20届高三上学期11月月考数学试题

合集下载

四川省成都市石室中学2024-2025学年高三上学期11月期中考试数学试题(含解析)

四川省成都市石室中学2024-2025学年高三上学期11月期中考试数学试题(含解析)

成都石室中学2024~2025学年度上期高2025届十一月月考数学试卷一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的.1.已知集合,集合,则()A. B. C. D.2.已知为单位圆的内接正三角形,则( )A. B.C.1D.3.已知角的终边上一点( )A. B. C. D.4.巴黎奥运会期间,旅客人数(万人)为随机变量,且.记一天中旅客人数不少于26万人的概率为,则的值约为( )(参考数据:若,有,,)A.0.977B.0.9725C.0.954D.0.6835.已知非零向量,满足,且向量在向量上的投影向量是,则与的夹角是( )A .B .C .D .6.关于的方程在上有( )个实数根.A.1B.2C.3D.47.已知,是定义域为R 的函数,且是奇函数,是偶函数,满足,若对任意的,都有成立,则实数a 的取值范围是( )(){}ln 1A xy x ==-∣{}xB y y e -==∣A B = ()0,1()1,2()1,+∞()2,+∞ABC V O B B C O ⋅=32-321-α()1,2M -32=⎪⎝⎭22-44-X ()2~30,2X N 0p 0p ()2~,X Nμσ()0.683P X μσμσ-<≤+≈()220.954P X μσμσ-<≤+≈()330.997P X μσμσ-<≤+≈a b ()()22a b a b +⊥- a b 14b a bπ6π3π22π3x 2sin sin2cos cos 222x x xx x =(,)ππ-()f x ()g x ()f x ()g x ()()22f x g x ax x +=++1212x x <<<()()12123g x g x x x ->--A. B. C. D.8.已知,若关于的不等式在上恒成立,则的最小值是( )A. B. C. D.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数的部分图象如图所示,则下列说法正确的是( )A.的图象关于直线对称B.在上单调递增C.是奇函数D.将图象上所有点的横坐标变为原来的2倍,得到函数的图象10.已知为函数的一个零点,则( )A.的图象关于对称 B.的解集为C.时, D.时,,则的最大值为411.已知函数与及其导函数f ′(x )与的定义域均为.若为奇函数,,,则( )A. B.[)0,∞+3,04⎡⎤-⎢⎥⎣⎦3,4∞⎛⎫-+ ⎪⎝⎭3,4∞⎡⎫-+⎪⎢⎣⎭0,a b >∈R x ()()2110ax x bx -+-≥()0,∞+5b a+48()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>><⎪⎝⎭()f x 5π12x =-()f x π,π2⎡⎤⎢⎥⎣⎦2π3f x ⎛⎫-⎪⎝⎭()f x π2sin 3y x ⎛⎫=+ ⎪⎝⎭1-3()3f x x x a =-+()f x (0,2)-()0f x <(,2)-∞(0,1)x ∈()2()f xf x <[,]x m n ∈()[4,0]f x ∈-n m -()f x ()g x ()g x 'R ()f x ()()22f x g x +-=()()12f x g x '+'+=()()264g g -+=()00f '=C.曲线关于点中心对称D.三、填空题:本大题共3小题,每小题5分,共计15分.12.若复数满足,则__________.13.已知某次数学期末试卷中有8道四选一的单选题,学生小万能完整做对其中4道题,在剩下的4道题中,有3道题有思路,还有1道完全没有思路,有思路的题做对的概率为,没有思路的题只能从4个选项中随机选一个答案.若小万从这8个题中任选1题,则他做对的概率为______.14.已知数列{a n }满足,,其中为函数的极值点,则______.四、解答题:共77分.解答应写出文字说明,证明过程或演算步骤.15.(本小题13分)为提高学生的数学应用能力和创造力,石室中学打算开设“数学建模”选修课,为了解学生对“数学建模”的兴趣度是否与性别有关,学校随机抽取该校30名高中学生进行问卷调查,其中认为感兴趣的人数占70%.感兴趣不感兴趣合计男生12女生5合计30(1)根据所给数据,完成下面的2×2列联表,并根据列联表判断,依据小概率值α=0.15的独立性检验,分析学生对“数学建模”选修课的兴趣度与性别是否有关?(2)若感兴趣的女生中恰有4名是高三学生,现从感兴趣的女生中随机选出3名进行二次访谈,记选出高三女生的人数为X ,求X的分布列与数学期望附:,其中.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82816.(本小题15分)如图所示,在四棱锥中,,,.(1)若平面,,证明:(2)若底面,,,二面角的长.()y f x ='1,12⎛⎫⎪⎝⎭2025120252k k g =⎛⎫= ⎪⎝⎭'∑z 33i1iz -=+1z +=23()1*1e n a n a n ++=∈N 2303aa x +=0x y =()12e 1x x x +->123a a a +-=()()()()()22n ad bc K a b c d a c b d -=++++n a b c d =+++αx αP ABCD -2AC =1BC =AB =//AD PBC AD ⊥PA PB AD ⊥PA ⊥ABCD AD CD ⊥AD =A CP D --PA17.(本小题15分)设的内角,,所对的边分别为,且.(1)求(2)若,求的周长;(3)如图,点是外一点,设且,记的面积,求关于的关系式,并求的取值范围.18.已知抛物线的焦点为,直线过点交于,两点,在,两点的切线相交于点,的中点为,且交于点.当垂直于轴时,长度为4;(1)求的方程;(2)若点的横坐标为4,求;(3)设在点处的切线与,分别交于点,,求四边形面积的最小值.19.(本小题17分)已知函数,.(1)当时,函数恒成立,求实数的最大值;(2)当时,若,且,求证:;(3)求证:对任意,都有.ABC V A B C ,,a b c ()()sin ()(sin sin ),a c B C b c B C -⋅+=-⋅+b =;B 3BA BC +=ABC V D ABC V BAC DAC θ∠=∠=2π3ADC ∠=BCD △S S θS 2:2(0)C x py p =>F l F C A B C A B P AB Q PQ C E AB y AB C P QE C E PA PB M N ABNM ()21ln 2f x x x ax =+-()0a >[)1,x ∈+∞()32f x ≥-a 2a =()()123f x f x +=-12x x ≠122x x +>*N n ∈()2112ln 1ni i n n i =-⎛⎫++> ⎪⎝⎭∑成都石室中学2024-2025学年度上期高2025届11月半期考试数学参考答案双向细目表题号题型分值难度预估内容具体内容1单项选择题50.95集合集合运算2单项选择题50.9向量数量积3单项选择题50.8三角函数诱导公式、倍角公式4单项选择题50.75正态分布正态分布5单项选择题50.7向量投影向量6单项选择题50.7三角函数三角函数图象分析7单项选择题50.5函数性质函数奇偶性及单调性分析8单项选择题50.4不等式不等式9多项选择题60.8三角函数正弦函数图象特点分析10多项选择题60.5函数三次函数图象分析11多项选择题60.3函数性质函数奇偶性、对称、周期性分析12填空题50.8复数复数计算13填空题50.5概率概率计算14填空题50.3函数数列及函数零点15(1)解答题60.8检验15(2)解答题70.7概率统计分布列16(1)解答题30.8线线垂直证明16(2)解答题40.7立体几何二面角17(1)解答题40.7正余弦定理应用17(2)解答题50.6解斜三角形求周长17(3)解答题60.4解斜三角形解斜三角形求面积18(1)解答题50.6抛物线方程18(2)解答题60.6切线问题18(3)解答题60.4解析几何四边形面积19(1)解答题50.7函数恒成立问题19(2)解答题60.5利用函数单调性证明自变量大小19(3)解答题60.3导数数列不等式证明答案及解析1.【参考答案】C【解题思路】由题意可知,,2K (){}ln 1{10}{1}A x y x x x x x ==-=->=>∣∣∣,所以.故选C.2.【参考答案】B【解题思路】如图,延长交于点.因为单位圆半径为,为单位圆的内接正三角形,所以.又因为是正的中心,所以,,所以.设的边长为.由勾股定理,得,即,解得(负值已舍去),所以,易得,的夹角为,所以.故选B.3.【参考答案】C【解题思路】由三角函数定义知,,,所以.故选C.4.【参考答案】A【解题思路】因为,所以,,所以.根据正态曲线的对称性可得,.故选A.5.【参考答案】B【解题思路】因为,所以,所以.因为向量在向量上的投影向量是,所以,即,所以.又因为,所以与的夹角是.故选B.6.【参考答案】C【解题思路】当时,,原方程化为.令{}e{0}xB y y y y-===>∣∣()1,A B=+∞AO BC D O1ABC△O1OA OB OC===O ABC△AD BC⊥1122OD OA==32AD OA OD=+=ABC△a222AB AD BD=+2223122a a⎛⎫⎛⎫=+⎪ ⎪⎝⎭⎝⎭a=1BO=BC=BOBC6π3cos62BO BC BO BCπ⋅=⋅⋅=2tan21α==--cos0α<2sin2tan43cos2ααα===-=-⎪⎝⎭()230,2X N~30μ=2σ=()26340.954P X<≤≈()()()10.954262634340.9540.9772p P X P X P X-=≥=<≤+>≈+=()()22a b a b+⊥-()()222240a b a b a b+⋅-=-=2b a=a b14b1cos,4ba ab bb⋅=11cos,24a b b b⋅=1cos,2a b=[],0,a bπ∈a b3π(),xππ∈-cos02x≠1tan sin2sin2223xx x xπ⎛⎫==-⎪⎝⎭,,则原方程的解的个数即为函数与的图象在上的交点个数.作出函数和的大致图象如图,在上单调递增,,,,由图可知函数和在上有3个交点,即原方程在上有3个实数根.故选C.7.【参考答案】D【解题思路】由题意可得,.因为是奇函数,是偶函数,所以.联立解得.又因为对于任意的,都有成立,所以,即成立.构造,所以在上单调递增.若,则对称轴,解得;若,则在上单调递增,满足题意;若,则对称轴恒成立.综上所述,.故选D.8.【参考答案】A【解题思路】设,.因为,所以在上单调递增.当时,;当时,.因为的图象开口向上,,所以方程有一正根一负根,即函数在上有且仅有一个零点,且为异号零点.由题意可得,,则当时,;当时,,所以是方程的根,则,即,且,所以,当且仅当时等()sin 23f x x π⎛⎫=- ⎪⎝⎭()tan 2x g x =()f x ()g x (),ππ-()f x ()g x ()tan2xg x =(),ππ-tan 124g ππ⎛⎫== ⎪⎝⎭5sin 1122f ππ⎛⎫== ⎪⎝⎭5122ππ<()f x ()g x (),ππ-(),ππ-()()22f x g x ax x -+-=-+()f x ()g x ()()22f x g x ax x -+=-+()()()()222,2,f xg x ax x f x g x ax x ⎧+=++⎪⎨-+=-+⎪⎩()22g x ax =+1212x x <<<()()12123g x g x x x ->--()()121233g x g x x x -<-+()()112233g x x g x x +<+()()2332h x g x x ax x =+=++()232h x ax x =++()1,2x ∈0a <0322x a =-≥304a -≤<0a =()32h x x =+()1,2x ∈0a >0312x a =-≤3,4a ⎡⎫∈-+∞⎪⎢⎣⎭()1f x ax =-()21g x x bx =+-0a >()f x ()0,+∞10x a <<()0f x <1x a>()0f x >()g x ()01g =-()0g x =()g x ()0,+∞()()0f x g x ≥10x a <<()0g x ≤1x a >()0g x ≥1a210x bx +-=2110b a a +-=1b a a=-0a >544b a a a +=+≥=2a =号成立.故选A.9.【参考答案】ACD【解题思路】由图象可得,,,故,代入点,易得,所以.因为,所以当时函数取得最小值,即直线为函数的一条对称轴,故A 正确;由对称性可知,在上单调递减,上单调递增,故B 错误;为奇函数,故C 正确;将的图象上所有点的横坐标变为原来的2倍,得到函数的图象,故D 正确.故选ACD.10.【参考答案】AD【解题思路】因为,即,所以,所以,所以的图象关于(0,-2)对称,故A 正确;当时,且,故B 错误;当时,,而,所以在(0,1)上单调递减,所以,故C 错误;,,所以在区间,上,即单调递增;在区间(-1,1)上,即单调递减,,,,画出的大致图象如图.因为当时,,所以由图可知,的最大值为,故D 正确.故选AD.11.【参考答案】ACD【解题思路】令,得;令,得.因为为奇函数,所以,则,故A 正确;因为为奇函数,所以为偶函数,则求2A =4312T πππ⎛⎫=-=⎪⎝⎭2ω=,212π⎛⎫⎪⎝⎭3πϕ=()2sin 23f x x π⎛⎫=+ ⎪⎝⎭521232πππ⎛⎫⋅-+=- ⎪⎝⎭512x π=-()f x 512x π=-()f x ()f x 7,1212ππ⎡⎤⎢⎥⎣⎦713,1212ππ⎡⎤⎢⎥⎣⎦()22sin 22sin23f x x x ππ⎛⎫-=-=- ⎪⎝⎭()f x 2sin 3y x π⎛⎫=+ ⎪⎝⎭()1130f a -=-++=2a =-()()()233212f x x x x x =--=+-()()4f x f x +-=-()f x ()()()2120f x x x =+-<1x ≠-2x <01x <<201x x <<<()2330f x x =-<'()f x ()()2f x f x >()332f x x x =--()()()233311f x x x x =-=+-'(),1-∞-()1,+∞()0f x '>()f x ()0f x '<()f x ()10f -=()14f =-()24f -=-()f x [],x m n ∈()[]4,0f x ∈-n m -()224--=4x =()()422f g +-=4x =-()()462f g -+=()f x ()()f x f x =--()()264g g -+=()f x ()f x '不出,故B 错误;因为,所以.又,所以,则关于中心对称.因为,所以结合函数图象平移可得,关于点中心对称,故C 正确;由为偶函数,点为对称中心,得的周期为2,且,.又,所以,所以.因为,所以,所以,故D 正确.故选ACD.12.【解题思路】由题意知,,所以.13.【参考答案】【解题思路】设小万从这8道题中任选1道题且作对为事件,选到能完整做对的4道题为事件,选到有思路的3道题为事件,选到完全没有思路的题为事件,则,,.由全概率公式,得.14.【参考答案】【解题思路】因为,所以,.因为,,所以.因为在上单调递增,所以,,,所以.又因为,所以,所以.()00f '=()()22f x g x +-=()()20f x g x '--='()()12f x g x '++='()()122g x g x '++-='()g x '3,12⎛⎫⎪⎝⎭()2(1)f x g x '=-+'()f x '1,12⎛⎫⎪⎝⎭()f x '1,12⎛⎫⎪⎝⎭()f x '()()12f x f x '+-='11122f f ''⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭()()12g x f x +='-'()()21g x f x =-'-'2025202520251112140501222k k k k k k g f f ===⎛⎫⎛⎫⎛⎫⎛⎫=--=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭'''∑∑∑()()41111014222k k f f f f f =⎛⎫⎛⎫⎛⎫-=-+++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭'''''∑202512025202311450612024202420252222k k f f f f =⎛⎫⎛⎫⎛⎫⎛⎫-=⨯+-=+=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭''⎭'⎝'⎭⎝∑2025120252k k g =⎛⎫= ⎪'⎝⎭∑()()()()33133333331112i i i i i z i i i i ------====-++-131z i +=-+=2532A B C D ()4182P B ==()38P C =()18P D =()()()()()()()132112512838432P A P B P A B P C P A C P D P A D =++=⨯+⨯+⨯=∣∣∣ln2-1e2x y x +=-'010e 2x x +=01x >11e n a n a ++=2303a a x +=021120000e 32e x a a x x x x +++==+=+1e x y x +=+R 20a x =302a x =120ln 1ln 1a a x =-=-12300ln 1a a a x x +-=--010e 2x x +=0001ln2ln2ln x x x +==+12300ln 1ln2a a a x x +-=--=-15.解:(1)列联表如下:感兴趣不感兴趣合计男生12416女生9514合计21930零假设为:学生对“数学建模”选修课的兴趣度与性别无关,……5分依据小概率值的独立性检验,没有充分证据推断不成立,因此可以认为成立,即学生对“数学建模”选修课的兴趣度与性别无关.……6分(2)由题意可知,的取值可能为0,1,2,3,……7分则,,,,……11分故的分布列如下:0123.……13分16.(1)证明:因为,,,即,所以,即.因为平面,平面,面面,所以,……3分所以.因为,,所以平面,所以.……6分(2)解:因为底面,,底面,所以,.又,所以,以点为原点,以,所在的直线为,轴,过点作的平行线为轴,建立空间直角坐标系如图所示.令,则,,,,,,,.设平面的法向量为,0H ()223012549200.4082 2.072.161421949K⨯⨯-⨯==≈<⨯⨯⨯0.15α=0H 0H X ()35395042CP X C ===()12453910121C C PX C ===()2145395214C C P X C ===()34391321CP X C ===X X P5421021514121()5105140123422114213E X =⨯+⨯+⨯+⨯=2AC =1BC =AB =222BC AB AC +=90ABC ∠=BC AB ⊥AD ∥PBC AD ⊂ABCD ABCD PBC BC =AD BC ∥AD AB ⊥AD PA ⊥PA AB A = AD ⊥PAB PB AD ⊥PA ⊥ABCD CD AD ⊂ABCD PA CD ⊥PA AD ⊥AD CD ⊥CD ==D DA DC x y D PA z PA t =)A)Pt ()0,0,0D ()C ()AC =()0,0,AP t = DC =)DP t =ACP ()1111,,n x y z =所以即令,则,,所以.……9分设平面的法向量为,所以即令,则,,所以.……11分因为二面角,二面角为锐角,,解得,所以.……15分17.解:(1)由正弦定理可知,,所以,所以,即.由余弦定理,所以.……4分(2)因为,所以等号两边同时平方可得,.又由(1)知,所以,即,所以,所以的周长为.……7分(3)由正弦定理可得,,即,110,0,n AC n AP ⎧=⎪⎨=⎪⋅⎩⋅1110,0,tz ⎧=⎪⎨=⎪⎩11x =11y =10z =()11,1,0n =CPD ()2222,,n x y z =220,0,n DP n DC ⎧=⎪⎨=⎪⋅⎩⋅ 2220,0,tz +==2z =2x t =-20y =(2n t =-A CP D --121212cos ,n n n n n n ⋅===2t =2PA =sin sin sin a b cA B C==()()sin sin sin sin sin sin sin sin sin B C A A a b cB CB CB C b c a cπ+--====++++-222a acbc -=-222a cb ac +-=2221cos 222a c b ac B ac ac +-===3B π∠=3BA BC += 229a c ac ++=223a c ac +-=226a c +=3ac =a c ==ABC △a b c ++=2sin sin BC ACABCθ∠===2sin BC θ=,即.因为四边形的内角和为,且,所以,所以.……11分(可以有多种表达形式,化简正确都得分),记,令,则.因为在中,所以,所以,所以当时,恒成立.当,即时,;当,即时,,则……15分18.解:(1)由题意可知,直线的斜率必存在.当垂直于轴时,点,,此时,即,所以抛物线的方程为.……5分(2)设直线的方程为,,.联立得,所以,,则.将代入直线,得,则的中点.因为,所以,则直线的方程为,即.同理可得,直线的方程为,所以,,所以.因为,则,所以,此时,,所以直线的方程为,代入,得,所以,所以2sin sin CD ACADCθ∠===2sin CD θ=ABCD 2πABC ADC ∠∠π+=2BCD πθ∠-=()211sin 2sin 2sin sin 22sin sin222S BC CD BCD ∠θθπθθθ=⋅=⨯⨯⨯-=⨯()22sin sin21cos2sin2sin2sin2cos2S θθθθθθθ=⨯=-=-2x θ=()sin sin cos f x x x x =-()()()()222cos cos sin 2cos cos 12cos 1cos 1f x x x x x x x x =-'-=-++=+-+ACD △03πθ<<203x π<<1cos 12x -<<1cos 12x -<<()0f x '>1cos 2x =-23x π=23f π⎛⎫= ⎪⎝⎭cos 1x =0x =()00f =()0f x <<0S <<l AB y ,2p A p ⎛⎫ ⎪⎝⎭,2p B p ⎛⎫- ⎪⎝⎭24AB p ==2p =C 24x y =l 1y kx =+()11,A x y ()22,B x y 21,4,y kx x y =+⎧⎨=⎩2440x kx --=124x x k +=124x x =-2Q x k =2Q x k =1y kx =+221Q y k =+AB ()22,21Q k k +24x y =2x y '=PA ()1112x y y x x -=-2111124y x x x =-PB 2221124y x x x =-()2212121211442122P x x x x x k x x -+===-21212111112244P x x x x y x x +=⋅-==-()2,1P k -4P x =24k =2k =()4,9Q ()4,1P -PQ 4x =24x y =4y =()4,4E.……10分(3)由(2)知,,,所以直线的方程为,代入,得,所以,所以为的中点.因为抛物线在点处的切线斜率,所以抛物线在点处的切线平行于.又因为为的中点,所以.因为直线的方程为,所以.又到直线的距离.,当且仅当时取“”,所以,所以四边形的面积的最小值为3.……17分19.(1)解:当时,恒成立,即恒成立,只需即可.令,,则.令,,则,当时,恒成立,即在上单调递增,所以,所以在上恒成立,即在上单调递增,所以,945QE =-=()22,21Q k k +()2,1P k -PQ 2x k =24x y =2y k =()22,E k k E PQ C E 22ky k '==C E AB E PQ 34ABP ABNM S S =△四边形AB 1y kx =+()()()2121212112444AB y y p kx kx k x x k =++=++++=++=+()2,1P k -AB h 1122ABP S AB h =⋅=△()()322244414kk +⋅=+≥0k ==334ABP ABNM S S =≥△四边形ABNM 1x ≥213ln 022x x ax +-+≥ln 1322x a x x x ≤++min ln 1322x a x x x ⎛⎫≤++ ⎪⎝⎭()ln 1322x g x x x x =++1x ≥()22221ln 132ln 1222x x x g x x x x -'--=+-=()22ln 1h x x x =--1x ≥()22222x h x x x x-=-='1x ≥()0h x '≥()h x [)1,+∞()()10h x h ≥=()0g x '≥[)1,+∞()g x [)1,+∞()()min 12g x g ==所以,即实数的最大值为2.……5分(2)证明:因为当时,,,所以,即在上单调递增.又,,且,所以不妨设.要证,即证明.因为在上单调递增,即证.因为,即证.设,,令,,则,.因为,所以,即在(0,1)上单调递增,所以,即,所以成立,所以.……11分(3)证明:由(2)可知,当时,在上单调递增,且.由,得,即.令,则,即,所以,,,,,相加得.……17分2a ≤a 2a =()21ln 22f x x x x =+-0x >()()21120x f x x x x-=+-=≥'()f x ()0,+∞()312f =-()()123f x f x +=-12x x ≠1201x x <<<122x x +>212x x >-()f x ()0,+∞()()212f x f x >-()()123f x f x +=-()()1123f x f x +-<-()()()()()()221123ln 2ln 2222322F x f x f x x x x x x x =+-+=+-+-+---+=()()()2ln 221ln 221x x x x x x x x ⎡⎤⎡⎤-+-+=---+⎣⎦⎣⎦01x <<()2t x x =-01t <<()ln 1t t t ϕ=-+()111tt t tϕ-=-='01t <<()0t ϕ'>()t ϕ()()10t ϕϕ<=()()()230F x f x f x =+-+<()()1123f x f x +-<-122x x +>2a =()f x ()1,+∞()()312f x f >=-213ln 2022x x x +-+>22ln 430x x x +-+>()22ln 21x x +->1n x n +=2112ln 21n n n n ++⎛⎫+-> ⎪⎝⎭2112ln 1n n n n +-⎛⎫+> ⎪⎝⎭22112ln 111-⎛⎫+> ⎪⎝⎭23122ln 122-⎛⎫+> ⎪⎝⎭24132ln 133-⎛⎫+> ⎪⎝⎭ 2112ln 1n n n n +-⎛⎫+> ⎪⎝⎭()2112ln 1ni i n n i =-⎛⎫++> ⎪⎝⎭∑。

