高考物理专题复习:人造卫星变轨问题专题

合集下载

专题02 变轨问题(解析版)

专题02 变轨问题(解析版)

02.变轨问题—万有引力与航天绕地球做匀速圆周运动的人造卫星所需向心力由万有引力提供,r m r Tm ma r v m r GMm 222224ωπ====,轨道半径r 确定后(在轨),与之对应的卫星线速度r GM v =,周期GMr T 32π=,向心加速度=a 2r GM 等也都是唯一确定的。

如果卫星的质量是确定的,那么,与轨道半径r 对应的卫星的动能、重力势能、总机械能也是唯一确定的。

一旦卫星发生了变轨,即轨道半径r 发生了变化,上述所有物理量都将随之变化。

一类变轨是卫星因为受稀薄大气的影响速度变小,从而做向心运动,使卫星在更低的轨道运行;另一类变轨例如发射同步卫星,先将卫星发射到近地轨道I ,使其绕地球做匀速圆周运动,速率为1v ,变轨时在P 点点火加速,短时间内将速率由1v 增加到2v ,使卫星进入椭圆形转移轨道 II ;卫星运行到远地点Q 时,速率为3v ,此时进行第二次点火加速,短时间内将速率由3v 增加到4v ,使卫星进入同步轨道III ,绕地球做匀速圆周运动。

如图所示:1.如图所示,一颗人造卫星原来在椭圆轨道1绕地球E 运行,在P 变轨后进入轨道2做匀速圆周运动下列说法正确的是A.不论在轨道1还是在轨道2运行,卫星在P 点的速度都相同B.不论在轨道1还是在轨道2运行,卫星在P 点的加速度都相同C.卫星在轨道1的任何位置都具有相同加速度D.卫星在轨道2的任何位置都具有相同动量 【答案】B【解析】从1到2,需要加速逃逸,A 错;2Mm Gma R =可得21a R∝,半径相同,加速度相同,卫星在椭圆轨道1上运动时,运动半径变化,a 在变,C 错B 对;卫星在圆形轨道2上运动时,过程中的速度方向时刻改变,所以动量方向不同,D 错。

2.如图6所示,飞船从轨道1变轨至轨道2。

若飞船在两轨道上都做匀速圆周运动,不考虑质量变化,相对于在轨道1上,飞船在轨道2上的A.动能大B.向心加速度大C.运行周期长D.角速度小【解析】根据r m r Tm ma r v m r GMm 222224ωπ====, 得,动能=k E r GMm 2,r 变大,所以动能变小,A 错误;加速度=a 2r GM ,r 变大,所以加速度变小,B 错误;周期GMr T 32π=,r 变大,所以周期变大,C 正确;角速度3rGM=ω,r 变大,所以角速度变小,D 正确。

高中物理卫星变轨问题

高中物理卫星变轨问题

作业:
C 卫星在轨道1上经过Q点时的加速度
大于它在轨道2上经过Q点时的加速度 D 卫星在轨道2上经过P点时的加速度 等于它在轨道3上经过P点时的加速度
p
1 23 Q
❖ 卫星变轨
练习如图所示;a b c是在地球大气层外圆形轨道上运行的3颗
人造卫星;下列说法正确的是:
A b c的线速度大小相等;且大于a的线速度 B b c的向心加速度大小相等;且大于a的向心加速度 C c加速可追上同一轨道上的b;b减速可等到同一轨道上的c D a卫星由于某种原因;轨道半径缓慢减小;其线速度将变小
卫星在圆轨 道运行速度
V1
R
1
2
V2
mv12 r
G
Mm r2
F引
θ>900
v 减小
卫星变轨原理
r
v3
F引
椭圆mv32 r
GMr2m
使



v4


v3






运 动
使卫星 v4, 加m 使 速 r42v到 GM r2 m
卫 星 的 回 收
❖ 卫星变轨
卫星如何变轨 以发射同步卫星为例;先进入一
专题 万有引力定律的应用
1 卫星比较问题 2 卫星变轨 问题
两颗人造地球卫星;都在圆形轨道上运行;它 们的质量相等;轨道半径不同;比较它们的向心加 速度an 线速度v 角速度ω 周期T
地球
计算中心天体的质量M 密度ρ
1某星体m围绕中心天体M做圆 周运动的周期为T;圆周运动
的轨道半径为r
M
4 2r3
练习发射地球同步卫星时;先将卫星发射至近地圆轨道1;然后

高考物理(热点+题型全突破)专题5.3 三种特殊的卫星及卫星的变轨问题、天体的追击相遇问题(含解析)

高考物理(热点+题型全突破)专题5.3 三种特殊的卫星及卫星的变轨问题、天体的追击相遇问题(含解析)

专题5.3 三种特殊的卫星及卫星的变轨问题、天体的追击相遇问题一、近地卫星、赤道上物体及同步卫星的运行问题1.近地卫星、同步卫星、赤道上的物体的比较比较内容赤道表面的物体近地卫星同步卫星向心力来源万有引力的分力万有引力向心力方向指向地心重力与万有引力的关系重力略小于万有引力重力等于万有引力线速度v1=ω1R v2=GMRv3=ω3(R+h)=GMR+hv1<v3<v2(v2为第一宇宙速度)角速度ω1=ω自ω2=GMR3ω3=ω自=GMR+h3ω1=ω3<ω2向心加速度a1=ω21R a2=ω22R=GMR2a3=ω23(R+h) =GMR+h2a1<a3<a22.天体半径R与卫星轨道半径r的比较卫星的轨道半径r是指卫星绕天体做匀速圆周运动的半径,与天体半径R的关系为r=R+h(h为卫星距离天体表面的高度),当卫星贴近天体表面运动(h≈0)时,可认为两者相等。

【示例1】(多选)如图,地球赤道上的山丘e、近地资源卫星p和同步通信卫星q均在赤道平面上绕地心做匀速圆周运动。

设e、p、q的圆周运动速率分别为v1、v2、v3,向心加速度分别为a1、a2、a3,则( )A.v1>v2>v3B.v1<v3<v2C.a1>a2>a3D.a1<a3<a2【答案】BD【解析】由题意可知:山丘与同步卫星角速度、周期相同,由v=ωr,a=ω2r可知v1<v3、a1<a3;对同步卫星和近地资源卫星来说,满足v =GM r 、a =GMr2,可知v 3<v 2、a 3<a 2。

故选项B 、D 正确。

【示例2】(多选)同步卫星离地心距离为r ,运行速率为v 1,加速度为a 1,地球赤道上的物体随地球自转的向心加速度为a 2,第一宇宙速度为v 2,地球的半径为R ,则下列比值正确的是( )A.a 1a 2=rRB.a 1a 2=r 2R2 C.v 1v 2=r R D.v 1v 2=R r【答案】: AD【示例3】(2016·四川理综·3)国务院批复,自2016年起将4月24日设立为“中国航天日”.1970年4月24日我国首次成功发射的人造卫星东方红一号,目前仍然在椭圆轨道上运行,其轨道近地点高度约为440 km ,远地点高度约为2 060 km ;1984年4月8日成功发射的东方红二号卫星运行在赤道上空35 786 km 的地球同步轨道上.设东方红一号在远地点的加速度为a 1,东方红二号的加速度为a 2,固定在地球赤道上的物体随地球自转的加速度为a 3,则a 1、a 2、a 3的大小关系为( ) A.a 2>a 1>a 3 B.a 3>a 2>a 1 C.a 3>a 1>a 2 D.a 1>a 2>a 3【答案】 D【解析】 由于东方红二号卫星是同步卫星,则其角速度和赤道上的物体角速度相等,根据a =ω2r ,r 2>r 3,则a 2>a 3;由万有引力定律和牛顿第二定律得,G Mmr2=ma ,由题目中数据可以得出,r 1<r 2,则a 2<a 1;综合以上分析有,a 1>a 2>a 3,选项D 正确.【示例4】.有a 、b 、c 、d 四颗地球卫星,a 在地球赤道上未发射,b 在地面附近近地轨道上正常运动,c 是地球同步卫星,d 是高空探测卫星,各卫星排列位置如图,则有( )A .a 的向心力由重力提供B .c 在4 h 内转过的圆心角是π6C .b 在相同时间内转过的弧长最长D .d 的运动周期有可能是20 h 【答案】 C二、 卫星的变轨问题 1.三种情境2.变轨问题的三点注意(1)航天器变轨时半径的变化,根据万有引力和所需向心力的大小关系判断;稳定在新轨道上的运行速度变化由v =GMr判断。

