弧长以及扇形面积的计算-练习题含答案

合集下载

中考数学精选汇编弧长与扇形面积---13道题目(含答案)

中考数学精选汇编弧长与扇形面积---13道题目(含答案)

01已知该圆锥的侧面展开图的圆心角为120°、半径长为6,圆锥的高与母线的夹角为α,则()A.圆锥的底面半径为3 B.tanα=C.圆锥的表面积为12πD.该圆锥的主视图的面积为8已知该圆锥的侧面展开图的圆心角为120°、半径长为6,圆锥的高与母线的夹角为α,则()A.圆锥的底面半径为3 B.tanα=C.圆锥的表面积为12πD.该圆锥的主视图的面积为8【考点】圆锥的计算.【分析】根据圆锥的侧面展开图的弧长=2πr=,求出r以及圆锥的高h即可解决问题.【解答】解:设圆锥的底面半径为r,高为h.由题意:2πr=,解得r=2,h==4,所以tanα==,圆锥的主视图的面积=×4×4=8,表面积=4π+π×2×6=16π.∴选项A、B、C错误,D正确.故选D.【点评】本题考查圆锥的有关知识,记住侧面展开图的弧长=2πr=,圆锥的表面积=πr2+πrl是解决问题的关键,属于中考常考题型.02如图,是半径为1的圆弧,∠AOC 等于45°,D 是上的一动点,则四边形AODC 的面积s 的取值范围是 ( )A .42242+≤≤S B .42242+≤<S C .22222+≤≤S D .22222+<<S如图,是半径为1的圆弧,∠AOC 等于45°,D 是上的一动点,则四边形AODC 的面积s 的取值范围是 ( )A .42242+≤≤S B .42242+≤<S C .22222+≤≤S D .22222+<<S 答案:B 解析如图,过点C 作CF 垂直AO 于点F,过点D 作DE 垂直CO 于点E, ∵CO=AO=1,∠COA=45°所以CF=FO=22,∴S △AFC=22121⨯⨯42=则面积最小的四边形面积为D 无限接近点C 所以最小面积无限接近42但是不能取到∵△AOC 面积确定,∴要使四边形AODC 面积最大,则要使△COD 面积最大。

专题3弧长和扇形面积(专项练习含答案

专题3弧长和扇形面积(专项练习含答案

专题3.24 弧长和扇形面积(专项练习1)一、单选题知识点一、求弧长1.如图,PA 、PB 是⊙O 的切线,切点分别为A 、B ,若OA =2,⊙P =60°,则AB 的长为( )A .23πB .πC .43πD .53π 2.如图,在扇形AOB 中,AC 为弦,140AOB ∠︒=,60CAO ∠︒=,6OA =,则BC 的长为( )A .43πB .83πC .D .2π 3.如图,半径为1的⊙O 与正五边形ABCDE 相切于点A ,C ,则劣弧AC 的长度为( )A .25π B .23π C .34π D .45π 知识点二、求半径4.一个扇形的圆心角为60°,弧长为2π厘米,则这个扇形的半径为( )A .6厘米B .12厘米C .厘米D 厘米 5.若扇形的圆心角为90︒,弧长为3π,则该扇形的半径为( )A B .6 C .12 D .,圆心角是150,则它的半径长为()6.已知一个扇形的弧长为5cmA.6cm B.5cm C.4cm D.3cm 知识点三、求圆心角7.已知扇形半径为3,弧长为π,则它所对的圆心角的度数为()A.120°B.60°C.40°D.20°8.圆锥的地面半径为10cm.它的展开图扇形半径为30cm,则这个扇形圆心角的度数是()A.60°B.90°C.120°D.150°9.有一条弧的长为2πcm,半径为2cm,则这条弧所对的圆心角的度数是()A.90°B.120°C.180°D.135°知识点四、求点的运动路径长10.如图,在边长为1的正方形组成的网格中,⊙ABC的顶点都在格点上,将⊙ABC绕点C 顺时针旋转60°,则顶点A所经过的路径长为()A.10πBC D.