安徽省合肥市第一中学2025届高三上学期教学质量检测(11月月考)数学试题(含答案)

安徽省合肥市第一中学2025届高三上学期教学质量检测(11月月考)数学试题(含答案)

安徽省合肥市第一中学2025届高三上学期教学质量检测(11月月考)数学试题一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知集合A={x|y=log3(x2−1)},集合B={y|y=3−x},则A∩B=( )A. (0,1)B. (1,2)C. (1,+∞)D. (2,+∞)2.若sinθ(sinθ+cosθ)=25,则tanθ=( )A. 2或−13B. −2或13C. 2D. −23.已知函数f(x)=a−e x1+ae x⋅cos x,则“a=1”是“函数f(x)的是奇函数”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4.函数f(x)={ax2+e x,x≥0x3−ax2+a,x<0在R上单调,则a的取值范围是( )A. (0,1)B. (0,1]C. [0,1)D. [0,1]5.在▵ABC中,内角A,B,C的对边分别为a,b,c,已知▵ABC的外接圆半径为1,且a2+c2−b2=2ac,1+2sin A 1−2cos A =sin2C1+cos2C,则▵ABC的面积是( )A. 22B. 32C. 1D. 26.已知一个正整数N=a×1010(1≤a<10),且N的15次方根仍是一个整数,则这个数15次方根为().(参考数据:lg2≈0.3,lg3≈0.48,lg5≈0.7)A. 3B. 4C. 5D. 67.已知函数f(x)=x ln x,g(x)=e x−x2+a,若∃x1,x2∈[1,2],使得f(x1)=g(x2),则实数a的取值范围是( )A. (4−e2,ln4+1−e)B. [4−e2,ln4+1−e]C. (ln4+4−e2,1−e)D. [ln4+4−e2,1−e]8.已知正数x,y满足9x2−1+9y2−1=9xy,则4x2+y2的最小值为( )A. 1B. 2C. 3D. 4二、多选题:本题共3小题,共18分。

湖南省三湘名校教育联盟2024-2025学年高三上学期11月月考(第二次大联考)数学试题含答案

湖南省三湘名校教育联盟2024-2025学年高三上学期11月月考(第二次大联考)数学试题含答案

湖南省三湘名校教育联盟2024-2025学年高三上学期第二次大联考(11月)数学试题(答案在最后)本试卷共4页.全卷满分150分,考试时间120分钟.注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在本式卷和答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应的答案标号涂黑,如有改动,用橡皮擦干净后,再选涂其他答案;回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本式卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{40},{31}A xx B x x =-=-∣∣ ,则集合A B 中所含整数的个数为A.2 B.3C.4D.52.已知3i12iz -=+,则z 的虚部为A.75B.75-C.15-D.153.“202520251ab>”是“33a b >”的A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.已知()1sin 104θ︒+=-,则()sin 2110θ︒+=A.78B.18C.18-D.78-5.经研究表明:光源发射出来的粒子在没有被捕获之前属于光子,光子在离开光源后会与各种粒子撞击,其动量可能会改变,导致其速度降低,最终可能改变身份成为其他范围的粒子(如红外线粒子),不再能被人类的感光设备捕获.已知在某次光学实验中,实验组相关人员用人类感光设备捕获了从同一光源发射出来的两个光子A ,B ,通过数学建模与数据分析得知,此时刻在平面直角坐标系中它们的位移所对应的向量分别为(4,3),(2,10)A B s s == ,设光子B 相对光子A 的位移为s ,则s 在A s上的投影向量的坐标为A.43,55⎛⎫⎪⎝⎭B.(2,7)- C.5239,2525⎛⎫⎪⎝⎭ D.43,2525⎛⎫⎪⎝⎭6.已知等差数列{}n a 的前n 项和为n S ,公差为1,2d a =也为等差数列,则d 的值为A.2B.3C.4D.87.已知函数1()ln 2(1)x f x x m x m+=+≠+关于点(,4)n 中心对称,则曲线()y f x =在点(n m -,())f n m -处的切线斜率为A.14 B.74C.38D.1388.ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且πcos cos 2,3b Cc B A +==,则ABC 的内切圆半径的最大值为A.2B.3C.2D.1二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知正数x ,y 满足21x y +=,则A.81xy B.1412x y+ C.22142x y +D.1(1)4x y +10.三棱台111ABC A B C -中,112AB A B =,设AB 的中点为1,E AA 的中点为1,F A E 与BF 交于点1,G A C 与1C F 交于点H ,则A.直线GH 与直线1BB 异面B.1//GH BC C.线段AE 上存在点P ,使得1//BC 平面1A PCD.线段BE 上存在点P ,使得1//BC 平面1A PC11.设函数2()e ,x f x nx n n +=-+∈N ,记()f x 的最小值为n a ,则A.122a a >- B.1n a n +C.()()n f a f n > D.n m n ma a a +>+三.填空题:本题共3小题,每小题5分,共15分.12.已知命题:“2,20x ax ax ∀∈--<R ”为真命题,则a 的取值范围是______.13.已知P 为边长为4的正六边形ABCDEF 内部及其边界上的一点,则AP AB ⋅的取值范围是______.14.三棱锥P ABC -中,AB AC AB AC ==⊥,平面PBC ⊥平面ABC ,且PB PC =.记P ABC -的体积为V ,内切球半径为r ,则21r V-的最小值为______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)已知函数()2cos 2,(0,π)f x x x x =+∈.(1)求()f x 的单调递减区间;(2)若()f x 在π,12m ⎡⎤⎢⎥⎣⎦上的最小值为-2,求m 的取值范围.16.(本小题满分15分)记首项为1的数列{}n a 的前n 项和为n S ,且2(1)n n S n a =+.(1)探究数列n a n ⎧⎫⎨⎬⎩⎭是否为单调数列;(2)求数列{}2na n a ⋅的前n 项和nT .17.(本小题满分15分)如图,四棱柱1111ABCD A B C D -中,四边形ABCD 是菱形,四面体11A BC D 的体积与四面体111A B BC 的体积之差为12,A BD 的面积为(1)求点A 到平面1A BD 的距离;(2)若11111,,2A B A D A B A C BD =⊥=,求锐二面角11A BD C --的余弦值.18.(本小题满分17分)已知函数2()ln 2x f x ax ax x =+-在(0,)+∞上有两个极值点12,x x ,且21x x <.(1)求a 的取值范围;(2)当21(1,e)x x ∈时,证明:122eln ln e 1x x <+<+.19.(本小题满分17分)对于(2,3,)m m = 项数列{}n a ,若满足111m miii i a am ==-=-∑∑,则称它为一个满足“绝对值关联”的m 阶数列.(1)对于一个满足“绝对值关联”的m 阶数列{}n a .证明:存在,{1,2,,}i j m ∈ ,满足0i j a a <;(2)若“绝对值关联”的m 阶数列{}n a 还满足(1,2,,)i a i m λ=,则称{}n a 为“绝对值λ关联”的m 阶数列.①请分别写出一个满足“绝对值34关联”的4阶数列和满足“绝对值1关联”的5阶数列(不必论证,符合要求即可);②若存在“绝对值λ关联”的n 阶数列(2)n ,求λ的最小值(最终结果用常数或含n 的式子表示).三湘名校教育联盟•2025届高三第二次大联考•数学参考答案、提示及评分细则1.【答案】C 【解析】由题意可得{40},{31}A xx B x x =-=-∣∣ ,可得{30}A B x x =- ∣ ,故集合A B 中所含整数有3,2,1,0---,共4个,故选C.2.【答案】A 【解析】由题意可得3i (3i)(12i)32i 6i 17i 12i (12i)(12i)555z ------====++-,故17i 55z =+,其虚部为75,故选A.3.【答案】A 【解析】由202520251ab> 及指数函数的单调性可得0a b > ,令函数3()f x x =,易得()f x 单调递增,故当0a b > 时,一定有33a b >,故充分性成立,但由33a b >只能推出a b >,即必要性不成立,故“20252025a b >1 ”是“33a b >”的充分不必要条件,故选A.4.【答案】A 【解析】由题意可得()1sin 104θ︒+=-,故()()()()2sin 2110sin 90220cos 22012sin 10θθθθ︒︒︒︒︒+=++=+=-+2171248⎛⎫=--= ⎪⎝⎭,故选A.5.【答案】C 【解析】由向量(4,3),(2,10)A B s s == ,可得(2,10)(4,3)(2,7)B A s AB s s ==-=-=-,所以s 在A s 上的投影向量为218135239(4,3),55252525A A A A As s s s s s ⋅-⎛⎫⋅=⨯=⋅= ⎪⎝⎭ ,故选C.6.【答案】C 【解析】易知232222n n d S a n d n d ⎛⎫-=+-+- ⎪⎝⎭也为等差数列,则232222d n d n d ⎛⎫+-+- ⎪⎝⎭为完全平方,则2322(2)02d d d ⎛⎫---= ⎪⎝⎭,解得4d =,故选C.7.【答案】D 【解析】因为()f x 关于点(,4)n 中心对称,所以函数1()()4ln224x n g x f x n x n x m n ++=+-=++-++为奇函数,则240n -=,即2n =,且3ln 2x y x m +=++为奇函数,所以23m +=-,解得5m =-,故1()ln 5x f x x +=+-2,7x n m -=,且6()2(1)(5)f x x x '=-+-,故切线斜率为13(7)8f '=,故选D.8.【答案】B 【解析】设ABC 的内切圆半径为r ,由题意可得cos cos 2b C c B +=,由余弦定理可得2222a b c b ab +-⋅+2222222222222a c b a b c a c b c a ac a a +-+-+-⋅=+==,而11sin ()22ABC S bc A a b c r ==++ ,故2r =⋅2bcb c ++,由余弦定理可得2222cos a b c bc A =+-,则224b c bc bc =+- ,当且仅当b c =时等号成立,而4=2()3b c bc +-,则b c +=,其中4bc ,故33222bc r b c =⋅=++=(24)t t < ,故24(2)6263t r t t -=⋅=-+ .故选B.9.【答案】AC 【解析】对于A :因为21x y +=18xy ,当且仅当2x y =,即11,42x y ==时取等号,故A 正确;对于B :1424(2)8666x y x y x y x y x y y x +++=+=+++=+,当且仅当8x yy x =,即x =1,22y =时取等号,故B 错误;对于C :因为22x y +,则22142x y + ,当且仅当2x y =,即11,42x y ==时取等号,故C 正确;对于D :因为2112(1)1(1)2(1)2222x y x y x y ++⎡⎤+=⨯+⨯=⎢⎥⎣⎦,当且仅当21x y =+,即1,02x y ==时取等号,这与x ,y 均为正数矛盾,故1(1)2x y +<,故D 错误,故选AC.10.【答案】AD 【解析】如图所示,对于A ,因为1BB ⊂/平面11,BC F BB 平面1BC F B =,故1BB 与平面1BC F 的交点为B ,且是唯一的.又因为B ,G ,H 三点不共线,所以GH 不经过点B ,又GH ⊂平面1BC F ,所以直线GH 与直线1BB 没有交点,即直线GH 与直线1BB 异面,故A 正确;对于B ,因为AB 的中点为1,E AA 的中点为F ,所以点G 是1A AB 的重心,:1:2FG GB =,若1//GH BC ,则1:1:2FH HC =,事实上:()()1111111222A H A C A A AC A F A C A F λλλλ==+=+=+112AC λ ,所以H 是1FC 的中点,1:1:2FH HC =不成立,故B 错误;对于CD 选项,如图,取线段BF 的中点Q ,连接1AQ 并延长,交BE于点P ,下证1//BC 平面1A PC :由H 为1C F 的中点可知1//HQ BC ,又1BC ⊂/平面1,A PC HQ ⊂平面1A PC ,所以1//BC 平面1A PC ,故D 正确,C 错误;故选AD.11.【答案】BCD 【解析】由题意可得()e xf x n '=-,当(,ln )x n ∈-∞时,()0,()f x f x '<单调递减,当(ln ,)x n ∈+∞时,()0,()f x f x '>单调递增,故2(ln )ln n a f n n n n n ==+-.对于A :12212,62ln 2,22a a a a ==---=-2ln 20>,即122a a <-,故A 错误;对于B :设函数2()1ln ,,()2ln 1F x x x x x F x x x '+=--∈=--N ,设函数1()2ln 1,()2,1g x x x g x x x '=--=- 时,则()0()g x g x '>⇒单调递增,故()(1)10g x g =>⇒ ()0()F x F x '>⇒单调递增,故22()(1)01ln 0ln 11n F x F n n n n n n n n a n =⇒--⇒+-+⇒+ ,故B 正确;对于C :易知ln n n >,又因为()f x 在(ln ,)x n ∈+∞上单调递增,故(ln )()(1)f n f n f n <<+ ()n f a ,故()()n f a f n >,故C 正确;对于D :[ln ln()][ln n m m n a a a m n m n m n m n +--=+-+++-ln()]n m +,只需证明ln ln()0n m n m +-+>即可,而ln ln e n n m m +=,由e 1(1)x x x >+易得e n m >(1)m n m mn m n +=++,故ln ln()0n m n m +-+>,同理可得ln ln()0m n n m +-+>,故n m n a a +>+m a ,故D 正确,故选BCD .12.【答案】(8,0-]【解析】因为命题“2,20x ax ax ∀∈--<R ”为真命题,当0a =时,20-<成立,当0a ≠时,则280a a a <⎧⎨∆=+<⎩,解得80a -<<,故a 的取值范围是(8,0]-,故答案为(8,0]-.13.【答案】[-8,24]【解析】由题意可得AB 的模为4,根据正六边形的特征及投影的定义可以得到AP 在AB方向上的投影长度的取值范围是[2,6]-,由数量积定义可知AP AB ⋅ 等于AB 的模与AP 在AB 方向上的投影长度的乘积,所以AP AB ⋅的取值范围是[8,24]-,故答案为[8,24]-.14.62+【解析】设三棱锥P ABC -的高为h ,依题意,可取BC 中点O ,连接OA ,OP ,则OA =1,OB OC OP h ===,则PBC 的面积为1,2h BC h ABC ⋅= 的面积112OA BC ⋅=,由21PA PB h ==+可得PBA 的面积为2212h +,于是三棱锥P ABC -2211h h +++,由等体积可知)2211133r hh h +++=⨯,所以2222222122122h h h r h h ++++==+,故21r V-=2222123221122h h h h h ++-+-=+.设函数22211()2x f x x +=+,且0x >,则()f x '=()2222222212121212x x x x x x +=++++,当3,()0,()2x f x f x '<<单调递减,3()02x f x '>>,()f x 单调递增,所以3()622f x f =+ ,所以62h =时,21r V -取得最小值62+62.15.【解析】(1)由题意可得π()32cos 22sin 2,(0,)6f x x x x x π⎛⎫=+=+∈ ⎪⎝⎭,………………2分令π2,(0,π)6z x x =+∈,则π13π,66z ⎛⎫∈ ⎪⎝⎭,因为π13πsin ,,66y z z ⎛⎫=∈ ⎪⎝⎭的单调递减区间是π3π,22⎡⎤⎢⎥⎣⎦,…………………………………………5分且由π3π22z ,得π2π63x ,所以()f x 的单调递减区间是π2π,63⎡⎤⎢⎥⎣⎦.………………………………7分(2)当π,12x m ⎡⎤∈⎢⎥⎣⎦,则πππ2,2636x m ⎡⎤+∈+⎢⎥⎣⎦,因为()f x 在区间π,12m ⎡⎤⎢⎥⎣⎦上的最小值为-2,……9分即sin y z =在ππ,236m ⎡⎤+⎢⎥⎣⎦上的最小值为-1,又因为π13π,66z ⎛⎫∈ ⎪⎝⎭,所以3ππ13π2,266m +< ……12分即2ππ3m < ,故m 的取值范围为2π,π3⎡⎫⎪⎢⎣⎭.……………………………………………………………13分16.【解析】(1)由题意得2(1)n n S n a =+,当2n 时,112n n S na --=,………………………………1分两式作差得112(1),(1)n n n n n a n a na n a na --=+--=,……………………………………………………3分所以11n n a a n n -=-,则数列n a n ⎧⎫⎨⎬⎩⎭为常数数列,………………………………………………………………5分无单调性,故数列n a n ⎧⎫⎨⎬⎩⎭不是单调数列.……………………………………………………………………6分(2)由(1)可得111n a a n ==,所以n a n =,故22an n n a n ⋅=⋅.……………………………………8分所以231222322n n T n =⋅+⋅+⋅++⋅ ,①……………………………………………………………10分23412122232(1)22n n n T n n +=⋅+⋅+⋅++-⋅+⋅ ,②………………………………………………12分①-②得()231112122222222(1)2,12n nn n n n T n n n +++--=++++-⋅=-⋅=---⋅- ……………14分所以1(1)2 2.n n T n +=-⋅+…………………………………………………………………………………15分17.【解析】(1)如图,连接AC 交BD 于点O ,设四棱柱1111ABCD A B C D -的体积为V Sh =(其中S 为菱形ABCD 的面积,h 为四棱柱ABCD -1111A B C D 的高),…………………………………………1分所以1ABDA 的体积为111236S h V ⋅=,同理四面体111A B BC 的体积为111236S h V ⋅=……………2分又因为四边形ABCD 是菱形,所以111122AO OC AC A C ===,所以点A 到平面1A BD 的距离为点1C 到平面1A BD 距离的一半,所以四面体11A BC D 的体积是四面体1ABDA 的体积的两倍,即13V .……4分设点A 到平面1A BD 的距离为d ,则1111233663V V V d =-==⋅………………………………5分解得3d =分(2)如图,连接1OA ,由111A B A C ⊥得1A B AC ⊥,又四边形ABCD 是菱形,所以AC BD ⊥,又11,,A B BD B A B BD =⊂ 平面1A BD ,所以AC ⊥平面1A BD ,又1AO ⊂平面1A BD ,所以1A O AC ⊥,………………………………………………………………………………………………8分又11,A B A D BO BD ==,所以1A O BD ⊥,…………………………………………………………9分又,,BD AC O BD AC =⊂ 平面ABCD ,所以1A O ⊥平面ABCD ,以点O 为原点,OA 为x 轴,OB 为y 轴,1OA 为z 轴,建立如图所示空间直角坐标系,由(1)知12V =,且菱形ABCD的面积为S =,所以h ==………………………………11分依题意,1(0,0,0),((0,1,0),(O C B C -,易得平面1A BD的一个法向量为(0,0)OC =,…………………………………………………12分设平面1BC D 的一个法向量为(,,)n a b c =,又1(0,1,0),(OB OC ==- ,所以100OB n OC n ⎧⋅=⎪⎨⋅=⎪⎩,即00b a c =⎧⎨-=⎩,取(1,0,1)n = ,…………………………………………………13分故111cos ,2||n OC n OC n OC ⋅<>===⋅ ,……………………………………………………14分故锐二面角11A BD C --的余弦值为2.…………………………………………………………………15分【评分细则】本题第二问若考生通过利用几何法来求解二面角11A BD C --的平面角为11π4A OC ∠=,或者利用余弦定理等来直接求解二面角的余弦值,只要过程合理,最终答案正确均给满分,若过程有误或证明过程不严谨酌情扣一定的分数.18【解析】(1)易得()f x 定义域为(0,),()ln f x x a x '+∞=-,显然0a ≠.…………………………1分①当0a <时,()f x '单调递增,不可能有两零点,不合题意.…………………………………………2分②当0a >时,令函数()()g x f x '=,易得()x a g x x'-=,故(0,)x a ∈时,()0,()g x g x '<单调递减(,)x a ∈+∞时,()0,()g x g x '>单调递增,……………………………………………………………4分当e a 时,有()()(1ln )0g x g a a a =- ,不可能有两零点;当e a >时,有()0,(1)10g a g <=>,由零点存在性定理可得()g x 在区间(1,)a 必有一个零点1x .……………………………………………6分()2(2ln )g a a a a =-,令函数()2ln a a a ϕ=-,则2()10a aϕ'=->,即()a ϕ单调递增,故()(e)a ϕϕ>=e 20->,即()20g a >,故()g x 在(,)a +∞上有零点2x ,综上(e,)a ∈+∞.…8分(2)依题意有()()120g x g x ==,即1122ln ln 0x a x x a x -=-=,故得12211221ln ln ln ln x x x x a x x x x -====-2121ln x x x x -,…………………………………………………………10分因此2121122111ln ln ln 1x x x x x x x x x x ==--,令21(1,e)x t x =∈.则1ln ln 1t x t =-,同理2ln ln 1t t x t =-,故12eln ln x x +=e ln 1t t t +-,欲证122eln ln e 1x x <+<+,即证112ln (e 1)e e t t t t t --<<+++,……12分令函数1()ln 2e t m t t t -=-+,函数1()(e 1)ln ,(1,e)e t n t t t t -=+-∈+,只需证明()0,()0m t n t >>即可,又22222(e)2(e 1)(1)e 1()0(e)(e)t t t m t t t t t '+-+-+-==>++,……………………………………………………14分故()m t 是增函数,故()(1)0m t m >=,又222222(e 1)(e)1e ()e 1(e)(e)t t n t t t t t t '⎛⎫+-+==+-- ⎪++⎝⎭,令函数22e ()e 1h t t t =+--,则22e ()10h t t '=->,故()h t 单调递增,故()(1)0h t h >=,………………16分因此21()()0(e)n t h t t '=>+,故()n t 单调递增,故()(1)0n t n >=,故122eln ln e 1x x <+<+得证.17分【评分细则】第一问若考生求完导后用参变分离的方法来求参数范围,只要最终答案正确均给分,第二问也可用其他方法来证明,逻辑正确,严谨可酌情给分.19.【解析】(1)因为{}n a 为满足“绝对值关联”的m 阶数列,假设0i a ,则11110m m m m i i i i i i i i a a a a====-=-=≠∑∑∑∑1(2)m m - ,不满足题意,同理若0i a ,则111101(2)m m m mi i i i i i i i a aa a m m ====-=-+=≠-∑∑∑∑ ,也不满足题意,………………………………4分所以12,,,m a a a 中必有一些数小于0,也必有一些数大于0,不妨设121,,,0,,,,0l k k m a a a a a a +>< (其中1l k m << ),故存在{1,2,,},{,1,,}i l j k k m ∈∈+ ,满足0i j a a <.………………6分(2)①一个满足“绝对值34关联”的4阶数列为:3333,,,4444--;(答案不唯一,符合要求即可)8分一个满足“绝对值1关联”的5阶数列为:222,,,1,1333--;(答案不唯一,符合要求即可)……10分②设(1,2,,)i a i n λ= ,且111n n i i i i a an ==-=-∑∑.不妨设1212,,,0,,,,0k k k n a a a a a a ++< ,其中1k n < ,并记11,k n i i i i k a x a y ==+==∑∑,为方便起见不妨设x y (否则用i a -代替i a 即可),于是得11,n n i i i i ax y a x y ===+=-∑∑,因为111n n i i i i a a n ==-=-∑∑,即()()1x y x y n +--=-,所以11,22n n y x --=,一方面有1()2n y n k λ-=- ,另一方面12n x k λ- .所以1()n n k k n λλλ--+= ,即1n n λ- ,当且仅当n k k -=,即2n k =时等号成立.………13分(i )当n 为偶数时,设*2,n s s =∈N ,则有前s 项为正数,后s 项为负数的数列111,,,n n n n n n --- ,111,,,n n n n n n ------ 是“绝对值1n n -关联”的n 阶数列,又1n n λ- ,所以λ的最小值为1n n -;……………………………………………………………………14分(ii )当n 为奇数时,设*21,n s s =+∈N ,则11(),22n n y n k x k λλ--=- 等价于21s s k λ+- 且s k λ ,即λ不小于21s s k +-与s k中的最大者.……………………………………………………15分当k s =或1s +时,两者中的最大者均为1,有1λ ,当k s <或1k s >+时,有1s k >或121s s k>+-,则有1λ>,所以取k s =或1s +时,λ可能取得最小值1,且有前s 项为正数,后1s +项为负数数列1111,1,,1,,,,111n n n n n n ------+++ 符合题意,所以λ可以取得最小值1.…………………………………………………………………………………………16分综上所述λ的最小值为()*1,21,21n n s s n n s -⎧=⎪∈⎨⎪=+⎩N .……………………………………………………17分。

