性质3.反比例函数在实际生活中的应用五. 教学方法采用问题驱动法、案例教学法、小组合作学习法等,引导学生通过自主学习、合作探讨,理解反比例函数的图象和性质,提高学生的数学思维能力和解决问题的能力。
六. 教学准备1.PPT课件2.教学案例和实际问题3.反比例函数的图象和性质的相关资料七. 教学过程1.导入(5分钟)通过一个实际问题引入反比例函数的概念,如“一辆汽车以60km/h的速度行驶,行驶1小时,行驶的路程是多少?”让学生思考并回答问题,引导学生认识到反比例函数在实际生活中的应用。
2.呈现(15分钟)利用PPT课件,展示反比例函数的图象和性质,让学生直观地感受反比例函数的特点。
同时,教师讲解反比例函数的定义,解释反比例函数的图象和性质。
3.操练(15分钟)让学生通过自主学习,理解并掌握反比例函数的定义,然后进行一些相关的练习题,让学生在实际操作中加深对反比例函数的理解。
4.巩固(10分钟)通过一些实际问题,让学生运用反比例函数解决问题,巩固学生对反比例函数的理解。
反比例函数的图像和性质教学设计
反比例函数的图像和性质教学设计标题:反比例函数的图像和性质教学设计引言:反比例函数是数学中一个重要的概念,在实际生活中有着广泛的应用。
理解反比例函数的图像和性质对于学生掌握数学知识和解决实际问题非常重要。
本文将介绍一个针对反比例函数的图像和性质的教学设计,帮助学生更好地理解和应用这一概念。
一、教学目标1. 理解反比例函数的概念和性质;2. 能够画出反比例函数的图像;3. 熟练应用反比例函数解决实际问题。
二、教学内容和过程1. 概念讲解首先,通过简单易懂的语言解释反比例函数的概念,如:反比例函数是形如y = k/x的函数,其中k是一个常数。
然后,引导学生思考反比例函数的性质,如:- 当x趋近于0时,y趋近于无穷大;- 当x趋近于无穷大时,y趋近于0;- 函数图像关于y轴对称。
2. 图像练习在学生已经了解反比例函数的概念后,进行图像练习。
教师可以提供一系列的反比例函数的函数式,要求学生画出其图像,并解释函数式中各个参数的作用。
例如,要求学生画出函数y = 3/x的图像,并说明当x取不同值时,函数图像的变化情况。
这样可以帮助学生更好地理解反比例函数的图像特点。
3. 实际应用接下来,引导学生将反比例函数应用于实际问题的解决中。
给出一些与反比例函数相关的实际问题,如:某电子产品的价格与销量成反比例关系,已知当销量为1000时,价格为500元,要求学生利用反比例函数解决:- 当销量为2000时,价格是多少?- 当价格为100元时,销量是多少?通过实际问题的解决,让学生将抽象的反比例函数与实际情况联系起来,提高解决问题的能力。
4. 总结归纳最后,对反比例函数的图像和性质进行总结归纳。
学生可以梳理出反比例函数图像的特点,如图像与坐标轴的关系、函数图像的变化趋势等。
同时,学生还可以总结反比例函数的性质,并提出自己的观点和思考。
三、评估为了测试学生对反比例函数图像和性质的理解和应用能力,可以设计相应的形式评估,如选择题、填空题和解决实际问题的题目等。
《反比例函数的图象和性质》教学设计
《反比例函数的图象和性质》教学设计反比例函数的图象和性质一、背景分析1.对教材的分析本节课讲述内容为北师大版教材九年级下册第五章《反比例函数》的第二节,也这一章的重点。
本节课是在理解反比例函数的意义和概念的基础上,进一步熟悉其图象和性质的过程。
本节课前一课时是在具体情境中领会反比例函数的意义和概念。
函数的性质蕴涵于概念之中,对反比例函数性质的探索是对其内在规定性的的认识,也是对函数的概念的深化。
同时,本节课也是下一节课《反比例函数的应用》的基础,有了本节课的知识储备,便于学生利用函数的观点来处理问题和解释问题。
传统教材在内容和编写意图的比较:传统教材里反比例函数的内容仅有一节,新教材里反比例函数的内容增加至一章。
本节课中的作函数图象的要求在新旧教材中并不一样,旧教材对画图只是一带而过,而新教材中让学生反复作反比例函数的图象,为下一步性质的探索打下良好的基础。
因为在学生进行函数的列表、描点作图是活动中,就已经开始了对反比例函数性质的探索,而且通过对函数的三种表示方式的整和,逐步形成对函数概念的整体性认识。
在旧教材中对反比例函数性质只是简单观察以后,由老师讲解得到,但是在新教材中注重从操作、观察、概括和交流这些数学活动中得到性质结论,从而逐步提高从函数图象中获取信息的能力。
这也充分体现了重视获取知识过程体验的新课标的精神。