π11.如图,四个三角形拼成一个风车图形,若AB=2,当风车转动90°时,点B运动路径的长度为()A.πB.2πC.3πD.4π12.如图,已知□ABCD的对角线BD=4cm,将□ABCD绕其对称中心O旋转180°,则点D所转过的路径长为( )A .4π cmB .3π cmC .2π cmD .π cm知识点五、求扇形面积13.如图,AB 为半圆的直径,其中4AB =,半圆绕点B 顺时针旋转45︒,点A 旋转到点A '的位置,则图中阴影部分的面积为( )A .πB .2πC .2πD .4π14.如图,AB 是⊙O 的直径,CD 是弦,⊙BCD=30°,OA=2,则阴影部分的面积是( )A .3πB .23πC .πD .2π15.如图,等边三角形ABC 内接于O ,若O 的半径为2,则图中阴影部分的面积等于( )A .3πB .23πC .43πD .2π知识点六、求旋转扫过的面积16.如图,C 是半圆⊙O 内一点,直径AB 的长为4cm ,⊙BOC =60°,⊙BCO =90°,将⊙BOC 绕圆心O 逆时针旋转至⊙B′OC′,点C′在OA 上,则边BC 扫过的区域(图中阴影部分)的面积为( )A .43πB .πC .4πD 17.在⊙ABC 中,⊙C=90°,BC=4cm ,AC=3cm ,把⊙ABC 绕点A 顺时针旋转90°后,得到⊙A 1B 1C 1(如图所示),则线段AB 所扫过的面积为( )A .2B .254πcm 2C .252πcm 2D .5πcm 218.如图,直径AB 为6的半圆,绕A 点逆时针旋转60°,此时点B 到了点B′,则图中阴影部分的面积是( )A .6πB .5πC .4πD .3π知识点七、求弓形的面积19.如图,在O 中,2OA =,45C ∠=︒,则图中阴影部分的面积为( )A.2πB .πC .22π- D .2π-20.如图,阴影表示以直角三角形各边为直径的三个半圆所组成的两个新月形,若127S S +=,且8AC BC +=,则AB 的长为( )A .6B .7C .8D .1021.如图,某商标是由三个半径都为R 的圆弧两两外切得到的图形,则三个切点间的弧所围成的阴影部分的面积是( )A .(√3﹣12π)R 2B .(√3+12π)R 2C .(√32﹣π)R 2D .(√32+π)R 2知识点八、求不规则图形面积22.如图,在菱形ABCD 中,点E 是BC 的中点,以C 为圆心、CE 为半径作弧,交CD 于点F ,连接,AE AF .若6AB =,60B ∠=,则阴影部分的面积为( )A .3πB .2πC .9π-D .6π 23.如图,直径6AB =的半圆,绕B 点顺时针旋转30︒,此时点A 到了点A ',则图中阴影部分的面积是( ).A .2πB .34πC .πD .3π24.如图,菱形ABCD 的边长为4cm ,⊙A =60°,弧BD 是以点A 为圆心,AB 长为半径的弧,弧CD 是以点B 为圆心,BC 长为半径的弧,则阴影部分的面积为( )A .2cm 2B .2C .4cm 2D .πcm 2二、填空题 知识点一、求弧长25.如图,边长为的正六边形螺帽,中心为点O ,OA 垂直平分边CD ,垂足为B ,AB =17cm ,用扳手拧动螺帽旋转90°,则点A 在该过程中所经过的路径长为_____cm .26.一个扇形的圆心角是120°.它的半径是3cm .则扇形的弧长为__________cm . 27.如图,在66⨯的方格纸中,每个小方格都是边长为1的正方形,其中A 、B 、C 为格点,作ABC 的外接圆,则BC 的长等于_____.知识点二、求半径28.已知扇形的圆心角为120°,弧长为6π,则它的半径为________.29.若扇形的圆心角为120°,弧长为18πcm ,则该扇形的半径为_____cm .30.