安徽省六安第一中学2024-2025学年高三上学期第三次月考(11月)数学试题

安徽省六安第一中学2024-2025学年高三上学期第三次月考(11月)数学试题

安徽省六安第一中学2024-2025学年高三上学期第三次月考(11月)数学试题一、单选题1.已知复数()i 12i z =-+,其中i 是虚数单位,则z =()A .1B .2CD 2.已知等差数列{}n a 的前n 项和为n S ,若38304S a ==,,则9S =()A .54B .63C .72D .1353.已知平面向量,a b 满足4a = ,(1,b = ,且()()23a b a b +⊥- .则向量a 与向量b 的夹角是()A .π6B .π3C .2π3D .5π64.在等比数列{}n a 中,已知13a =,48n a =,93n S =,则n 的值为()A .4B .5C .6D .75.已知数列{}n a 满足1211n n a a n +-=-,且110a =,则n a 的最小值是()A .-15B .-14C .-11D .-66.已知ABC V 是边长为1的正三角形,1,3AN NC P = 是BN 上一点且29AP m AB AC =+,则AP AB ⋅=()A .29B .19C .23D .17.数列{}n a 的前n 项和为n S ,满足1024n n S a +=,则数列{}n a 的前n 项积的最大值为()A .552B .452C .92D .1028.已知O 是ABC V 所在平面内一点,且2AB = ,1OA AC ⋅=- ,1OC AC ⋅=,则ABC ∠的最大值为()A .π6B .π4C .π3D .π2二、多选题9.已知z 为复数,设z ,z ,i z 在复平面上对应的点分别为A ,B ,C ,其中O 为坐标原点,则()A .OA OB =B .OA OC⊥C .AC BC = D .OB AC∥10.已知等差数列{}n a 的首项为1a ,公差为d ,前n 项和为n S ,若1089S S S <<,则下列说法正确的是()A .当9n =时,n S 最大B .使得0n S <成立的最小自然数18n =C .891011a a a a +>+D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为1100S a 11.已知数列{}n a 是各项为正数的等比数列,公比为q ,在12,a a 之间插入1个数,使这3个数成等差数列,记公差为1d ,在23,a a 之间插入2个数,使这4个数成等差数列,公差为2,d ,在1,n n a a +之间插入n 个数,使这2n +个数成等差数列,公差为n d ,则下列说法错误..的是()A .当01q <<时,数列{}n d 单调递减B .当1q >时,数列{}n d 单调递增C .当12d d >时,数列{}n d 单调递减D .当12d d <时,数列{}n d 单调递增三、填空题12.设正项等比数列{}n a 的前n 项和为n S ,若4210S S =,则62S S 的值为.13.已知数列{}n a 中,11a =,12,2,n n na n a a n ++⎧=⎨-+⎩为奇数为偶数,则数列{}n a 前2024项的和为.14.在ABC V 中,内角A ,B ,C 所对的边分别为,,a b c (a b ≠).已知2cos c a A =,则sin sin B A -的最大值是.四、解答题15.设等比数列{an }满足124a a +=,318a a -=.(1)求{an }的通项公式;(2)记n S 为数列{log 3an }的前n 项和.若13m m m S S S +++=,求m .16.在ABC V 中,角,,A B C 所对的边分别为,,a b c ,且()22a cb bc -=+.(1)求角A ;(2)若3,2a BA AC BD DC ⋅==,求AD 的长.17.已知数列{}n a 的前n 项和为n S ,*12111,3,22(2,N )n n n a a S S S n n +-==+=+≥∈.(1)求证:数列{}n a 为等差数列;(2)在数列{}n b 中,1213,n n n n b a b a b ++==,若{}n b 的前n 项和为n T ,求证:92n T <.18.设各项均为正数的数列{}n a 的前n 项和为n S ,已知2132a a a =+,数列是公差为d 的等差数列.(1)求证:21a d =,并求出数列{}n a 的通项公式(用,n d 表示);(2)设c 为实数,对满足3m n k +=且m n ≠的任意正整数,,m n k ,不等式m n k S S cS +>都成立,求证:c 的最大值为92.19.已知函数()x f x e =.(1)当0x ≥时,求证:()()2f x f x x --≥;(2)若0k >,且()f x kx b ≥+在R 上恒成立,求2k b +的最大值;(3)设*2,n n ≥∈Nln n +.。

河南省焦作市第一中学2024届高三上学期11月月考数学试题

河南省焦作市第一中学2024届高三上学期11月月考数学试题

河南省焦作市第一中学2024届高三上学期11月月考数学试题一、单选题1.已知集合{}{}223,log 1M x x N x x =-≤≤=≤,则M N =I ( )A .[2,3]-B .[2,2]-C .(0,2]D .(0,3] 2.若0,0a b >>,则“1ab <”是“1a b +<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.若3tan 4α=,则21sin 212sin αα+=-( ) A .17- B .7- C .17 D .74.已知ABC V 是边长为1的等边三角形,点D ,E 分别是边,AB BC 的中点,连结DE 并延长到点F ,使得2DE EF =,则AF BC ⋅u u u r u u u r 的值为( )A .18-B .18C .1D .8-5.定义方程()()f x f x '=的实数根0x 叫做函数()f x 的“躺平点”.若函数()ln g x x =,3()1h x x =-的“躺平点”分别为α,β,则α,β的大小关系为( )A .αβ≥B .αβ>C .αβ≤D .αβ<6.已知x ,y 为非零实数,向量a r ,b r 为非零向量,则“a b a b +=+r r r r ”是“存在非零实数x ,y ,使得0xa yb +=r r r ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.在ABC V 中,AB AC ⊥u u u r u u u r ,且AB AC ==u u u r u u u r ,M 是BC 的中点,O 是线段AM 的中点,则()OA OB OC ⋅+u u u r u u u r u u u r 的值为( )A .0B .C .12-D .28.如图,圆M 为ABC V 的外接圆,4AB =,6AC =,N 为边BC 的中点,则AN AM ⋅=u u u r u u u u r ( )A .5B .10C .13D .26二、多选题9.已知实数a 满足,3i 2i 1i a +=+-(i 为虚数单位),复数(1)(1)i z a a =++-,则( ) A .z 为纯虚数 B .2z 为虚数 C .0z z += D .4z z ⋅= 10.已知不等式2210x ax b ++->的解集是{}x x d ≠,则b 的值可能是( )A .1-B .3C .2D .011.关于函数()sin |||cos |f x x x =+有下述四个结论,则( )A .()f x 是偶函数B .()f x 的最小值为1-C .()f x 在[2,2]ππ-上有4个零点D .()f x 在区间,2ππ⎛⎫ ⎪⎝⎭单调递增 12.如图,正方形ABCD 与正方形DEFC 边长均为1,平面ABCD 与平面DEFC 互相垂直,P 是AE 上的一个动点,则( )A .CPB .当P 在直线AE 上运动时,三棱锥D BPF-的体积不变C .PD PF +D .三棱锥A DCE -的外接球表面积为3π三、填空题13.已知曲线e ln x y m x x =+在1x =处的切线方程为3y x n =+,则n =.14.已知数列{}n a 是等差数列,1370,30a a a >+=,则使0n S >的最大整数n 的值为. 15.某区域规划建设扇形观景水池,同时紧贴水池周边建设一圈人行步道.要求总预算费用24万元,水池造价为每平方米400元,步道造价为每米1000元(不考虑宽度厚度等因素),则水池面积最大值为平方米.16.已知()f x 是定义在R 上的奇函数,且(1)()f x f x -=,则()f x 的最小正周期为;若对任意的121,0,2x x ⎡⎤∈⎢⎥⎣⎦,当时12x x ≠,都有()()1212f x f x x x π->-,则关于x 的不等式()sin f x x π≤在区间33,22⎡⎤-⎢⎥⎣⎦上的解集为.四、解答题17.已知向量2sin ,2sin 4a x x π⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭r,向量cos sin )b x x x ⎛⎫=- ⎪⎝⎭r ,记()()f x a b x =⋅∈R r r .(1)求()f x 表达式;(2)解关于x 的不等式()1f x ≥.18.记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列. (1)求{}n a 的通项公式;(2)证明:121112na a a +++<L . 19.ABC V 中,sin 2A -sin 2B -sin 2C =sin B sin C .(1)求A ;(2)若BC =3,求ABC V 面积的最大值.20.已知数列{}n a 满足111,22n n na a a a +==-. (1)若11n nb a =-,证明数列{}n b 为等比数列,并求通项公式n b ; (2)数列{}nc 的前n 项和为(1)1,2(*)2n n n n S c b n N -+=+∈,求2n S . 21.有人收集了春节期间平均气温x 与某取暖商品销售额y 的有关数据,如下表所示.(1)根据以上数据,用最小二乘法求出回归方程$$y bxa =+$; (2)预测平均气温为9C ︒-时,该商品的销售额为多少万元. ()()()$1122211,n ni i i ii i n n ii i i x x y y x y nx y b a y bx x x x nx ====---===---∑∑∑∑$$ 22.设函数()()ln f x a x =-,已知0x =是函数()y xf x =的极值点. (1)求a ;(2)设函数()()()x f x g x xf x +=.证明:()1g x <.。

河南省焦作市第十二中学2024届高三上学期11月月考数学试题

河南省焦作市第十二中学2024届高三上学期11月月考数学试题

河南省焦作市第十二中学2024届高三上学期11月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知集合{}{}1,2,3,33,A B yy x x A ===-∈∣,则集合A B =I ( ) A .{}3B .{}1,3C .{}3,6D .{}0,3,62.已知p2>,q :0m x -<,若p 是q 的充分不必要条件,则m 的取值范围是( ) A .3m <B .3m >C .5m <D .5m >3.已知()f x 为奇函数,且当0x <时,()232f x x x =++.则当[]1,3x ∈时,()f x 的最小值是( ) A .2B .14C .2-D .14-4.已知角α的终边上一点()4,3A ,且()tan 2αβ+=,则()tan 3πβ-=( ) A .12B .12-C .52D .52-5.已知等比数列{}n a 的前n 项和为n S ,且0n a >,若610S =,1870S =,则24S =( ) A .90B .135C .150D .1806.函数()sin 2sin 2xf x x =+的最大值为( ) A .32BCD .547.已知向量()2,0a =r,sin b α⎛= ⎝⎭r ,若b r 在a r 上的投影向量1,02c ⎛⎫= ⎪⎝⎭r ,则向量a r 与b r的夹角为( )A .π6B .π4C .π3D .2π38.已知函数()f x 的定义域为R ,满足()()122f x f x +=,当(]0,2x ∈时,()exf x x=,记()f x 的极小值为t ,若对(],,2e x m t ∞∀∈-≥,则m 的最大值为( ) A .1-B .1C .3D .不存在二、多选题9.下列等式成立的是( ) A .lg 2lg5lg81lg50lg 40+-=-B .lg 4lg5122lg 0.5lg8+-=+C .7lg142lg lg 7lg1803-+-=D .()2lg 2lg 2lg5lg52++=10.已知定义在R 上的函数()f x 满足:对于任意的,x y ∈R ,都有()()()1f x y f x f y +=++,且当0x >时,()1f x >-,若()11f =,则下列说法正确的有( )A .()00f =B .()f x 关于()1,1对称C .()f x 在R 上单调递增D .()()()21220232023f f f +++=L11.已知a 为常数,函数()()ln 2f x x x ax =-有两个极值点1x ,2x (12x x <),则( )A .10a 4<<B .122x x +<C .()10<f xD .()212f x >-12.如图,在边长为2的正方体111ABCD AB C D -中,点E ,F 分别111,CC B C 的中点,点P 为11A D 棱上的动点,则( )A .在平面CBP 内不存在与平面11AB D 垂直的直线 B .三棱锥A PCD -的体积为定值C .1//A F 平面1AEDD .过1,,A FE 三点所确定的截面为梯形三、填空题13.函数()f x14.已知函数()e e x x f x a -=+(a 为常数)为奇函数,则满足()()2230f x f x -+≤的x的取值范围是.15.在ABC V 中,2BD DC =u u u r u u u r,点E 在线段AD 上且与端点不重合,若BE xBA yBC =+u u u r u u u r u u u r ,则ln ln x y +的最大值为.16.设定义在(0,)+∞上的函数()f x 满足()e 1x f x -'>,若(l n )f x x ≥12f ⎛⎫= ⎪⎝⎭则x 的最小值为.四、解答题17.已知集合{}121A x a x a =+≤≤-,{}35B x x x =≤>或. (1)若4a =,求A B ⋂; (2)若A B ⊆,求a 的取值范围.18.已知数列满足()*2144N n n n a a a n ++=-∈,且124,12a a ==.(1)证明:{}12n n a a +-是等比数列,并求{}n a 的通项公式; (2)已知数列{}n b 满足2log nn a b n=,求{}n b 的前n 项和n T .19.已知函数()cos (0)f x x x ωωω=->.(1)若()f x 在(0,π)上有且仅有2个极值点,求ω的取值范围; (2)将()f x 的图象向右平移π12个单位长度后,再将所得图象各点的横坐标缩短为原来的12,纵坐标不变,得到函数()g x 的图象,若()g x 的最小正周期为π,求()g x 的单调递减区间.20.三棱柱111ABC A B C -中,侧面11BCC B 是矩形,1AC AA =,11AC A B ⊥.(1)求证:面11ACC A ⊥面ABC ;(2)若1BC =,2AC =,160A AC ∠=︒,在棱AC 上是否存在一点P ,使得二面角1B A P C--的大小为45°?若存在求出,不存在,请说明理由.21.记ABC V 的内角A B C ,,的对边分别为a b c ,,,已知2cos 0a b C +=. (1)tan 3tan C B +的值;(2)若b =2,当角A 最大时,求ABC V 的面积.22.已知函数()ln 1f x x mx =++,()()1xg x x =-e .(1)若()f x 的最大值是0,求m 的值;(2)若对于定义域内任意x ,()()f x g x ≤恒成立,求m 的取值范围.。

广东省深圳实验学校2025届高三数学11月月考试题

广东省深圳实验学校2025届高三数学11月月考试题

广东省深圳试验学校2025届高三数学11月月考试题本试卷共6页,22小题,满分150分。

考试用时120分钟。

留意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

2.作答选择题时,选项出每小题答案后,用2B 铅笔在答题卡上将对应题目选项的答案信息点涂黑;如须要改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必需用黑色字迹的钢笔或签字笔作答,答案必需写在答题卡各题目定区域内相应位置上;如须要改动,先划掉原来的答案,然后再写上新答案;不准运用铅笔和涂改液。

不按以上要求作答无效。

4.考生必需保证答题卡的整齐。

考试结束后,将试卷和答题卡一并交回。

一、单项选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项符合要求。

1.设集合2{|20}A x x x =+-<,{|03}B x x =<<,则A B =A .{|23}x x -<<B .{|01}x x <<C .{|13}x x -<<D .{|02}x x <<2.已知i 是虚数单位,z 是复数,若(13i)2i z +=-,则复数z 的虚部为A .7i 10B .710-C .710D .7i 10-3.在△ABC 中,“sin cos A B =”是“π2C =”的 A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件4.函数2()ln(1)f x x kx =+-的图象不行能是A .B .C .D .5.已知圆22440x y x y a +-++=截直线40x y +-=所得弦的长度小于6,则实数a 的取值范围为A .(817,817)+B .(817,8)C .(9,)-+∞D .(9,8)-6.621(2)x x x ⎛⎫+- ⎪⎝⎭的绽开式中的常数项是A .5-B .15C .20D .25-7.已知双曲线2222:1(0,0)x y C a b a b-=>>的实轴长为16,左焦点为F ,M 是双曲线C 的一条渐近线上的点,且OM MF ⊥,O 为坐标原点,若△OMF 的面积为16,则双曲线C 的离心率为A 33B 5C 35 8.已知函数1()221xf x x =+++,若不等式(41)(2)5x x f m f m ⋅++-≥对随意的0x > 恒成立,则实数m 的最小值为 A 122B 21C .212D .212-二、多项选择题:本大题共4小题,每小题5分,共20分。

湖南省长沙市2024-2025学年高三上学期11月月考数学检测试卷(含解析)

湖南省长沙市2024-2025学年高三上学期11月月考数学检测试卷(含解析)