(1)教学目标:进一步熟悉作函数图象的主要步骤,会作反比例函数的图象;体会函数三种方式的相互转换,对函数进行认识上的整和;逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质。
(2)重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。
(3)难点:探索并掌握反比例函数的主要性质。
2、对学情的分析九年级学生在前面学习了一次函数之后,对函数有了一定的认识,虽然他们在小学已经接触了反比例,但都处于浅显的、肤浅的知识表面,这对于他们理解反比例函数的图象与性质没有多大的帮助,但由于本节课采用Z+Z智能教育平台进行教学,比较形象,便于学生接受。
人教版数学九年级下册26.1.2反比例函数的图像与性质教学设计
6.预习下一节课的内容,为课堂学习做好准备。
2.利用多媒体辅助教学,形象直观地展示反比例函数的图像特点,帮助学生理解和记忆。同时,结合实际案例,让学生感受反比例函数在实际生活中的应用,提高学生的学习兴趣。
3.教学过程中,注重分层教学,针对不同学生的学习需求,设计不同难度的例题和练习题。对于基础薄弱的学生,重点辅导他们掌握反比例函数的基本概念和性质;对于学有余力的学生,则引导他们运用反比例函数知识解决更复杂的问题。
3.掌握反比例函数的性质,如:当k>0时,图像位于第一、第三象限;当k<0时,图像位于第二、第四象限;图像在x轴和y轴的渐近线分别为y=0和x=0;在每一个象限内,y随x的增大而减小(或增大)等。
4.能够运用反比例函数的性质解决一些实际问题,如:根据实际情境确定反比例函数的参数k,解决与反比例函数相关的问题。
人教版数学九年级下册26.1.2反比例函数的图像与性质教学设计
一、教学目标
(一)知识与技能
1.理解反比例函数的概念,知道反比例函数的一般形式为y = k/x(k≠0),并能够根据给定的信息判断函数是否为反比例函数。
2.学会绘制反比例函数的图像,了解图像在坐标平面内的分布特点,如:图像是双曲线,有两个分支,分别位于第一、第三象限或第二、第四象限。
三、教学重难点和教学设想
(一)教学重难点
1.重点:反比例函数的概念、图像和性质的理解与应用。
2.难点:
(1)反比例函数图像的绘制及其在坐标平面内的分布特点。
(2)反比例函数性质的理解,尤其是参数k的符号对图像的影响。
反比例函数的图象与性质教案教学设计
一、教案基本信息反比例函数的图象与性质教案教学设计课时安排:2课时教学对象:高中数学一年级学生教学目标:1. 让学生理解反比例函数的定义和表达式;2. 让学生掌握反比例函数的图象特征;3. 让学生了解反比例函数的性质;4. 培养学生运用数学知识解决实际问题的能力。
教学重点:1. 反比例函数的定义和表达式;2. 反比例函数的图象特征;3. 反比例函数的性质。
教学难点:1. 反比例函数图象的理解;2. 反比例函数性质的推导。
二、教学准备教学工具:黑板、粉笔、多媒体教学设备教学素材:反比例函数图象和性质的PPT课件、例题、练习题三、教学过程第一课时1. 导入新课教师通过展示实际问题,引导学生回顾正比例函数的图象和性质,为新课的学习做好铺垫。
2. 反比例函数的定义与表达式(1)教师引导学生观察实际问题,引出反比例函数的概念;(2)教师给出反比例函数的表达式;(3)学生跟随教师一起总结反比例函数的定义和表达式。
3. 反比例函数的图象特征(1)教师利用PPT课件展示反比例函数的图象;(2)教师引导学生观察反比例函数的图象特征,总结规律;(3)学生跟随教师一起归纳反比例函数的图象特征。
4. 反比例函数的性质(1)教师引导学生从图象特征出发,推导反比例函数的性质;(2)教师给出反比例函数的性质表述;(3)学生跟随教师一起总结反比例函数的性质。
第二课时5. 应用拓展(1)教师出示应用题,引导学生运用反比例函数的知识解决问题;(2)学生独立解答问题,教师进行指导;(3)教师总结解题方法,强调反比例函数在实际问题中的应用。
6. 课堂小结教师带领学生回顾本节课所学内容,总结反比例函数的定义、表达式、图象特征和性质。
7. 布置作业教师出示课后练习题,要求学生巩固反比例函数的知识。
四、教学反思教师在课后对教学效果进行反思,针对学生的掌握情况调整教学策略,为后续课程的教学做好准备。
五、教学评价通过课堂表现、作业完成情况和课后练习的成绩,对学生在本次课程中的学习效果进行评价。
反比例函数的图像和性质教学设计
在工程中的应用
杠杆原理
在机械工程中,杠杆的平衡条件可以表示为反比例函数。当动力臂长度增加时,所需的动力减小;反 之,当动力臂长度减小时,所需的动力增加。
流体静力学