如图,⊙O 的半径为6cm ,B 为⊙O 外一点,OB 交⊙O 于点A ,AB=OA ,动点P 从点A 出发,以π cm/s 的速度在⊙O 上按逆时针方向运动一周回到点A 立即停止.当点P 运动的时间为______时,BP 与⊙O 相切.知识点三、求圆心角31.一个扇形的弧长是20cm π,面积是2240cm π,则这个扇形的圆心角是___度. 32.如图,点A 、B 、C 在半径为9的⊙O 上,AB 的长为,则⊙ACB 的大小是___.33.若一个扇形的弧长是2πcm ,面积是26πcm ,则扇形的圆心角是__________度.知识点四、求点的运动路径长34.如图,扇形AOB 中,10,36OA AOB =∠=︒.若将此扇形绕点B 顺时针旋转,得一新扇形A O B '',其中A 点在O B '上,则点O 的运动路径长为_______cm .(结果保留π)35.将边长为2的正六边形ABCDEF 绕中心O 顺时针旋转α度与原图形重合,当α最小时,点A 运动的路径长为_____.36.如图,在扇形铁皮AOB中,OA=10,⊙AOB=36°,OB在直线l上.将此扇形沿l按顺时针方向旋转(旋转过程中无滑动),当OA第5次落在l上时,停止旋转.则点O所经过的路线长为_____.知识点五、求扇形面积37.如图,在正六边形ABCDEF中,分别以C,F为圆心,以边长为半径作弧,图中阴影部分的面积为24π,则正六边形的边长为_____.38.一个扇形的半径为3cm,面积为 2cm,则此扇形的圆心角为______.39.如图,矩形ABCD的对角线交于点O,以点A为圆心,AB的长为半径画弧,刚好过点O,以点D为圆心,DO的长为半径画弧,交AD于点E,若AC=2,则图中阴影部分的面积为_____.(结果保留π)知识点六、求旋转扫过的面积40.如图,在⊙ABC 中,⊙ABC =45°,⊙ACB =30°,AB =2,将⊙ABC 绕点C 顺时针旋转60°得⊙CDE ,则图中线段AB 扫过的阴影部分的面积为_____.41.如图,在⊙ABC 中,AB =5,AC =3,BC =4,将⊙ABC 绕点A 逆时针旋转30°后得到⊙ADE ,点B 经过的路径为弧BD ,则图中阴影部分的面积为________.42.如图,将ABC 绕点A 逆时针旋转120︒得ADE ,已知4AB =,1AC =,那么图中阴影部分的面积是________.(结果保留π)知识点七、求弓形的面积43.如图,⊙O 的半径为2,点A ,B 在⊙O 上,⊙AOB =90°,则阴影部分的面积为________.44.如图,点A 、B 、C 在⊙O 上,若⊙BAC =45°,OB =2,则图中阴影部分的面积为_____.45.如图,点C 是以AB 为直径的半圆O 的三等分点,2AC = ,则图中阴影部分的面积是 _______.知识点八、求不规则图形面积46.如图,边长为2的正方形ABCD 中心与半径为2的⊙O 的圆心重合,E 、F 分别是AD 、BA 的延长与⊙O 的交点,则图中阴影部分的面积是______.(结果保留π)47.如图,AB 是O 的直径,点E 是BF 的中点,过点E 的切 线分别交AF AB ,的延长线于点D C ,,若C 30∠=,O 的半径是2,则图形中阴影部分的面积是_______.48.如图所示的扇形AOB 中,920,OA B OB AO ∠===︒,C 为AB 上一点,30AOC ∠=︒,连接BC ,过C 作OA 的垂线交AO 于点D ,则图中阴影部分的面积为_______.三、解答题知识点一、求弧长49.如图,PC是⊙O的直径,PA切⊙O于点P,OA交⊙O于点B,连结BC.已知⊙O的半径为2,⊙C=35°(1)求⊙A的度数;(2)求BC的长.知识点二、求半径50.