用代入消元法解二元一次方程组公开课
第二课时代入消元法解二元一次方程组名师公开课获奖课件百校联赛一等奖课件
5x 2 y
①
100 5x 250 y 22500000 ②
解:把①代入②, 得
整体代入法
100×2y+250y=22500000
解得 y=50000 把y=50000代入① ,得 x=20230
x 20000
y
50000
再议代入消元法
5x 2 y 500x 250 y 22500000
4x+3y=65 ②
解:由①,得 y = 2x + 5 ③
把③代入②,得 4 x+3(2x + 5 )=65
解得 x=5
把x=5代入③,得 y=15
∴原方程组旳解是
x 5
y
15
⑵ 5x+6y=13 ①
7x+18y=-1 ②
解:由①,得6y=13-5x ③
把③代入②得,7x+3(13-5x)=-1
代入消元法旳一般环节
(1)变形:将其中一种方程旳某个未知数用具有另一 种未知数旳代数式表达(即y=ax+b或x=my+n)
(2)代入:将变形后旳方程代入另一种方程中,消去 一种未知数,化二元一次方程组为一元一次方程.
(3)求解:解一元一次方程,得一种未知数旳值.
(4)回代:将求得旳未知数旳值代入到变形后旳方程
(5)写解:用
x a
y
b
旳形式写出方程组旳解.
作业: 1、必做题:课本习题8.2 第2题 2、选做题:
2x 3y 5 二元一次方程组 kx (k 1) y k 2 旳解
x和y相等,则k =
.
知识拓展
3
.
已知
x y
1
2是二元一次方程组
人教版初中数学代入法解二元一次方程组公开课PPT课件
作业
•P97 习题8.2第1、2题
上面的解法,是由二元一次方程组中一 个方程,将一个未知数用含另一个未知数的 式子表示出来,再代入另一个方程,实现消 元,进而求得这个二元一次方程组的解,这 种方法叫代入消元法,简称代入法.
例1 用代入法解方程组
x – y =3
①
3x - 8y=14 ②
解:由①,得:x=y+3 ③ 把③代入②,得 3(y+3) – 8y=14 解这个方程,得y= - 1
问题 1
我校篮球联赛中,每场比赛都要分出胜负,每队
胜1场得2分,负1场得1分。某队在10场比赛中 得到16分,那么这个队胜、负场数分别是多少?
解:设胜x场,负y场.
x y 10 ① 2x y 16 ②
解:设胜x场.
2x(10-x) 16
第一个方程x+y=10可得 y=10-x
x+y=10 ①
2x+y=16 ②
2x+(10-x)=16
问题 1
思考:从
将第二个方程 2x+y=16的y换成
10-x
x+y=10 2x+y=16 到
解得x=6
代入y=10-x
得y=4
x=6
y= 4
2x+(10-x)=16
达到了什么目的?怎样达到的?
二元一次方程组中有两个未知数,如果消去 其中一个未知数,将二元一次方程组转化为我们 熟悉的一元一次方程,我们就可以先解出一个未 知数,然后再设法求另一未知数.这种将未知数的 个数由多化少、逐一解决的思想,叫做消元思想.
1、变形:将方程组里的一个方 程变形,用含有一个未知数的 一次式表示另一个未知数
2、代入求解(把变形后的方 程代入到另一个方程中,消元 后求出未知数的值
(完整版)代入消元法解二元一次方程组公开课课件.ppt
(2)
x 1 y 3
用代入法解方程组
(1)32xx
y 5 4y 2
y 2x 3 (2) 3x 2 y 8
课堂小结
• 解二元一次方程组的基本思想——消 元(即:将二元转化为一元)
• 消元的关键:用含一个未知数的代数式表 示另一未知数(选择一个系数较为简单的 方程变形,将变形后的式子代入另一个方 程得一个一元一次方程)。
总场数= 胜的场数+负的场数 总积分= 胜的积分+负的积分
解:设胜x场,则负(22-x)场, 根据题意得方程
y = 22-x ③
2x+ (22-x) =40 解得 x=18
22-18=4
答:这个队胜18场,只负4场.
把③ 代入② ,得
2x+ 22y-x = 40 解这个方程,得
x=18
设篮球队胜了x场,负了y场. 根据题意得方程组
教学难点:体会代入消元法和化未知为已知的 数学思想
复习巩固:
问题1:什么是二元一次方程?