专题强化训练二 卫星(近地、同步、极地)的宇宙航行运动规律与变轨问题

专题强化训练二 卫星(近地、同步、极地)的宇宙航行运动规律与变轨问题

专题强化训练二:卫星(近地、同步、极地)的宇宙航行运动规律与变轨问题技巧归纳:人造卫星的变轨问题1.变轨问题概述 (1)稳定运行卫星绕天体稳定运行时,万有引力提供了卫星做圆周运动的向心力,即G Mmr 2=m v 2r .(2)变轨运行卫星变轨时,先是线速度大小v 发生变化导致需要的向心力发生变化,进而使轨道半径r 发生变化.①当卫星减速时,卫星所需的向心力F 向=m v 2r 减小,万有引力大于所需的向心力,卫星将做近心运动,向低轨道变轨.②当卫星加速时,卫星所需的向心力F 向=m v 2r 增大,万有引力不足以提供卫星所需的向心力,卫星将做离心运动,向高轨道变轨. 2.实例分析 (1)飞船对接问题①低轨道飞船与高轨道空间站对接时,让飞船合理地加速,使飞船沿椭圆轨道做离心运动,追上高轨道空间站完成对接(如图甲所示).②若飞船和空间站在同一轨道上,飞船加速时无法追上空间站,因为飞船加速时,将做离心运动,从而离开这个轨道.通常先使后面的飞船减速降低高度,再加速提升高度,通过适当控制,使飞船追上空间站时恰好具有相同的速度,如图乙所示.(2)卫星的发射、变轨问题如图发射卫星时,先将卫星发射至近地圆轨道1,在Q 点点火加速做离心运动进入椭圆轨道2,在P 点点火加速,使其满足GMmr 2=m v 2r,进入圆轨道3做圆周运动.一、单选题1.(2022·江苏省江都中学高三开学考试)据报道,一颗来自太阳系外的彗星擦火星而过。

如图所示,设火星绕太阳在圆轨道上运动,运动半径为r ,周期为T 。

该彗星在穿过太阳系时由于受到太阳的引力,轨道发生弯曲,彗星与火星在圆轨道的A 点“擦肩而过”。

已知万有引力常量G ,则( )A.可计算出火星的质量B.可计算出彗星经过A点时受到的引力C.可确定太阳分别对彗星和火星的引力在A点产生的加速度相等D.可确定彗星在A点的速度大小为2r vTπ=2.(2022·云南·昆明一中模拟预测)随着“嫦娥奔月”梦想的实现,我国不断刷新深空探测的“中国高度”。

高考物理计算题复习《卫星变轨问题》(解析版)

高考物理计算题复习《卫星变轨问题》(解析版)

《卫星变轨问题》一、计算题1.轨道进入停泊轨道,在停泊轨道经过调速后进入地月转移轨道,再次调速后进入工作轨道。

已知卫星在停泊轨道和工作轨道的运行半径分别为a和b,地球半径为R,月球半径为r,地球表面重力加速度为g,月球表面重力加速度为。

求:地球与月球质量之比;卫星在停泊轨道上运行的线速度;卫星在工作轨道上运行的周期。

2.2班做“神舟六号”载人飞船于2005年10月12日上午9点整在酒泉航天发射场发射升空由长征运载火箭将飞船送入近地点为A、远地点为B的椭圆轨道上,A 点距地面的高度为,飞船飞行五圈后进行变轨,进入预定圆轨道,如图所示在预定圆轨道上飞行N圈所用时间为t,于10月17日凌晨在内蒙古草原成功返回已知地球表面重力加速度为g,地球半径为求:飞船在A点的加速度大小.远地点B距地面的高度.沿着椭圆轨道从A到B的时间.3.如图为某飞船先在轨道Ⅰ上绕地球做圆周运动,然后在A点变轨进入返回地球的椭圆轨道Ⅱ运动,已知飞船在轨道Ⅰ上做圆周运动的周期为T,轨道半径为r,椭圆轨道的近地点B离地心的距离为,引力常量为G,飞船的质量为m,求:地球的质量及飞船在轨道Ⅰ上的线速度大小;若规定两质点相距无限远时引力势能为零,则质量分别为M、m的两个质点相距为r时的引力势能,式中G为引力常量求飞船在A点变轨时发动机对飞船做的功.4.如图所示,“嫦娥一号”卫星在飞向月球的过程中,经“地月转移轨道”到达近月点Q,为了被月球捕获成为月球的卫星,需要在Q点进行制动减速制动之后进入轨道Ⅲ,随后在Q点再经过两次制动,最终进入环绕月球的圆形轨道Ⅰ已知“嫦娥一号卫星”在轨道Ⅰ上运动时,卫星距离月球的高度为h,月球的质量月,月球的半径为月,万有引力恒量为忽略月球自转,求:“嫦娥一号”在Q点的加速度a.“嫦娥一号”在轨道Ⅰ上绕月球做圆周运动的线速度.若规定两质点相距无际远时引力势能为零,则质量分别为M、m的两个质点相距为r时的引力势能 —,式中G为引力常量.为使“嫦娥一号”卫星在Q 点进行第一次制动后能成为月球的卫星,同时在随后的运动过程其高度都不小于轨道Ⅰ的高度h,试计算卫星第一次制动后的速度大小应满足什么条件.5.如图是发射地球同步卫星的简化轨道示意图,先将卫星发射至距地面高度为的近地轨道Ⅰ上在卫星经过A点时点火实施变轨,进入远地点为B的椭圆轨道Ⅱ上,最后在B点再次点火,将卫星送入同步轨道Ⅲ已知地球表面的重力加速度为g,地球自转周期为T,地球的半径为R,求:卫星在近地轨道Ⅰ上的速度大小;点距地面的高度.6.为了探测X星球,载着登陆舱的探测飞船在该星球中心为圆心,半径为的圆轨道上运动,周期为,总质量为。

