人工智能-课后作业
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章:P23
1.人工智能
人工智能就是用人工的方法在机器(计算机)上实现的智能,或称机器智能
第二章:P51
5.(1)有的人喜欢打篮球,有的人喜欢踢足球,有的人既喜欢打篮球又喜欢踢足球。
定义谓词:LIKE(x,y):x喜欢y。
PLAY(x,y):x打(踢)y。
MAN(x):x是人。
定义个体域:Basketball,Soccer。
(x)(MAN(x) → LIKE(x,PLAY(x,Basketball))) ∨(y)(MAN(y) → LIKE(y,PLAY(y,Soccer))) ∨(z)(MAN(z) →LIKE(z,PLAY(z,Basketball)) ∧ LIKE(z,PLAY(z,Soccer))
(2)并不是每个人都喜欢花。
定义谓词:LIKE(x,y):x喜欢y。
P(x):x是人
定义个体词:flower
¬(x)(P(x) → LIKE(x,flower))
(3)欲穷千里目,更上一层楼。
定义谓词:S(x):x想要看到千里远的地方。
H(x):x要更上一层楼。
(x)(S(x) → H(x))
6. 产生式通常用于表示具有因果关系的知识,其基本形式是: P→Q
或者 If P Then Q [Else S]
其中,P是前件,用于指出该产生式是否可用的条件。Q是一组结论或者操作,用于指出当前提P满足时,应该得出的结论或者应该执行的操作。
区别:蕴含式只能表示精确知识;而产生式不仅可以表示精确知识,还可以表示不精确知识。
产生式中前提条件的匹配可以是精确的,也可以是非精确的;而谓词逻辑蕴含式总要求精确匹配。
7.一个产生式系统一般由三部分组成:规则集、全局数据库、控制策略。
步骤:1)初始化全局数据库,把问题的初始已知事实送入全局数据库中
2)若规则库中存在尚未使用的规则,而且它的前提可与全局数据库中的已知事实匹配,则转3),若不存在则转5)
3)执行当前选中的规则,并对该规则做标记,把该规则执行后得到的结论送入全局数据库中。如
果该规则的结论部分指出的是某些操作,则执行这些操作。
4)检查全局数据库中是否已经包含了问题的解,若已经包含,则求解结束,否则转2)5)要求用户提供进一步的关于问题的已知事实,若能提供,则转2),否则求解结束。
6)若规则库中不再有未使用过的规则,则求解过程结束。
11. 框架名:<教师>
姓名:单位(姓,名)
年龄:单位(岁)
性别:范围(男,女)缺省为男
职称:范围(教授,副教授,讲师,助教)
缺省我讲师
部门:单位(系,教研室)
住址:<地址框架>
工资:<工资框架>
开始工作时间:单位(年,月)
截止时间:单位(年,月)缺省为现在
框架名:<学生>
姓名:单位(姓,名)
年龄:单位(岁)
性别:范围(男,女)缺省为男
学院:单位(学院,系)
班级:单位(年级,班级)
入学时间:单位(年,月)
截止时间:单位(年,月)缺省为现在
13.
第三章:P83
6.(1) 由于(x)(
y)(P(x, y)∧Q(x, y))已经是Skolem 标准型,且P(x, y)∧Q(x, y)已经是合
取范式,所以可直接消去全称量词、合取词,得
{ P(x, y), Q(x, y)} 再进行变元换名得子句集:
S={ P(x, y), Q(u, v)}
(2)对谓词公式(x)(y)(P(x, y)→Q(x, y)),先消去连接词“→”得:
(
x)(
y)(¬P(x, y)∨Q(x, y))
此公式已为Skolem 标准型。
再消去全称量词得子句集:
S={¬P(x, y)∨Q(x, y)}
(3)对谓词公式(x)(y)(P(x, y)∨(Q(x, y)→R(x, y))),先消去连接词“→”得:
(
x)(
y)(P(x, y)∨(¬Q(x, y)∨R(x, y)))
此公式已为前束范式。
再消去存在量词,即用Skolem 函数f(x)替换y 得: (
x)(P(x, f(x))∨¬Q(x, f(x))∨R(x, f(x)))
此公式已为Skolem 标准型。
最后消去全称量词得子句集:
S={P(x, f(x))∨¬Q(x, f(x))∨R(x, f(x))}
(4)对谓词(x) (
y) (
z)(P(x, y)→Q(x, y)∨R(x, z)),先消去连接词“→”得:
(
x) (y) (z)(¬P(x, y)∨Q(x, y)∨R(x, z))
再消去存在量词,即用Skolem 函数f(x,y)替换z 得: (
x) (y) (¬P(x, y)∨Q(x, y)∨R(x, f(x,y)))
植物 树 AK O 有
根
有叶
AK
O
果树
苹果树
结果 结苹果
AK
O 草 海藻
AK
O
AK
O 长在水里
有叶 有根
Have
Have In
Have Have Get
Get