含有两个未知数,并且所含未知数的项的次数都是1的整 式方程叫做二元一次方程。
问题2:什么是二元一次方程组?
把具有相同未知数的两个二元一次方程合在一起, 就组成了一个二元一次方程组。
问题3:什么是二元一次方程的解?
x y
=2 = -1
写
3、把这个未知数的值代入上 面的式子,求得另一个未知数 的值;
4、写出方程组的解。
变式练习
1. 把下列方程写成用含x的式子表示y的形式.
(1)2x y 3 y 2x 3
(2)3x y 1 0 y 1 3x
2.你能把上面两个方程写成用含y的式子表示x的形式?
(Hale Waihona Puke ) x 3 y8.2 消元
用代入消元法解二元一次方程组公开课课件
用代入消元法解二元一次方程组公 开课课件
• 引言 • 二元一次方程组的基本概念 • 代入消元法的基本原理 • 代入消元法的应用实例 • 代入消元法的注意事项与技巧 • 练习与巩固 • 总结与回顾
01
引言
课程背景
01
学生在学习二元一次方程组时, 需要掌握解二元一次方程组的基 本方法,为后续学习打下基础。
05
代入消元法的注意事项与技巧
注意事项
选择系数较简单的方程进行代入
避免代入后得到一个复杂方程
优先选择系数较简单的方程进行代入,这 样能够简化计算过程。
在选择代入的方程时,应尽量避免代入后 得到的另一个方程的系数过于复杂,以免 增加计算难度。
注意代入顺序
检验解的合理性
在代入过程中,应注意代入的顺序,以避 免出现不必要的计算错误。
实例二:复杂二元一次方程组
总结词:进阶应用
详细描述:选取一个较为复杂的二元一次方程组,例如:3x + 2y = 8 和 5x - y = 11,通过代入消元法逐步求解,展示如何 处理复杂方程。
实例三:实际应用问题
总结词:实际应用
详细描述:选取一个实际应用问题,例如:路程、速度和时 间的问题,将其转化为二元一次方程组,并使用代入消元法 求解,强调方程组的实际意义和应用价值。
示例
方程组 1) 2x + y = 7 和 2) x - y = 3 就是一个二元一次方程组。
二元一次方程组的解法概述
解法
解二元一次方程组的基本方法是通过消元法或代入法来求解 。
步骤
首先,将方程组中的两个方程进行整理,使其中一个未知数 在其中一个方程中消去或用另一个未知数表示出来,然后代 入另一个方程进行求解,直到求出两个未知数的值。
代入法解二元一次方程组公开课教案
代入法解二元一次方程组公开课教案代入法解二元一次方程组公开课教案教学建议一、重点、难点分析本节的教学重点是使学生学会用代入法.教学难点在于灵活运用代入法,这要通过一定数量的练习来解决;另一个难点在于用代入法求出一个未知数的值后,不知道应把它代入哪一个方程求另一个未知数的值比较简便.解二元一次方程组的关键在于消元,即将“二元”转化为“一元”.我们是通过等量代换的方法,消去一个未知数,从而求得原方程组的解.二、知识结构三、教法建议1.关于检验方程组的解的问题.教材指出:“检验时,需将所求得的一对未知数的值分别代入原方程组里的每一个方程中,看看方程的左、右两边是不是相等.”教学时要强调“原方程组”和“每一个”这两点.检验的作用,一是使学生进一步明确代入法是求方程组的解的一种基本方法,通过代入消元的确可以求得方程组的解二是进一步巩固二元一次方程组的解的概念,强调这一对数值才是原方程组的解,并且它们必须使两个方程左、右两边的值都相等;三是因为我们没有用方程组的同解原理而是用代换(等式的传递)来解方程组的,所以有必要检验求出来的这一对数值是不是原方程组的解;四是为了杜绝变形和计算时发生的错误.检验可以口算或在草稿纸上演算,教科书中没有写出.2.教学时,应结合具体的例子指出这里解二元一次方程组的关键在于消元,即把“二元”转化为“一元”.我们是通过等量代换的方法,消去一个未知数,从而求得原方程组的解.早一些指出消元思想和把“二元”转化为“一元”的方法,这样,学生就能有较强的目的性.3.