卫星变轨问题、双星模型(原卷版)—2025年高考物理一轮复习

卫星变轨问题、双星模型(原卷版)—2025年高考物理一轮复习

卫星变轨问题、双星模型素养目标:1.会处理人造卫星的变轨和对接问题。

2.掌握双星、多星系统,会解决相关问题。

3.会应用万有引力定律解决星球“瓦解”和黑洞问题。

1.神舟十六号载人飞船入轨后顺利完成人轨状态设置,采用自主快速交会对接模式成功对接于天和核心舱径向端口。

对接过程的示意图如图所示,神舟十六号飞船处于半径为1r 的圆轨道Ⅰ,运行周期为T 1,线速度为1v ,通过变轨操作后,沿椭圆轨道Ⅱ运动到B 处与天和核心舱对接,轨道Ⅱ上A 点的线速度为2v ,运行周期为T 2;天和核心舱处于半径为3r 的圆轨道Ⅲ,运行周期为T 3,线速度为3v ;则神舟十六号飞船( )A .213v v v >>B .T 1>T 2>T 3C .在轨道Ⅱ上B 点处的加速度大于轨道Ⅲ上B 点处的加速度D .该卫星在轨道Ⅰ运行时的机械能比在轨道Ⅲ运行时的机械能大考点一 卫星的变轨和对接问题1.卫星发射模型(1)为了节省能量,在赤道上顺着地球自转方向先发射卫星到圆轨道Ⅰ上,卫星在轨道Ⅰ上做匀速圆周运动,有G Mmr 12=m v 2r 1,如图所示。

(2)在A 点(近地点)点火加速,由于速度变大,所需向心力变大,GMm r 12<m v A 2r 1,卫星做离心运动进入椭圆轨道Ⅱ。

(3)在椭圆轨道B 点(远地点),G Mm r 22>m v B 2r 2,将做近心运动,再次点火加速,使G Mm r 22=m v B ′2r 2,进入圆轨道Ⅲ。

思考 若使在轨道Ⅲ运行的宇宙飞船返回地面,应如何操作?2.变轨过程分析(1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v 1、v 3,在椭圆轨道Ⅱ上过A 点和B 点时速率分别为v A 、v B ,四个速度关系为v A >v 1>v 3>v B 。

(2)向心加速度在A 点,轨道Ⅰ上和轨道Ⅱ上的向心加速度关系a ⅠA =a ⅡA ,在B 点,轨道Ⅱ上和轨道Ⅲ上的向心加速度关系a ⅡB =a ⅢB ,A 、B 两点向心加速度关系a A >a B 。

2024高考物理一轮复习--天体运动专题--卫星的变轨问题、天体追及相遇问题

2024高考物理一轮复习--天体运动专题--卫星的变轨问题、天体追及相遇问题

卫星的变轨问题、天体追及相遇问题一、卫星的变轨、对接问题1.卫星发射及变轨过程概述人造卫星的发射过程要经过多次变轨方可到达预定轨道,如右图所示。

(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道 Ⅰ上。

(2)在A 点点火加速,由于速度变大,万有引力不足以提供向心力,卫星做离心运动进入椭圆轨道Ⅰ。

(3)在B 点(远地点)再次点火加速进入圆形轨道Ⅰ。

2.卫星的对接问题(1)低轨道飞船与高轨道空间站对接如图甲所示,低轨道飞船通过合理地加速,沿椭圆轨道(做离心运动)追上高轨道空间站与其完成对接.(2)同一轨道飞船与空间站对接如图乙所示,后面的飞船先减速降低高度,再加速提升高度,通过适当控制,使飞船追上空间站时恰好具有相同的速度.二、变轨前、后各物理量的比较1.航天器变轨问题的三点注意事项(1)航天器变轨时半径的变化,根据万有引力和所需向心力的大小关系判断;稳定在新圆轨道上的运行速度由v =GM r判断。

(2)航天器在不同轨道上运行时机械能不同,轨道半径越大,机械能越大。

(3)航天器经过不同轨道的相交点时,加速度相等,外轨道的速度大于内轨道的速度。

2.卫星变轨的实质 两类变轨离心运动 近心运动 变轨起因卫星速度突然增大 卫星速度突然减小 受力分析 G Mm r 2<m v 2rG Mm r 2>m v 2r 变轨结果变为椭圆轨道运动或在较大半径圆轨道上运动变为椭圆轨道运动或在较小半径圆轨道上运动 3.变轨过程各物理量分析(1)速度:设卫星在圆轨道Ⅰ和Ⅰ上运行时的速率分别为v 1、v 3,在轨道Ⅰ上过A 点和B 点时速率分别为v A、v B.在A点加速,则v A>v1,在B点加速,则v3>v B,又因v1>v3,故有v A>v1>v3>v B.(2)加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅰ上经过A点,卫星的加速度都相同,同理,经过B点加速度也相同.(3)周期:设卫星在Ⅰ、Ⅰ、Ⅰ轨道上的运行周期分别为T1、T2、T3,轨道半径分别为r1、r2(半长轴)、r3,由开普勒第三定律r3T2=k可知T1<T2<T3.(4)机械能:在一个确定的圆(椭圆)轨道上机械能守恒.若卫星在Ⅰ、Ⅰ、Ⅰ轨道的机械能分别为E1、E2、E3,则E1<E2<E3.三、卫星的追及与相遇问题1.相距最近两卫星的运转方向相同,且位于和中心连线的半径上同侧时,两卫星相距最近,从运动关系上,两卫星运动关系应满足(ωA-ωB)t=2nπ(n=1,2,3,…)。

2024届新高考物理高频考点专项练习:专题五 考点14 卫星的发射 椭圆轨道与变轨

2024届新高考物理高频考点专项练习:专题五 考点14 卫星的发射 椭圆轨道与变轨

考点14卫星的发射椭圆轨道与变轨1.流星在夜空中发出明亮的光焰.流星的光焰是外太空物体被地球强大引力吸引坠落到地面的过程中同空气发生剧烈摩擦造成的.下列相关说法正确的是()A.流星在空气中下降时势能必定全部转化为内能B.引力对流星物体做正功则其动能增加,机械能守恒C.当流星的速度方向与空气阻力和重力的合力不在同一直线上时,流星做曲线运动D.流星物体进入大气层后做斜抛运动2.高分四号卫星是我国首颗地球同步轨道高分辨率光学成像卫星,也是目前世界上空间分辨率最高、幅宽最大的地球同步轨道遥感卫星,它的发射和应用使我国天基对地遥感观测能力显著提升.关于高分四号卫星,下列说法正确的是()A.高分四号卫星距地球如果更近一些,分辨率更高,且仍能保持与地球自转同步B.高分四号卫星绕地球做圆周运动的线速度小于地球的第一宇宙速度7.9km /sC.高分四号卫星的向心加速度大小小于静止在赤道上物体的向心加速度大小D.高分四号卫星所受到的向心力与其他地球同步卫星所受到的向心力大小相等3.如图所示,甲、乙两行星半径相等,丙、丁两颗卫星分别绕甲、乙两行星做匀速圆周运动,丙、丁两卫星的轨道半径122r r ,运动周期212T T ,则()A.甲、乙两行星质量之比为B.甲、乙两行星第一宇宙速度大小之比为C.甲、乙两行星密度之比为16:1D.甲、乙两行星表面重力加速度大小之比为4.“嫦娥五号”探测器由轨道器、返回器、着陆器等多个部分组成.已知月球半径为R ,“嫦娥五号”在距月球表面高度为2R 的圆轨道上飞行,周期为T ,万有引力常量为G 。

下列说法正确的是()A.月球质量为22332πR GT B.月球表面重力加速度22108πR T C.月球密度为23πGT D.月球第一宇宙速度为6πRT5.“天问一号”已于2020年7月23日在中国文昌航天发射场由长征五号遥四运载火箭发射升空,成功进入预定轨道。

