复合材料细观力学
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对于球形夹杂,具有下列形式:
2.2 等效夹杂原理
由于椭球夹杂存在,则
• 假定远场受均匀应力作用,椭球夹杂内场均 匀,给定一均匀本征应变
•作业:求解复合材料内部弹性场
第二节 Mori-Tanaka方法
1973年Mori and Tanaka在研究弥散 硬化材料的加工硬化问题时,提出求解材 料内部平均盈利的背应力法,即MoriTanaka方法
证明
•复合材料代表性单元内力势能为: •根据等应变假设,势能Voigt近似值为
•根据最小势能原理,有
•复合材料代表性单元余能为: •根据等应力假设,余能Reuss近似值为 •根据最小余能原理,有
5.2 Hashin and Shtrikman上下限
1963年Hashin and Shtrikman对于各向异性均 匀体采用变分法研究了材料应变能的极值条件。 设有一n相统计均匀各向同性复合材料,它的第r 相体积与弹性模量分别为Vr ,Lr (r=1,2,3….n)。
追溯到19世纪爱因斯坦关于两种不同介电性能的电介 质组成的复合电介质等效介电常数预报问题。
50年代----70年代 80年代快速发展 90年代不可缺少
参考教程
杜善义、王彪 《复合材料细观力学》科学出版社 1997 Mura T. Micromechanics of defects
in solids. 1987 杨卫 《宏微观断裂力学》国防工业出版社 1995 基础教程 《弹性力学》、《复合材料力学》
第三节 复合材料性能的自洽理论
50年代,Hershey and Kroner研究多 晶体材料的弹性性能时,先后提出了Selfconsistent method .
思想:在计算夹杂内部应力场时,为了考 虑其他夹杂的影响,认为夹杂单独处于一 有效介质中,而夹杂周围有效介质的弹性 常数就是复合材料的弹性常数。
在远场均匀应力作用下,夹杂内应力为:
• 为了表征夹杂外部材料对夹杂变形的约 束作用,Hill引入一个约束张量使其满足:
•夹杂中的应变
对于两相复合材料夹杂与基体中平均应力、应变: •约束张量满足系列关系
Budiansky指出,当离散相为空洞时,按自洽 理论计算的等效剪切模量
•原因:仅考虑了单夹杂与周围有效介质的作用,而 当夹杂体积分数或裂纹密度较大时,预报的有效弹 性模量过高(含硬夹杂)或过低(含软夹杂),特 别是夹杂与基体弹性模量相差较大时,等明显。随 机取向微裂纹密度=9/16,有效杨氏模量=0
按纤维种类分类
玻璃纤维复合材料 碳纤维复合材料 有机纤维复合材料 金属纤维复合材料(钨丝、不锈钢丝) 陶瓷纤维复合材料(硼纤维、碳化硅纤维) 混杂纤维复合材料(两种以上纤维)
按基体材料分类
聚合物基复合材料(热固性、热塑性树脂) 金属基复合材料(铝、钛、镁) 无机非金属基复合材料(陶瓷、水泥) 碳碳复合材料
2、铺层设计 铺层方案 3、结构设计 产品结构的形状、尺寸、使
用环境
分析角度
复合材料具有非均匀性和各向异性 特点,这种差别属于物理方面
弹性模量、拉压强度、剪切强度、 热膨胀系数等
复合材料细观力学的核心任务
建立复合材料宏观性能同其组分性能及其细观结构之 间的定量关系,并揭示复合材料结构在一定工况下的 响应规律及其本质,为复合材料优化设计、性能评价 提供必要的理论依据及手段。
取一均匀的各向同性比较材料,弹性模量为L0, 只要在该比较材料中作用适当分布体力,复合材 料的弹性场就可以在该比较材料中实现,作用应 变的边界条件,应力场为:
•根据最小势能原理,任意给定位移边条应变情况下
复合材料细观力学
第一章 绪 论
定义:根据国际标准化组织为复合材 料所下的定义,复合材料是由两种或 两种以上物理和化学性质不同的物质 组成的一种多相固体材料。
连续体:基体 分散体:增强材料 两相之间存在界面相
复合材料的分类 按增强相材料形态分类
连续纤维复合材料 短纤维复合材料 晶须增强复合材料 颗粒增强复合材料 编织复合材料
复合材料有效弹性模量定义
两类均匀边界条件
• 在均匀边条作用下,除边界点附近可能有扰动存在, •统计均匀复合材料应力场和应变场也是统计均匀的。 •即,代表性体积单元内场量=复合材料体积平均值