教师讲解例题时要注意由简到繁,由易到难,逐步加深.随着例题由简到繁,由易到难,要特别强调解方程组时应努力使变形后的方程比较简单和代入后化简比较容易.这样不仅可以求解迅速,而且可以减少错误.一、素质教育目标(一)知识教学点1.掌握用代入法解二元一次方程组的步骤.2.熟练运用代入法解简单的二元一次方程组.(二)能力训练点1.培养学生的分析能力,能迅速在所给的二元一次方程组中,选择一个系数较简单的方程进行变形.2.训练学生的运算技巧,养成检验的习惯.(三)德育渗透点消元,化未知为已知的数学思想.(四)美育渗透点通过本节课的学习,渗透化归的数学美,以及方程组的解所体现出来的奇异的数学美.二、学法引导1.教学方法:引导发现法、练习法,尝试指导法.2.学生学法:在前面已经学过一元一次方程的解法,求二元一次方程组的解关键是化二元方程为一元方程,故在求解过程当中始终应抓住消元的思想方法.三、重点、难点、疑点及解决办法(-)重点使学生会用代入法解二元一次方程组.(二)难点灵活运用代入法的技巧.(三)疑点如何“消元”,把“二元”转化为“一元”.(四)解决办法一方面复习用一个未知量表示另一个未知量的方法,另一方面学会选择用一个系数较简单的方程进行变形:四、课时安排一课时.五、教具学具准备电脑或投影仪、自制胶片.六、师生互动活动设计1.教师设问怎样用一个未知量表示另一个未知量,并比较哪种表示形式更简单,如等.2.通过课本中香蕉、苹果的应用问题,引导学生列出一元一次方程或二元一次方程组,并通过比较、尝试,探索出化二元为一元的解方程组的方法.3.再通过比较、尝试,探索出选一个系数较简单的方程变形,通过代入法求方程组解的办法更简便,并寻找出求解的规律.七、教学步骤(-)明确目标本节课我们将学习用代入法求二元一次方程组的`解.(二)整体感知从复习用一个未知量表达另一个未知量的方法,从而导入运用代入法化二元为一元方程的求解过程,即利用代入消元法求二元一次方程组的解的办法.(三)教学步骤1.创设情境,复习导入(1)已知方程,先用含的代数式表示,再用含的代数式表示.并比较哪一种形式比较简单.(2)选择题:二元一次方程组的解是A. B. C. D.第(1)题为用代入法解二元一次方程组打下基础;第(2)题既复习了上节课的重点,又成为导入新课的材料.通过上节课的学习,我们会检验一对数值是否为某个二元一次方程组的解.那么,已知一个二元一次方程组,应该怎样求出它的解呢?这节课我们就来学习.这样导入,可以激发学生的求知欲.2.探索新知,讲授新课香蕉的售价为5元/千克,苹果的售价为3元/千克,小华共买了香蕉和苹果9千克,付款33元,香蕉和苹果各买了多少千克?学生活动:分别列出一元一次方程和二元一次方程组,两个学生板演.设买了香蕉千克,那么苹果买了千克,根据题意,得设买了香蕉千克,买了苹果千克,得上面的一元一次方程我们会解,能否把二元一次方程组转化为一元一次方程呢,由方程①可以得到③,把方程②中的转换成,也就是把方程③代入方程②,就可以得到.这样,我们就把二元一次方程组转化成了一元一次方程,由这个方程就可以求出了.解:由①得:③把③代入②,得:∴把代入③,得:∴解二元一次方程组与解一元一次方程相比较,向学生展示了知识的发生过程,这对于学生知识的形成十分重要.上面解二元一次方程组的方法,就是代入消元法.你能简单说说用代入法解二元一次方程组的基本思路吗?学生活动:小组讨论,选代表发言,教师进行指导.纠正后归纳:设法消去一个未知数,把二元一次方程组转化为一元一次方程.例1 解方程组(1)观察上面的方程组,应该如何消元?(把①代入②)(2)把①代入②后可消掉,得到关于的一元一次方程,求出.(3)求出后代入哪个方程中求比较简单?(①)学生活动:依次回答问题后,教师板书解:把①代入②,得∴把代入①,得∴如何检验得到的结果是否正确?学生活动:口答检验.教师:要把所得结果分别代入原方程组的每一个方程中.