1. 若复数z 满足一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有湖南省长沙市2024-2025学年高三上学期11月月考数学检测试卷一项是符合题目要求的)1i34i z +=-,则z =()A.B.25C.D.【答案】C 【解析】【分析】根据复数除法运算求出复数z ,计算其模,即得答案.【详解】由1i34i z+=-可得()()()()1i 34i 1i 17i 34i 34i 34i 25z+++-+===--+,则z =故选:C2. 已知数列{}n a 的前n 项和22n S n n =-,则345a a a ++等于( )A. 12B. 15C. 18D. 21【答案】B 【解析】【分析】利用52S S -即可求得345a a a ++的值.【详解】因为数列{}n a 的前n 项和22n S n n =-,所以34552=a a a S S ++-()2252522215=-⨯--⨯=.故选:B.3. 抛物线24y x =的焦点坐标为( )A. (1,0)B. (1,0)-的C. 1(0,)16-D. 1(0,)16【答案】D 【解析】【分析】先将抛物线方程化为标准方程,从而可求出其焦点坐标【详解】解:由24y x =,得214x y =,所以抛物线的焦点在y 轴的正半轴上,且124p =,所以18p =,1216p =,所以焦点坐标为1(0,16,故选:D4. 如图是函数()sin y x ωϕ=+的部分图象,则函数的解析式可为( )A. πsin 23y x ⎛⎫=- ⎪⎝⎭B. πsin 3y x ⎛⎫=+ ⎪⎝⎭C. πsin 26y x ⎛⎫=+ ⎪⎝⎭ D. 5πcos 26y x ⎛⎫=-⎪⎝⎭【答案】A 【解析】【分析】观察图象,确定函数()sin y x ωϕ=+的周期,排除B ,由图象可得当5π12x =时,函数取最小值,求ϕ由此判断AC ,结合诱导公式判断D.【详解】观察图象可得函数()sin y x ωϕ=+的最小正周期为2ππ2π36T ⎛⎫=-=⎪⎝⎭,所以2ππω=,故2ω=或2ω=-,排除B ;观察图象可得当π2π5π63212x +==时,函数取最小值,当2ω=时,可得5π3π22π+122k ϕ⨯+=,Z k ∈,所以2π2π+3k ϕ=,Z k ∈,排除C ;当2ω=-时,可得5ππ22π122k ϕ-⨯+=-,Z k ∈,所以π2π+3k ϕ=,Z k ∈,取0k =可得,π3ϕ=,故函数的解析式可能为πsin 23y x ⎛⎫=-⎪⎝⎭,A 正确;5ππππcos 2cos 2sin 26233y x x x ⎛⎫⎛⎫⎛⎫=-=+-=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,D 错误故选:A.5. 1903年,火箭专家、航天之父康斯坦丁・齐奥尔科夫斯基就提出单级火箭在不考虑空气阻力和地球引力的理想情况下的最大速度v 满足公式:1201lnm m v v m +=,其中12,m m 分别为火箭结构质量和推进剂的质量,0v 是发动机的喷气速度.已知某单级火箭结构质量是推进剂质量的2倍,火箭的最大速度为8km /s ,则火箭发动机的喷气速度为( )(参考数据:ln20.7≈,ln3 1.1,ln4 1.4≈≈)A. 10km /s B. 20km /sC.80km /s 3D. 40km /s【答案】B 【解析】【分析】根据实际问题,运用对数运算可得.【详解】由题意122m m =,122200122lnln 82m m m m v v v m m ++===,得03ln 82v =,故0888203ln3ln 2 1.10.7ln 2v ==≈=--,故选:B6.若83cos 5αβ+=,63sin 5αβ-=,则()cos αβ+的值为( )A. B.C.D.【答案】C 【解析】【分析】已知两式平方相加,再由两角和的余弦公式变形可得.【详解】因为83cos 5αβ=,63sin 5αβ=,所以25(3cos 4)62αβ=,2(3sin )2536αβ=,即所以2259cos co 6s 1042cos ααββ++=,229sin sin +10sin 2536ααββ-=,两式相加得9)104αβ+++=,所以cos()αβ+=,故选:C .7. 如图,一个质点从原点O 出发,每隔一秒随机向左或向右移动一个单位长度,向左的概率为23,向右的概率为13,共移动4次,则该质点共两次到达1的位置的概率为( )A.427B.827C.29D.49【答案】A 【解析】【分析】根据该质点共两次到达1的位置的方式有0101→→→和0121→→→,且两种方式第4次移动向左向右均可以求解.【详解】共移动4次,该质点共两次到达1的位置的方式有0101→→→和0121→→→,且两种方式第4次移动向左向右均可以,所以该质点共两次到达1的位置的概率为211124333332713⨯⨯+⨯⨯=.故选:A.8. 设n S 为数列{a n }的前n 项和,若121++=+n n a a n ,且存在*N k ∈,1210k k S S +==,则1a 的取值集合为( )A. {}20,21-B. {}20,20-C. {}29,11-D. {}20,19-【答案】A 【解析】【分析】利用121++=+n n a a n 可证明得数列{}21n a -和{}2n a 都是公差为2的等差数列,再可求得()2=21n S n n +,有了这些信息,就可以从k 的取值分析并求解出结果.【详解】因为121++=+n n a a n ,所以()()()()()()212342123+41=++++++37+41=212n n n n n S a a a a a a n nn --⋅⋅⋅=++⋅⋅⋅-=+,假设()2=21=210n S n n +,解得=10n 或21=2n -(舍去),由存*N k ∈,1210k k S S +==,所以有19k =或20k =,由121++=+n n a a n 可得,+1223n n a a n ++=+,两式相减得:22n n a a +-=,当20k =时,有2021210S S ==,即210a =,根据22n n a a +-=可知:数列奇数项是等差数列,公差为2,所以()211+11120a a =-⨯=,解得120a =-,当19k =时,有1920210S S ==,即200a =,根据22n n a a +-=可知:数列偶数项也是等差数列,公差为2,所以()202+10120a a =-⨯=,解得218a =-,由已知得123a a +=,所以121a =.故选:A.二、选择题(本大题共3小题,每小题6分,共18分.在每小题给出的选项中,至少有两项是符合题目要求,若全部选对得6分,部分选对得部分分,选错或不选得0分)9. 如图,在正方体1111ABCD A B C D -中,点E ,F 分别为1AD ,DB 的中点,则下列说法正确的是( )在A. 直线EF 与11D B 为异面直线B. 直线1D E 与1DC 所成的角为60oC. 1D F AD ⊥D. //EF 平面11CDD C 【答案】ABD 【解析】【分析】直接根据异面直线及其所成角的概念可判断AB ,利用反证法可判断C ,利用线面平行判定定理可判断D.【详解】如图所示,连接AC ,1CD ,EF ,由于E ,F 分别为1AD ,DB 的中点,即F 为AC 的中点,所以1//EF CD ,EF ⊄面11CDD C ,1CD ⊆面11CDD C ,所以//EF 平面11CDD C ,即D 正确;所以EF 与1CD 共面,而1B ∉1CD ,所以直线EF 与11D B 为异面直线,即A 正确;连接1BC ,易得11//D E BC ,所以1DC B ∠即为直线1D E 与1DC 所成的角或其补角,由于1BDC 为等边三角形,即160DC B ∠=,所以B 正确;假设1D F AD ⊥,由于1AD DD ⊥,1DF DD D = ,所以AD ⊥面1D DF ,而AD ⊥面1D DF 显然不成立,故C 错误;故选:ABD.10. 已知P 是圆22:4O x y +=上的动点,直线1:cos sin 4l x y θθ+=与2:sin cos 1l x y θθ-=交于点Q ,则( )A. 12l l ⊥ B. 直线1l 与圆O 相切C. 直线2l 与圆O截得弦长为 D. OQ的值为【答案】ACD 【解析】【分析】选项A 根据12l l ⊥,12120A A B B +=可判断正确;选项B 由圆心O 到1l 的距离不等半径可判断错误;选项C 根据垂直定理可得;选项D 先求出()4sin cos ,4cos sin Q θθθθ-+,根据两点间的距离公式可得.【详解】选项A :因()cos sin sin cos 0θθθθ+-=,故12l l ⊥,A 正确;选项B :圆O 的圆心O 的坐标为()0,0,半径为2r =,圆心O 到1l的距离为14d r ==>,故直线1l 与圆O 相离,故B 错误;选项C :圆心O 到1l 的距离为21d ==,故弦长为l==,故C 正确;选项D :由cos sin 4sin cos 1x y x y θθθθ+=⎧⎨-=⎩得4cos sin 4sin cos x y θθθθ=+⎧⎨=-⎩,故()4cos sin ,4sin cos Q θθθθ+-,故OQ ==,故D 正确故选:ACD11. 已知三次函数()32f x ax bx cx d =+++有三个不同的零点1x ,2x ,()3123x x x x <<,函数()()1g x f x =-也有三个零点1t ,2t ,()3123t t t t <<,则( )A. 23b ac>B. 若1x ,2x ,3x 成等差数列,则23bx a=-C. 1313x x t t +<+D. 222222123123x x x t t t ++=++【答案】ABD 【解析】【分析】对于A ,由题意可得()0f x '=有两个不同实根,则由0∆>即可判断;对于B ,若123,,x x x 成等差数列,则(x 2,f (x 2))为()f x 的对称中心,即可判断;对于C ,结合图象,当0a >和0a <时,分类讨论即可判断;对于D ,由三次函数有三个不同的零点,结合韦达定理,即可判断.【详解】因为()32f x ax bx cx d =+++,则()232f x ax bx c '=++,0a ≠,对称中心,33b b f a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,对于A ,因为()f x 有三个不同零点,所以()f x 必有两个极值点,即()2320f x ax bx c =++='有两个不同的实根,所以2Δ4120b ac =->,即23b ac >,故A 正确;对于B ,由123,,x x x 成等差数列,及三次函数的中心对称性,可知(x 2,f (x 2))为()f x 的对称中心,所以23bx a=-,故B 正确;对于C ,函数()()1g x f x =-,当g (x )=0时,()1f x =,为则1y =与y =f (x )的交点的横坐标即为1t ,2t ,3t ,当0a >时,画出()f x 与1y =的图象,由图可知,11x t <,33x t <,则1313x x t t +<+,当0a <时,则1313x x t t +>+,故C 错误;对D ,由题意,得()()()()()()32123321231a x x x x x x ax bx cx da x t x t x t ax bx cx d ⎧---=+++⎪⎨---=+++-⎪⎩,整理,得123123122331122331b x x x t t t ac x x x x x x t t t t t t a ⎧++=++=-⎪⎪⎨⎪++=++=⎪⎩,得()()()()2212312233112312233122x x x x x x x x x t t t t t t t t t ++-++=++-++,即222222123123x x x t t t ++=++,故D 正确.故选:ABD.【点睛】关键点点睛:本题D 选项的关键是利用交点式得到三次方程的韦达定理式再计算即可.三、填空题(本大题共3个小题,每小题5分,共15分)12. 已知随机变量X 服从二项分布(),B n p ,若()3E X =,()2D X =,则n =_____.【答案】9【解析】【分析】根据二项分布的期望、方差公式,即可求得答案.【详解】由题意知随机变量X 服从二项分布(),B n p ,()3E X =,()2D X =,则()3,12np np p =-=,即得1,93p n ==,故答案为:913. 已知平面向量a ,b 满足2a = ,1= b ,且b 在a上投影向量为14a - ,则ab + 为______.的【解析】【分析】由条件结合投影向量公式可求a b ⋅ ,根据向量模的性质及数量积运算律求a b +.【详解】因为b 在a上的投影向量为14a - ,所以14b a a a aa ⋅⋅=- ,又2a =,所以1a b ⋅=-,又 1= b ,所以a b +====14. 如图,已知四面体ABCD 体积为32,E ,F 分别为AB ,BC 的中点,G ,H 分别在CD ,AD 上,且G ,H 是靠近D 点的四等分点,则多面体EFGHBD 的体积为_____.【答案】11【解析】【分析】连接,EG ED ,将多面体EFGHBD 被分成三棱锥G EDH -和四棱锥E BFGD -,利用题设条件找到小棱锥底面面积与四面体底面面积的数量关系,以及小棱锥的高与四面体的高的数量关系,结合四面体的体积即可求得多面体EFGHBD 的体积.【详解】如图,连接,EG ED ,则多面体EFGHBD 被分成三棱锥G EDH -和四棱锥E BFGD -.因H 是AD 上靠近D 点的四等分点,则14DHE AED S S = ,又E 是AB 的中点,故11114428DHE AED ABD ABD S S S S ==⨯= ,因G 是CD 上靠近D 点的四等分点,则点G 到平面ABD 的距离是点C 到平面ABD的距离的14,的故三棱锥G EDH -的体积1113218432G EDH C ABD V --=⨯=⨯=;又因点F 是BC 的中点,则133248CFGBCD BCD S S S =⨯= ,故58BFGD BCD S S = ,又由E 是AB 的中点知,点E 到平面BCD 的距离是点A 到平面BCD 的距离的12,故四棱锥E BFGD -的体积51532108216E BFGD A BCD V V --=⨯=⨯=,故多面体EFGHBD 的体积为11011.G EDH E BFGD V V --+=+=故答案为:11.【点睛】方法点睛:本题主要考查多面体的体积求法,属于较难题.一般的求法有两种:(1)分割法:即将多面体通过连线,作面的垂线等途径,将其分成若干可以用公式求解;(2)补形法:即将多面体通过辅助线段构造柱体,锥体或台体,利用整体体积减去个体体积等间接方法求解.四、解答题(本大题共5个小题,共77分.解答应写出文字说明、证明过程或演算步骤)15. 设ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin cos 0a B A =.(1)求A ;(2)若sin sin 2sin B C A +=,且ABC V ,求a 的值.【答案】(1)π3A = (2)2a =【解析】【分析】(1)利用正弦定理的边角变换得到tan A =,从而得解;(2)利用正弦定理的边角变换,余弦定理与三角形面积公式得到关于a 的方程,解之即可得解.【小问1详解】因为sin cos 0a B A =,即sin cos a B A =,由正弦定理得sin sin cos A B B A ⋅=⋅,因为sin 0B ≠,所以sin A A =,则tan A =,又()0,πA ∈,所以π3A =.【小问2详解】因为sin sin 2sin B C A +=,由正弦定理得2b c a +=,因为π3A =,所以11sin 22ABC S bc A bc === 4bc =,由余弦定理2222cos a b c bc A =+-⋅,得224b c bc +-=,所以()234b c bc +-=,则()22344a -⨯=,解得2a =.16. 设()()221ln 2f x x ax x x =++,a ∈R .(1)若0a =,求()f x 在1x =处的切线方程;(2)若a ∈R ,试讨论()f x 的单调性.【答案】(1)4230--=x y (2)答案见解析【解析】【分析】(1)由函数式和导函数式求出(1)f 和(1)f ',利用导数的几何意义即可写出切线方程;(2)对函数()f x 求导并分解因式,根据参数a 的取值进行分类讨论,由导函数的正负推得原函数的增减,即得()f x 的单调性.【小问1详解】当0a =时,()221ln 2f x x x x =+,()2(ln 1)f x x x '=+,因1(1),(1)22f f '==,故()f x 在1x =处的切线方程为12(1)2y x -=-,即4230--=x y ;【小问2详解】因函数()()221ln 2f x x ax x x =++的定义域为(0,)+∞,()(2)ln 2(2)(ln 1)f x x a x x a x a x '=+++=++,① 当2a e ≤-时,若10e x <<,则ln 10,20x x a +<+<,故()0f x '>,即函数()f x 在1(0,)e上单调递增;若1e x >,由20x a +=可得2a x =-.则当1e 2a x <<-时,20x a +<,ln 10x +>,故()0f x '<,即函数()f x 在1(,)e 2a-上单调递减;当2a x >-时,ln 10,20x x a +>+>,故()0f x '>,即函数()f x 在(,)2a-+∞上单调递增;② 当20e a -<<时,若1e x >,则ln 10,20x x a +>+>,故()0f x '>,即函数()f x 在1(,)e+∞上单调递增;若12e a x -<<,则ln 10,20x x a +<+>,故()0f x '<,即函数()f x 在1(,)2ea -上单调递减;若02a x <<-,则ln 10,20x x a +<+<,故()0f x '>,即函数()f x 在(0,)2a-上单调递增,③当2ea =-时,()0f x '≥恒成立,函数()f x 在()0,∞+上单调递增,④当0a ≥时,若1e x >,则ln 10,20x x a +>+>,故()0f x '>,即函数()f x 在1(,)e+∞上单调递增;若10e x <<,则ln 10,20x x a +<+>,故()0f x '<,即函数()f x 在1(0,e上单调递减;综上,当2e a <-时,函数()f x 在1(0,)e上单调递增,在1(,)e 2a -上单调递减,在(,)2a -+∞上单调递增;当2ea =-时,函数()f x 在()0,∞+上单调递增;当20e a -<<时,函数()f x 在(0,2a -上单调递增,在1(,2e a -上单调递减,在1(,)e+∞上单调递增;当0a ≥时,函数()f x 在1(0,e 上单调递减,在1(,)e+∞上单调递增.17. 已知四棱锥P ABCD -,底面ABCD 为菱形,,PD PB H =为PC 上的点,过AH 的平面分别交,PB PD 于点,M N ,且BD ∥平面AMHN .(1)证明:MN PC ⊥;(2)当H 为PC 的中点,,PA PC PA ==与平面ABCD 所成的角为60︒,求平面PAM 与平面AMN 所成的锐二面角的余弦值.【答案】(1)证明见详解(2【解析】【分析】(1)根据线面垂直可证BD ⊥平面PAC ,则BD PC ⊥,再根据线面平行的性质定理可证BD ∥MN ,进而可得结果;(2)根据题意可证⊥PO 平面ABCD ,根据线面夹角可知PAC 为等边三角形,建立空间直角坐标系,利用空间向量求面面夹角.【小问1详解】设AC BD O = ,则O 为,AC BD 的中点,连接PO ,因为ABCD 为菱形,则ACBD ⊥,又因为PD PB =,且O 为BD 的中点,则PO BD ⊥,AC PO O = ,,AC PO ⊂平面PAC ,所以BD ⊥平面PAC ,且PC ⊂平面PAC ,则BD PC ⊥,又因为BD ∥平面AMHN ,BD ⊂平面PBD ,平面AMHN 平面PBD MN =,可得BD ∥MN ,所以MN PC ⊥.【小问2详解】因为PA PC =,且O 为AC 的中点,则PO AC ⊥,且PO BD ⊥,AC BD O = ,,AC BD ⊂平面ABCD ,所以⊥PO 平面ABCD ,可知PA 与平面ABCD 所成的角为60PAC ∠=︒,即PAC 为等边三角形,设AH PO G =I ,则,G AH G PO ∈∈,且AH ⊂平面AMHN ,PO ⊂平面PBD ,可得∈G 平面AMHN ,∈G 平面PBD ,且平面AMHN 平面PBD MN =,所以G MN ∈,即,,AH PO MN 交于一点G ,因为H 为PC 的中点,则G 为PAC 的重心,且BD ∥MN ,则23PM PN PG PB PD PO ===,设2AB =,则11,32PA PC OA OC AC OB OD OP ========,如图,以,,OA OB OP 分别为,,x y z 轴,建立空间直角坐标系,则)()22,0,0,3,0,,1,0,,133AP M N ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,可得()24,1,0,,0,33AM NM AP ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u uu r ,设平面AMN 的法向量()111,,x n y z =,则1111203403n AM y z n NM y ⎧⋅=++=⎪⎪⎨⎪⋅==⎪⎩,令11x =,则110,y z ==,可得(n =,设平面PAM 的法向量()222,,m x y z =,则2222220330m AM y z mAP z ⎧⋅=++=⎪⎨⎪⋅=+=⎩,令2x =,则123,1y z ==,可得)m =u r,可得cos ,n m n m n m⋅===⋅r u rr u r r u r ,所以平面PAM 与平面AMN.18. 已知双曲线22:13y x Γ-=的左、右焦点为1F ,2F ,过2F 的直线l 与双曲线Γ交于A ,B 两点.(1)若AB x ⊥轴,求线段AB 的长;(2)若直线l 与双曲线的左、右两支相交,且直线1AF 交y 轴于点M ,直线1BF 交y 轴于点N .(i )若11F AB F MN S S = ,求直线l 的方程;(ii )若1F ,2F 恒在以MN 为直径的圆内部,求直线l 的斜率的取值范围.【答案】(1)线段AB 的长为6; (2)(i )直线l的方程为2x y =±+;(ii )直线l的斜率的取值范围为33()(44- .【解析】【分析】(1)直接代入横坐标求解纵坐标,从而求出的值;(2)(i )(ii )先设直线和得到韦达定理,在分别得到两个三角形的面积公式,要求相等,代入韦达定理求出参数的值即可.【小问1详解】由双曲线22:13y x Γ-=的方程,可得221,3a b ==,所以1,2a b c ====,所以1(2,0)F -,2(2,0)F ,若AB x ⊥轴,则直线AB 的方程为2x =,代入双曲线方程可得(2,3),(2,3)A B -,所以线段AB 的长为6;【小问2详解】(i )如图所示,若直线l 的斜率为0,此时l 为x 轴,,A B 为左右顶点,此时1,,F A B 不构成三角形,矛盾,所以直线l 的斜率不为0,设:2l x ty =+,1122()A x y B x y ,,(,),联立22132y x x ty ⎧-=⎪⎨⎪=+⎩,消去x 得22(31)1290t y ty -++=,t 应满足222310Δ14436(31)0t t t ⎧-≠⎨=-->⎩,由根与系数关系可得121222129,3131t y y y y t t +=-=--,直线1AF 的方程为110(2)2y y x x -=++,令0x =,得1122y y x =+,点112(0,2y M x +,直线1BF 的方程为220(2)2y y x x -=++,令0x =,得2222y y x =+,点222(0,2y N x +,121122221111|||||2||2|F F F B A A F B F S y F S S F y y y -=⨯-==-,111212221||||||222F M N M F MN N S y y x y y y y x x =-=-=-++ 12122112212121212222(4)2(4)8()||||||44(4)(4)4()16y y y ty y ty y y ty ty ty ty t y y t y y +-+-=-==+++++++,由11F AB F MN S S = ,可得1212212128()||2||4()16y y y y t y y t y y -=-+++,所以21212|4()16|4t y y t y y +++=,所以222912|4()16|43131tt t t t ⨯+-+=--,解得22229484816||431t t t t -+-=-,22916||431t t -=-,解得22021t =,经检验,满足222310Δ14436(31)0t t t ⎧-≠⎨=-->⎩,所以t =所以直线l的方程为2x y =±+;(ii )由1F ,2F 恒在以MN 为直径的圆内部,可得2190F MF >︒∠,所以110F F N M < ,又112211,22(2,)(2,22F y y N x x M F =+=+ ,所以1212224022y y x x +⨯<++,所以121210(2)(2)y y x x +<++,所以1221212104()16y y t y y t y y +<+++,所以2222931109124()163131t t t t t t -+<⨯+-+--,所以22970916t t -<-,解得271699t <<43t <<或43t -<<,经检验,满足222310Δ14436(31)0t t t ⎧-≠⎨=-->⎩,所以直线l的斜率的取值范围为33((44- .【点睛】方法点睛:圆锥曲线中求解三角形面积的常用方法:(1)利用弦长以及点到直线的距离公式,结合12⨯底⨯高,表示出三角形的面积;(2)根据直线与圆锥曲线的交点,利用公共底或者公共高的情况,将三角形的面积表示为12211||||2F F y y ⨯-或121||||2AB x x ⨯-.19. 已知{}n a 是各项均为正整数的无穷递增数列,对于*k ∈N ,设集合{}*k i B i a k =∈<N ∣,设k b 为集合k B 中的元素个数,当k B =∅时,规定0k b =.(1)若2n a n =,求1b ,2b ,17b 的值;(2)若2n n a =,设n b 的前n 项和为n S ,求12n S +;(3)若数列{}n b 是等差数列,求数列{}n a 的通项公式.【答案】(1)12170,1,4b b b === (2)1(1)22n n +-⨯+ (3)n a n =【解析】【分析】(1)根据集合新定义,利用列举法依次求得对应值即可得解;(2)根据集合新定义,求得12,b b ,121222i i i b b b i +++==== ,从而利用分组求和法与裂项相消法即可得解.(3)通过集合新定义结合等差数列性质求出11a =,然后利用反证法结合数列{}n a 的单调性求得11n n a a +-=,利用等差数列定义求解通项公式即可;【小问1详解】因为2n a n =,则123451,4,9,16,25a a a a a =====,所以{}*11i B i a =∈<=∅N ∣,{}*22{1}i B i a =∈<=N ∣,{}*1717{1,2,3,4}i B i a =∈<=N ∣,故12170,1,4b b b ===.【小问2详解】因为2n n a =,所以123452,4,8,16,32a a a a a =====,则**12{|1},{|2}i i B i a B i a =∈<=∅=∈<=∅N N ,所以10b =,20b =,当122i i k +<≤时,则满足i a k <的元素个数为i ,故121222i i i b b b i +++==== ,所以()()()1112345672122822n n n n S b b b b b b b b b b b ++++=++++++++++++ 1212222n n =⨯+⨯++⨯ ,注意到12(1)2(2)2n n n n n n +⨯=-⨯--⨯,所以121321202(1)21202(1)2(2)2n n nS n n ++=⨯--⨯+⨯-⨯++-⨯--⨯ 1(1)22n n +=-⨯+.【小问3详解】由题可知11a ≥,所以1B =∅,所以10b =,若12a m =≥,则2B =∅,1{1}m B +=,所以20b =,11m b +=,与{}n b 是等差数列矛盾,所以11a =,设()*1n n n d a a n +=-∈N,因为{}n a 是各项均为正整数的递增数列,所以*n d ∈N ,假设存在*k ∈N 使得2k d ≥,设k a t =,由12k ka a +-≥得12k a t++≥,由112k k a t t t a +=<+<+≤得t b k <,21t t b b k ++==,与{}n b 是等差数列矛盾,所以对任意*n ∈N 都有1n d =,所以数列{}n a 是等差数列,1(1)n a n n =+-=.【点睛】方法点睛:求解新定义运算有关的题目,关键是理解和运用新定义的概念以及元算,利用化归和转化的数学思想方法,将不熟悉的数学问题,转化成熟悉的问题进行求解.。