在水利工程或建筑工程中,水坝的高度与其承受的静水压力成反比。当水坝高度增加时,静水压力减 小;反之,当水坝高度减小时,静水压力增加。
06
的应用,如物理、经济等领域。
作业布置
绘制反比例函数的图像
分析反比例函数的性质
要求学生根据所学知识,自行选择一组参 数,绘制出反比例函数的图像,并标注出 关键点和特征。
要求学生根据所绘制的图像,分析并总结 反比例函数的性质,如定义域、值域、单 调性、奇偶性等。
探究实际问题中的反比例关系
思考题
要求学生从生活中或相关学科中选取一个 实际问题,分析并指出其中的反比例关系 ,建立相应的数学模型。
反比例函数的图像
利用描点法画出反比例函 数的图像,引导学生观察 图像的特点,总结反比例 函数图像的规律。
反比例函数的性质
通过分析和归纳,得出反 比例函数的基本性质,如 定义域、值域、单调性、 奇偶性等。
教学重点与难点
教学重点
反比例函数的概念、图像和性质 。
教学难点
如何引导学生通过观察和分析得 出反比例函数的性质;如何运用 反比例函数解决实际问题。
在每个象限内,随着x的增大,y 的值逐渐减小,但永远不会等于
0。
反比例函数图像与坐标轴的关系
反比例函数的图像与x轴、y轴都 没有交点。
当x趋近于正无穷或负无穷时,y 的值趋近于0;当y趋近于正无穷 或负无穷时,x的值也趋近于0。
反比例函数的图像关于原点对称 ,也关于直线y=x和y=-x对称。
反比例函数的图象与性质教案
反比例函数的图象与性质第六章反比例函数2.反比例函数的图象与性质(一)一、知识目标:1.进一步熟悉作函数图象的主要步骤,会作反比例函数的图象.2.体会函数的三种表示方法的互相转换.对函数进行认识上的整合.3.逐步提高从函数图象中获取信息的能力,探索并掌握反比例函数的主要性质.二、教学重点:画反比例函数的图象;并从函数图象中获取信息,探索并研究反比例函数的主要性质.三、教学难点:反比例函数的图象特点及性质的探究.四、教学方法:引导发现法、讨论法.五、教具准备:多媒体课件、幻灯片六、教学过程第一环节:复习引入问题:1.当初我们从哪些方面研究了一次函数?2.画一次函数图象的步骤是什么?3.借助图象我们研究了一次函数的哪些性质?第二环节:合作探究发现问题教师引导学生类比着画一次函数图象的过程来尝试画出反比例函数4yx的图象.(1)列表: x-8 -4 -3 -2 -1-21211 2 34 8y=x 4-21-1-34-2 -4 -8 8 4 2 34121(2)描点: (图5-1) (3)连线:(图5-2)画法不正确,不是用光滑的曲线顺次连接各点;图象不是无限延伸的.教师再结合以上几个环节,进行总的总结和点评教师用幻灯片展示正确的反比例函数图象(图5-3):问题:1.反比例函数图象是什么?2.画反比例函数图象应该注意的问题是什么?总结归纳:(1) 0x≠(2)用光滑的曲线连接各点(3)图象是延伸的,不要画成有明确端点。
(4)曲线的发展趋势是无限靠近坐标轴,但不和坐标轴相交第三环节:巩固新知夯实基础活动一:小华画的反比例函数6yx=的图象如图所示,你认为他画的对吗?目的:巩固第二环节学生们的发现,加深对反比例函数的认识. 活动二:画反比例函数4yx-=的图象.目的:让学生巩固作反比例函数图象的步骤,并且初步感受反比例函数图象的特征。
第四环节: 观察思考 再探新知观察4y x=和4y x -=的图象的形状和位置,有什么相同点和不同点。
反比例函数的图像与性质教案
反比例函数的图像与性质教案教案标题:反比例函数的图像与性质教学目标:1. 理解反比例函数的定义及其特点;2. 掌握绘制反比例函数图像的方法;3. 理解反比例函数图像的性质。
教学准备:1. 教师:准备反比例函数的定义、性质和图像的讲解材料;2. 学生:准备笔、纸和计算器。
教学过程:导入(5分钟):1. 引入反比例函数的概念,与学生一起回顾比例函数的定义及其性质;2. 提问:你们对反比例函数有什么了解?它与比例函数有何不同?讲解(15分钟):1. 讲解反比例函数的定义:y = k/x,其中k为常数且不等于0;2. 解释反比例函数的性质:当x增大时,y减小;当x减小时,y增大;3. 通过实例演示如何计算反比例函数的值,并讨论k的正负对函数图像的影响;4. 讲解反比例函数图像的特点:曲线经过第一象限的原点,且与坐标轴无交点。
练习(15分钟):1. 学生在纸上绘制反比例函数y = 3/x的图像,并标出至少5个点;2. 学生计算并填写表格:x取1、2、3、4、5时,对应的y值;3. 学生观察表格数据,并总结反比例函数图像的特点。