“天问一号”现已完成“环绕”、“着陆”“巡视”火星这三大任务。

2023年高考物理与强基计划核心知识点复习与真题精选 卫星变轨问题

2023年高考物理与强基计划核心知识点复习与真题精选 卫星变轨问题

卫星变轨问题一、真题精选(高考必备)1.(2022·浙江·高考真题)“天问一号”从地球发射后,在如图甲所示的P点沿地火转移轨道到Q点,再依次进入如图乙所示的调相轨道和停泊轨道,则天问一号()A.发射速度介于7.9km/s与11.2km/s之间B.从P点转移到Q点的时间小于6个月C.在环绕火星的停泊轨道运行的周期比在调相轨道上小D.在地火转移轨道运动时的速度均大于地球绕太阳的速度2.(2021·天津·高考真题)2021年5月15日,天问一号探测器着陆火星取得成功,迈出了我国星际探测征程的重要一步,在火属上首次留下国人的印迹。

天问一号探测器成功发射后,顺利被火星捕获,成为我国第一颗人造火星卫星。

经过轨道调整,探测器先沿椭圆轨道Ⅰ运行,之后进入称为火星停泊轨道的椭圆轨道Ⅰ运行,如图所示,两轨道相切于近火点P,则天问一号探测器()A.在轨道Ⅰ上处于受力平衡状态B.在轨道Ⅰ运行周期比在Ⅰ时短C.从轨道Ⅰ进入Ⅰ在P处要加速D.沿轨道Ⅰ向P飞近时速度增大3.(2021·北京·高考真题)2021年5月,“天问一号”探测器成功在火星软着陆,我国成为世界上第一个首次探测火星就实现“绕、落、巡”三项任务的国家。

“天问一号”在火星停泊轨道运行时,近火点距离火星表面2.8⨯102 km、远火点距离火星表面5.9⨯105 km,则“天问一号” ()A.在近火点的加速度比远火点的小B.在近火点的运行速度比远火点的小C.在近火点的机械能比远火点的小D.在近火点通过减速可实现绕火星做圆周运动4.(2019·江苏·高考真题)1970年成功发射的“东方红一号”是我国第一颗人造地球卫星,该卫星至今仍沿椭圆轨道绕地球运动,如图所示,设卫星在近地点、远地点的速度分别为v 1、v 2,近地点到地心的距离为r ,地球质量为M ,引力常量为G 。

则( )A .121,v v v >B .121,v v v >C .121,v v v <D .121,v v v <<5.(2019·全国·高考真题)金星、地球和火星绕太阳的公转均可视为匀速圆周运动,它们的向心加速度大小分别为a 金、a 地、a 火,它们沿轨道运行的速率分别为v 金、v 地、v 火.已知它们的轨道半径R 金<R 地<R 火,由此可以判定A .a 金>a 地>a 火B .a 火>a 地>a 金C .v 地>v 火>v 金D .v 火>v 地>v 金 6.(2011·全国·高考真题)我国“嫦娥一号”探月卫星发射后,先在“24小时轨道”上绕地球运行(即绕地球一圈需要24小时);然后,经过两次变轨依次到达“48小时轨道”和“72小时轨道”;最后奔向月球。

专题讲解:卫星的变轨问题

专题讲解:卫星的变轨问题

卫星的变轨问题1.圆轨道上的稳定运行G Mm r 2=m v 2r =mrω2=mr (2πT)2 2.变轨运行分析(1)当v 增大时,所需向心力m v 2r增大,即万有引力缺乏以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大,但卫星一旦进入新的轨道运行,由v = GM r知其运行速度要减小,但重力势能、机械能均增加。

(2)当卫星的速度突然减小时,向心力mv 2r减小,即万有引力大于卫星所需的向心力,因此卫星将做向心运动,同样会脱离原来的圆轨道,轨道半径变小,进入新轨道运行时由v = GM r知运行速度将增大,但重力势能、机械能均减少。

典题分析12012年6月16日18时37分,执行我国首次载人交会对接任务的“神舟九号〞载人飞船发射升空,在距地面343公里的近圆轨道上,与等待已久的“天宫一号〞实现屡次交会对接、别离,于6月29日10时许成功返回地面,以下关于“神舟九号〞与“天宫一号〞的说确的是( )A .假设知道“天宫一号〞的绕行周期,再利用引力常量,就可算出地球的质量B .在对接前,“神舟九号〞轨道应稍低于“天宫一号〞的轨道,然后让“神舟九号〞加速追上“天宫一号〞并与之对接C .在对接前,应让“神舟九号〞和“天宫一号〞在同一轨道上绕地球做圆周运动,然后让“神舟九号〞加速追上“天宫一号〞并与之对接D .“神舟九号〞返回地面时应在绕行轨道上先减速2.(2021·高考)如图4-4-3所示,飞船从轨道1变轨至轨道2。

假设飞船在两轨道上都做匀速圆周运动,不考虑质量变化,相对于在轨道1上,飞船在轨道2上的( )图4-4-3A .动能大B .向心加速度大C .运行周期长D .角速度小解析:选CD 因为G Mm r 2=m v 2r =ma =mrω2=mr 4π2T2,解得v = GM r ,a =G M r 2,T =2 πr 3GM ,ω=GM r 3,因为r 增大,所以动能减小,加速度减小,运行周期变长,角速度减小,即只有C 、D 正确。

2025年高考二轮复习物理热点2 航天技术类4

2025年高考二轮复习物理热点2 航天技术类4

热点二 航天技术类选择题1~6题,每小题6分,7~9题,每小题8分,共60分1.(2024山东烟台一模)“星下点”是指卫星和地心连线与地球表面的交点。

如图甲所示是人造地球卫星A 的运行圆轨道及“星下点”示意图,卫星A 的绕行方向与地球自转方向一致,M 点是卫星A 某时刻的“星下点”,如图乙所示是卫星A 的“星下点”在完整地球平面图上一段时间内的轨迹,已知地球同步卫星B (图中未画出)的轨道半径为r ,则卫星A 的轨道半径为( )A.r 5B.r 3C.√93D.√33 答案 C解析 由图乙可知,地球每自转一圈卫星运动3圈,卫星做圆周运动,根据万有引力提供向心力GMmr 2=m (2πT )2r ,可得同步卫星的周期为T=2π√r 3GM ,卫星A 的周期为T'=2π√r '3GM =T 3,则卫星A 的轨道半径r'=√93,故C 正确。

2.(多选)(2024广东二模)2024年,我国探月计划第六个探测器嫦娥六号出征月球,飞往月球背面采集土壤并返回地球。

如图所示,O 1为地球的球心、O 2为月球的球心,图中的P 点为地—月系统的一个拉格朗日点,在该点的物体能够保持和地球、月球相对位置关系不变,以和月球相同的角速度绕地球做匀速圆周运动。

地球上的人总是只能看到月球的正面,嫦娥六号将要达到的却是月球背面的M 点,为了保持和地球的联系,我国还将发射鹊桥二号中继通信卫星,让其在以P 点为圆心、垂直于地月连线的圆轨道上运动。

下列说法正确的是( )A.我们无法看到月球的背面,是因为月球的自转周期和公转周期相同B.发射嫦娥六号时,发射速度要超过第二宇宙速度,让其摆脱地球引力的束缚C.以地球球心为参考系,鹊桥二号中继卫星做匀速圆周运动D.鹊桥二号中继卫星受到地球和月球引力的共同作用答案AD解析因为潮汐锁定,月球的自转周期和公转周期相同,所以我们无法看到月球的背面,故A项正确;嫦娥六号并没摆脱地球引力的束缚,因此发射速度不会超过第二宇宙速度,故B项错误;以地球为参考系,鹊桥二号一方面绕地月系统共同的圆心做匀速圆周运动,另一方面绕P点做匀速圆周运动,因此以地心为参考系,它是两个匀速圆周运动的合运动,故C项错误;鹊桥二号中继卫星受地球和月球共同引力的作用,故D项正确。