江西省赣州市定南中学2024届高三上学期11月月考数学试题

江西省赣州市定南中学2024届高三上学期11月月考数学试题

江西省赣州市定南中学2024届高三上学期11月月考数学试题学校:___________姓名:___________班级:___________考号:___________因底面半径为3,则底面圆周长为则侧面积为:16π412π2××=.故A 正确;选项,由母线长为4,半径为3,可得高为222446102448BSC +-==-<´´,即则此时2f x x ax=-+()2即()0f t=无解,则t=故需a<0,此时函数y==,由()0t=或t af t=得1要使得函数(())=恰有y f f x此时()=只有一个解,f x a则需22=-+<,解得()21f a a a法二,根据线面角的定义作出二面角P CM A--的平面角,解三角形即可求得答案.【详解】(1)取CD中点N,连接MN,PN,∵90∥,ABC BCDÐ=Ð=°,∴AB CD又∵2=,4AB CD=,∴CN BMAB BM=,∴四边形BMNC是平行四边形,而90Ð=Ð=°,ABC BCD故平行四边形BMNC是矩形,∴CD MN^,又∵PCDV为等边三角形且N为CD中点.∴PN CD^,PN NMÌ平面PNM,PN NM N,I,=∴CD^面PMN,PMÌ面PMN,∴CD PM^.(2)法一:∵平面PCD^平面ABCD,且平面PCD I平面ABCD CD^,=,PN CDPNÌ平面PCD,∴PN^平面ABCD,,MN NDÌ平面ABCD,∴NM,ND,NP两两垂直,连接CM、NM,以CD中点N为坐标原点,NM、ND、NP分别为x、y、z轴,建立所以实数a的取值范围为:2a³-.4e【点睛】方法点睛:指对同式时的不等式问题,可用指对同构法来处理,即用指对互化来实现同构.。

安徽省合肥市第一中学2024-2025学年高三上学期教学质量检测(11月月考)数学试题

安徽省合肥市第一中学2024-2025学年高三上学期教学质量检测(11月月考)数学试题

安徽省合肥市第一中学2024-2025学年高三上学期教学质量检测(11月月考)数学试题一、单选题1.已知集合(){}23log 1A x y x ==-,集合{}3x B y y -==,则A B = ()A .()0,1B .()1,2C .()1,+∞D .()2,+∞2.若()2sin sin cos 5θθθ+=,则tan θ=()A .2或13-B .2-或13C .2D .2-3.已知函数()e cos 1exxa f x x a -=⋅+,则“1a =”是“函数()f x 的是奇函数”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.函数()232e ,0,0x ax x f x x ax a x ⎧+≥=⎨-+<⎩在R 上单调,则a 的取值范围是()A .0,1B .(]0,1C .[)0,1D .0,15.在ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC V 的外接圆半径为1,且222sin21cos2Ca cb C+-==+,则ABC V 的面积是()A B .2C .1D .26.已知一个正整数()1010110N a a =⨯≤<,且N 的15次方根仍是一个整数,则这个数15次方根为().(参考数据:lg20.3,lg30.48,lg50.7≈≈≈)A .3B .4C .5D .67.已知函数()ln f x x x =,2()e x g x x a =-+,若[]12,1,2x x ∃∈,使得()()12f x g x =,则实数a 的取值范围是()A .()24e ,ln 41e -+-B .24e ,ln 41e ⎡⎤-+-⎣⎦C .()2ln 44e ,1e +--D .2ln 44e ,1e ⎡⎤+--⎣⎦8.已知正数x ,y 9xy ,则224x y +的最小值为()A .1B .2C .3D .4二、多选题9.已知关于x 的不等式()()2210(0,0)m a x m b x a b ++-->>>的解集为()1,1,2⎛⎫-∞-⋃+∞ ⎪⎝⎭,则下列结论正确的是()A .21a b +=BC .4411a b +++的最小值为3+D .22a b +的最小值为1410.如图是函数()()ππsin 0,0,22f x K x K ωϕωϕ⎛⎫=+>>-<< ⎪⎝⎭的部分图象,A 是图象的一个最高点,D 是图象与y 轴的交点,B ,C 是图象与x 轴的交点,且()0,1,D ABC - 的面积等于π2,则下列说法正确的是()A .函数()f x 的最小正周期为πB .函数()f x 的图象关于直线5π6x =对称C .函数()f x 的图象可由()2cos 2y x =的图象向右平移π3个单位长度得到D .函数()f x 与()cos g x x =在[]0,π上有2个交点11.已知函数()f x 及其导函数()f x '的定义域均为R ,若()()131f x f x x +--=-,且()21f x +是奇函数,令()()g x f x '=,则下列说法正确的是()A .函数()122y x f x =-+是奇函数B .()102g =C .241()138i f i ==∑D .241()12i g i ==∑三、填空题12.已知幂函数()()215m f x m m x -=+-在0,+∞上单调递减,则m =.13.已知π02αβ<<<,且()()sin cos 0,sin sin 6cos cos αβαβαβαβ+++==,则()tan αβ-=.14.设函数()cos f x x =,下列说法正确的有.①函数()f x 的一个周期为2π;②函数()f x 的值域是,22⎡⎤-⎢⎥⎣⎦③函数()f x 的图象上存在点(),P x y ,使得其到点()1,0;④当ππ,44x ⎡⎤∈-⎢⎣⎦时,函数()f x 的图象与直线2y =有且仅有一个公共点.四、解答题15.已知命题:p “2,10x x ax ∃∈-+=R ”为假命题,命题:q “()2af x x x=+在(]0,1上为增函数”为真命题,设实数a 的所有取值构成的集合为A .(1)求集合R A ð;(2)设集合{}3121B x m x m =+≤<+,若R x A ∈ð是x B ∈的必要不充分条件,求实数m 的取值范围.16.已知函数()3231f x x x ax =-+-.(1)若()f x 的图象在点()()00,x f x 处的切线经过点()0,1-,求0x ;(2)若12,x x 是()f x 的两个不同极值点,且()()122f x f x +>-,求实数a 的取值范围.17.已知定义域为{}0A x x =≠的函数()f x 满足对任意12,x x A ∈,都有()()()121221f x x x f x x f x =+(1)求证:()f x 是奇函数;(2)当1x >时,()0f x <.若关于x 的不等()()()()12ln 12ln 11(0)ax f x x f ax a +->-+>在[]2,3上恒成立,求a 的取值范围.18.记ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知()()sin sin sin sin C A B B C A -=-.(1)求A 取值的范围;(2)若2a =,求ABC V 周长的最大值;(3)若2,2b A B ==,求ABC V 的面积.19.已知函数()ln sin f x x ax x =++,其中(]0,x π∈.(1)当0a =时,求曲线()y f x =在点,22f ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线方程;(2)判断函数()f x 是否存在极值,若存在,请判断是极大值还是极小值;若不存在,说明理由;(3)讨论函数()f x 在,2ππ⎡⎤⎢⎥⎣⎦上零点的个数.。

江苏省盐城市盐城中学2024届高三11月月考数学试题

江苏省盐城市盐城中学2024届高三11月月考数学试题

B. ln (2b - a +1) > 0
C. ln a - 2b > 0
D. ln a - 2b < 0
7.已知函数 f (x) 的定义城为 R,且满足 f (- x) = f ( x) , f (x) + f (4 - x) = 0 ,且当
x Î[0, 2] 时, f (x) = x2 - 4 ,则 f (2023) = ( )
无法确定 a - 2b 与1的大小,故 ln a - 2b 与 0 的大小无法确定,CD 都错. 故选:B. 7.A
【分析】根据题目条件得到 f (x) = f ( x - 8) ,故 f ( x) 的一个周期为 8,从而得到
答案第31 页,共22 页
f (2023) = f (-1) = f (1) ,计算出 f (1) = -3 ,得到答案. 【详解】因为 f (-x) = f (x) ,所以 f éë-(4 - x)ùû = f (4 - x) ,即 f ( x - 4) = f (4 - x) , 又 f (x) + f (4 - x) = 0 ,故 f (x) + f ( x - 4) = 0 ,即 f (x) = - f ( x - 4) ①, 用 x - 4 代替 x 得 f (x - 4) = - f ( x - 8) ②, 由①②得 f (x) = f ( x - 8) ,故 f ( x) 的一个周期为 8, 故 f (2023) = f (8´ 253 -1) = f (-1) ,
2x + sin x
是奇函数,排除 A;
x=π 当 时,
f
(π0) =
- lnπ 2π
<
,排除 C;
当1 <

上海市建平中学2023届高三上学期11月月考数学试卷(解析版)

上海市建平中学2023届高三上学期11月月考数学试卷(解析版)
【详解】由题知,乙组的中位数为65,所以 ,
所以平均数

解得 .
故答案为: ,
4.已知 的展开式中,若第7项为常数项,则 的值为______.
【答案】9
【分析】根据二项式定理的通项展开即可.
【详解】由题知,

因为第7项为常数项.
所以当 时, ,
所以
故答案为:
5.已知函数 的图像与直线 的两个相邻交点的距离等于 ,则 的值为______.
【答案】(1) ;(2)2.
【详解】试题分析:(1)利用三角形的内角和定理可知 ,再利用诱导公式化简 ,利用降幂公式化简 ,结合 ,求出 ;(2)由(1)可知 ,利用三角形面积公式求出 ,再利用余弦定理即可求出 .
试题解析:(1) ,∴ ,∵ ,
∴ ,∴ ,∴ ;
(2)由(1)可知 ,
∵ ,∴ ,
∴ ,
则 的前20项和为

20.已知二次曲线 的方程: .
(1)分别求出方程表示椭圆和双曲线的条件:
(2)若双曲线 与直线 有公共点且实轴最长,求双曲线方程:
(3) 、 为正整数,且 ,是否存在两条曲线 ,其交点 与点 满足 ?若存在,求 、 的值;若不存在,说明理由.
【答案】(1) 时.方程表示椭圆; 时,方程表示双曲线;
故选:B.
【点睛】此题考查大小的比较,利用作差法进行求解,是一道基础题.
15.已知抛物线 的焦点为 , 、 、 为抛物线 上三点,当 时,称 为“特别三角形”,则“特别三角形”有()
A.1个B.2个C.3个D.无数个
【答案】D
【分析】根据向量表达式可以确定 是 的重心,根据重心的性质进行判断即可.
【详解】抛物线方程为 ,A、B、C为抛物线E三点,当满足 时时,F为 的重心,连接 并延长至D,使 ,当D在抛物线内部时,存在以D为中点的弦 ,则这样的三角形有无数个.故“特别三角形”有无数个,