拓展(10分钟):1. 引导学生思考:如果反比例函数的定义中的k为负数,图像会有什么变化?2. 学生尝试绘制反比例函数y = -2/x的图像,并与之前的图像进行比较;3. 学生讨论负数k对反比例函数图像的影响,并总结出结论。
归纳(5分钟):1. 教师与学生一起总结反比例函数的图像与性质;2. 学生回答以下问题:反比例函数图像经过哪个象限的原点?与坐标轴是否有交点?作业:1. 学生完成课堂练习的剩余部分,并绘制反比例函数y = -4/x的图像;2. 学生回答书面问题:反比例函数图像的性质与比例函数图像的性质有何不同?评估:1. 教师检查学生在课堂练习中的图像绘制情况;2. 教师评估学生对反比例函数图像与性质的理解程度。
教学延伸:1. 学生可以进一步探索反比例函数的应用,如在实际问题中的应用;2. 学生可以尝试绘制更多不同参数的反比例函数图像,比较它们之间的差异。
八年级数学苏科版下册 第十一单元 《11.2反比例函数的图像与性质》教学设计 教案
《11.2反比例函数的图像与性质》一、教材分析(一)教材的地位及作用《反比例函数的图像和性质》是苏科版数学教材八年级下册第十一章第二节内容,本课为第一课时.是在学习了反比例函数的概念后对反比例的进一步研究,主要介绍了反比例函数的图像是双曲线和双曲线的作法.八年级上册学习的一次函数图像的作法为本课的学习提供了方法的引领,本课是学生第一次接触曲线形的图像,是继续研究反比例性质、学习二次函数的基础,在教材中起着承上启下的重要作用.(二)教学目标1.知道反比例函数的图像是双曲线,能用描点法画出反比例函数的图像;2.类比一次函数,经历列表、描点、连线画双曲线的过程,理解图像能更直观的反应函数的特征,体会数形结合的思想.(三)教学重点、难点教学重点:反比例函数图像的画法.教学难点:体会解析式与图像的联系,正确地画出双曲线.二、学情分析学生在八年级上册学习过一次函数,知道作函数图像列表、描点、连线的基本步骤,反比例函数概念的学习为研究反比例函数的图形奠定了知识的基础.但是反比例函数的图像是学生第一次接触曲线型的图像,而且是两个分支的图像,这对他们来说有一定的难度.在教学时可采用先引导学生思考然后画图,充分交流讨论,暴露学生的思维过程,针对错误进行评析,借助课件动态直观展示图像的生成过程,帮助他们突破难点.三、教学过程(一)问题导学1.我们已经学习了反比例函数,它的一般形式是什么?2.请大家类比一次函数的学习,我们认识了函数后,接下来研究什么?3.一次函数的图像是一条直线,反比例函数的图像是什么呢?【设计意图】类比一次函数,知道研究函数一般先理解其概念,然后研究其图像和性质,让学生构建函数的认知结构.用问题串的方式自然地引出课题,激发学生的求知欲.(二)合作探究活动一:思考 以反比例函数xy 6=为例, 1.自变量x 可以取任何实数吗?(学生发现x 不可以为0.)那这个函数的图像与y 轴有交点吗?因变量y 可以取任何实数吗?这个函数的图像与x 轴有交点吗?2.若x 取正,那y 呢?若x 取负,那y 呢?这个函数的图像会在哪几个象限?3.当x >0时,随着x 的增大,y 怎样变化? 当x <0时,随着x 的增大,y 怎样变化?4.通过以上问题,你能估计反比例函数xy 6=图像的基本概貌吗? (先思考,再小组交流.这里不要求学生准确描述,鼓励其用自己的语言来描述函数图像.)【设计意图】由于反比例函数的图像是曲线,且分成两支,学生初次接触有一定的难度,故而在作图前先思考,“由数想形”,根据函数表达式中x 、y 的取值范围及相互关系,初步估计图形的基本概貌——位置(象限、与坐标轴的交点等)、趋势(上升、下降等).一方面渗透数形结合的数学思想,另外这也是探究未知函数的性质与图像的一种方法. 活动二:画xy 6=的图像 1.我们的估计正确不正确,可以怎样来验证?(学生回答,画出函数的图像)2.回忆一次函数的图像画法,你认为画函数图像的步骤是什么?3.需要把 x 的所有值全部列举出来吗?你认为选取哪些值合适呢?为什么?(根据学生回答示范列表)4.请大家根据表格描点、画图.(在事先准备好的网格坐标系中画图)5.请将自己所作的图像与小组内的同学交流,找出自己与同学作图的不同并分析原因;(教师巡视并选出几个有代表性错误的图像和一幅正确图像)6.利用实物展台展示学生作图,你们认为这些图像正确吗?结合学生错误进行讨论、分析.(如连线没有向两方无限延伸,连线与坐标轴相交,两个分支用线连接,用线段将相邻两点连接等错误)7.利用几何画板展示图像的动态生成过程;8.先说说反比例函数xy 6=的图像的特征,再比较与一次函数的图像有哪些不 同,请与同学交流.【设计意图】引导学生正确地列表,这样才能更直观地显示出图像的特征,然后放手让学生自己尝试作图,暴露他们的思维过程.