在⊙O中,弦AB所对的圆周角为30°,且5cmAB=,求AB的长.嘉琪的解法如下:⊙弦AB所对的圆周角是30°,AB∴的长为3055(cm) 1806ππ⨯=.请问嘉琪的解法正确吗?如果不正确,请给出理由.知识点三、求圆心角51.若一条圆弧所在圆半径为9,弧长为52π,求这条弧所对的圆心角.知识点四、求点的运动路径长52.如图,正方形网格中的每一个小正方形的边长都是1,四边形ABCD的四个顶点都在格点上,O为AD边的中点,若把四边形ABCD绕点O顺时针旋转180°,试解决下列问题:(1)画出四边形ABCD旋转后的图形;(2)求点C在旋转过程中经过的路径长.知识点五、求扇形面积53.如图,AB是O的直径,点D是AB延长线上的一点,点C在O上,且AC=CD,=.∠︒120ACD()求证:CD是O的切线;1()若O的半径为3,求图中阴影部分的面积.2知识点六、求旋转扫过的面积54.如图所示,在平面直角坐标系中,Rt⊙ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).(1)将⊙ABC以点C为旋转中心逆时针旋转90°,画出旋转后对应的⊙A1B1C;(2)图中⊙ABC外接圆的圆心的坐标是,⊙ABC外接圆的面积是平方单位长度.知识点七、求弓形的面积55.如图,以AB为直径的⊙O经过AC的中点D,DE⊙BC于点E.(1)求证:DE是⊙O的切线;(2)当AB=⊙C=30°时,求图中阴影部分的面积(结果保留根号和π).知识点八、求不规则图形面积56.如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,AB,DC的延长线交于点E.(1)求证:AC平分⊙DAB;(2)若BE=3,参考答案1.C【解析】试题解析:⊙P A、PB是⊙O的切线,⊙⊙OBP=⊙OAP=90°,在四边形APBO中,⊙P=60°,⊙⊙AOB =120°,⊙OA =2,⊙AB 的长l =12024=1803ππ⨯. 故选C.2.B【分析】连接OC ,根据等边三角形的性质得到80BOC ∠︒=,根据弧长公式计算即可.【详解】连接OC ,60OA OC CAO ∠︒=,=,AOC ∴为等边三角形,60AOC ∴∠︒=,1406080BOC AOB AOC ∴∠∠-∠︒-︒︒===,则BC 的长80681803ππ⨯==, 故选B . 【点拨】本题考查弧长的计算,等边三角形的判定和性质,掌握弧长公式:180n r l π=是解题的关键.3.D【分析】连接OA 、OC ,如图,根据正多边形内角和公式可求出⊙E 、⊙D ,根据切线的性质可求出⊙OAE 、⊙OCD ,从而可求出⊙AOC ,然后根据圆弧长公式即可解决问题.【详解】连接OA 、OC ,如图.⊙五边形ABCDE 是正五边形, ⊙⊙E =⊙D =(52)1805︒-⨯=108°.⊙AE 、CD 与⊙O 相切,⊙⊙OAE =⊙OCD =90°,⊙⊙AOC =(5﹣2)×180°﹣90°﹣108°﹣108°﹣90°=144°,⊙劣弧AC 的长为144141805ππ⨯=. 故选D .【点拨】本题主要考查了切线的性质、正五边形的性质、多边形的内角和公式、圆弧长公式等知识,求出圆弧所对应的圆心角是解决本题的关键.4.A【解析】 l=180n R π⨯, 由题意得,2π=60180R π⨯, 解得:R=6cm .故选A .故选A .【点睛】运用了弧长的计算公式,属于基础题,熟练掌握弧长的计算公式是关键. 5.B 【分析】根据弧长公式180n r l π=可以求得该扇形的半径的长度. 【详解】 解:根据弧长的公式180n r l π=,知 180180390l r n πππ⨯===6, 即该扇形的半径为6.故选:B .【点拨】本题考查了弧长的计算.