2025届三门峡市高三数学上学期11月考试卷及答案解析

2025届三门峡市高三数学上学期11月考试卷及答案解析

河南省三门峡市2024-2025学年高三上学期11月阶段性考试数学试题注意事项:1.答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上,并将考生号条形码粘贴在答题卡上的指定位置.2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色墨水签字笔书写,字体工整、笔迹清楚.3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.4.考试结束后,将答题卡交回.第Ⅰ卷(选择题共58分)一、单选题:本题共8小题,每题5分,共40分.在每题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}2log 2A x x =≤,{}24B x x =-<<,则A B = ()A. ()2,2-B. ()0,2C. ()0,4 D. (]0,4【答案】C 【解析】【分析】利用对数函数性质,化简集合A ,然后根据集合的交集运算即可【详解】根据题意,易得:{}04A x x =<≤又{}24B x x =-<<则有:{}04A B x x ⋂=<<故选:C2. “1x >”是“2x x >”的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件 D. 既不充分也不必要条件【答案】A 【解析】【分析】根据充分性和必要性两方面判断即可;【详解】因为2x x >,所以0x <或1x >,则1x >可以推出2x x >,但2x x >不能推出1x >.故“1x >”是“2x x >”的充分不必要条件,故选:A .3. 函数2x y -=-与2x y =的图象( )A. 关于x 轴对称B. 关于y 轴对称C. 关于原点对称D. 关于直线y=x 对称【答案】C 【解析】【分析】令()2xf x =,则()2xf x ---=-,由()y f x =与()y f x =--的图象关于原点对称即可得解.【详解】解:令()2xf x =,则()2xf x ---=-()y f x = 与()y f x =--的图象关于原点对称,2x y -∴=-与2x y =的图象关于原点对称.故选:C【点睛】本题考查指数函数的性质,属于基础题.4. 已知等比数列{}n a 的前n 项和为341,2n S S a a =-,且2415a a +=,则35a a +=( )A. 3 B. 5C. 30D. 45【答案】D 【解析】【分析】首先确定1q ≠,再利用等比数列的前n 和公式代入即可求出答案.【详解】若公比1q =,则1152a =,315264S a ==,右边410a a -=,等式不成立,故1q ≠,则()()31311211a q aq q-⨯=--,显然310q -≠,所以211q=--,解得3q =,又因为()2242115a a a q +=+=,代入得232a=,所以()()33352333452a a a q q +=+=⨯+=,故选:D.5. 如图,平行四边形ABCD 中,2,AE EB DF FC ==,若,CB a CE b == ,则AF =( )A. 1322a b+ B. 3122a b-C. 1322a b -D. 1322a b-+【答案】C 【解析】【分析】根据条件,结合图形,利用向量的线性运算,即可求出结果.【详解】因为四边形ABCD 为平行四边形,且2AE EB =,DF FC =,所以12AF AD DF AD DC =+=+ ,即22AF AD DC =+①,又13CE CB BE CB BA =+=+ ,即33CE CB BA =+ ②,由①+②得到23AF CE CB += ,又CB a = ,CE b =,所以1322A b F a =- .故选:C.6. 关于x 的方程(1)(4)x x a --=有实数根12,x x ,且12x x <,则下列结论错误的是( )A. 当0a =时,121,4x x == B. 当0a >时,1214x x <<C. 当0a >时,121,4x x <> D. 当904a -<<时,122544x x <<【答案】B 【解析】【分析】根据给定条件,借助二次函数的图象,逐项分析判断即可.【详解】对于A ,当0a =时,方程(1)(4)0x x --=的二实根为121,4x x ==,A 正确;对于B ,方程(1)(4)x x a --=,即2540x x a -+-=,254(4)0a ∆=-->,解得94a >-,当0a >时,1244x x a =-<,B 错误;对于C ,令()(1)(4)f x x x =--,依题意,12,x x 是函数()y f x =的图象与直线y a =交点的横坐标,在同一坐标系内作出函数()y f x =的图象与直线y a =,如图,观察图象知,当0a >时,1214x x <<<,C 正确;对于D ,当904a -<<时,12254(4,)4x x a =-∈,D 正确.故选:B7. 已知角αβ,满足tan 2α=,2sin cos()sin βαβα=+,则tan β=( )A13B.17C.16D. 2【答案】B 【解析】【分析】利用正弦和角公式,同角三角函数关系得到2tan()3tan αβα+=,故3tan()tan 32αβα+==,利用正切和角公式得到方程,求出1tan 7β=.【详解】因为()sin sin sin()cos cos()sin βαβααβααβα=+-=+-+,2sin cos()sin βαβα=+,所以2sin()cos 2cos()sin cos()sin αβααβααβα+-+=+,即2sin()cos 3cos()sin αβααβα+=+,则2tan()3tan αβα+=,因为tan 2α=,所以3tan()tan 32αβα+==,其中tan tan 2tan tan()31tan tan 12tan αββαβαββ+++===--,故2tan 36tan ββ+=-,解得1tan 7β=.故选:B.8. 在古巴比伦时期的数学泥版上,有许多三角形和梯形的分割问题,涉及到不同的割线.如图,梯形ABCD 中,//AB CD ,且CD a =,AB b =,EF 和GH 为平行于底的两条割线,其中EF为中位线,.GH 过对角线交点,则比较这两条割线可以直接证明的不等式为( )A.)0,02a ba b +≥>>B. ()20,0112a ba b a b+≤>>+C. )0,02a b a b +≤>>D. )220,0a b a b +≥>>【答案】B 【解析】【分析】首先设AC 交BD 于O 点,根据三角形相似性质得到211GH a b=+,即可得到答案.【详解】设AC 交BD 于O 点,如图所示:因为////AB GH CD ,所以OG AO BO OHDC AC BD DC===,即OG OH =.又因为1OG OH OG OH AO OCDC AB a b AC AC+=+=+=,即11221GH GHa b +=,解得2211ab GH a b a b==++.又因为2a b EF +=,GH EF ≤,所以2112a ba b+≤+.故选:B二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得3分,有选错的得0分.9. 在实际应用中,通常用吸光度A 和透光率T 来衡量物体的透光性能,它们之间的换算公式为1lgA T=,下表为不同玻璃材料的透光率:玻璃材料材料1材料2材料3T0.70.80.9设材料1、材料2、材料3的吸光度分别为123,,A A A ,则下列结论正确的是( )A. 12A A > B. 233A A >C. 1322A A A +> D. 231A A A +>【答案】AC 【解析】【分析】根据对数运算法则和单调性求解即可.【详解】由换算公式和图表可知,11110lglg 7A T ==,22110lg lg 8A T ==,33110lg lg 9A T ==,又因为函数lg y x =在(0,+∞)上单调递增,所以对于A :121010lglg 78A A =>=,说法正确;对于B :332101010001033lg lg lg lg 997298A A ⎛⎫===>= ⎪⎝⎭,说法错误;对于C :131010100lg lg lg 7963A A +==+,22101010022lg lg lg 8864A ⎛⎫=== ⎪⎝⎭,1322A A A +>,说法正确;对于D :231101010010lg lg lg lg 89727A A A +=+=<=,说法错误;故选:AC10. 已知非零向量,,a b c,则下列结论正确的是( )A. 若a c b c ⋅=⋅ ,则a b=B. 若()0a b c ⋅=,则b c⊥C. 若()()a b a b +⊥-,则||||a b = D. 向量()()a b c a c b ⋅-⋅ 与向量a垂直【答案】BCD的【解析】【分析】A 选项,举出反例即可;B 选项,由向量数乘运算和数量积公式得到b c ⊥;C 选项,根据向量数量积公式得到220a b -= ,故||||a b = ;D 选项,计算出()()0a b c a c b a ⎡⎤⋅-⋅⋅=⎣⎦,得到垂直关系.【详解】A 选项,不妨设()()()1,0,2,0,0,1a b c === ,满足0a c b c ⋅=⋅=,但a b ≠ ,A 错误;B 选项,()0a b c ⋅= ,故0b c ⋅=,则b c ⊥ ,B 正确;C 选项,()()a b a b +⊥- ,故22()()0a b a b a b +⋅-=-= ,故||||a b = ,C 正确;D 选项,()()()()()()0a b c a c b a a b c a a c b a ⎡⎤⋅-⋅⋅=⋅⋅-⋅⋅=⎣⎦ ,故向量()()a b c a c b ⋅-⋅ 与向量a垂直,D 正确.故选:BCD11. 已知函数()cos sin f x x x x =-在区间(0,3π)内有两个零点12,x x ,则下列结论正确的是( )A. 当π0,2x ⎛⎫∈ ⎪⎝⎭时,tan x x > B.12πx x ->C. 12sin 02x x +⎛⎫>⎪⎝⎭D. 1221sin sin 0x x x x +<【答案】ABD 【解析】【分析】由()0f x =得()tan cos 0x x x =≠,从而得1122tan ,tan x x x x ==,作出单位圆以及5ππtan ,0,22{|y x x x x x =∈<<≠且3π2x ⎫≠⎬⎭与y x =的函数图象,结合图象逐一判断即可得解.【详解】()0f x =即cos sin 0x x x -=,即sin cos x x x =,当cos 0x =时,上式显然不成立,故()0f x =等价于()tan cos 0x x x =≠,所以1122tan ,tan x x x x ==.对于A ,设π0,2AOB α⎛⎫∠=∈ ⎪⎝⎭,作出单位圆,则由三角函数定义可知 tan ,ABAC l αα==,设扇形OAB 的面积为1S ,则1OAC S S > ,即1111tan 2222ABOA AC l OA αα⋅=>=⋅,故tan αα>,故A 正确;对于B ,画出5ππtan ,0,22{|y x x x x x =∈<<≠且3π2x ⎫≠⎬⎭与y x =的函数图象,因为tan y x =的最小正周期为π,所以由图象可知1x 与2x 之间的距离大于π,即12πx x ->,故B 正确;对于C ,由图得123π5ππ,,2π,22x x ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,故23πx <+14πx <,故123π2π22x x +<<,所以12sin 02x x +<,故C 错误;对于D ,因为1122tan ,tan x x x x ==,所以12122112212112sin sin sin sin tan sin tan sin sin sin cos cos x x x x x x x x x x x x x x ++=+=()()1212121212sin sin cos cos tan tan cos cos cos cos x x x x x x x x x x +==⋅+1212121212tan tan cos cos 2222x x x x x x x x x x ⎡⎤+-+-⎛⎫⎛⎫=⋅++- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦121212tan tan 2coscos 22x x x x x x +-=⋅⋅,由图可知,12tan tan x x 、均大于0,由C 项知123π2π22x x +<<,故12cos 02x x +>,又由B 项知12π3π224x x -<<,所以12cos 02x x -<,所以121212tan tan 2cos cos 022x x x xx x +-⋅⋅<即1221sin sin 0x x x x +<,故D 正确.故选:ABD.【点睛】关键点睛:对于选项D 判断1221sin sin 0x x x x +<,关键点1是根据已知条件1122tan ,tan x x x x ==结合问题的结构特征将1221sin sin x x x x +转化成1221tan sin tan sin x x x x +,接着将其弦切互化得到()()1212121212sin sin cos cos tan tan cos cos cos cos x x x x x x x x x x +=⋅+;关键点2是利用选项B和C 中的12x x +和12x x -结合12121212122222x x x x x x x xx x +-+-+-==、以及两角和与差的余弦公式,将()1212tan tan cos cos x x x x ⋅+转化成121212tan tan 2cos cos 22x x x xx x +-⋅⋅,进而结合图象且借助选项B 和C 中的结论即可判断得解.第Ⅱ卷(非选择题共92分)三、填空题:本题共3小题,每小题5分,共15分.12. 在ABC V 中,2cos 3C =,4AC =,3BC =,则cos B =______【答案】19【解析】【分析】根据角C 的余弦定理形式求解出c 的值,再根据余弦定理求解出cos B 的值.【详解】因为22222cos 16924393c a b ab C =+-=+-⨯⨯⨯=,所以3c =,所以22299161cos 22339a cb B ac +-+-===⨯⨯,故答案为:19.13. 已知二次函数()f x 从1到1x +∆的平均变化率为23x ∆+,请写出满足条件的一个二次函数的表达式()f x =_______.【答案】22x x -(答案不唯一)【解析】【分析】设f (x )=ax 2+bx +c ,利用平均变化率的定义计算即可.【详解】设f (x )=ax 2+bx +c ,则()()()()()21Δ11Δ1ΔΔ21Δ1Δf x f a x b x c a b c a x a b x x+-++++-++==+++-,由题意知223a a b =⎧⎨+=⎩,解之得21a b =⎧⎨=-⎩,显然c 的取值不改变结果,不妨取0c =,则()22f x x x =-.故答案为:22x x-14. 已知函数()11x x e f x e -=+,()()11g x f x =-+,()*12321n n a g g g g n N n n n n -⎛⎫⎛⎫⎛⎫⎛⎫=+++⋯+∈ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,则数列{}n a 通项公式为__________.【答案】21n a n =-【解析】【分析】先证明函数()f x 为奇函数,故()()11g x f x =-+的图像关于()1,1对称,故()()22g x g x +-=,由此将n a 的表达式两两组合求它们的和,然后求得n a 的表达式.【详解】由于()()1111x xx xe ef x f x e e-----===-++,所以函数()f x 为奇函数,故()()11g x f x =-+的图像关于()1,1对称,由此得到()()22g x g x +-=,所以()121222111n n n n n a g g g g g g g n n n n n n ⎡⎤⎡⎤⎡⎤---+⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++++++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦ ()()()()211210121n g n f n =-+=-++=-.【点睛】本小题主要考查函数的奇偶性和对称性,考查特殊数列求和的方法——分组求和法.属于中档题.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 设函数()e xf x =,x ∈R .的(1)求方程()()()22f x f x =+的实数解;(2)若不等式()22x b b f x +-≤对于一切x ∈R 都成立,求实数b 的取值范围.【答案】(1)ln 2x = (2)112b -≤≤【解析】【分析】(1)转化为关于e x 的一元二次方程进行求解.(2)分离参数,构造函数()g x ,求导得到()g x 的最小值即可求解.【小问1详解】由()e xf x =,代入方程()()()22f x f x =+得:()2e e 2x x =+,即()()e 2e 10xx-+=,解得e 2x =,即ln 2x =.【小问2详解】不等式()22x b b f x +-≤即22e x x b b +-≤,原不等式可化为22e x b b x -≤-对x ∀∈R 都成立,令()e xg x x =-,则()e 1xg x '=-,当0x >时,()0g x '>,当0x <时,()0g x '<,所以()g x 在(),0∞-上单调递减,在(0,+∞)上单调递增,故当0x =时,()()min 0=1g x g =,所以221b b -≤,即2210b b --≤,解得:112b -≤≤.16. 已知函数2()2sin cos f x x x x =+-,R x ∈,且将函数()f x 的图象向左平移π(02ϕϕ<<个单位长度得到函数()g x 的图象.(1)求()f x 的最小正周期和单调递增区间;(2)若函数()g x 是奇函数,求ϕ的值;(3)若1cos 3ϕ=,当x θ=时函数()g x 取得最大值,求π12f θ⎛⎫+ ⎪⎝⎭的值.【答案】(1)πT =,π5ππ-,π+,Z 1212k k k ⎡⎤∈⎢⎥⎣⎦.(2)π6ϕ=(3)π()12f θ+=【解析】【分析】(1)用二倍角公式、降幂公式及辅助角公式进行化简,再利用2πT ω=求解即可得到最小正周期;结合正弦函数的单调递增区间,用整体的思想求解即可;(2)先根据平移变换求出()g x 表达式,在根据题意列出等式求解即可;(3)当x θ=时函数()g x 取得最大值,由此可得5ππ12k θϕ=-+,代入π12f θ⎛⎫+ ⎪⎝⎭化简;又1cos 3ϕ=,因此可求出sin ϕ,再求出sin 2,cos 2ϕϕ,再根据两角和的正弦公式求解即可.【小问1详解】由题意得()πsin 222sin 23f x x x x ⎛⎫==- ⎪⎝⎭,则其最小正周期2π=π2T =,令πππ2π22π,Z 232k x k k -≤-≤+∈,解得π5πππ,Z 1212k x k k -≤≤+∈,则其单调递增区间为π5ππ,π,Z 1212k k k ⎡⎤-+∈⎢⎥⎣⎦.【小问2详解】将()f x 的图象向左平移ϕ个单位长度得到()g x 的图象,则()π2sin 223g x x ϕ⎛⎫=+-⎪⎝⎭,若函数()g x 是奇函数,则π20π,Z 3k k ϕ-=+∈,即ππ,Z 62k k ϕ=+∈因为π02ϕ<<,所以0k =时,π6ϕ=.【小问3详解】由题知πsin(22)13θϕ+-=,则22232k θϕππ+-=+π,从而512k θϕπ=-+π,Z k ∈,因此πππππ2sin π22π2sin 212233f f k k θϕϕϕ⎛⎫⎛⎫⎛⎫⎛⎫+=-+=-+-=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,因为1cos 3ϕ=,且π02ϕ<<,所以sin ϕ=,的因此1sin 223ϕ==,17cos 22199ϕ=⨯-=-,所以π17sin(2)()329ϕ+=-=,所以π()12f θ+=17. ABC V 中,内角A 、B 、C 的对边分别为a 、b 、c .(1)若sin sin sin sin cos21A B B C B ++=,3π4C =,求a b的值;(2)求证:()222sin sin A B a b c C--=.【答案】(1(2)证明见解析【解析】【分析】(1)根据题意由正弦定理的边角互化,结合余弦定理代入计算,即可得到结果;(2)根据题意,先由正弦定理的边角互化进行化简,再由余弦定理公式代入计算,即可证明.【小问1详解】因为sin sin sin sin cos21A B B C B ++=,所以2sin sin sin sin 1cos 22sin A B B C B B +=-=,由正弦定理可得22ab bc b +=,即2a c b +=,由余弦定理可得2222cos c a b ab C =+-,所以()222322cos4b a a b ab π-=+-,整理可得(34b a =,所以a b==.【小问2详解】证明:()sin sin cos cos sin sin sin A B A B A B CC--=,由正弦定理可得sin cos cos sin cos cos sin A B A B a B b AC c--=,由余弦定理可得222222222222cos cos 22222a c b b c a a b a B b A a b a b ac bc c c c c +-+-⋅-⋅---===,所以()222sin sin A B a b c C--=.18. 已知数列{}n a 的前n 项和为n S ,11a =,11nn S a n n+=--,*N n ∈.(1)求n S ;(2)令()11121n n n n n n n S S b na a n a a ++++=-+,证明:12313n b b b b ++++< .【答案】(1)2n S n = (2)证明见解析【解析】【分析】(1)由题意n a 与n S 之间的关系将1n a +用1n n S S +-表示,得到111n n S S n n +-=+,得到n S n ⎧⎫⎨⎬⎩⎭是等差数列,进而得到n S ;(2)化简n b ,利用裂项相消法求和即可证明.【小问1详解】因为11n n n a S S ++=-,11nn S a n n+=--,所以()()()1111n n n n S n a n n S S n n ++=--=--+, 故()()111n n S n nS n n ++=-+,及111n nS S n n+-=+,所以n S n ⎧⎫⎨⎬⎩⎭是首项为11111S a ==,公差为1的等差数列, 故()11nS n n n=+-=,则2n S n =.【小问2详解】因为2n S n =,1n n n a S S -=-(2n ≥,*N n ∈),所以()22121n a n n n =--=-(2n ≥,*N n ∈).又11a =符合上式,所以21n a n =-()*N n ∈.因为()11121n n n n n n n S S b na a n a a ++++=-+,所以()()()()()()221212112123n n n b n n n n n n +=--++++()()()()121212123nn n n n n +=--+++()()()()()4114421212123n nn n n n ⎡⎤+=-⎢⎥-+++⎣⎦11111421212123n n n n ⎡⎤⎛⎫⎛⎫=+-+ ⎪ ⎪⎢⎥-+++⎝⎭⎝⎭⎣⎦11142123n n ⎛⎫=- ⎪-+⎝⎭, 所以123nb b b b ++++L 1111111111111453759252123212123n n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-+-+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥---+-+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 11111411114321234321233n n n n ⎛⎫⎛⎫=+--=--< ⎪ ⎪++++⎝⎭⎝⎭.19. 若函数()f x 对其定义域内任意()1212,x x x x ≠满足:当()()12f x f x =时,恒有12x x m =,其中常数m ,则称函数()f x 具有性质()V m .(1)函数1()2=+g x x x具有性质()V m ,求m .(2)设函数()()()1221()ln ,0h x x x h x h x x x =-=>>,(ⅰ)判断函数()h x 是否具有性质()V m ,若有,求出m ,若没有,说明理由;(ⅱ)证明:2122x x <.【答案】(1)12m =(2)(ⅰ)()h x 不具有性质()V m ,理由见解析;(ⅱ)证明见解析【解析】【分析】(1)对任意的()()12,,00,x x ∈-∞+∞ 且12x x ≠,由12121221x x x x ++=变形得到()1212012x x x x ⎛⎫--= ⎪⎝⎭,得到1212x x =,求出12m =;(2)(ⅰ)求导,得到()ln h x x x =-的单调性,得到1201x x <<<,假设()h x 具有性质()V m ,即21x x m =,所以21x m x =,根据1122ln ln x x x x -=-,得到1112ln ln 0x mx m x --+=,显然不能恒成立,故假设不成立,()h x 不具有性质()V m ;(ⅱ)先得到21211ln ln x x x x -=-,由对数平均不等式得到121x x <,分212x <≤和22x >两种情况进行求解,当212x <≤时,1122222x x x x x =⋅<,当22x >时,构造差函数,进行求解,得到结论.【小问1详解】1()2=+g x x x定义域为()(),00,-∞+∞ ,对任意的()()12,,00,x x ∈-∞+∞ 且12x x ≠,有12121221x x x x ++=,即()()2112121212121211201222x x x x x x x x x x x x x x ⎛⎫---+-+-==-= ⎪⎝⎭,因为12x x ≠,所以120x x -≠,故1212x x =,故1212x x =,故12m =;小问2详解】()h x 不具有性质()V m ,理由如下:()ln h x x x =-的定义域为()0,∞+,11()1x h x x x-'=-=,当1x >时,()0h x '>,当01x <<时,()0h x '<,故()h x 在()0,1上单调递减,在()1,+∞上单调递增,又21x x >,故1201x x <<<,假设函数()h x 具有性质()V m ,即21x x m =,所以21x mx =,【因为1122ln ln x x x x -=-,所以111111ln ln ln ln x x m x x x x m mm -=-=-+,故1112ln ln 0x mx m x --+=对于任意的()10,1x ∈恒成立,即1112ln ln mm x x x --+恒为0,显然不可能,故假设不成立,故()h x 不具有性质()V m ;(ⅱ)因为1122ln ln x x x x -=-,所以2121ln ln x x x x -=-,21211ln ln x x x x -=-,下面证明2121ln ln x x x x ->-2211ln ln xxx x >>⇒,1t =>2101ln 2l ln 1n 2t t x x t tt t >-⇒⇒->->,令()12ln t tp t t --=,1t >,则()()222221121210t t t t t tp t t --+-===+>',故()12ln t tp t t --=在()1,t ∈+∞上单调递增,故()()10p t p >=,12ln 0t t t-->,所以2121ln ln x x x x ->-1>,所以121x x <,当212x <≤时,1122222x x x x x =⋅<,当22x >时,令()111112222222222222ln ln ln ln 22ln h x h x x x x x x x x x ⎛⎫-=--+=--+-⎪⎝⎭22222222222ln ln 22ln 3ln ln 2x x x x x x x =--+-=--+,令()223ln ln 2q x x x x=--+,2x >,()()()23233321343410x x x x q x x x x x-+-+'=-+==>,故()223ln ln 2q x x x x=--+在()2,+∞上单调递增,又()32322ln 2ln e ln 42q =-=-,其中3e 160->,故32e 4>,所以()20q >,故()1222222223ln ln 20h x h x x x x ⎛⎫-=--+> ⎪⎝⎭,()1222h x h x ⎛⎫> ⎪⎝⎭,其中()()12220,1,0,1x x ∈∈,而()h x 在()0,1上单调递减,故1222x x <,2122x x <,综上,2122x x <.121212ln ln 2x x x xx x -+<<-,在处理函数极值点偏移问题上经常用到,可先证明,再利用对数平均不等式解决相关问题,证明的方法是结合1122ln ln ln x x x x -=,换元后将二元问题一元化,利用导函数进行证明。