给出例1后提出的三个问题,恰好是学生的思维过程,明确了解题思路;教师板演例1,规范了解二元一次方程组的解题格式;通过检验,可使学生养成严谨认真的学习习惯.例2 解方程组要把某个方程化成如例1中方程①的形式后,代入另一个方程中才能消元.方程②中的系数是1,比较简单.因此,可以先将方程②变形,用含的代数式表示,再代入方程①求解.学生活动:尝试完成例2.教师巡视指导,发现并纠正学生的问题,把书写过程规范化.解:由②,得③把③代入①,得∴∴把代入③,得∴∴检验后,师生共同讨论:(1)由②得到③后,再代入②可以吗?(不可以)为什么?(得到的是恒等式,不能求解)(2)把代入①或②可以求出吗?(可以)代入③有什么好处?(运算简便)学生活动:根据例1、例2的解题过程,尝试总结用代入法解二元一次方程组的一般步骤,讨论后选代表发言.之后,看课本第12页,用几个字概括每个步骤.教师板书:(1)变形()(2)代入消元()(3)解一元一次方程得()(4)把代入求解练习:P13 1.(1)(2);P14 2.(1)(2).3.变式训练,培养能力①由可以得到用表示.②在中,当时,;当时,,则;.③选择:若是方程组的解,则()A. B. C. D.(四)总结、扩展1.解二元一次方程组的思想:2.用代入法解二元一次方程组的步骤.3.用代入法解二元一次方程组的技巧:①变形的技巧②代入的技巧.通过这节课的学习,我们要熟练运用代入法解二元一次方程组,并能检验结果是否正确.八、布置作业(一)必做题:P15 1.(2)(4),2.(1)(2)(3)(4).(二)选做题:P15 B组1.【代入法解二元一次方程组公开课教案】。
二元一次方程公开课教案【优秀8篇】
二元一次方程公开课教案【优秀8篇】教学建议这次帅气的为您整理了8篇《二元一次方程公开课教案》,希望可以启发、帮助到大朋友、小朋友们。
元一次方程教学设计篇一一、教材分析《·》本课内容是在学生掌握了二元一次方程组有关概念之后的学习内容,用代入消元法解二元一次方程组是学生接触到的解方程组的第一种方法,是解二元一次方程组的方法之一,消元体现了“化未知为已知”的重要思想,它是学习本章的重点和难点。
学完以后可以帮助我们解决一些实际的问题,也是为了今后学习函数、线性方程组及高次方程组奠定了基础。
二、教学目标1、使学生学会用代入消元法解二元一次方程组。
2、理解代入消元法的基本思想;了解化“未知为已知”的转化过程,体会化归思想。
三、教学重难点1、重点:用代入法解二元一次方程组。
2、难点:在“消元”的过程中能够判断消去哪个未知数,使得解方程组的运算转为较简便的过程。
四、教学过程(1)复习引入在上节课中我们学习了二院一次方程组的有关概念,并学习了二元一次方程组的概念还学会判断一组值是否是二元一次方程组的解的问题,同学们还记得二元一次方程组和二元一次方程组的解的概念吗?追问二元一次方程组既然有解那么它们的解又怎么求呢?设计意图:让学生复习巩固二元一次方程组和二元一次方程组解的概念,追问其他一个抛砖引玉的效果,激起学生的学习兴趣,引出课题。
(2)探究新知此过程通过播放洋葱视频中的代入消元法片段视频,播放致列出二元一次方程组和一元一次后点击暂停,先让学生考虑想清楚两个问题。
一个问题是为什么能用一元一次方程解决的实际问题我们要用二元一次方程组来解决?第二个问题观察二元一次方程组和一元一次方程组之间有何异同?学生想清楚这两个问题后,渗透消元的思想,然后继续播放视频让学生知道二元一次方程组完整的解题过程,并在每一步做出相应的解释,怎么变化而来。
播放视频完后先让学生自主总结归纳解二元一次方程组的基本步骤,教师引导总结。
接着完成配套的3个习题,强化训练。
湘教版数学七年级下册第一章《代入消元法》公开课课件2
(4)5aa3b9b1,13.
作业
2、教科书第13页习题1.2A组第3题:
当 x=2,-2时,代数式 kx+b的值分别是-2,-4. 求 k、b的
值.