人造卫星变轨问题(最新整理)

人造卫星变轨问题(最新整理)

-3-
参考答案 1.D 2.C 3.C 4.D 5.B 6.B . 7.D
-4-
B.飞船在圆轨道上时航天员出舱前后都处于超重状态 C.飞船在此圆轨道上运动的角速度大于同步卫星运动的角速度 D.飞船变轨前通过椭圆轨道远地点时的加速度大于变轨后沿圆轨道运动的加速度
4.2009 年 2 月 11 日,俄罗斯的“宇宙—2251”卫星和美国“铱—33”卫星在西伯利亚上空约 805km
e pq
2.据报道,“嫦娥一号”和“嫦娥二号”绕月飞行器的圆形工作轨道距月球表面分别约为 200km 和 100km,运行速率分别为 v1 和 v2。那么,v1 和 v2 的比值为(月球半径取 1700km)19A.ຫໍສະໝຸດ 1819B.
18
18
C.
19
18
D.
19
3.我国成功实施了“神舟”七号载入航天飞行并实现了航天员首次出舱。飞船先沿椭圆轨道飞行, 后在远地点 343 千米处点火加速,由椭圆轨道变成高度为 343 千米的圆轨道,在此圆轨道上 飞船运行周期约为 90 分钟。下列判断正确的是 A.飞船变轨前后的速度相等
一定要给卫星增加能量。
四、练习题
1.如图,地球赤道上山丘 e,近地资源卫星 p 和同步通信卫星 q 均在赤道平面
上绕地球做匀速圆周运动。设 e、p、q 的圆周运动速率分别为 v1、v2、v3,
向心加速度分别为 a1、a2、a3,则
A.v1>v2>v3
B.v1<v2<v3
C.a1>a2>a3
D.a1<a3<a2
5.近地人造卫星 1 和 2 绕地球做匀速圆周运动的周期分别为 T1 和 T2。设在卫星 l、卫星 2 各自

(完整版)人造卫星变轨问题

(完整版)人造卫星变轨问题

人造卫星变轨问题一、人造卫星基本原理绕地球做匀速圆周运动的人造卫星所需向心力由万有引力提供。

轨道半径r 确定后,与之对应的卫星线速度r GM v =、周期GMr T 32π=、向心加速度2r GM a =也都是确定的。

如果卫星的质量也确定,一旦卫星发生变轨,即轨道半径r 发生变化,上述物理量都将随之变化。

同理,只要上述物理量之一发生变化,另外几个也必将随之变化。

在高中物理中,会涉及到人造卫星的两种变轨问题。

二、渐变由于某个因素的影响使卫星的轨道半径发生缓慢的变化(逐渐增大或逐渐减小),由于半径变化缓慢,卫星每一周的运动仍可以看做是匀速圆周运动。

解决此类问题,首先要判断这种变轨是离心还是向心,即轨道半径是增大还是减小,然后再判断卫星的其他相关物理量如何变化。

如:人造卫星绕地球做匀速圆周运动,无论轨道多高,都会受到稀薄大气的阻力作用。

如果不及时进行轨道维持(即通过启动星上小型火箭,将化学能转化为机械能,保持卫星应具有的速度),卫星就会自动变轨,偏离原来的圆周轨道,从而引起各个物理量的变化。

由于这种变轨的起因是阻力,阻力对卫星做负功,使卫星速度减小,所需要的向心力r mv 2减小了,而万有引力大小2r GMm 没有变,因此卫星将做向心运动,即半径r 将减小。

由㈠中结论可知:卫星线速度v 将增大,周期T 将减小,向心加速度a 将增大。

三、突变由于技术上的需要,有时要在适当的位置短时间启动飞行器上的发动机,使飞行器轨道发生突变,使其到达预定的目标。

如:发射同步卫星时,通常先将卫星发送到近地轨道Ⅰ,使其绕地球做匀速圆周运动,速率为v 1,第一次在P 点点火加速,在短时间内将速率由v 1增加到v 2,使卫星进入椭圆形的转移轨道Ⅱ;卫星运行到远地点Q 时的速率为v 3,此时进行第二次点火加速,在短时间内将速率由v 3增加到v 4,使卫星进入同步轨道Ⅲ,绕地球做匀速圆周运动。

第一次加速:卫星需要的向心力r mv 2增大了,但万有引力2rGMm 没变,因此卫星将开始做离心运动,进入椭圆形的转移轨道Ⅱ。

高考物理一轮复习(新高考版2(粤冀渝湘)适用) 第5章 专题强化8 卫星变轨问题 双星模型

高考物理一轮复习(新高考版2(粤冀渝湘)适用) 第5章 专题强化8 卫星变轨问题 双星模型
轨道经过P的加速度大小,但方向有可能不一样
12
解析 嫦娥四号从地月转移轨道的P点
进入100公里环月轨道,需点火减速,所
以在地月转移轨道P点的速度大于在100
公里环月轨道P点的速度,故A错误;
从100公里环月轨道进入椭圆环月轨道,嫦娥四号需点火减速,发动机
做负功,机械能减小,故B正确;
根据开普勒第三定律
r3 T2
=k知,100公里环月轨道半径大于椭圆环月轨道
的半长轴,则嫦娥四号在100公里环月轨道运动的周期大于在椭圆环月
轨道运动的周期,故C错误;
12
嫦娥四号卫星在不同轨道经过P点,所受的万有引力相等,根据牛顿第 二定律知,加速度大小相等,方向相同,故D错误.
12
2.(飞船回收)2017年9月,我国控制“天舟一号”飞船离轨,使它进入大 气层烧毁,残骸坠入南太平洋一处号称“航天器坟场”的远离大陆的深 海区.在受控坠落前,“天舟一号”在距离地面380 km的圆轨道上飞行, 则下列说法中正确的是 A.在轨运行时,“天舟一号”的线速度大于第一宇宙速度 B.在轨运行时,“天舟一号”的角速度小于同步卫星的角速度
(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上,
如图1所示.
(2)在A点(近地点)点火加速,由于速度变大,万
有引力不足以提供卫星在轨道Ⅰ上做圆周运动的
向心力,卫星做离心运动进入椭圆轨道Ⅱ.
(3)在B点(远地点)再次点火加速进入圆形轨道Ⅲ.
图1
2.变轨过程分析 (1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v1、v3,在轨道 Ⅱ上过A点和B点时速率分别为vA、vB.在A点加速,则vA>v1,在B点加速, 则v3>vB,又因v1>v3,故有vA>v1>v3>vB. (2)加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道Ⅰ还 是轨道Ⅱ上经过A点,卫星的加速度都相同,同理,卫星在轨道Ⅱ或轨 道Ⅲ上经过B点的加速度也相同. (3)周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上的运行周期分别为T1、T2、T3,轨 道半径分别为r1、r2(半长轴)、r3,由开普勒第三定律 Tr32=k可知T1<T2<T3. (4)机械能:在一个确定的圆(椭圆)轨道上机械能守恒.若卫星在Ⅰ、Ⅱ、 Ⅲ轨道的机械能分别为E1、E2、E3,则E1<E2<E3.