通过对典型错误的分析和正确图像的比较以及课件的直观展示,帮助学生更深刻地理解图像的基本特征如:连线必须是光滑的,是两个分支,延伸部分有逐渐靠近坐标轴的趋势但永远不可能与坐标轴相交等,体会图像的种种特征是由反比例的解析式的特点决定的,感受数形结合的思想. 活动三:画xy 6-=的图像 1.不画图,你能说说反比例函数xy 6-=图像的特征吗?说明理由. 2.请在网格坐标系中画出反比例函数xy 6-=的图像. (此处大多学生应该是用描点法画图,可能有学生利用x y 6-=与xy 6=的关系来画图,鼓励多种方法画图.)3.对照图像,刚才对函数xy 6-=图像特征的表述正确吗? 4.观察x y 6=与x y 6-=的图像,它们有什么共同特征? 5.根据学生回答板书双曲线及其基本特征.【设计意图】让学生经历类比、猜想、观察、归纳的过程,培养学生的思维,帮助学生更好地理解双曲线的特征,自主建构双曲线模型,体会数形结合的思想,积累数学活动经验.(三)练习巩固 同桌两人分别画出函数x y 4=与xy 4-=的图像(一人画一个),并请同桌说出你所作的函数图像的特点.【设计意图】通过小游戏的方式调动学生的学习积极性,巩固作图的技能,加深对双曲线特征的理解.(四)小结反思请与同学交流:1.今天这节课你有什么收获?2.你认为最重要、最关键的知识是什么?3.你是用什么方法获得新知识的?4.你还有什么疑惑需要提出来和大家讨论吗?【设计意图】没有反思就没有进步,用问题串的方式引导学生将回顾本课所学知识并内化到自己的认知结构中,总结探究的方法,积累数学活动经验,感受数形结合、类比的思想.(五)分层拓学1.必做题:2.选做题:观察课堂所画的四个反比例函数图像,你能将它们分类吗?分类标准是什么?你能类比一次函数给出反比例函数的增减性吗?【设计意图】分层的练习既面向全体又关注个体差异,选做题让学有余力的学生有了施展的舞台,同时又为下节课的学习做好铺垫.六、板书设计。
反比例函数的图象和性质教案设计
反比例函数的图象和性质教案设计第一章:反比例函数的定义与表达式1.1 反比例函数的定义引导学生回顾正比例函数的定义,提出反比例函数的概念。
通过实际例子,让学生理解反比例函数表示两个变量之间的关系。
1.2 反比例函数的表达式介绍反比例函数的一般形式y = k/x (其中k 为常数,k ≠0)。
解释反比例函数中的k 值对函数图象的影响。
第二章:反比例函数的图象特点2.1 反比例函数图象的形状引导学生观察反比例函数图象,发现其形状为双曲线。
解释双曲线的特点及其与反比例函数的关系。
2.2 反比例函数图象的渐近线引导学生观察反比例函数图象,发现其图象具有两条渐近线。
解释渐近线的概念及其在反比例函数图象中的表现。
第三章:反比例函数的性质3.1 反比例函数的单调性引导学生分析反比例函数在不同区间的单调性。
解释反比例函数单调性的原因及其与比例系数k 的关系。
3.2 反比例函数的奇偶性引导学生观察反比例函数图象,发现其具有奇偶性。
解释反比例函数奇偶性的概念及其与比例系数k 的关系。
第四章:反比例函数的应用4.1 反比例函数在实际问题中的应用提供实际问题,引导学生运用反比例函数解决问题。
解释反比例函数在实际问题中的应用场景,如速度与时间的关系。
4.2 反比例函数的综合应用提供综合问题,引导学生综合运用反比例函数解决问题。
强调反比例函数在其他数学领域中的应用,如在几何中的运用。
第五章:反比例函数的图象和性质的巩固练习5.1 反比例函数图象的绘制引导学生独立绘制反比例函数的图象,巩固对反比例函数图象的理解。
提供不同比例系数的函数,让学生绘制并分析其图象特点。
5.2 反比例函数性质的练习题提供练习题,让学生运用反比例函数的性质解决问题。
强调对反比例函数单调性、奇偶性等性质的理解和应用。
第六章:反比例函数的图象变换6.1 反比例函数的平移引导学生理解反比例函数图象的平移规律,即上下移动对应y 轴的平移,左右移动对应x 轴的平移。
人教版九年级下册26.1.2《反比例函数的图象和性质》教案
(2)反比例函数图象的绘制方法:以坐标轴为基准,选取不同的x值,计算对应的y值,连接点形成图象;
(3)反比例函数的性质:
①对称性:反比例函数图象关于原点对称;
②单调性:在第一、三象限内,反比例函数为增函数;在第二、四象限内,反比例函数为减函数;
人教版九年级下册26.1.2《反比例函数的图象和性质》教案
一、教学内容
人教版九年级下册26.1.2《反比例函数的图象和性质》教案:
1.理解反比例函数的定义及表达式;
2.学习反比例函数图象的绘制方法;