证明
•式中上标0代表复合材料基体相,r代表复合材料第r类增强相
Baidu Nhomakorabea
利用散度定理可以证明复合材 料的应变能和余能分别是
由上节已知夹杂应变
注意:在取出与添入dV时,取出部分中含有体积为fdV 的
增强相材料,添入dV后复合材料实际的增强相材料为:
确定等效弹性模量的微分方程
•其中, A,B均可由自洽模型确定
算例
对于各向同性球形颗粒增强复合材料,微分方程为:
第五节 复合材料有效性能的上、下限
5.1 Voigt and Reuss上下限
将上式代入平衡方程 •分布体力问题
•利用格林函数方法和高斯定理:
格林函数,表示在x’处沿方向作用 单位集中力,点x处产生的位移i分量
•上述位移对应的应变场(几何方程)
•得到各向同性介质椭球体中,存在
•S是四阶Eshelby张量,与材料性能和夹杂形状 有关,具有椭圆积分形式,并可推广到各向异 性介质和本征应变不均匀情况。对于特殊形状 夹杂,可以写出解析表达式:
第二章 复合材料有效性能
第一节 Eshelby等效夹杂理论
1957年Eshelby在英国皇家学会会刊 发表了关于无限大体内含有椭球夹杂弹性 场问题的文章,证明了在均匀外载作用时 ,椭球夹杂内部弹性场亦均匀。(椭圆积 分形式)
2.1Eshelby相变问题
将应变分解为两部分
•扰动应变 •本征应变
根据虎克定律,弹性体应力场
复合材料有效性能
有效弹性模量的影响因素
组分材料的弹性常数
基体 -各向同性 纤维 -横观各向同性
微结构特征
夹杂形状(纤维、颗粒、晶须、孔洞、裂纹) 几何尺寸、分布 体积含量 等等
成熟的细观力学方法
Eshelby 等效夹杂理论 自洽理论(自相似理论) Mori-Tanaka方法(背应力法) 微分法 Hashin 变分原理求解上下限方法 其他方法
复合材料性能和损伤破坏规律取决于
组分材料性能 微细观结构特征
复合材料结构设计
复合材料本身是非均质、各向异性材料, 因此复合材料力学在经典非均匀各向异性 弹性力学基础上迅速发展。复合材料不仅 是材料,更确切的说是结构
以纤维增强的层合板结构为例,复合材料 设计可分为三个阶段:
l 1、单层材料设计,选择增强材料、基体材 料、配比关系
设给定复合材料在其边界上受到远场均匀应 力场作用
•复合材料的体积平均应力应等于其远场作用的 均匀应力
•补充方程
•复合材料内部体平均应变场
算例:含缺陷纤维复合材料热膨胀系 数预报
含圆币型基体裂纹的单向复合材料,假定定 向分布的微裂纹垂直于纤维方向
将(4)是代入(1,3)式中
复合材料体平均应变场
1889年,Voigt根据晶体内常应变假设研究 了多晶体有效模量问题。
•混合律基础
Voigt等应变假设和Reuss等应力假设
复合材料各组成相都是各向同性材料
给定远场应变,由Voigt假设有
给定远场应力,由Reuss假设有
Voigt and Reuss假设适用于长纤维复合材料沿纤维方向的拉 伸刚度,分别对应真实解的上下限
Kerner提出广义自洽模型
上海交通大学
•基
罗海安 三相模型 体
•等效介质
•夹杂
•合理原因: ➢考虑夹杂、基体壳和有效介质相互作用,比重平衡 ➢广义自洽理论放宽了相介质之间界面约束 缺点:解题难度增加
第四节 微分法
1952年, Roscoe研究悬浊液体性质时提出微分 等效介质概念,设某一时刻复合材料增强相体积比率 f,等效模量L,经过一个取出与添入过程后,f增至 f+df,L增至L+dL
• (a) cylinder and flange; (b) egg crate
structures; (c) turbine rotors woven by Techniweave Inc.; and (d) various
•3D knitted composites for bicycle helmets
按材料作用分类
结构复合材料 (卫星承力筒) 功能复合材料 (导电、换能、防热)
复合材料的基本特点 共同特点:
可综合发挥各种组成材料优点,使一种材料 具有多种功能
可按对材料性能需要进行材料的设计和制造 可制成所需要任意形状产品,避免多次加工
工序
一般优点:
比强度、比刚度、轻质、耐疲劳、减震性好 、抗冲击、耐高温、耐腐蚀等等