3、教科书第13页习题1.2B组第2题: 有一个两位数,个位上的数比十位上的数大 5, 如果把这 两个数的位置进行对换,那么所得的新数与原数的和是 143. 求这个两位数.
y = -7. 把y = -7代入③式得
x = 2. 因此原方程组的解为
中考 试题
例2
y x 4,
方程组 3x y 16. 的解是
解析
将①式代入②式得 x = 5.
把x=4代入① 式得 y = 1.
因此原方程组的解为
.
.
课堂小结
回顾本节课的学习过程,并回答以下问题:
(1)代入法解二元一次方程组大致有哪些步骤? 答:步骤包括变形、代入、解方程、回代、写成解的形 式等等. (2)解二元一次方程组的核心思想是什么? 答:核心思想是“消元思想”.
①
x-y =20.
②
水费
方因程此①方和由程②②中式中的可的x得都x,表y示分小别 亮与家方1月程份①的中天的x然=x,y气+y2费相0, ,同y. 都 ③ 表示水费于,是可以把③代入①式
得
(y+20)+y=60. ④
解方程④,得y=
20
.
把y的值代入③,得x= 40 .
因此原方程组的解是
x y
① ②
解: 由①式得, y=3x+1. ③ 把③式代入②式 ,得
2x+3(3x+1)-3=0,
x =0. 把x=0代入③式 ,得
y = 1. 因此原方程组的解是
《求解二元一次方程组(代入法)》同步课堂教案 (公开课)2022年
5.2 求解二元一次方程组第一课时〔代入法〕一、教学目标〔一〕知识与技能会用代入消元法解二元一次方程组〔二〕过程与方法了解解二元一次方程组的消元思想,初步表达数学研究中“化未知为〞的化归思想,从而“变陌生为熟悉〞〔三〕情感态度价值观利用小组合作探讨学习,使学生领会朴素的辩证唯物主义思想二、教学重点用代入法解二元一次方程组.三、教学难点用代入法解二元一次方程组的根本思想是化归——化陌生为熟悉.四、教学过程〔一〕课题引入上节课我们的老牛和小马的包裹谁的多的问题,经过大家的共同努力,得出了如下二元一次方程组:到底谁的包裹多呢?x-y=2 ①x+1=2(y-1) ②这就需要解这个二元一次方程组.一元一次方程我们会解,二元一次方程组如何解呢?我们大家知道二元一次方程只需要消去一个未知数就可变为一元一次方程,那么我们发现:由①得y=x-2由于方程组相同的字母表示同一个未知数,所以方程②中的y也等于x-2,可以用x-2代替方程②中的y.这样就得到大家会解的一元一次方程了.〔二〕例题讲解我们知道了解二元一次方程组的一种思路,下面我们来做一做例1 解方程组3x+ 2y=14 ①x= y+3 ②解:将②代入①,得3(y+3)+2y = 143y+9+2y=145y =5y=1将y=1代入②,得x=4所以原方程组的解是x=4y=1例2 解方程组2x+3y=16 ①x+4y=13 ②教师先分析:此题不同于例1, (即用含有一个未知数的代数式表示另一个未知数),②式不能直接代入①,那么我们应当怎样处理才能转化为例1②式这样的形式呢? 请同学答复(应先对②式进行恒等变化,把它化为例1中②式那样的形式.)分小组合作完成上述例题,请两个小组的代表上黑板上来板演解:由②,得x=13-4y将③代入①,得2(13-4)S+3y=1626-8y+3y=16-5y=-10y=2将代入③,得x=5所以原方程组的解是x=5y=2〔三〕同学合作议一议上面解方程组的根本思路是什么?主要步骤有哪些?上面解方程组的根本思路是“消元〞——把“二元〞变为“一元〞。
公开课用代入消元法解二元一次方程组
知识梳理
通过本节课的研究,学习,你有 哪些收获?
消 元
转化
基本思路:
二元一次方程组
一元一次方程
一般步骤: 变形
代入
求解
写出
选择系数比较简单的方程进行变形。 变形技巧:
布置作业
习题8.2 第1题 第2题
友情提示:
作业整洁 字体工整 步骤完整
§8.2 消元—解二元一次方程组
——代入消元法
靳鹤云
课前热身
把下列方程写成用含x的式子表示y的形式.