3.掌握反比例函数的性质,包括对称性、单调性及极值等;
4.能够运用反比例函数的性质解决实际问题。
教学内容:
3.重点难点解析:在讲授过程中,我会特别强调反比例函数的定义和图象性质这两个重点。对于难点部分,我会通过图象绘制和实际案例来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与反比例函数相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如测量物体在不同速度下的运动距离,以演示反比例函数的基本原理。
其次,在新课讲授环节,我发现理论介绍部分,学生们对反比例函数的定义和表达式掌握得还不错,但在案例分析部分,有些学生对于如何将实际问题转化为反比例函数模型感到困惑。针对这个问题,我打算在今后的教学中,多安排一些实际案例的分析,让学生有更多的机会练习和掌握这一方法。
此外,实践活动环节,学生们在分组讨论和实验操作过程中,积极参与,表现出了很高的热情。但我也注意到,有些小组在讨论过程中,对于反比例函数在实际生活中的应用还不够深入。为了提高讨论效果,我计划在今后的教学中,加强对学生的引导,鼓励他们提出更多有创意的想法,并与其他小组进行交流。
反比例函数的图象与性质教案优秀3篇
反比例函数的图象与性质教案优秀3篇反比例函数的图象与性质教案篇一教学目标1. 经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力。
2. 理解反比例函数的概念,会列出实际问题的反比例函数关系式。
3. 使学生会画出反比例函数的图象。
4. 经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质。
教学重点1、使学生了解反比例函数的表达式,会画反比例函数图象2、使学生掌握反比例函数的图象性质3、利用反比例函数解题教学难点1、列函数表达式2、反比例函数图象解题教学过程教师活动一、作业检查与讲评二、复习导入1.什么是正比例函数?我们知道当(1) 当路程s一定,时间t与速度v成反比例,即vt=s(s是常数)(2) 当矩形面积一定时,长a和宽b成反比例,即ab=s(s是常数)创设问题情境问题1:小华的爸爸早晨骑自行车带小华到15千米外的镇上去赶集,回来时让小华乘坐公共汽车,用的时间少了。
假设自行车和汽车的速度在行驶过程中都不变,爸爸要小华找出从家里到镇上的时间和乘坐不同交通工具的速度之间的关系。
分析和其他实际问题一样,要探求两个变量之间的关系,就应先选用适当的符号表示变量,再根据题意列出相应的函数关系式。
设小华乘坐交通工具的速度是v千米/时,从家里到镇上的时间是t小时。
因为在匀速运动中,时间=路程÷速度,所以从这个关系式中发现:1.路程一定时,时间t就是速度v的反比例函数。
即速度增大了,时间变小;速度减小了,时间增大。
2.自变量v的取值是v0.问题2:学校课外生物小组的同学准备自己动手,用旧围栏建一个面积为24平方米的矩形饲养场。
设它的一边长为x(米),求另一边的长y(米)与x的函数关系式。
分析根据矩形面积可知xy=24,即从这个关系中发现:1.当矩形的面积一定时,矩形的一边是另一边的反比例函数。
即矩形的一边长增大了,则另一边减小;若一边减小了,则另一边增大;2.自变量的取值是x0.三、新课讲解上述两个函数都具有的形式,一般地,形如(k是常数,k≠0)的函数叫做反比例函数(proportional function).说明1.反比例函数与正比例函数定义相比较,本质上,正比例y=kx,即,k是常数,且k≠0;反比例函数,则xy=k,k是常数,且k≠0.可利用定义判断两个量x和y满足哪一种比例关系。
6.2反比例函数的图象与性质教学设计--2024-2025学年北师大版数学九年级上册
b) y = 3/x^2
c) y = 4/x + 1
2.请判断下列函数是否为反比例函数,并说明理由:
a) y = x^2 - 3x + 2
b) y = 5/(x - 2)
c) y = x^3 + 2x^2 - 5x + 3
3.请画出下列反比例函数的图象,并标出渐近线和x轴、y轴的交点:
a.反比例函数的渐近线是x轴和y轴,即y=0和x=0。
b.当反比例函数的图象接近渐近线时,函数值的变化趋势将越来越小。
10.反比例函数的图象与x轴、y轴的交点:
a.反比例函数的图象与x轴的交点是(0,0)。
b.反比例函数的图象与y轴的交点是(0,k)。
课后作业
1.请根据反比例函数的定义,写出下列函数表达式中k的值:
5.对课程学习的影响:基于以上分析,学生在学习反比例函数的图象与性质时,需要在原有函数知识基础上进行拓展和深化。教师应关注学生的知识掌握程度、能力发展水平、素质培养等方面,针对性地进行教学设计,以提高学生的学习效果。
针对学生的学情,本节课的教学重点应放在帮助学生建立反比例函数的认知结构,突破难点,引导学生运用反比例函数解决实际问题。在教学过程中,教师应关注学生的个体差异,给予不同层次的学生适当的指导,提高他们的逻辑推理、数据分析等能力。同时,通过小组讨论、合作探究等形式,培养学生的团队合作意识和创新意识。
③反比例函数的图象特点:两支分别位于第一、第三象限,对称轴为y轴,渐近线为x轴和y轴
④反比例函数的性质应用:判断函数单调性,求解实际问题,如面积、速度与时间等成反比例关系的问题
⑤反比例函数的求解方法:给定两个点求k值,给定k值求y值,利用图象求解实际问题
人教版数学九年级下册26.1.2《反比例函数的图象和性质》教学设计
人教版数学九年级下册26.1.2《反比例函数的图象和性质》教学设计一. 教材分析人教版数学九年级下册26.1.2《反比例函数的图象和性质》是反比例函数部分的重要内容。
本节内容是在学生已经掌握了比例函数的知识基础上进行学习的,通过本节课的学习,使学生理解反比例函数的概念,会画反比例函数的图象,了解反比例函数的性质,并能运用反比例函数解决一些实际问题。
二. 学情分析九年级的学生已经具备了一定的函数知识,对于比例函数有一定的了解,但反比例函数作为一种新的函数形式,对学生来说还比较陌生。
因此,在教学过程中,需要引导学生通过观察、分析、归纳等方法,自主探究反比例函数的图象和性质,提高学生的动手操作能力和思维能力。
三. 教学目标1.知识与技能:使学生理解反比例函数的概念,会画反比例函数的图象,了解反比例函数的性质。
2.过程与方法:通过观察、分析、归纳等方法,培养学生自主探究的能力。
3.情感态度与价值观:激发学生学习函数的兴趣,培养学生的团队协作精神。
四. 教学重难点1.反比例函数的概念及其图象的画法。
2.反比例函数的性质及其运用。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生主动探究,培养学生的动手操作能力和思维能力。
六. 教学准备1.教学课件:制作反比例函数的图象和性质的课件,用于辅助教学。
2.学生活动材料:反比例函数图象和性质的练习题,用于巩固所学知识。
3.教学设备:投影仪、计算机等。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾比例函数的知识,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过课件展示反比例函数的图象和性质,引导学生观察、分析,并总结反比例函数的特点。
3.操练(10分钟)教师布置练习题,学生独立完成,巩固所学知识。
教师选取部分学生的作业进行讲解和点评。
4.巩固(5分钟)教师通过提问方式检查学生对反比例函数图象和性质的掌握情况,并对学生的回答进行指导和纠正。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)当x≤5时,则y1,或y<(3)当y>5时,x的范围是。
3、讲解例题(15分钟完成。达成目标:由图像的画法和分析,体验数学活动中的探索性和创造性,通过图像的直观性激发学生学习数学的兴趣。
例 下图是浙江省境内杭甬铁路的里程示意图。设从杭州到余姚一段铁路线上的列车行驶的时间为 时,平均速度为 千米/时,且平均速度限定为不超过160千米/时。
1.复习:画函数图象的一般步骤有哪些?应注意什么?、、
2.反比例函数图象是。
四合作探究、画出函数 的图像
汇报展示
1、引导学生观察函数 的表格和图像说出y 与x之间的变化关系;
(1)
X
…
-6
-5
-4
-3
-2
-1
1
2
3
4
5
6
…
y
…
-1
-1.2
-1.5
-2
-3
-6
6
3
2
1.5
1.2
1
…
(2)
X
…
-6
-5
-4
中学一课时教学设计的标准格式徐文萍
课 题目
§25.1反比例函数图像与性质
课型
新授课
备课时间
2016.年 2月 26日
上课时间
3月 1日月 日
班级
初四二班
上课时间
月 日
班级
课标要求与分析
要求:能画出反比例函数的图像,根据反比例函数的图像和解析表达式y= (k≠0)探索并理解k>0或k<0时,图像的变化情况。
(2)体会函数的三种表示方法的互相转换.对函数进行认识上的整合.
(3)逐步提高从函数图象获取信息的能力,探索并掌握反比例函数的主要性质.