解题时,主要是根据弧长公式列出关于半径r 的方程,通过解方程即可求得r 的值.6.A【分析】设扇形半径为rcm ,根据扇形弧长公式列方程计算即可.【详解】设扇形半径为rcm , 则150180r π=5π,解得r =6cm . 故选A.【点拨】本题主要考查扇形弧长公式.7.B【解析】【详解】解:根据l=3180180n r n ππ⨯==π, 解得:n=60°,故选B .【点拨】本题考查弧长公式,在半径为r 的圆中,n°的圆心角所对的弧长为l=180n r π. 8.C【解析】【分析】根据圆锥的侧面展开图为扇形,圆锥的底面圆的周长等于扇形的弧长得到圆锥的展开图扇形的弧长=2π•10,然后根据扇形的弧长公式l =180n R π 计算即可求出n . 【详解】解:设圆锥的展开图扇形的圆心角的度数为n .⊙圆锥的底面圆的周长=2π•10=20π,⊙圆锥的展开图扇形的弧长=20π,⊙20π=30180n π⋅⋅, ⊙n =120°.故答案选:C .【点拨】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,圆锥的底面圆的周长等于扇形的弧长,母线长等于扇形的半径.也考查了扇形的弧长公式.9.C【分析】根据弧长公式:l =180n R π(弧长为l ,圆心角度数为n ,圆的半径为R ),代入即可求出圆心角的度数.【详解】解:由题意得,2π=2180n π⨯, 解得:n =180.即这条弧所对的圆心角的度数是180°.故选C .【点拨】本题考查了弧长的计算,解答本题关键是熟练掌握弧长的计算公式,及公式字母表示的含义.10.C【详解】如图所示:在Rt⊙ACD 中,AD=3,DC=1,根据勾股定理得:又将⊙ABC 绕点C 顺时针旋转60°,则顶点A 所经过的路径长为=. 故选C.11.A【分析】B 点的运动路径是以A 点为圆心,AB 长为半径的圆的14的周长,然后根据圆的周长公式即可得到B 点的运动路径长度为π.【详解】解:⊙B 点的运动路径是以A 点为圆心,AB 长为半径的圆的14的周长, ⊙9022360,故选:A .【点拨】本题考查了弧长的计算,熟悉相关性质是解题的关键.12.C【分析】点D 所转过的路径长是一段弧,是一段圆心角为180°,半径为OD 的弧,故根据弧长公式计算即可.【详解】解:BD=4, ⊙OD=2⊙点D 所转过的路径长=1802180π⨯=2π. 故选:C .【点拨】本题主要考查了弧长公式:180n r l π=. 13.B【分析】由旋转的性质可得:AB A B BAA S S S S ''+=+阴影半圆半圆扇形,从而可得BAA S S '=阴影扇形,利用扇形面积公式计算即可.【详解】解:半圆AB 绕点B 顺时针旋转45︒,点A 旋转到A '的位置, AB A B S S '∴=半圆半圆,45ABA '∠=︒.AB A B BAA S S S S ''+=+阴影半圆半圆扇形,BAA S S '∴=阴影扇形24542360ππ⨯==. 故选B . 【点拨】本题考查的是旋转的性质,扇形面积的计算,掌握以上知识是解题的关键. 14.B【分析】根据圆周角定理可以求得⊙BOD 的度数,然后根据扇形面积公式即可解答本题.【详解】⊙⊙BCD=30°,⊙⊙BOD=60°,⊙AB 是⊙O 的直径,CD 是弦,OA=2,⊙阴影部分的面积是:236236020ππ⨯⨯=, 故选B .【点拨】本题考查扇形面积的计算、圆周角定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.15.C【分析】连接OC ,如图,利用等边三角形的性质得120AOC ∠=,AOB AOC SS =,然后根据扇形的面积公式,利用图中阴影部分的面积AOC S =扇形进行计算.