高考专题09 航天器的变轨及追及问题-高考物理一轮复习专题详解 Word版含解析

高考专题09 航天器的变轨及追及问题-高考物理一轮复习专题详解 Word版含解析

高考重点难点热点快速突破(1)网络结构(2)卫星在椭圆轨道上的远地点、近地点的加速度与对应圆轨道上的加速度关系应用a =GM r2比较.(3)卫星在同一轨道上稳定运行过程中机械能守恒;在变轨过程中,轨道升高机械能增加,轨道降低机械能减少.规律方法卫星变轨问题的有关规律(1)卫星变轨时速度的变化,根据万有引力和所需向心力的大小关系判断;稳定在新轨道上的运行速度变化由v =GMr判断. (2)航天器在不同轨道上运行时机械能不同,轨道半径越大,机械能越大.(3)航天器经过不同轨道相交的同一点时加速度相等,外轨道的速度大于内轨道的速度. (4)同一轨道对接,应先减速到低轨再加速回高轨,实现与目标航天器对接. 典例分析【例1】 (多选)(2017年河南六市高三联考)2009年5月,航天飞机在完成对哈勃空间望远镜的维修任务后,由圆形轨道Ⅰ从A 点进入椭圆轨道Ⅱ,B 为轨道Ⅱ上的一点,如图所示.关于航天飞机的运动,下列说法中正确的是( )A .在轨道Ⅱ上经过A 点的速度小于经过B 点的速度B .在轨道Ⅱ上经过A 点的速度等于在轨道Ⅰ上经过A 点的速度C .在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期D .在轨道Ⅱ上经过A 点的加速度小于在轨道Ⅰ上经过A 点的加速度 【答案】 AC【例2】 (2017年广西四校调研)(多选)“嫦娥三号”发射取得圆满成功,这标志着我国的航空航天技术又迈进了一大步.“嫦娥三号”探月卫星沿地月转移轨道到达距月球表面200 km 的P 点进行第一次“刹车制动”后被月球捕获,进入椭圆轨道Ⅰ绕月飞行,再经过一次制动进入距月球表面15 km 的圆形轨道Ⅱ上绕月球做匀速圆周运动.则下面说法正确的是( )A .由于“刹车制动”,卫星沿轨道Ⅱ运动的周期将比沿轨道Ⅰ运动的周期长B .虽然“刹车制动”,但卫星沿轨道Ⅱ运动的周期比沿轨道Ⅰ运动的周期短C .卫星在到达月球附近时需进行第一次“刹车制动”,是因为卫星到达月球附近时的速度大于月球的第二宇宙速度D .卫星沿轨道Ⅱ运动的加速度小于沿轨道Ⅰ运动到P 点时的加速度 【答案】:BC【解析】:由开普勒第三定律k =r 3T2可知,T Ⅰ>T Ⅱ,A 项错误,B 项正确;由第二宇宙速度的含义可知,卫星到达月球附近并被月球捕获时的速度不能超过月球的第二宇宙速度,不然卫星将脱离月球,C 项正确;由GMm r 2Ⅱ=ma Ⅱ,得卫星在轨道Ⅱ上的加速度a Ⅱ=GM r 2Ⅱ,由GMmr 2P=ma P ,得卫星在P 点的加速度a P =GMr 2P,因r P >r Ⅱ,则a P <a Ⅱ,D 项错误.天体相遇问题的解法围绕同一中心天体做圆周运动的运行天体,因在同一轨道上运行快慢相同不可能相遇(除非是同一轨道上绕行方向相反),故天体的相遇定义为运行天体A 位于运行天体B 正上方时,即A 、B 与中心天体位于同一直线上且A 、B 在中心天体的同一侧时的状态.如图甲,当两运行天体A 、B 的轨道平面在同一平面内时,若运行方向相同,则内侧天体B 比A 每多运行一圈时相遇一次,在Δt 时间内相遇的次数n =Δt T B -Δt T A =ωB -ωA 2πΔt .若运行方向相反时,则A 、B 每转过的圆心角之和等于2π时发生一次相遇,在Δt 时间内相遇的次数为:n =ωA Δt +ωB Δt 2π=Δt T B +ΔtT A.如图乙,若两运行天体轨道平面不重合时,当A 、B 均运行至P 、Q 所在直线上,且A 、B 位于同侧时二者才相遇,因此从某次相遇到下次相遇,B 比A 一定多转1圈,而且A 、B各自转的圈数都是半圈的奇数倍,即在Δt 时间内,Δt T A =(2k A +1)×12,Δt T B =(2k B +1)×12,且k B -k A =1.专题练习1.某行星和地球绕太阳公转的轨道均可视为圆.每过N 年,该行星会运行到日地连线的延长线上,如图所示.该行星与地球的公转半径之比为( )A.N +1N 23B.N N -123 C.N +1N 32 D.N N -132【答案】 B【解析】 由开普勒第三定律得r 31=kT 21,r 32=kT 22,所以有r 1r 1=T 2T 123,由于每过N 年,该行星会运行到日地连线的延长线上,即“相遇”,亦即在相同时间内,地球比该行星多转一圈,于是有NT 1=(N -1)T 2,联立解得r 1r 2=N N -123.2.2017年10月19日“神舟十一号”飞船与“天宫二号”空间实验室自动交会对接成功.假设“天宫二号”与“神舟十一号”都围绕地球做匀速圆周运动,为了实现飞船与空间实验室的对接,下列措施可行的是( )A .使飞船与空间实验室在同一轨道上运行,然后飞船加速追上空间实验室实现对接B .使飞船与空间实验室在同一轨道上运行,然后空间实验室减速等待飞船实现对接C .飞船先在比空间实验室半径小的轨道上加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接D .飞船先在比空间实验室半径小的轨道上减速,减速后飞船逐渐靠近空间实验室,两者速度接近时实现对接【答案】:C3.(多选)(2017年甘肃天水市联考)有a 、b 、c 、d 四颗地球卫星,a 还未发射,在地球赤道上随地球表面一起转动,b 是处于地面附近的近地轨道上正常运动的卫星,c 是地球同步卫星,d 是高空探测卫星,各卫星排列位置如图,则有( )A .a 的向心加速度等于地表重力加速度gB .c 在4小时内转过的圆心角为60°C .b 在相同时间内转过的弧长最短D .d 的运动周期有可能是28小时 【答案】:BD4.(多选)物体在万有引力场中具有的势能叫做引力势能,若取两物体相距无穷远时的引力势能为零,一个质量为m 0的质点距质量为M 0的引力中心r 0时,其万有引力势能E p =-GM 0m 0r 0(式中G 为引力常量),一颗质量为m 的人造地球卫星以半径为r 1圆形轨道环绕地球飞行,已知地球的质量为M ,要使此卫星绕地球做匀速圆周运动的轨道半径增大为r 2,则在此过程中( )A .卫星势能增加了GMm ⎝ ⎛⎭⎪⎫1r 1-1r 2B .卫星动能减少了GMm 3⎝ ⎛⎭⎪⎫1r 1-1r 2 C .卫星机械能增加了GMm 2⎝ ⎛⎭⎪⎫1r 1-1r 2 D .卫星上的发动机所消耗的最小能量为2GMm 3⎝ ⎛⎭⎪⎫1r 1-1r 2【答案】:AC【解析】:引力势能的增加量ΔE p =-GMm r 2-⎝ ⎛⎭⎪⎫-GMm r 1=GMm ⎝ ⎛⎭⎪⎫1r 1-1r 2,故A 正确;根据万有引力提供向心力,由G Mm r 21=m v 21r 1,解得v 1= hGM r 1,则E k1=12mv 21=GMm2r 1. 同理,E k2=GMm2r 2.所以,动能的减少量为ΔE k =GMm 2r 1-GMm 2r 2=GMm 2⎝ ⎛⎭⎪⎫1r 1-1r 2,故B 错误;根据能量守恒定律,卫星增加的机械能等于发动机消耗的能量,为E =ΔE p -ΔE k =GMm2⎝ ⎛⎭⎪⎫1r 1-1r 2,故C 正确,D 错误. 5.(2017年河北石家庄模拟)如图所示,有A 、B 两颗卫星绕地心O 做圆周运动,绕行方向相同.A 卫星的周期为T 1,B 卫星的周期为T 2,在某一时刻两卫星相距最近,则(引力常量为G )()A .两卫星经过时间t =T 1+T 2再次相距最近B .两卫星的轨道半径之比为T 321∶T 232C .若已知两卫星相距最近时的距离,可求出地球的密度D .若已知两卫星相距最近时的距离,可求出地球表面的重力加速度 【答案】:B8.(多选)(2017年河南三市三模)中国月球探测卫星“嫦娥号”简化后的路线示意图如图所示,卫星由地面发射后,先经过地面发射轨道进入地球附近的停泊轨道做匀速圆周运动;然后从停泊轨道经过调控进入地月转移轨道;到达月球附近时,再次调控进入工作轨道做匀速圆周运动,这时卫星将开始对月球进行探测.已知地球与月球的质量之比为a ,卫星的停泊轨道与工作轨道的轨道半径之比为b ,则下列说法中正确的是 ( )A .卫星从停泊轨道调控进入到地月转移轨道的过程中,卫星的机械能不守恒B .卫星在停泊轨道运行的速度大于地球的第一宇宙速度C .卫星在停泊轨道和工作轨道运行的线速度大小之比为b ∶aD .卫星在停泊轨道和工作轨道运行的周期之比为b b ∶a 【答案】:AD【解析】:卫星变轨需点火做功,故机械能增加,A 对;由v =GMr,半径较大,线速度较小,故停泊轨道速度小于第一宇宙速度,B 错;卫星G Mm r 2=mv 2r =m 4π2T 2·r ,v =GM r,T =2πr 3GM,已知地球与月球质量比为a ,卫星停泊轨道与工作轨道比为b ,则速度比为a ∶b ,卫星停泊轨道与工作轨道周期比为b 3∶a ,C 错D 对.9.2013年5月2日凌晨0时06分,我国“中星11号”通信卫星发射成功.“中星11号”是一颗地球同步卫星,它主要用于为亚太地区等区域用户提供商业通信服务.图为发射过程的示意图,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再一次点火,将卫星送入同步圆轨道3.轨道1、2相切于Q 点,轨道2、3相切于P 点,则当卫星分别在1、2、3轨道上正常运行时,以下说法正确的是( )A . 卫星在轨道3上的速率大于在轨道1上的速率B . 卫星在轨道3上的角速度大于在轨道1上的角速度C . 卫星在轨道1上经过Q 点时的速度大于它在轨道2上经过Q 点时的速度D . 卫星在轨道2上经过P 点时的速度小于它在轨道3上经过P 点时的速度 【答案】D10.发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3.轨道1、2相切于Q点,轨道2、3相切于P 点,如图所示.当卫星分别在1、2、3轨道上正常运行时,设卫星在1轨道和3轨道正常运行的速度和加速度分别为v1、v3和a1、a3,在2轨道经过P点时的速度和加速度为v2和a2,且当卫星分别在1、2、3轨道上正常运行时周期分别为T1、T2、T3,以下说法正确的是( )A.v1>v2>v3 B.v1>v3>v2C.a1>a2>a3 D.T1>T2>T3【答案】B11、如图所示.地球和某行星在同一轨道平面内同向绕太阳做匀速圆周运动.地球的轨道半径为R,运转周期为T.地球和太阳中心的连线与地球和行星的连线所夹的角叫地球对该行星的观察视角(简称视角).已知该行星的最大视角为,当行星处于最大视角处时,是地球上的天文爱好者观察该行星的最佳时期.若某时刻该行星正处于最佳观察期,问该行星下一次处于最佳观察期至少需经历多长时间?【答案】【解析】:根据题意可得行星的轨道半径设行星绕太阳的转动周期为T'由开普勒第三定律有:设行星最初处于最佳观察时期前,其位置超前于地球,且经时间t地球转过角后,该行星再次处于最佳观察期,12、地球和某行星在同一轨道平面内同向绕太阳做匀速圆周运动.地球的轨道半径为,运转周期为.地球和太阳中心的连线与地球和行星的连线所夹的角叫地球对该行星的观察视角(简称视角),如图甲或图乙所示.当行星处于最大视角处时,是地球上的天文爱好者观察该行星的最佳时期.已知某行星的最大视角为.求该行星的轨道半径和运转周期.最终计算结果保留两位有效数字)【答案】该行星的轨道半径是,运转周期是.【解析】设行星的轨道半径为r',运行周期为T'当行星处于最大视角处时,地球和行星的连线应与行星轨道相切.由几何关系可以知道:地球与某行星围绕太阳做匀速圆周运动,根据万有引力提供向心力列出等式:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理专题复习:
人造卫星变轨问题专题
随着我国航天事业的蓬勃发展,高考对天体运动及宇宙航行的考查也逐渐成热点,然而在复习中许多同学对于万有引力在天体运动中的运动仍有许多困惑,其中有不少同学对于人造卫星的变轨问题模糊不清,在此针对上述问题,将个人在卫星变轨问题上的处理与同行共享,希望能够对二轮复习有所帮助,不妥之处,还望指正。