2x ( 1)
( 2) 3x
y3 y 1 0
y 2x 3
y 1 3x
探究
200克 10克
.
.
解二元一次方程组 用代入法 探究
y克 10克 x克 x克 200克 y克 x克 10克
B.先把②变形 C.可先把①变形,也可先把②变形 D.把①、②同时变形
C.3x+2x-4=5
课 后 练
1、若方程5x 2m+n+4y 3m-2n = 9是关于x、y的 二元一次方程,求m 、n 的值.
2、如果∣y + 3x - 2∣+∣5x + 2y -2∣=0, 求 x 、y的 值.
动脑筋 想一想
.
y = x + 10
①
转化
.
x +( x +10) = 200
x + (x+10) y = 200 ②二元一次方程 Nhomakorabea 消 元
转化
一元一次方程
谈谈思路
例1解方程组
2y – 3x = 1 ① 分析 2 y – 3 (y-1) x =1 x=y-1 ②
8.2.1 用代入法解二元一次方程组公开课课件教案教学设计
3 x 2 y 3;
4( x 2) 5 y 1,
(4)
2 x 3( y 2) 3.
x 3,
解:(3)
y 3.
x 3,
(4)
y 1.
3.将一批重490t的货物分配给甲、乙两船运输,现甲船已运
走其任务的7(5),乙船已运走其任务的7(3).在已运走的货
值.
解:
根据已知条件
可列方程组:
2m + n = 1 ①
3m – 2n = 1 ②
由①得 n = 1 –2m ③
把③代入②得:
3m – 2(1 – 2m)= 1
3
m
7
3
把m
代入③,得:
7
3
n 1 2
7
1
n
7
3
1
m的值为 ,n的值为
7
7
练习
1.把下列方程改写成用含x的式子表示y的形式:
课堂练习
y=2 x-3,①
把①代入②,
解:(1)
3 x+2 y=8.②
得3x+2(2x-3)=8,解得x=2.
把x=2代入①,得y=1.
x=2,
所以原方程组的解是
y=1.
课堂练习
2 x-y=5,①
(2)
由①,得y=2x-5.
3 x+4 y=2.②
③把③代入②,得3x+4(2x-5)=2,
x+y=10,①
2x+y=16,②
由①得 y = 10-x. ③
将③代入②得 2x+ (10-x)=16.
解得 x = 6.
把x = 6代入③得y = 4.
消元解二元一次方程组市公开课金奖市赛课一等奖课件
5x-6y= 33 ②
解: ①×3,得 9x+12y= 48 ③
②×2,得 10x-12y= 66 ④
③+④,得 19x= 114
x= 6
把x=6代入①,得 3×6+4y= 16
4y= -2
y= - 1
x= 6
2
因此方程组解是
y= - 1
2
第8页
练一练:
用加减法解下例方程组:
x+2y= 9
1、
3x-2y= -1
知数值。
x y
a b
形式写出方程组解
第2页
做一做:
x+y= 22 ①
用代入法解方程组
2x+y= 40 ②
解:由① ,得 x= 22 - y ③ ………变形
把③代入② ,得 2(22-y)+y= ቤተ መጻሕፍቲ ባይዱ0
………代入
44 –2y +y = 40 -y= -4
………求解
y= 4
把y= 4代入③ ,得x= 18 ………回代
x= 18 . 把x= 18代入①,得y= 4 .
因此原方程组解是 x= 18 y= 4
第4页
思考2: 下例方程组两个方程中,y系数又有什么关系? 联系上面解法,想一想如何解方程组。
4x+10y= 18 ①
9x-10y= 8 ②
分析:两个方程中未知数y系数互为相反数.
解:②+①,4x+10y+9x-10y= 18+8
2、 2x+3y= 6 3x-2y= -2
x= 2
y=3 1 2
x= 6 13
y=
1
9
1.2.1二元一次方程组的解法《代入消元法》ppt课件
二元一次方程组的解法
-----代入消元法
动脑筋 想一想
1、用含x的代数式表示y: x + y = 22
2、用含y的代数式表示x:
x - 7y = 8
说一说
现在我们来解决上节课中1月份天然气费水费 多少元的问题?并且知道x=40,y=20是这个方程 组的一个解,是如何得到的呢?
① ②
.