【详解】解:连接OC ,如图, ABC 为等边三角形,120AOC ∠∴=,AOB AOC S S =,∴图中阴影部分的面积212024.3603AOC S 扇形ππ⋅⨯===故选C .【点拨】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了等边三角形的性质.16.B【解析】【分析】根据直角三角形的性质求出OC 、BC ,根据扇形面积公式:2360n r S π=计算即可. 【详解】解:⊙⊙BOC=60°,⊙BCO=90°,⊙⊙OBC=30°,⊙OC=12OB=1,则边BC 扫过的区域的面积为:2212021120111136023602ππ⨯⨯+-- =πcm 2.故答案为B .【点拨】本题主要考查扇形面积公式,三角形的性质.正确计算扇形面积是解题的关键. 17.B【解析】【分析】首先求出AB ,然后根据扇形面积公式计算即可.【详解】解:,⊙线段AB 所扫过的面积为:290525=3604ππ⋅⋅, 故选:B.【点拨】本题主要考查扇形面积计算,熟练掌握扇形面积计算公式是解题关键. 18.A【详解】试题分析:根据题意可得:阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积-以AB 为直径的半圆的面积=扇形ABB′的面积=26066360ππ⨯=,故选A . 考点:图形旋转的性质、扇形的面积.19.D【分析】根据圆周角定理得出⊙AOB=90°,再利用S 阴影=S 扇形OAB -S ⊙OAB 算出结果.【详解】解:⊙⊙C=45°,⊙⊙AOB=90°,⊙OA=OB=2,⊙S阴影=S扇形OAB-S⊙OAB=29021223602π⋅⋅-⨯⨯=2π-,故选D.【点拨】本题考查了圆周角定理,扇形面积计算,解题的关键是得到⊙AOB=90°.20.A【分析】根据勾股定理得到AC2+BC2=AB2,根据扇形面积公式、完全平方公式计算即可.【详解】解:由勾股定理得,AC2+BC2=AB2,⊙S1+S2=7,⊙12×π×(2AC)2+12×π×(2BC)2+12×AC×BC−12×π×(2AB)2=7,⊙AC×BC=14,AB6,故选:A.【点拨】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.21.A【解析】【分析】由题意知,得到的如图三角形是等边三角形,边长也为R,阴影的部分的面积等于等边三角形的面积减去三个弓形的面积.而一个弓形的面积等于圆心角为60度的半径为R 的扇形的面积减去边长为R的等边三角形的面积.【详解】解:边长为R的等边三角形的面积SΔ=12×sin60°R2=√34R2;半径为R的扇形的面积S扇形=60πR2360=πR26;⊙一个弓形的面积S扇形=πR26−√34R2,⊙阴影的部分的面积=√34R 2−3×(πR 26−√34R 2)=(√3−12π)R 2. 故选:A .【点拨】本题考查了等边三角形的性质和面积的求法,及扇形,弓形的面积的求法. 22.A【分析】连接AC ,根据菱形的性质求出BCD ∠和6BC AB ==,求出AE 长,再根据三角形的面积和扇形的面积求出即可.【详解】连接AC ,⊙四边形ABCD 是菱形,⊙6AB BC ==,⊙60B ∠=,E 为BC 的中点,⊙3CE BE CF ===,ABC ∆是等边三角形,//AB CD ,⊙60B ∠=,⊙180120BCD B ∠=-∠=,由勾股定理得:AE ==⊙11622AEB AEC AFC S S S ∆∆∆==⨯⨯==,⊙阴影部分的面积212033360AEC AFC CEFS S S S ππ∆∆⨯=+-==扇形, 故选A .【点拨】本题考查了等边三角形的性质和判定,菱形的性质,扇形的面积计算等知识点,能求出AEC ∆、AFC ∆和扇形ECF 的面积是解此题的关键.23.D【分析】由半圆A′B 面积+扇形ABA′的面积-空白处半圆AB 的面积即可得出阴影部分的面积.