一、人造卫星基本原理
绕地球做匀速圆周运动的人造卫星所需向心力由万有引力提供。

轨道半径r 确定后,与之对应的卫星线速度r GM v =、周期GM
r T 32π=、向心加速度2r GM a =也都是确定的。

如果卫星的质量也确定,一旦卫星发生变轨,即轨道半径r 发生变化,上述物理量都将随之变化。

同理,只要上述物理量之一发生变化,另外几个也必将随之变化。

二、在高中物理中,会涉及到人造卫星的两种变轨问题。

1、渐变
由于某个因素的影响使卫星的轨道半径发生缓慢的变化(逐渐增大或逐渐减小),由于半径变化缓慢,卫星每一周的运动仍可以看做是匀速圆周运动。

解决此类问题,首先要判断这种变轨是离心还是向心,即轨道半径是增大还是减小,然后再判断卫星的其他相关物理量如何变化。

如:人造卫星绕地球做匀速圆周运动,无论轨道多高,都会受到稀薄大气的阻力作用。

如果不及时进行轨道维持(即通过启动星上小型火箭,将化学能转化为机械能,保持卫星应具有的速度),卫星就会自动变轨,偏离原来的圆周轨道,从而引起各个物理量的变化。

由于这种变轨的起因是阻力,阻力对卫星做负功,使卫星速度减小,所需要的向心力r mv 2减小了,而万有引力大小2r
GMm 没有变,因此卫星将做向心运动,即半径r 将减
小。

由㈠中结论可知:卫星线速度v 将增大,周期T 将减小,向心加速度a 将增大。

2、突变 由于技术上的需要,有时要在适当的位置短时间启动飞行器上的发动机,使飞行器轨道发生突变,使其到达预定的目标。

如:发射同步卫星时,通常先将卫星发送到近地轨道Ⅰ,使其绕地球做匀速圆周运动,速率为v 1,第一次在P 点点火加速,在短时间
内将速率由v 1增加到v 2,使卫星进入椭圆形的转移轨道Ⅱ;卫星运行到远地点Q 时的速率为v 3,此时进行第二次点火加速,在短时间内将
速率由v 3增加到v 4,使卫星进入同步轨道Ⅲ,绕地球做匀速圆周运动。