解析
y = 2x , 2 x + 3 y = 8
将①代入②得 x = 1. 把x=1代入① 得 y = 2. x =1 , 所以原方程组的解为
y =2 .
2x - 3 y = 0 , 5x -7 y = 1 .
① ②
解 从①得, x = 2 y
把③代入 ② ,得
3 5 y - 7 y =1. 2 15 y -14 y =1 , y = 2.
3
③
把y=2代入③ ,得 x = 3 因此原方程组的一个解是
例1 解方程组:
5x - y = -9 , y = - 3 x+1 .
① ②
5x - y = -9 , y = - 3 x+ 1 .
① ②
解 把②代入 ①,得 5x-(-3x+1)=-9. 解得 x = -1 把x=-1代入② ,得 y=4 每位同学把x=-1, 因此原方程组的一个解是
① ②
解: 从①得,
y=3x+1
③
把③代入② ,得 2x+3(3x+1)-3=0 x =0 把x=0代入③ ,得 y=1 因此原方程组的一个解是
公开课用代入消元法解二元一次方程组课件
消元法的原理
消元法是通过对方程组中的两个方程进行加、减、乘等运算,以消去其中一个未 知数的方法。
消元法的关键是选择适当的运算方式,使得在运算过程中能够消去一个未知数, 从而将方程组化为一元一次方程,便于求解。
将二元一次方程组中的一个方程变形, 使其中一个未知数系数为1,或者令 其中一个未知数为0,从而将二元一 次方程组转化为一元一次方程。
代入步骤二
将转化后的一元一次方程代入另一个 二元一次方程中,消去一个未知数, 得到一个关于另一个未知数的一元一 次方程。
消元步 骤
消元步骤一
通过加减消元法或者代入消元法, 消去二元一次方程组中的一个未 知数,将二元一次方程组转化为 一元一次方程。
• 总结词:实际应用
• 详细描述:本实例选取了一个具有实际应用背景的二元一次方程组,通过代入消元法求解该方程组。 • 具体过程:首先分析方程组中各个参数的实际意义和相互关系,选择一个合适的未知数作为基础变量;然后利用代入消元法逐步求解该未知数和其他未知数的值;最后将求得的解应用到实际问题中,验证
其合理性和有效性。 • 结果展示:通过本实例,学生可以了解代入消元法在解决实际问题中的应用价值,提高解决实际问题的能力。
对二元一次方程组解法的回顾
二元一次方程组是由两个一元一次方 程组成的方程组,其解是满足这两个 方程的未知数的值。
解二元一次方程组的方法有多种,如 加减消元法、代入消元法、参数法等。 其中,加减消元法和代入消元法是最 常用的方法。
对代入消元法的应用展望
代入消元法在解二元一次方程组中具有广泛的应用,尤其在处理复杂或特定类型的二元一次方程组时,代入消元法可以发挥 出其独特的优势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n=2
即m 的值是5,n 的值是4.
3n-2n = 1+1
n=2
能力检测
2、如果∣y + 3x - 2∣+∣5x + 2y -2∣= 0,求 x 、y 的值.
解:由题意知, y + 3x – 2 = 0 ① 5x + 2y – 2 = 0 ②
由①得:y = 2 – 3x ③ 把③代入得:
5x + 2(2 – 3x)- 2 = 0
x=2 ∴原方程组的解为3;4y=-15用含y的代数式表示x为(C ) A.-x=4y-15 B.x=-15+4y C. x=4y+15 D.x=-4y+15
2.将y=-2x-4代入3x-y=5可得(B ) A.3x-(2x+4)=5 B. 3x-(-2x-4)=5
C.3x+2x-4=5
2y – 3y + 3 = 1
2y – 3y = 1 - 3
-y = -2
y= 2 把y = 2代入②,得
x=y–1=2–1=1
∴方程组的解是
x=1 y=2
谈谈思路
例1 解方程组
2y – 3x = 1 ① x=y-1 ②
解: 把②代入①得:
变: 2y – 3x = 1 ① x–y=–1 ②
2y – 3(y – 1)= 1
布置作业 1.课本P99-100练习1、2、 3 2.课时检测P43填空、选择
x y
=2 = -1
写
3、把这个未知数的值代入上 面的式子,求得另一个未知数 的值;
4、写出方程组的解。
练一练 用代入法解二元一次方程组
3x+2y=8 ⑴
y=2x-3
2x- y=5 ⑵
3x +4y=2
3x-2y=8 ①
⑴ y=2x-3
②
记得检验:把x=2,y=1代入方程①和②得, 看看两个方程的左边 是否都等于右边.