【详解】解:⊙半圆AB,绕B点顺时针旋转30°,⊙S阴影=S半圆A′B+S扇形ABA′-S半圆AB= S扇形ABA′=2630 360π⋅=3π故选D.【点拨】本题考查了扇形面积的计算以及旋转的性质,熟记扇形面积公式和旋转前后不变的边是解题的关键.24.B【解析】【分析】连接BD,判断出⊙ABD是等边三角形,根据等边三角形的性质可得⊙ABD=60°,再求出⊙CBD=60°,DB=BC=AD,从而确定S扇形BDC=S扇形ABD,然后求出阴影部分的面积=S扇形BDC -(S扇形ABD-S⊙ABD)=S⊙ABD,计算即可得解.【详解】解:如图,连接BD,⊙四边形ABCD是菱形,⊙AB=AD=BC,⊙⊙A=60°,⊙⊙ABD是等边三角形,⊙⊙ADB=60°,AD=DB=BC=4又⊙菱形的对边AD⊙BC,⊙⊙CBD=⊙ADB=60°,⊙S扇形BDC=S扇形ABD⊙S阴影=S扇形BDC-(S扇形ABD-S⊙ABD)=S⊙ABD24cm2.故选B.【点拨】本题考查了菱形的性质,等边三角形的性质和面积,熟记性质并作辅助线构造出等边三角形是解题的关键.25.10π【分析】利用正六边形的性质求出OB的长度,进而得到OA的长度,根据弧长公式进行计算即可.【详解】解:连接OD,OC.⊙⊙DOC=60°,OD=OC,⊙⊙ODC是等边三角形,⊙OD=OC=DC=cm),⊙OB⊙CD,⊙BC=BD cm),⊙OB=3(cm),⊙AB=17cm,⊙OA=OB+AB=20(cm),⊙点A在该过程中所经过的路径长=9020180π⋅⋅=10π(cm),故答案为:10π.【点拨】本题考查了正六边形的性质及计算,扇形弧长的计算,熟知以上计算是解题的关键.26.2π【解析】分析:根据弧长公式可得结论. 详解:根据题意,扇形的弧长为1203180π⨯=2π, 故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.27 【分析】由AB 、BC 、AC 长可推导出⊙ACB 为等腰直角三角形,连接OC ,得出⊙BOC =90°,计算出OB 的长就能利用弧长公式求出BC 的长了.【详解】⊙每个小方格都是边长为1的正方形,⊙AB =AC ,BC ,⊙AC 2+BC 2=AB 2,⊙⊙ACB 为等腰直角三角形,⊙⊙A =⊙B =45°,⊙连接OC ,则⊙COB =90°,⊙OB⊙BC 的长为:90180π⋅=2.【点拨】本题考查了弧长的计算以及圆周角定理,解题关键是利用三角形三边长通过勾股定理逆定理得出⊙ACB 为等腰直角三角形.28.9【分析】根据弧长公式L =180n R π求解即可. 【详解】 ⊙L =180n R π, ⊙R =1806120ππ⨯=9. 故答案为9.【点拨】本题考查了弧长的计算,解答本题的关键是掌握弧长公式:L =180n R π. 29.27【解析】【分析】根据弧长公式即可得解.【详解】解:设扇形的半径为r (cm ),则18π=120180r π⨯⨯, 解得:r=27.故答案为27.【点拨】本题考查扇形的弧长公式,l=180n r π,l 是弧长,n 是圆心角的度数,r 是半径. 30.2或10【分析】根据切线的判定与性质进行分析即可.若BP 与⊙O 相切,则⊙OPB=90°,又因为OB=2OP ,可得⊙B=30°,则⊙BOP=60°;根据弧长公式求得弧AP 长,除以速度,即可求得时间.【详解】连接OP⊙当OP⊙PB 时,BP 与⊙O 相切,⊙AB=OA ,OA=OP ,⊙OB=2OP ,⊙OPB=90°;⊙⊙B=30°;⊙⊙O=60°;⊙OA=6cm ,弧AP=606180π⨯=2π, ⊙圆的周长为:12π,⊙点P 运动的距离为2π或12π-2π=10π;⊙当t=2秒或10秒时,有BP 与⊙O 相切.