河南省部分学校2024-2025学年高三上学期11月月考数学试题含答案

河南省部分学校2024-2025学年高三上学期11月月考数学试题含答案

高三数学(答案在最后)考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效.............,在试题卷....、草稿纸上作答无效.........4.本卷命题范围:集合、常用逻辑用语、不等式、函数、导数,三角函数、三角恒等变换,解三角形、平面向量.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数tan y x =的值域可以表示为()A.{tan }xy x =∣ B.{tan }yy x =∣C.{(,)tan }x y y x =∣D.{tan }y x =【答案】B 【解析】【分析】根据函数的值域是指函数值组成的集合,即可判断.【详解】因函数的值域是指函数值组成的集合,故对于函数tan y x =,其值域可表示为:{tan }yy x =∣.故选:B.2.若“sin 2θ=-”是“tan 1θ=”的充分条件,则θ是()A .第四象限角B.第三象限角C.第二象限角D.第一象限角【答案】B 【解析】【分析】根据角θ的正切值与正弦值的正负判断象限即可.【详解】由题可知,sin 02θ=-<,则θ是第三象限角或第四象限角;又要得到tan 10θ=>,故θ是第三象限角.故选:B3.下列命题正确的是()A.x ∃∈R ,20x <B.(0,4)x ∀∈,20log 2x <<C.(0,)x ∃∈+∞,132x x< D.π0,2x ⎛⎫∃∈ ⎪⎝⎭,4sin cos x x =【答案】C 【解析】【分析】对于选项A:利用指数函数的值域即可判断;对于选项B:利用对数函数的单调性求出值域即可判断;对于选项C:采用特殊值法,令14x =即可判断;对于选项D:令4sin cos 2sin 2y x x x ==,结合三角函数的值域求解验证即可.【详解】对于选项A:因为指数函数2x y =的值域为0,+∞,故x ∀∈R ,20x >,故选项A 错误;对于选项B:因为对数函数2log y x =在(0,4)x ∈上单调递增,所以当(0,4)x ∈时,()2log ,2y x ∞=∈-,故选项B 错误;对于选项C:令14x =,则311464⎛⎫= ⎪⎝⎭,121142⎛⎫= ⎪⎝⎭,显然11642<,故(0,)x ∃∈+∞,使得132x x <成立,故选项C 正确;对于选项D:结合题意可得:令4sin cos 2sin 2y x x x ==,因为π0,2x ⎛⎫∈ ⎪⎝⎭,所以()20,πx ∈,所以(]2sin 20,2y x =∈,2>,故不存在π0,2x ⎛⎫∈ ⎪⎝⎭,使得4sin cos x x =,故选项D 错误.故选:C.4.函数24()f x x x =-的大致图象是()A. B.C.D.【答案】C 【解析】【分析】先确定函数的奇偶性,排除两选项,再根据特殊点的函数值的正负,选出正确答案.【详解】函数24y x x =-是偶函数,图象关于y 轴对称,排出选项A 、B ;再取特殊值12x =和2x =,可得函数的大致图象为C ,故选:C .5.已知向量1e ,2e 满足121e e == ,120e e ⋅= ,则向量1e 与12e e -的夹角为()A.45︒B.60︒C.120︒D.135︒【答案】A 【解析】【分析】利用向量夹角的计算公式计算即可.【详解】由题可知()21121121e e e e e e ⋅-=-⋅=,12e e -==,121e e == 所以()1121121122cos ,2e e e e e e e e e ⋅--===-故向量1e 与12e e -的夹角为45︒故选:A 6.已知5πtan 210α+=,则4π5tan 5α-=()A.125 B.125-C.43D.43-【答案】C 【解析】【分析】先确定两个角的关系,然后利用三角恒等变换公式求解即可.【详解】由题可知,5π4π52π105αα+-⨯+=25π2tan5π4410tan 25π101431tan 10ααα++⎛⎫⨯===- ⎪+-⎝⎭-所以有4π55π5π4tan tan π2tan 2510103ααα-++⎛⎫⎛⎫=-⨯=-⨯= ⎪ ⎪⎝⎭⎝⎭故选:C7.已知0a >,0b >,9a b +=,则36a ba+的最小值为()A.8B.9C.12D.16【答案】A 【解析】【分析】我们观察形式,显然分式的分子和分母同时有变量,所以令()364a b =+代入化简,然后利用基本不等式求解即可.【详解】43644448b a b a a a b b a a b a +=+=++≥+=+当且仅当4b aa b=,9a b +=,即26a b ==时等号成立;故选:A8.若0x ∀>,()()()21ln 10x ax ax ---≥,则a =()A.B.C.D.【答案】D 【解析】【分析】先将两个乘积看做两个函数()21,ln 1y x ax y ax =--=-,易知要使0x ∀>时,()21(ln 1)0xax ax ---≥,则需要两函数()21,ln 1y x ax y ax =--=-同号,所以我们需要去找他们零点,0x >时零点相同,然后求解参数a 即可.【详解】由题易知0a >,当ex a=时,()ln 10ax -=;由对数函数的性质可知,当e 0,x a ⎛⎫∈ ⎪⎝⎭时,()ln 10ax -<;当e ,x a ∞⎛⎫∈+ ⎪⎝⎭时,()ln 10ax ->;显然函数21y x ax =--有两个根12,x x ,不妨令12x x <,则120x x <<由二次函数的图像可知,()20,x x ∈时,210x ax --<;()2,x x ∞∈+时,210x ax -->故要使()()()21ln 10x ax ax ---≥恒成立,则2ex a=所以有2e e 10aa a ⎛⎫-⨯-= ⎪⎝⎭,解得a =故选:D【点睛】关键点点睛:当两个式子相乘大于等于零时,两个式子必定同为负或者同为正,或者有一个为零.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数sin()()2x f x -=,则()A.()f x 的值域为1,22⎡⎤⎢⎥⎣⎦B.()f x 为奇函数C.()f x 在ππ,22⎡⎤-⎢⎥⎣⎦上单调递增 D.()f x 的最小正周期为2π【答案】AD 【解析】【分析】对于选项A:利用换元()sin t x =-,再结合指数函数的单调性即可求出值域;对于选项B:利用奇偶性的定义说明即可;对于选项C :结合复合函数的单调性即可判断;对于选项D :借助三角函数的周期,以及周期函数的定义即可判断.【详解】对于选项A:由sin()()2x f x -=,令()sin t x =-,则2t y =,[]1,1t ∈-,因为2t y =在[]1,1t ∈-上单调递增,所以12,22ty ⎡⎤=∈⎢⎥⎣⎦,故选项A 正确;对于选项B:由sin()()2x f x -=可知(),x ∞∞∈-+,对任意的(),x ∞∞-∈-+,因为sin ()2x f x -=,而sin ()2x f x -=,易验证()(),f x f x -≠-故()f x 不是奇函数,故选项B 错误;对于选项C :结合选项A 可知()sin t x =-在ππ,22⎡⎤-⎢⎥⎣⎦单调递减,而2t y =在定义域上单调递增,由复合函数的单调性可得sin()()2x f x -=在ππ,22⎡⎤-⎢⎥⎣⎦单调递减,故选项C 错误;对于选项D :因为()sin t x =-的最小正周期为2πT =,所以sin(2π)sin()(2π)22()x x f f x x ---==+=,所以()f x 的最小正周期为2π,故选项D 正确.故选:AD.10.国庆节期间,甲、乙两商场举行优惠促销活动,甲商场采用购买所有商品一律“打八四折”的促销策略,乙商场采用“购物每满200元送40元”的促销策略.某顾客计划消费(0)x x >元,并且要利用商场的优惠活动,使消费更低一些,则()A.当0200x <<时,应进甲商场购物B.当200300x ≤<时,应进乙商场购物C.当400500x ≤<时,应进乙商场购物D.当500x >时,应进甲商场购物【答案】AC 【解析】【分析】分别计算不同选项两个商场的优惠判断即可.【详解】当0200x <<时,甲商场的费用为0.84x ,乙商场的费用为x ,0.84x x >,故应进甲商场,所以选项A 正确;当200300x ≤<时,甲商场的费用为0.84x ,乙商场的费用为40x -,400.840.1640x x x --=-,因为200250x ≤<,所以80.16400x -≤-<,400.84x x -<,进入乙商场,当250300x ≤<故400.84x x ->应进甲商场,所以选项B 错误;当400500x ≤<时,甲商场的费用为0.84x ,乙商场的费用为80x -800.840.1680x x x --=-,因为400500x ≤<,所以160.16800x -≤-<故800.84x x -<,所以应进乙商场,所以选项C 正确;假设消费了600,则在甲商场的费用为6000.84504⨯=,在乙商场的费用为600120480-=,所以乙商场费用低,故在乙商场购物,故选项D 错误.故选:AC11.已知函数()f x 满足:①x ∀,R y ∈,()[()]y f xy f x =;②(2)1f ->,则()A.(0)0f = B.()()()f x y f x f y +=⋅C.()f x 在R 上是减函数 D.[1,3]x ∀∈,()2(3)1f x kx f x -⋅-≥,则3k ≥【答案】BCD 【解析】【分析】取2,0x y =-=可求(0)f ,判断A ,取12,2x y =-=-证明()011f <<,取1x =可得()[(1)]y f y f =,由此可得()[(1)]x f x f =,结合指数运算性质和指数函数性质判断BC ,选项D 的条件可转化为当[1,3]x ∈,31x k x+-≤恒成立,结合函数性质求结论.【详解】因为x ∀,R y ∈,()[()]y f xy f x =,(2)1f ->取2,0x y =-=可得01(0)[(2)]f f =-=,A 错误;取12,2x y =-=-可得12(1)[(2)]f f -=-,又(2)1f ->,所以()011f <<,取1x =可得,()[(1)]y f y f =,所以()[(1)]x f x f =,其中()011f <<,所以()()()()()()111x yx yf x y f f f f x f y ++===,B 正确,由指数函数性质可得()[(1)]x f x f =,其中()011f <<在R 上单调递减,所以()f x 在R 上是减函数,C 正确;不等式()2(3)1f x kx f x -⋅-≥可化为()()()23111xkxx f f f --≥,所以230x kx x -+-≤,由已知对于[1,3]x ∀∈,230x kx x -+-≤恒成立,所以当[1,3]x ∈,31x k x+-≤恒成立,故max31x k x ⎛⎫+-≤ ⎪⎝⎭,其中[1,3]x ∈,因为函数1y x =+,3y x=-在[]1,3上都单调递增,所以31x x+-在[1,3]上的最大值为3,所以3k ≥,D 正确;故选:BCD.三、填空题:本题共3小题,每小题5分,共15分.12.已知函数()1ln(2)f x x =-+,则曲线()y f x =在点(1,(1))f --处的切线方程为______.【答案】0x y +=【解析】【分析】利用导数的几何意义求出切线斜率,然后代入点斜式直线方程即可求解切线.【详解】由题可知,()12f x x =-+',()11f -=,所以切线斜率()11k f =-=-',故切线方程为()110y x x y -=-+⇒+=.故答案为:0x y +=13.已知函数()cos (0)f x x ωω=>,若π2f x ⎛⎫+ ⎪⎝⎭为偶函数,且()f x 在区间(0,π)内仅有两个零点,则ω的值是__________.【答案】2【解析】【分析】根据偶函数的性质,求得2k ω=,Z k ∈,再结合余弦函数的零点,列出不等式,即可求解.【详解】πππcos cos 222f x x x ωωω⎛⎫⎛⎫⎛⎫+=+=+⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭为偶函数,所以ππ2k ω⋅=,Z k ∈,得2k ω=,Z k ∈,当∈0,π时,()0,πx ωω∈,()f x 在区间(0,π)内仅有两个零点,所以3π5ππ22ω<≤,解得:3522w <£,所以2ω=.故答案为:214.若ABC V 内一点P 满足PAB PBC PCA α∠=∠=∠=,则称P 为ABC V 的布洛卡点,α为布洛卡角.三角形的布洛卡点是法国数学家和数学教育家克洛尔于1816年首次发现,1875年被法国军官布洛卡重新发现,并用他的名字命名.如图,在ABC V 中,AB AC =,3cos 5BAC ∠=,若P 为ABC V 的布洛卡点,且2PA =,则BC 的长为______.【解析】【分析】利用三角恒等变换、正弦定理、余弦定理等知识进行分析,先求得sin α,进而求得a ,也即是BC .【详解】213cos 2cos 125BAC BAC ⎛⎫∠=∠-= ⎪⎝⎭,所以BAC ∠为锐角,12BAC ∠为锐角,所以11cos ,sin 2525BAC BAC ⎛⎫⎛⎫∠=∠== ⎪ ⎪⎝⎭⎝⎭.由于AB AC =,所以A ABC CB =∠∠,设ABC ACB θ∠=∠=,则2πBAC θ∠+=,ππ11cos cos cos sin 22225BAC BAC BAC θ-∠⎛⎫⎛⎫⎛⎫==-=∠= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,θ为锐角,则sin 5θ==.由于,BAP CBP ABP BCP θα∠=∠∠=∠=-,所以ABP BCP ,所以AB AP BPBC BP PC==①,在PBC △中,由正弦定理得()()()sin sin sin sin πBP BC BC PCθαθααθα===----,所以()sin sin BP PC θαα-=,所以()sin sin AB BP BC PC θαα-==,即()sin sin c a θαα-=,由正弦定理得sin sin cos cos sin sin cos sin sin tan ACB BAC θαθαθθαα∠-==-∠,即2525554tan 55α=-,解得4tan 7α=,则α为锐角,由22sin 4tan cos 7sin cos 1ααααα⎧==⎪⎨⎪+=⎩解得sin αα==,在三角形ABC 中,由余弦定理得222222342cos 2255a b c bc A b b b =+-=-⨯=,所以225,42b a b ==,在三角形ACP 中,由正弦定理得()()sin sin sin πAP AC ACBAC BAC ααα==∠--∠-,所以22445a=,解得a BC ==.【点睛】易错点睛:锐角与边长关系的判断:在判断三角形的角是否为锐角时,容易出现符号错误或判断失误.因此,在涉及角度大小的判断时,需特别注意各个角的定义和所使用定理的适用范围.正弦定理和余弦定理的符号处理:在使用正弦定理和余弦定理时,符号的处理必须谨慎,特别是在涉及平方根和正负符号的时候,需确保没有遗漏或误用.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.在ABC V 中,内角,,A B C 的对边分别为,,a b c ,且π2sin 6a C b c ⎛⎫+=+ ⎪⎝⎭.(1)求A ;(2)若O 为ABC V 的外心,D 为边BC 的中点,且1OD =,求ABC V 周长的最大值.【答案】(1)π3(2)【解析】【分析】(1)由正弦定理结合三角恒等变换进行化简即可求解;(2)利用向量表示出1122OD OB OC =+uuu r uu u r uuu r,由余弦定理结合基本不等式、三角形周长公式即可求解.【小问1详解】由已知π2sin 6a C b c ⎛⎫+=+ ⎪⎝⎭及正弦定理得:312sin sin cos sin sin 22A C C B C ⎛⎫+=+ ⎪ ⎪⎝⎭,由()()sin sin πsin sin cos cos sin B A C A C A C A C ⎡⎤=-+=+=+⎣⎦得:sin sin cos sin cos cos sin sin A C A C A C A C C +=++,sin cos sin sin A C A C C =+,又sin 0C ≠,cos 1A A =+,即π2sin 16A ⎛⎫-= ⎪⎝⎭,因为()0,πA ∈,所以ππ5π,666A ⎛⎫-∈- ⎪⎝⎭,所以ππ,66A -=解得π3A =.【小问2详解】因为O 为ABC V 的外心,且由上问知π3A =,所以2π23BOC A ∠=∠=,设OB OC R ==(R 为ABC V 的外接圆半径),因为D 为边BC 的中点,且1OD =,所以在OBC △中易得:1122OD OB OC =+uuu r uu u r uuu r,所以2221112πcos 4423OD OB OC OB OC =++ ,即22211121cos 4423πR R R =++,解得:2R =,在OBC △中由余弦定理可得:2222π2cos123BC OB OC OB OC =+-=,解得BC a ==在ABC V 中由余弦定理可得:()2222π2cos3123a b c bc b c bc =+-=+-=,由基本不等式22b c bc +⎛⎫≤ ⎪⎝⎭可得:()223122b c b c +⎛⎫+-≤ ⎪⎝⎭,当且仅当b c =时等号成立,所以()21124b c +≤,即b c +≤.所以ABC V 周长ABC C a b c =++≤+=V当且仅当b c ==时等号成立.故ABC V 周长的最大值为16.在ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,且tan tan tan tan 1B C B C ++=,1b =,c =.(1)求a ;(2)如图,D 是ABC V 外一点(D 与A 在直线BC 的两侧),且AC CD ⊥,45CBD ∠= ,求四边形ABDC 的面积.【答案】(15(2)136【解析】【分析】(1)首先根据两角和的正切公式求()tan B C +,即求角A ,再根据余弦定理求解;(2)根据诱导公式求解sin BCD ∠,以及两角和的三角函数求sin D ,再根据正弦定理求BD ,最后根据面积公式,即可求解.【小问1详解】由条件可知,tan tan 1tan tan +=-B C B C ,所以()tan tan tan 11tan tan B CB C B C++==-,所以45B C += ,即135A = ,所以2cos 2A =-,则22222cos 1221252a b c bc A ⎛=+-=+-⨯⨯-= ⎪⎝⎭,所以5a =;【小问2详解】15225cos 5215ACB ∠==⨯⨯,()25sin sin 90cos 5BCD ACB ACB ∠=-∠=∠=,5cos 5BCD ∠=,()()sin sin 45sin cos 225510D BCD BCD BCD ⎛=∠+=∠+∠=⨯+= ⎝⎭ ,BCD △中,sin sin BC BD D BCD =∠,即sin sin 3BC BCD BD D ⋅∠==,所以15sin 4523BCD S BC BD =⨯⨯= ,11sin13522ABC S AC AB =⋅⋅= ,所以四边形ABDC 的面积为5113326+=.17.已知平面向量(,)m a b = ,(sin ,cos )n x x ωω=,且2m n = ,其中0a >,0ω>.设点(0,1)和11π(,0)12在函数()f x m n =⋅ 的图象(()f x 的部分图象如图所示)上.(1)求a ,b ,ω的值;(2)若()G x y ,是()y f x =图象上的一点,则1(2,)2K x y 是函数()y g x =图象上的相应的点,求()g x 在[0,π]上的单调递减区间.【答案】(1)a =1b =,2ω=;(2)π[,π]3【解析】【分析】(1)由2m n =得2=,利用向量数量积计算公式和辅助角公式化简得()2sin()f x x ωϕ=+,根据题设条件列出三角方程组,结合图象即可求出a ,b ,ω的值;(2)由题意中点的变换求得π()sin(6g x x =+,利用正弦函数的图象特点即可求得()g x 在[0,π]上的单调递减区间.【小问1详解】因(,)m a b = ,(sin ,cos )n x x ωω=,由2m n =2=,由()(,)(sin ,cos )f x m n a b x x ωω=⋅=⋅sin cos )2sin()a x b x x x ωωωϕωϕ=+=+=+,其中tan b aϕ=,因点(0,1)和11π(,0)12在函数()f x m n =⋅ 的图象上,则有,2sin 111πsin()012ϕωϕ=⎧⎪⎨+=⎪⎩①②,结合图象,由①可得πZ π2,6k k ϕ=+∈,将其代入②式,可得11πππ,Z 126n n ω+=∈,即212,Z 1111n n ω=-+∈,(*)由图知,该函数的周期T 满足311π412T T <<,即3π11π2π212ωω<<又0ω>,则有18241111ω<<,由(*)可得2ω=,故π()2sin(2)6f x x =+.由320b a a ⎧=⎪=⎪>⎩解得,1a b ⎧=⎪⎨=⎪⎩,故a =1b =,2ω=;【小问2详解】不妨记12,2x x y y ''==,则,22x x y y ''==,因()G x y ,是()y f x =图象上的一点,即得π22sin()6y x ''=+,即πsin(6y x ''=+,又因1(2,)2K x y 是函数()y g x =图象上的相应的点,故有π()sin()6g x x =+.由ππ3π2π2π,Z 262k x k k +≤+≤+∈,可得π4π2π2π,Z 33k x k k +≤≤+∈,因[0,π]x ∈,故得ππ3x ≤≤.()g x 在[0,π]上的单调递减区间为π[,π]3.18.已知函数()2()e xf x x mx n =++,m ,n ∈R .(1)当24m n =时,求()f x 的最小值;(2)当2m =-时,讨论()f x 的单调性;(3)当0m n ==时,证明:0x ∀>,()ln 1f x x >+.【答案】(1)0(2)答案见解析(3)证明见解析【解析】【分析】(1)利用求导判断函数的单调性,即得函数的极小值即最小值;(2)利用求导,就导函数中的参数进行分类,分别讨论导函数的符号,即得函数的单调性;(3)将待证不等式2e ln 1xx x >+等价转化为3e ln 1x x x x +>,设3e ln 1(),()x x g x h x x x+==,依题意,只需证在0x >时,min max ()()g x h x >成立,分别求m m ax in (),()h x g x 即可得证.【小问1详解】当24m n =时,22()()e 4x m f x x mx =++,22()[(2)2()e ()2)e 42x x m f x x m x m m m x x '=+++=++++,由()0f x '>,可得22m x <--或2mx >-,由()0f x '<,可得222m m x --<<-,即()f x 在(,2)2m -∞--和(,)2m -+∞上单调递增;在(2,)22m m---上单调递减,x →-∞时,()0f x →,x →+∞时,()f x →+∞,故2mx =-时,()f x 取得极小值也即最小值,为()02m f -=.【小问2详解】当2m =-时,()2()2e xf x x x n =-+,函数的定义域为R ,()2(e 2)xx f x n =+-',当2n ≥时,()0f x '≥恒成立,故()f x 在R 上为增函数;当2n <时,由()0f x '=,可得x =,故当x <x >时,()0f x '>;即()f x 在(,∞-和)∞+上单调递增;当x <<()0f x '<,即()f x 在(上单调递减.综上,当2n ≥时,()f x 在R 上为增函数;当2n <时,()f x在(,∞-和)∞+上单调递增,在(上单调递减.【小问3详解】当0m n ==时,2()e x f x x =,要证0x ∀>,()ln 1f x x >+,只需证2e ln 1x x x >+,即证3e ln 1x x x x+>在(0,)+∞上恒成立.设3e ln 1(),()x x g x h x x x+==,依题意,只需证在0x >时,min max ()()g x h x >.因e ()=x g x x ,2(1)e ()xx g x x-'=,由()0g x '<,可得01x <<,由()0g x '>,可得1x >,故()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,则()g x 在1x =时取得极小值也是最小值,为(1)e g =;因3ln 1()x h x x+=,423ln ()x h x x --'=,由()0h x '=,可得23x e -=,由()0h x '<,可得23x e->,由()0h x '>,可得230x e -<<,故()h x 在23(0,e)-上单调递增,在23(e ,)-+∞上单调递减,则()h x 在23x e -=时取得极大值也是最大值,为22332323ln e ()3e1e (e )h ---==+.因2e e 3>,即min max ()()g x h x >在(0,)+∞上成立,故得证.即0x ∀>,()ln 1f x x >+.【点睛】方法点睛:本题主要考查利用导数求函数的最值、证明不等式恒成立等知识点,属于较难题.证明不等式型如()()f x g x >的恒成立问题,一般方法有:(1)构造函数法:即直接构造()()()F x f x g x =-,证明min ()0F x >;(2)比较最值法:即证明min max ()()f x g x >即可;(3)等价转化法:即将待证不等式左右两边同除以一个式子,使得左右函数的最值可比较.19.已知非零向量(,)a m n =,(,)b p q = ,a ,b 均用有向线段表示,现定义一个新的向量c 以及向量间的一种运算“※”:(,)c a b mp nq mq np ==-+※.(1)证明:c 是这样一个向量:其模是a 的模的 b 倍,方向为将a绕起点逆时针方向旋转β角(β为x 轴正方向沿逆时针方向旋转到b所成的角,且02πβ≤<),并举一个具体的例子说明之;(2)如图1,分别以ABC V 的边AB ,AC 为一边向ABC V 外作ABD △和ACE △,使π2BAD CAE ∠=∠=,(01)AD AEAB ACλλ==<<.设线段DE 的中点为G ,证明:AG BC ⊥;(3)如图2,设(3,0)A -,圆22:4O x y +=,B 是圆O 上一动点,以AB 为边作等边ABC V (A ,B ,C 三点按逆时针排列),求||OC 的最大值.【答案】(1)证明见解析.(2)证明见解析.(3)5.【解析】【分析】(1)根据圆的参数方程设定,a b 的坐标,再依据题意证明即可;(2)依据新定义把,AG BC的坐标表示出来再运算证明即可;(3)掌握平面向量的模的运算和三角函数的最值求法即可解答.【小问1详解】证明:设(,)(cos ,sin ),(,)(cos ,sin )a m n r r b p q R R ααββ====(0,0,,r R αβ>>分别为x 轴正方向逆时针到,a b所成的角,且,[0,2)αβπ∈),则cos cos sin sin cos()mp nq Rr Rr Rr αβαβαβ-=-=+,cos sin sin cos sin()mq np Rr Rr Rr αβαβαβ+=+=+,于是cos()sin((,))Rr a b Rr c αβαβ=++=※,即c Rr a b ==⨯,x 轴正方向逆时针到c 所成的角为αβ+.故:c 是这样一个向量:把a的模变为原来的 b 倍,并按逆时针方向旋转β角(β为x 轴正方向逆时针到b所成的角,且02πβ≤<).例如,1(,),22a b == ,则111,1222((0,2)2c a b ⨯+=== ※,1,2a b == ,a 与x 轴正方向的夹角为π3,b 与x 轴正方向的夹角为6π,将a的模变为原来的2倍,并按逆时针旋转π6,即可得c .【小问2详解】证明:记(,),(,)AB m n AC p q ==,根据新定义,可得()3π3πcos ,sin ,22AD AB n m λλλ⎛⎫==- ⎪⎝⎭ ※,同理(cos ,sin )(,)22q p A AE C ππλλλ==- ※,所以1()()()()222n q p m AG A AD E λλ--=+= ,而(,)BC AC AB p m q n =-=--,所以1[()()()()]02AG BC p m n q q n p m λλ⋅=--+--= ,故:AG BC ⊥.【小问3详解】解:设(,)B u v ,则224,(3,)u v AB u v +==+,())3ππ13cos ,sin 3,,,33222222u u v AC AB u v λ⎛⎫⎛++⎛⎫==+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭※※,所以333(3)33333(3,0)(,)(,)222222u u v u v OC OA AC ++--++=+=-+-+=,所以OC ===.设2cos ,2sin (02)u v θθθπ==≤<,则OC == ,当πsin 16θ⎛⎫+= ⎪⎝⎭,即π3θ=时,max 5OC = .【点睛】此题考查了圆的参数方程;平面向量数量积的性质,以及三角函数最值.。

上海市静安区风华中学2024届高三上学期11月月考数学试题

上海市静安区风华中学2024届高三上学期11月月考数学试题

上海市静安区风华中学2024届高三上学期11月月考数学试

学校:___________姓名:___________班级:___________考号:___________一、填空题
二、单选题
A .有极小值点,没有极大值点C .至少有两个极小值点和一个极大值点三、解答题
17.已知函数()πcos 2f x ⎛= ⎝(1)求函数()y f x =的最小正周期及函数在(2)在△ABC 中,角A ,B ,C 的值.
(1)求证:DE ∥平面11AA B B ;
(2)当点M 为1BB 中点时,求三棱锥19.小明今年1月1日用24万购进一辆汽车,每天下午跑滴滴出租车,经估计,每年可有16万元的总收入,已知使用总计为²2x x +万元(今年为第一年)
(1)该出租车第几年开始盈利(总收入超出总支出)(2)该车若干年后有两种处理方案;
①当盈利总额达到最大值时,以②当年平均盈利达到最大值时,以试问哪一种方案较为合算请说明理由20.已知两定点()
12,0F -,E ,直线1y kx =-与曲线E 交于(1)求曲线E 的方程;(2)求实数k 的取值范围;
(3)如果63AB =,且曲线E 上存在点积ABC S .
21.记()f x '、()g x '分别为函数且()()00f x g x ''=,则称0x 为函数(1)证明:函数()f x x =与()g x =(2)若函数()²1f x ax =-与(g x。

湖南省邵阳市双清区昭陵实验学校等多校联考2024届高三上学期11月月考数学试题

湖南省邵阳市双清区昭陵实验学校等多校联考2024届高三上学期11月月考数学试题

B.点 1,0 在圆 C 内
C.圆 C 的最大弦长为 2
D.过原点可以作圆 C 的两条切线
10.已知 a 0 ,b 0 ,且 a 2b 7 ,若 a2 3b2 t 恒成立,则实数 t 的值可能为( )
A.20
B.21
C.49
D.50
11.已知点 A4, 4 是抛物线 C : y2 2 px 上一点,F 是抛物线 C 的焦点,直线 AF 与抛物
试卷第 1页,共 4页
D.可以预测 x 6 时,该商场手机销量约为 1.81 千只
7.已知
f
x
sin
x