第一次加速:卫星需要的向心力r mv 2增大了,但万有引力2r
GMm 没变,因此卫星将开始做离心运动,进入椭圆形的转移轨道Ⅱ。

点火过程中卫星的线速度增大。

在转移轨道上,卫星从近地点P 向远地点Q 运动过程只受重力作用,重力做负功,速度减小。

在远地点Q 时如果不进行再次点火,卫星将继续沿椭圆轨道运行,从远地点Q 回到近地点P ,不会自动进入同步轨道。

这种情况下卫星在Q 点受到的万有引力大于以速率v 3沿同步轨道运动所需要的向心力,因此卫星做向心运动。

为使卫星进入同步轨道,在卫星运动到Q 点时必须再次启动卫星上的小火箭,短时
间内使卫星的速率由v 3增加到v 4,使它所需要的向心力r
mv 24增大到和该位置的万有引力相等,这样就能使卫星进入同步轨道Ⅲ而做匀速圆周运动。

结论是:要使卫星由较低的圆轨道进入较高的圆轨道,即增大轨道半径(增大轨道高度h ),一定要给卫星增加能量。

三、练习题
1.如图,地球赤道上山丘e ,近地资源卫星p 和同步通信卫星q 均在赤道平面上绕地球做匀速圆周运动。

设e 、p 、q 的圆周运动速率
分别为v 1、v 2、v 3,向心加速度分别为a 1、a 2、a 3,则
A .v 1>v 2>v 3
B .v 1<v 2<v 3
C .a 1>a 2>a 3
D .a 1<a 3<a 2
2.据报道,“嫦娥一号”和“嫦娥二号”绕月飞行器的圆形工作轨道距月球表面分别约
为200km 和100km ,运行速率分别为v 1和v 2。

那么,v 1和v 2的比值为(月球半径取1700km )
A .1819
B .1819
C .19
18 D .1918 3.我国成功实施了“神舟”七号载入航天飞行并实现了航天员首次出舱。

飞船先沿椭圆
轨道飞行,后在远地点343千米处点火加速,由椭圆轨道变成高度为343千米的圆
轨道,在此圆轨道上飞船运行周期约为90分钟。

下列判断正确的是
A .飞船变轨前后的速度相等
B .飞船在圆轨道上时航天员出舱前后都处于超重状态
C .飞船在此圆轨道上运动的角速度大于同步卫星运动的角速度
D .飞船变轨前通过椭圆轨道远地点时的加速度大于变轨后沿圆轨道运动的加速度
4.2009年2月11日,俄罗斯的“宇宙—2251”卫星和美国“铱—33”卫星在西伯利亚
上空约805km 处发生碰撞。

这是历史上首次发生的完整在轨卫星碰撞事件。

碰撞过程中产生的大量碎片可能会影响太空环境。

假定有甲、乙两块碎片,绕地球运动的轨道都是圆,甲的运行速率比乙的大,则下列说法中正确的是
A .甲的运行周期一定比乙的长
B .甲距地面的高度一定比乙的高
C .甲的向心力一定比乙的小
D .甲的加速度一定比乙的大
5.近地人造卫星1和2绕地球做匀速圆周运动的周期分别为T 1和T 2。

设在卫星l 、卫星
2各自所在的高度上的重力加速度大小分别为g 1、g 2,则 A . B . C . D .
6.航天飞机在完成对哈勃太间望远镜的维修任务后,在A 点短时间开动小型发动机进
行变轨,从圆形轨道Ⅰ进入椭圆道Ⅱ,B 为轨道Ⅱ上的一点,如图所示。

下列说法中正确的有
A .在轨道Ⅱ上经过A 的机械能大于经过
B 的机械能 B .在A 点短时间开动发动机后航天飞机的动能增大了
C .在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期
D .在轨道Ⅱ上经过A 的加速度小于在轨道Ⅰ上经过A 的加速度7.我国“嫦娥一号”探月卫星发射后,先在“24小时轨道”上绕地球运行(即绕地球一圈需要24小时);然后,经过两次变轨依次到达“48小时轨道”和“72小时轨道”;最后奔向月球。

如果按圆形轨道计算,并忽略卫星质量的变化,则在每次变轨完成后与变轨前相比,
A .卫星速度增大,角速度减小
B .卫星速度增大,角速度增大
C .卫星速度减小,角速度增加
D .卫星速度减小,角速度减小
8、发射地球同步卫星时,先将卫星发射到近地圆轨道1,然后点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送人同步圆轨道3。

轨道1、2相切于Q 点,轨道2、3相切于P 点,如图所示,,则当卫星分别在1、2、3轨道上正常运行时,下列说法中正确的是
A .卫星在轨道3上的速率大于在轨道1上的速率
B .卫星在轨道3上的角速度小于在轨道1上的角速度
C .卫星在轨道1上经过Q 点时的加速度大于它在轨道2上经过Q 点时的加速度
D .卫星在轨道2上经过P 点时的加速度等于它在轨道3上经过P 点时的加速度
9、宇宙飞船和空间站在同一轨道上运动,若飞船想与前面的空间站对接,飞船为了追上轨道空间站,可采取的方法是
342121⎪⎪⎭⎫ ⎝⎛=T T g g 341221⎪⎪⎭⎫ ⎝⎛=T T g g 21221⎪⎪⎭⎫ ⎝⎛=T T g g 22121⎪⎪⎭⎫ ⎝⎛=T T g g B
轨道Ⅰ 轨道Ⅱ
飞 A. 飞船加速直到追上空间站,完成对接
B. 飞船从原轨道减速至一个较低轨道,再加速追上空间站完成对接
C. 飞船加速至一个较高轨道再减速追上空间站完成对接
D. 无论飞船采取何种措施,均不能与空间站对接
10、人造地球卫星在轨道半径较小的轨道A 上运行时机械能为E A ,它若进入轨道半径较大的轨道B 运行时机械能为E B ,在轨道变化后这颗卫星( )
A 、动能减小,势能增加,E
B >E A B 、动能减小,势能增加,E B =E A
C 、动能减小,势能增加,E B <E A
D 、动能增加,势能增加,
E B >E A
11、(09·山东·18)2008年9月25日至28日我国成功实施了“神舟”七号载入航天飞行并实现了航天员首次出舱。

飞船先沿椭圆轨道飞行,后在
远地点343千米处点火加速,由椭圆轨道变成高度为343千米
的圆轨道,在此圆轨道上飞船运行周期约为90分钟。

下列判
断正确的是 ( )
A .飞船变轨前后的机械能相等
B .飞船在圆轨道上时航天员出舱前后都处于失重状态
C .飞船在此圆轨道上运动的角度速度大于同步卫星运动的角速度
D .飞船变轨前通过椭圆轨道远地点时的加速度大于变轨后沿圆轨道运动的加速度
12、我国未来将建立月球基地,并在绕月轨道上建造空间站.如图所示,关闭动力的航天飞机在月球引力作用下经椭圆轨道向月球靠近,并将与空间站在B 处对接.已知空间站绕月轨道半径为r ,周期为T ,万有引力常量为G A .图中航天飞机在飞向B 处的过程中,月球引力做正功
B .航天飞机在B 处由椭圆轨道可直接进入空间一站轨道
C .根据题中条件可以算出月球质量
D .根据题中条件可以算出空间站受到月球引力的大小
轨道2。

相关文档
最新文档