能力目标:
(1)培养学生的观察、分析和独立解决问题的能力,
(2)培养学生的数形结合及类比的数学思想方法。
情感目标:由图像的画法和分析,体验数学活动中的探索性和创造性,通过图像的直观性激发学生学习数学的兴趣。
分析:通过动手画图进一步熟悉作函数图象的主要步骤,会作反比例函数的图象.体会函数的三种表示方法的互相转换.对函数进行认识上的整合.
逐步提高从函数图象获取信息的能力,探索并掌握反比例函数的主要性质.
体验数学活动中的探索性和创造性,通过图像的直观性激发学生学习数学的兴趣。
教材分析
本课时的内容是在已经学习了一次函数的基础上,再一次进入函数范畴,让学生进一步理解函数的内涵,并感受到现实世界中存在各种函数。反比例函数的图象与性质是对一次函数图象与性质的复习和对比,同时为进一步学习反比例函数的实际应用以及学习三角次函数打下坚实的基础。
2.用“>”或“<”填空:
(1)已知 和 是反比例函数 的两对自变
量与函数的对应值.若 ,则.
(2)已知 和 是反比例函数 的两对自变
量与函数的对应值.若 ,则.
3.已知( ),( ),( )是反比例函数
的图象上的三个点,并且 ,则
的大小关系是( )
(A) (B)
(C) (D)
4.已知( ),( ),( )是反比例函数 的图象上的三个点,则 的大小关系是.
(1)求v 关于t 的函数解析式和自变量t的取值范围;
(2)画出所求函数的图象
(3)从杭州开出一列火车,在40分内(包括40分)到达余姚 可能吗?在50分内(包括50分)呢?如有可能,那么此时对列车的行驶速度有什么要求?
小结:(1)自变量t不仅要符合反比例函数自身的式子有意义,而且要符合实际问题中的具体意义及附加条件。
教具
多媒体课件演示
流程
课题:1.2反比例函数的图像和性质(2)
教学目标:
1、巩固反比例函数图像和性质,通过对图像的分析,进一步探究反比例函数的增减性。
2、掌握反比例函数的增减性,能运用反比例函数的性质解决一些简单的实际问题。
教学重点:
通过对反比例函数图像的分析,探究反比例函数的增减性。
教学难点:
由于受小学反比例关系增减性知识的负迁移,又由于反比例函数图像分成两条分支,给研究函数的增减性带来复杂性。
二.检查预习1
1、点(1,3)在反比例函数y= 的图象上,则k=,在图象的每一支上,y随x的增大而.
2、函数 的图象在第________象限,在每一象限内,y随x的增大而_________.
3、函数 的图象在第________象限,在每一象限内,y随x的增大而_________.
三.自主学习(15分钟完成。达成目标:进一步熟悉作函数图象的主要步骤,会作反比例函数的图象.培养学生的观察、分析和独立解决问题的能力,培养学生的数形结合及类比的数学思想方法。)
-3
-2
-1
1
2
3
4
5
6
…
y
…
1
1.2
1.5
2
3
6
-6
-3
-2
-1.5
1.2
-1
…
五.当堂训练 拓展延伸
做一做:(15分钟完成。达成目标:进一步熟悉作函数图象的主要步骤,会作反比例函数的图象.培养学生的观察、分析和独立解决问题的能力,培养学生的数形结合及类比的数学思想方法。)
1、函数 的图象在第________象限,在每一象限内,y随x的增大而_________
本节课我学到了……我的困惑……
四、比较正比例函数和反比例函数的性质
正比例函数
反比例函数
解析式
图像直线双曲线位置k>0,一、三象限;
k<0,二、四象限
k>0,一、三象限
k<0,二、四象限
增减性
k>0,y随x的增大而增大
k<0,y随x的增大而减小
k>0,在每个象限y随x的增大而减小
k<0,在每个象限y随x的增大而增大
教学设计:
一、复习 引出新课:(5分钟完成。达成目标:培养复习预习习惯.复习旧引新)
1.反比例函数的图象经过点(-1,2),那么这个反比例函数的解析式为 ,图象在第 象限,它的图象关于 成中心对称.
2.反比例函数的图象与正比例函数的图象,交于点A(1,m),则m=,反比例函数的解析式为,这两个图象的另一个交点坐标是
(2)对于在自变量的取值范围内画函数的图像映注意图像的纯粹性。
(3)一般有;两种方法求自变量的取值范围:一是利用函数的增减性,二是利用图解法。
练习:课本第16页课内练习第3题
三、 课堂小结:1、知识方面:2、能力方面:(5分钟完成。达成目标逐步提高从函数图象获取信息的能力,探索并掌握反比例函数的主要性质).
学情分析
已经学习了一次函数的图像与性质也有一定的类比能力但对平滑双曲线的理解及对图象特征的分析仍感到困难.
重、难点:
重点:反比例函数图象的画法及探究反比例函数的性质;
难点:反比例函数图象是平滑双曲线的理解及对图象特征的分析.
教学目标
知识目标:
(1)进一步熟悉作函数图象的主要步骤,会作反比例函数的图象.