0

为常数),若
f
x

π 3
,
7π 12
上单调,且
f
π 6
f
7π 18
f
π 18
,则
f
x
的最小正周期是(

A. π 2
B. 2π 3
C.
3π 4
D. 2π
8.已知
F1
、F2
分别为双曲线
数的共有
种.
15.若 x 0, ,不等式 ex ln x 0 恒成立,则实数 的取值范围是

16.已知三棱锥 A BCD 中, AB CD 3 2 , AC AD BC BD 5 ,空间中的动
点 M 满足 MA 2MB ,则平面 BCD 截 M 的轨迹形成的图形的面积为
D. i
2.已知集合 A x log2 x 1 ,B x N | x 2024 ,则集合 A B 的元素个数为( )
A.2024
B.2023
C.2022
3.在等比数列an 中, a1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20届,高三上学期11月月考数学试题2020届浙江省宁波市宁波十校高三上学期11月月考数学试题一、单选题1.已知集合A={x|0},B={x|1<x≤2},则A∩B=()A.{x|1<x<2}B.{x|1<x≤2}C.{x|﹣1≤x≤2}D.{x|﹣1≤x<2}【答案】A【解析】集合A={x|﹣1≤x<2},集合的交集运算,即可求解.【详解】由题意,集合A={x|0}={x|﹣1≤x<2},B={x|1<x≤2},所以A∩B={x|1<x<2}.故选:A.【点睛】本题主要考查了分式不等式的求解,以及集合的交集的运算,其中解答中正确求解集合A,结合集合的交集概念及运算求解是解答的关键,着重考查了推理与计算能力,属于基础题.2.若复数为纯虚数,其中为虚数单位,则()A.2B.3C.-2D.-3【答案】C【解析】因为为纯虚数,所以且,解得,故选C.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数,共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化,转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.3.已知三个实数2,a,8成等比数列,则双曲线的渐近线方程为()A.3x±4y=0B.4x±3y=0C.x±2y=0D.9x±16y=0【答案】A【解析】由三个实数2,,8成等比数列,求得=16,得到双曲线的渐近线方程,即可求得双曲线的渐近线的方程,得到答案.【详解】由题意,三个实数2,,8成等比数列,可得=16,即双曲线的渐近线方程为3x±4y=0,故选:A.【点睛】本题主要考查了双曲线的标准方程及简单的几何性质,其中解答中根据等比中项公式,求得的值,得出双曲线的标准方程式解答的关键,着重考查了推理与运算能力,属于基础题.4.若实数x,y满足x+y>0,则“x>0”是“x2>y2”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B【解析】根据充分条件、必要条件的判定方法,结合不等式的性质,即可求解,得到答案.【详解】由题意,实数x,y满足x+y>0,若x>0,则未必有x2>y2,例如x=1,y =2时,有x2<y2;反之,若x2>y2,则x2﹣y2>0,即(x+y)(x﹣y)>0;由于x+y>0,故x﹣y>0,∴x>y且x>﹣y,∴x>0成立;所以当x+y>0时,“x>0”推不出“x2>y2”,“x2>y2”⇒“x>0”;∴“x>0”是“x2>y2”的必要不充分条件.答案:B.【点睛】本题主要考查了不等式的性质,以及充分条件、必要条件的判定,其中解答中熟记充分条件、必要条件的判定方法,结合不等式的性质求解是解答的关键,着重考查了推理与论证能力,属于基础题.5.已知函数f(x)=x2﹣3x﹣3,x∈[0,4],当x=a时,f(x)取得最大值b,则函数的图象为()A.B.C.D.【答案】D【解析】结合二次函数的性质,求得,得到函数,再结合指数函数的图象,即可求解.【详解】由题意,函数f(x)=x2﹣3x﹣3,x∈[0,4],对称轴为x =1.5,开口向上,最大值为f(4)=1,所以a=4,b=1,可得函数g(x),相当于把y向左平移1个单位,所以D选项复合题意.故选:D.【点睛】本题主要考查了图象的识别,其中解答中熟记一元二次函数的性质,以及指数函数的图象与性质,合理运算时解答的关键,着重考查了推理与运算能力,属于基础题.6.已知实数满足不等式组,若的最大值为8,则z的最小值为()A.﹣2B.﹣1C.0D.1【答案】D【解析】作出不等式组所表示的平面区域,结合平面区域,根据目标的最大值,分类讨论求得的值,进而求得目标函数的最小值,得到答案.【详解】由题意,作出不等式组所表示的可行域,如图所示,由,解得;由,解答;由,解得(1)若目标函数取得最大值的最优解为时,代入目标函数,可得,此时目标函数,此时代入点,可得,不符合题意;(2)若目标函数取得最大值的最优解为时,代入目标函数,可得,此时目标函数,此时代入点,可得,不符合题意;(3)若目标函数取得最大值的最优解为时,代入目标函数,可得,此时目标函数,此时点能使得目标函数取得最小值,代入点,最小值为;答案:D.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.7.函数f(x)=sin(ωx+φ)(ω>0,)满足f()=f()=﹣f(),且当x∈[,]时恒有f(x)≥0,则()A.ω=2B.ω=4C.ω=2或4D.ω不确定【答案】A【解析】根据三角函数的图象与性质,求得函数的对称轴和对称点,判断周期的取值范围,即可求解,得到答案.【详解】由题意,函数,因为f()=f()=﹣f(),可得f(x)有一条对称轴为,对称点的横坐标为,又由x∈[,]时恒有f(x)≥0,所以f()=1,又f()=0,.所以,,可得当T =π,ω=2;当T时,ω=6,当x时,sin(6•φ)=cosφ>0,不成立,故选:A.【点睛】本题主要考查了三角函数的图象与性质的应用,其中解答中熟记三角函数的图象与性质,准确计算是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.8.今有男生3人,女生3人,老师1人排成一排,要求老师站在正中间,女生有且仅有两人相邻,则共有多少种不同的排法()A.216B.260C.432D.456【答案】C【解析】将老师两边分别看作三个位置,先分组再排列,在排入学生,按分步计数原理,即可求解.【详解】由题意,将老师两边分别看作三个位置,将学生分为两女一男和两男一女两组,且两女相邻,分组方法有9种,两女一男的排列方法为4种,两男一女的排列方法有6种,由分步计数原理,可得总的排列方法有432种,故选:C.【点睛】本题主要考查了计数原理、排列组合的应用,其中解答中认真审题,合理利用排列、组合的知识求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.9.如图,点E为正方形ABCD边CD上异于点C、D的动点,将△ADE沿AE翻折成△SAE,在翻折过程中,下列三个说法中正确的个数是()①存在点E和某一翻折位置使得AE∥平面SBC;②存在点E和某一翻折位置使得SA⊥平面SBC;③二面角S﹣AB﹣E的平面角总是小于2∠SAE.A.0B.1C.2D.3【答案】B【解析】对于①,四边形ABCE为梯形,所以AE与BC必然相交;对于②,假设SA平面SBC,可推得矛盾;对于③,当将△ADE沿AE翻折使得平面SAE⊥平面ABCE时,二面角S﹣AB﹣E最大,在平面SAE内,作出一个角等于二面角S﹣AB﹣E的平面角;由角所在三角形的一个外角,它是不相邻的两个内角之和,结合图形,即可判定③.【详解】对于①,四边形ABCE为梯形,所以AE与BC必然相交,故①错误;对于②,假设SA平面SBC,SC平面SBC,所以SA⊥SC,又SA⊥SE,SE∩SC=S,所以SA⊥平面SCE,所以平面SCE∥平面SBC,这与平面SBC∩平面SCE=SC矛盾,故假设不成立,即②错误;对于③,当将△ADE沿AE翻折使得平面SAE⊥平面ABCE时,二面角S﹣AB﹣E最大,如图,在平面SAE内,作SO⊥AE,垂足为O,∴SO⊥平面ABCE;AB平面ABCE,所以SO⊥AB;作OF⊥AB,垂足为F,连接SF,SO∩OF=O,则AB⊥平面SFO,所以AB⊥SF,则∠SFG即为二面角S﹣AB﹣E的平面角;在直线AE上取一点,使得O=OF,连接S,则∠SO=∠SFO;由图形知,在△SA中,S>A,所以∠AS<∠SAE;而∠SO=∠SAE+∠AS,故∠SO<2∠SAE;即∠SFO<2∠SAE.故③正确.故选:B.【点睛】本题主要考查了空间中的平行于垂直关系的应用,二面角的平面角的作法,以及立体几何的折叠问题,其中解答中熟记线面关系的判定与性质,以及熟练掌握二面角的平面角的作法是解答的关键,着重考查了空间想象能力,以及转化思想的应用,属于中档试题.10.已知函数f(x),g(x)=f()+1(k∈R,k≠0),则下列关于函数y=f[g(x)]+1的零点个数判断正确的是()A.当k>0时,有2个零点;当k<0时,有4个零点B.当k>0时,有4个零点;当k<0时,有2个零点C.无论k为何值,均有2个零点D.无论k为何值,均有4个零点【答案】B【解析】根据方程的跟和函数的零点的关系,将函数的零点个数转化为和以及的交点,即可求解.【详解】依题意,当x=0或x时,f(x)=﹣1,函数y=f[g(x)]+1的零点个数,即为方程f[g(x)]=﹣1的解的个数,即为方程g(x)=0或g(x)的解的个数,即为方程或者或(舍去)或者解的个数,即为0或者或者解的个数,由,,因为,所以,①当k>0时,y为顶点为(0,),开口向上的抛物线,y与y和分别有两个交点,与y=0无交点,故当k>0时,函数y =f[g(x)]+1有4个零点;②当k<0时,y为顶点为(0,),开口向下的抛物线,y与y=0有两个交点,与y和无交点,故当k<0时,函数y=f[g(x)]+1有2个零点;综上,当k>0时,有4个零点;当k<0时,有2个零点,故选:B.【点睛】本题主要考查了函数的零点与方程的跟的关系,以及函数的零点个数问题,其中解答中将函数的零点个数转化为和以及的交点是解答的关键,着重考查了分析问题和解答问题的能力,属于难题.二、填空题11.已知θ∈(0,π),且sin(θ),则cos(θ)=_____,sin2θ=_____.【答案】【解析】由已知直接利用诱导公式求得,再由,利用余弦的倍角公式,即可求解.【详解】由题意,因为sin (θ),可得cos(θ)=cos[()]=sin(θ);又由sin2θ=cos()=cos2().故答案为:,.【点睛】本题主要考查了三角函数的诱导公式、以及余弦的倍角公式的化简求值问题,其中解答中熟记三角函数的诱导公式和三角函数恒等变换的公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.12.在二项式的展开式中,各项系数的和为_____,含x的一次项的系数为_____.(用数字作答)【答案】【解析】令,代入即可求得展开式各项系数的和,再写出二项展开式的通项,令的指数为1,求得的值,即可求得的一次项系数,得到答案.【详解】在二项式中,取,可得各项系数的和为﹣1;二项式的展开式的通项.由,得r=1.∴含x的一次项的系数为.故答案为:﹣1;﹣10.【点睛】本题主要考查了二项式定量的应用,其中解答中合理利用赋值法,以及熟记二项展开式的通项,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.13.祖暅是我国南北朝时代的伟大科学家,他在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”,称为祖暅原理.意思是底面处于同一平面上的两个同高的几何体,若在等高处的截面面积始终相等,则它们的体积相等.利用这个原理求半球O的体积时,需要构造一个几何体,该几何体的三视图如图所示,则该几何体的体积为_____,表面积为_____.【答案】(3)π【解析】根据给定的几何体的三视图,得到该几何体为一个圆柱挖去一个圆锥,得出圆柱的底面半径和高,利用体积和侧面积、以及圆的公式,即可求解.【详解】根据给定的几何体的三视图,可得该几何体表示一个圆柱挖去一个圆锥,且底面半径1,高为1的组合体,所以几何体的体积为:.几何体的表面积为:(3)π,故答案为:,(3)π【点睛】本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线,求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解.14.一个袋中装有10个大小相同的黑球、白球和红球.已知从袋中任意摸出2个球,至少得到一个白球的概率是,则袋中的白球个数为_____,若从袋中任意摸出3个球,记得到白球的个数为ξ,则随机变量ξ的数学期望Eξ=_____.【答案】5【解析】根据至少得到一个白球的概率为,可得不含白球的概率为,结合超几何分布的相关知识可得白球的个数,以及随机变量的期望,得到答案.【详解】依题意,设白球个数为,至少得到一个白球的概率是,则不含白球的概率为,可得,即,解得,依题意,随机变量,所以.故答案为:5,.【点睛】本题主要考查了超几何分布中事件的概率,以及超几何分布的期望的求解,其中解答中熟记超几何分布的相关知识,准确计算是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.15.已知常数p>0,数列{an}满足an+1=|p﹣an|+2an+p(n∈N),首项为a1,前n 项和为Sn.若Sn≥S3对任意n∈N成立,则的取值范围为_____.【答案】[﹣6,﹣4]【解析】首先判断数列为递增数列,结合恒成立,则必有成立,用及表示出,由不等式即可求解的取值范围.【详解】由题意,,及,所以数列为递增数列,要使得对任意恒成立,则必有,所以,,,所以,即的取值范围.故答案为:.【点睛】本题主要考查了数列的递推关系式的应用,其中解答的难点在于利用已知条件去掉绝对值,并判断出满足的条件,着重考查了逻辑推理能力,属于中档试题.16.已知椭圆,倾斜角为60°的直线与椭圆【答分别交于A、B两点且,点C是椭圆上不同于A、B一点,则△ABC面积的最大值为_____.案】【解析】设直线AB的方程为,联立方程组,利用根与系数的关系及弦长公式,得到,解得的值,设与直线平行且与椭圆相切的直线方程为,联立方程组,利用,求得的值,再由点到直线的距离公式和三角形的面积公式,即可求解.【详解】由题意,设直线AB 的方程为,点A(x1,y1),B(x2,y2),联立方程组,整理得18x2+10mx+5m2﹣30=0,所以x1+x2,x1x2.因为,即,代入整理得,解得,不妨取:m=2,可得直线AB的方程为,设与直线AB平行且与椭圆相切的直线方程为yx+t,联立方程组,整理得18x2+10tx+5t2﹣30=0,由△=300t2﹣72×(5t2﹣30)=0,解得:t=±6.取t=﹣6时,与直线AB平行且与椭圆相切的直线与直线AB的距离,所以△ABC面积的最大值,故答案为:.【点睛】本题主要考查了直线与圆锥曲线的位置关系的综合应用,解答此类题目,通常联立直线方程与椭圆(圆锥曲线)方程,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.17.已知平面向量,,满足:,的夹角为,||=5,,的夹角为,||=3,则•的最大值为_____.【答案】36【解析】设,,,由题意知四点共圆,建立坐标系,求出点的坐标和圆的半径,设,用表示,根据范围和三角和差公式,即可求解.【详解】设,,,则AB=||=5,AC=||=3,∠ACB,∠APB,可得P,A,B,C四点共圆.设△ABC的外接圆的圆心为O,则∠AOB=2∠APB,由正弦定理可知:2OA5,故OA.以O为圆心,以OA,OB为坐标轴建立平面坐标系如图所示:则A(,0),B(0,).在△OAC中,由余弦定理可得cos∠AOC,故sin∠AOC,∴C(,).设P (cosα,sinα),,则(cosα,sinα),(cosα,sinα),∴(cosα)(cosα)sinα(sinα)=16+12sinα﹣16cosα=16+20•(sinαcosα)=16+20sin(α﹣φ),其中sinφ,cosφ.∴当α=φ时,取得最大值36.答案:36.【点睛】本题主要考查了向量的数量积的运算,正弦定理、余弦定理的应用,以及三角恒等变换与三角函数的图象与性质的综合应用,着重考查了逻辑推理能力和分析问题和解答问题的能力,属于难题.三、解答题18.已知△ABC的内角A、B、C的对边分别为a、b、c,且.(1)求A;(2)若,求△ABC的面积S的最大值.【答案】(1)A(2)【解析】(1)利用整下定理,三角函数的恒等变换,集合,求得,即可求解;(2)由余弦定理,基本不等式求得的最大值,进而根据三角形的面积公式,即可求解三角形的最大面积.【详解】(1)由题意,在中,,由正弦定理得,又由,可得所以,即cosAsinCsinCsinA,又因为sinC≠0,所以cosAsinA,可得tanA,又由A∈(0,π),∴A.(2)由余弦定理可得cosA,可得b2+c2﹣3bc,因为b2+c2≥2bc,所以3bc≥2bc,可得bc3(2),所以三角形的面积Sbcsin,当且仅当b=c等号成立,所以△ABC的面积S的最大值.【点睛】本题主要考查了正弦定理、余弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理,着重考查了运算与求解能力,属于基础题.19.如图,四边形ABCD为菱形,四边形ACFE为平行四边形,设BD与AC 相交于点G,AB=BD=AE=2,∠EAD=∠EAB.(1)证明:平面ACFE⊥平面ABCD;(2)若直线AE与BC的夹角为60°,求直线EF与平面BED所成角的余弦值.【答案】(1)证明见解析(2)【解析】(1)先由已知条件求得,得到,再结合菱形的对角线垂直,可得平面,即可证得平面ACFE⊥平面ABCD;(2)建立空间直角坐标系,求得各点的坐标,设的坐标,根据条件求出,再求得直线的方向向量和平面的法向量,利用向量的夹角公式,即可求解.【详解】(1)证明:连接EG,因为AB=BD=AE=2,∠EAD=∠EAB,可得△EAD≌EAB,∴ED=EB.∵G为BD的中点,所以EG⊥BD,因为四边形ABCD为菱形,∴AC⊥BD,∴BD⊥平面ACEF,因为BD⊂平面ABCD;∴平面ACFE⊥平面ABCD;(2)因为EF∥AG,直线EF与平面BED所成角即为AG与平面BED所成角;以G为原点建立如图所示空间直角坐标系,如图所示,设E(a,0,b)则(a,0,b),因为(,﹣1,0),所以由条件可得:||2=(a)2+b2=4且•a+3=2×2×cos60°=2;解得,所以(,﹣1,),因为(0,2,0);所以可取平面BED的法向量(2,0,﹣1),因为(﹣2,0,0),设直线EF与平面BED所成角为θ,则sinθ,∵0<θ;∴sosθ;既直线EF与平面BED所成角的余弦值为.【点睛】本题考查了线面位置关系的判定与证明,以及空间角的求解问题,意在考查学生的空间想象能力和逻辑推理能力,解答中熟记线面位置关系的判定定理和性质定理,通过严密推理是线面位置关系判定的关键,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用(1)向量的夹角公式求解.20.已知等差数列{an}的前n项和为Sn,且a2+2a4=a9,S6=36.求an,Sn;(2)若数列{bn}满足b1=1,,求证:(n∈N).【答案】(1)an=2n﹣1,Sn=n2(2)证明见解析【解析】(1)设等差数列的公差为,运用等差数列的通项公式和求和公式,解方程可得首项和公差,再结合等差数列的通项公式和求和公式,即可求解;(2)讨论,将换为,相减得到,再由数列的裂项相消求和及不等式的性质,即可求解.【详解】(1)设等差数列{an}的公差设为d,前n项和为Sn,且a2+2a4=a9,S6=36,可得a1+d+2(a1+3d)=a1+8d,即2a1=d,又6a1+15d=36,即2a1+5d=12,解得a1=1,d =2,则an=1+2(n﹣1)=2n﹣1,Sn=n+n(n﹣1)=n2;(2)证明:数列{bn}满足b1=1,n,当n=1时,b1b2=1,可得b2=1,n≥2时,bnbn﹣1=n﹣1,相减可得bn(bn+1﹣bn﹣1)=1,即bn+1﹣bn﹣1,当n≥2时,b3﹣b1+b4﹣b2+b5﹣b3+…+bn+1﹣bn﹣1b1﹣b2+bn+bn+1≥﹣1+221;当n=1时,1=21,不等式成立,综上可得,(n∈N).【点睛】本题主要考查了等差数列的通项公式和前项和公式的应用,以及数列与不等式的证明,其中解答中注意数列的裂项相消法求和,以及不等式的性质的应用是解答的关键,着重考查了方程思想以及运算能力,属于中档试题.21.如图,P是抛物线E:y2=4x上的动点,F是抛物线E的焦点.(1)求|PF|的最小值;(2)点B,C在y轴上,直线PB,PC与圆(x﹣1)2+y2=1相切.当|PF|∈[4,6]时,求|BC|的最小值.【答案】(1)|PF|的最小值为1(2)【解析】(1)求得抛物线的焦点和准线方程,运用抛物线的定义和性质,即可求得|PF|的最小值;(2)设,分别求得的方程,运用直线和圆相切,得到为方程的两根,再由韦达定理可得,进而可求得其最小值.【详解】(1)P是抛物线E:y2=4x上的动点,F是抛物线E的焦点(1,0),准线方程为x=﹣1,由抛物线的定义可得|PF|=d=xP+1,由,可得d的最小值为1,|PF|的最小值为1;(2)设,则PB的方程为yx+m,PC的方程为yx+n,由直线PA与圆(x﹣1)2+y2=1相切,可得1,整理得(x0﹣2)m2+2y0m﹣x0=0,同理可得(x0﹣2)n2+2y0n﹣x0=0,即有m,n为方程(x0﹣2)x2+2y0x﹣x0=0的两根,可得m+n,mn,则|m﹣n|,由|PF|∈[4,6],可得x0+1∈[4,6],即x0∈[3,5],令t=|2﹣x0|=x0﹣2,t∈[1,3],即有|m﹣n|2在[1,3]递减,可得t=3即x0=5时,|BC|=|m﹣n|取得最小值.【点睛】本题主要考查了抛物线的定义、标准方程及性质,以及直线与抛物线的位置关系的应用,其中解答中注意韦达定理和二次函数的单调性的应用是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.22.已知函数.(1)当a∈R时,讨论函数f(x)的单调性;(2)对任意的x∈(1,+∞)均有f(x)<ax,若a∈Z,求a的最小值.【答案】(1)答案不唯一,具体见解析(2)a的最小值为3【解析】(1)求得函数的导数,令,分情况讨论,进而可得求得函数的单调性;(2)由得到,转化为,对任意成立,令,利用导数求得函数的最大值,即可求得实数的最小值.【详解】(1)由题意,函数,则,x>0且x≠1,令,则其图象对称轴为直线x,g(0)=10,当,即a≥20时,则g(x)>0,f′(x)>0,此时f(x)分别在(0,1)和(1,+∞)上递增,当时,即a<20时,令△=(a﹣20)2﹣400≤0.可得0≤a<20,所以当0≤a<20时,则g(x)>0,f′(x)>0,此时f(x)分别在(0,1)和(1,+∞)上递增,当a<0时,由g(x)=0解得x1,x2,易知f(x)分别在(0,x1),(x2,+∞)上递增,分别在(x1,1),(1,x2)上递减.综上所述,当a≥0时,f(x)分别在(0,1)和(1,+∞)上递增,当a<0时,分别在(0,x1),(x2,+∞)上递增,分别在(x1,1),(1,x2)上递减.(2)由题意得,,即,对任意成立,令F(x),x>1,则,x>1,令h(x)=(2﹣x)lnx+x﹣1,h′(x)=﹣lnx,x>1因为h′(x)在(1,+∞)上递减,且h′(1)=2>0,当x→+∞时,h′(x)→﹣∞,所以存在x0∈(1,+∞),使得h′(x0)=0,且h(x)在(1,x0)上递增,在(x0,+∞)上递减,因为h(1)=0,所以h(x0)>0,因为当x→+∞时,h(x)→﹣∞,所以存在x1∈(x0,+∞),使得h(x1)=0,且F(x)在(1,x1)上递增,在(x1,+∞)上递减,所以F(x)max=F(x1),因为h(x1)=(2﹣x1)lnx1+x1﹣1=0,所以lnx1,所以F(x1),因为h(4)=﹣2ln4+3=ln0,h(5)=﹣3ln5+4=ln0,所以x1∈[4,5],令Φ(x),x∈[4,5],易证Φ(x)在区间[4,5]上递减,所以Φ(x)∈[,],即F(x)max∈[,],因为a∈Z,所以a的最小值为3.【点睛】本题主要考查导数在函数中的综合应用,以及恒成立问题的求解,着重考查了转化与化归思想、逻辑推理能力与计算能力,对于恒成立问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.。

相关文档
最新文档