3.3 消元
——用代入法解二元一次方程组 (第1课时)
回顾与思考
问题1:什么是二元一次方程? 含有两个未知数,并且所含未知数的项的次数都是1的
方程叫做二元一次方程。
问题2:什么是二元一次方程组? 把具有相同未知数的两个二元一次方程合在一起, 就组成了一个二元一次方程组。
问题3:什么是二元一次方程的解?
解:把② 代入①得,3x- 2(2x-3)= 8
解得,x= 2 把x = 2 代入②得 y=2×2-3, y= 1
∴原方程组的解为
x= 2 y=1
2x- y=5 ①
⑵
3x +4y=2 ②
解:由①得,y=2x-5③ 把③代入②得,3x+4(2x-5)=2
解得,x=2 把x=2代入③得,y=2×2-5,y=-1
5x + 4 – 6x – 2 = 0 5x – 6x = 2 - 4
把x = 2 代入③,得: y= 2 - 3×2 y= -4
∴ x=2 y = -4
即x 的值是2,y 的值是-4.
-x = -2 x=2
知 识 梳 理 通过本节课的研究,学习,你有
哪些收获?
x 2
(1)3x
2
y
; 4
使二元一次方程两边的值相等的两个未知数的值, 叫做二元一次方程的解. 问题4:什么是二元一次方程组的解?
二元一次方程组的两个方程的公共解,叫做二元 一次方程组的解。
课前热身
1. 把下列方程写成用含x的式子表示y的形式.
(1)2x y 3
y 2x 3
(2)3x y 1 0 y 1 3x
能力检测
1、若方程5x
1 m-2n+4y
1
3n-m
=
9是关于x、y的二元一次方程,
求m 、n 的值.
解:由题意知, m - 2n = 1 ① 3n – m = 1 ②
由①得:m = 1 +2n ③
把n =2 代入③,得:
m = 1 +2n
1 22 5
m =5
把③代入②得: 3n –(1 + 2n)= 1 3n – 1 – 2n = 1
2.你能把上面两个方程写成用含y的式子表示x的形式?
(1) x 3 y
2
(2)
x 1 y 3
3.如何解这样的方程组
谈谈思路
例1 解方程组
2y – 3x = 1 x=y-1
① ②
分析
2 y – 3 (yx-1) = 1
解: 把②代入①得:
2y – 3(y – 1)= 1
x = y -1
2y – 3y + 3 = 1
2y – 3y = 1 - 3
-y = -2
y= 2
把y = 2代入②,得
x=y–1=2–1=1
∴方程组的解是
x=1 y=2
说说方法
例2 解方程组
x –y = 3 ① 3x -8 y = 14 ②
用代入法解二元一次 方程组的一般步骤
解:由①得:x = 3+ y ③ 变
(2)2xx54yy
; 7
x y 3 (3)3x 2y 5;
(4)36xx
3y 3y
7 5;
3x 2y 5 (5)4x 3y 1.
消元
基本思路: 二元一次方程组
一元一次方程
转化
一般步骤: 变形 代入 求解 写出
变形技巧:选择系数比较简单的方程进行变形。
D. 3x-2x+4=5
3.用代入法解方程组 A.先把①变形
2x+5y=21 x +3y=8
较为简便的方法是( B
)
B.先把②变形
C.可先把①变形,也可先把②变形
D.把①、②同时变形
能力检测
1、若方程5x 2m+n+4y 3m-2n = 9是关于x、y的 二元一次方程,求m 、n 的值.
2、如果∣y + 3x - 2∣+∣5x + 2y -2∣=0, 求 x 、y的 值.
1、将方程组里的一个方程变 形,用含有一个未知数的式子
把③代入②得:
表示另一个未知数;
3(3+y)– 8y= 14 代 2、用这个式子代替另一个方
程中相应的未知数,得到一个
9+3y– 8y= 14
一元一次方程,求得一个未知
– 5y= 5
数的值;
y= – 1 求
把y= – 1代入③,得
x = 3+(-1)=2 ∴方程组的解是