故答案为:2或10【点拨】本题考查的是切线的性质及弧长公式,解答此题时要注意过圆外一点有两条直线与圆相切,不要漏解.31.150【分析】根据弧长公式计算.【详解】 根据扇形的面积公式12S lr =可得: 1240202r ππ=⨯, 解得r =24cm , 再根据弧长公式20180n r l cm ππ==, 解得150n =︒.故答案为:150.【点拨】本题考查了弧长的计算及扇形面积的计算,要记熟公式:扇形的面积公式12S lr =,弧长公式180n r l π=. 32.20°. 【分析】连接OA 、OB ,由弧长公式的92180n ππ⨯⨯=可求得⊙AOB ,然后再根据同弧所对的圆周角等于圆心角的一半可得⊙ACB.【详解】解:连接OA、OB,由弧长公式的92180nππ⨯⨯=可求得⊙AOB=40°,再根据同弧所对的圆周角等于圆心角的一半可得⊙ACB=20°.故答案为:20°【点拨】本题考查弧长公式;圆周角定理,题目难度不大,掌握公式正确计算是解题关键.33.60【分析】根据扇形的面积公式求出半径,然后根据弧长公式求出圆心角即可.【详解】解:扇形的面积=12lr=6π,解得:r=6,又⊙6180nlπ⨯==2π,⊙n=60.故答案为:60.【点拨】此题考查了扇形的面积和弧长公式,解题的关键是掌握运算方法.34.4π.【分析】根据弧长公式,此题主要是得到⊙OBO′的度数.根据等腰三角形的性质即可求解.【详解】解:根据题意,知OA=OB.又⊙AOB=36°,⊙⊙OBA=72°.⊙点O 旋转至O′点所经过的轨迹长度=7210180π︒⨯⨯︒=4πcm . 故答案是:4π. 【点拨】本题考查了弧长的计算、旋转的性质.解答该题的关键是弄清楚点O 的运动轨迹是弧形,然后根据弧长的计算公式求解.35.23π . 【详解】试题分析:根据题意α最小值是60°,然后根据弧长公式即可求得.⊙正六边形ABCDEF 绕中心O 顺时针旋转α度与原图形重合,α最小值是60°, ⊙点A 运动的路径长=60221803. 故答案为23π. 考点:轨迹;旋转对称图形.36.60π.【解析】【分析】点O 所经过的路线是2段弧和一条线段,一段是以点B 为圆心,10为半径,圆心 角为90°的弧,另一段是一条线段,和弧AB 一样长的线段,最后一段是以点A 为圆心,10为半径,圆心角为90°的弧,从而得出答案.【详解】当OA 第1次落在l 上时:点O 所经过的路线长为:90π1036π1090π10216π1012π.180180180180⨯⨯⨯⨯++== 则当OA 第5次落在l 上时:点O 所经过的路线长=12π×5=60π.故答案是:60π.【点拨】本题考查了轨迹:利用特殊几何图形描述点运动的轨迹,然后利用几何性质计算相应的几何量.37.6【分析】根据多边形的内角和公式求出扇形的圆心角,然后按扇形面积公式列方程求解计算即可.【详解】解:⊙正六边形的内角是120度,阴影部分的面积为24π,设正六边形的边长为r,⊙2120224360rππ⨯⨯=,2224,3rππ∴=236,r∴=解得r=6.(负根舍去)则正六边形的边长为6.故答案为:6.【点拨】本题考查的是正多边形与圆,扇形面积,掌握以上知识是解题的关键.38.40°.【详解】解:根据扇形的面积计算公式可得:23360n=π,解得:n=40°,即圆心角的度数为40°.考点:扇形的面积计算.39.4π【分析】由图可知,阴影部分的面积是扇形ABO和扇形DEO的面积之和,然后根据题目中的数据,可以求得AB、OA、DE的长,⊙BAO和⊙EDO的度数,从而可以解答本题.【详解】解:⊙四边形ABCD是矩形,⊙OA=OC=OB=OD,⊙AB=AO,⊙⊙ABO是等边三角形,⊙⊙BAO=60°,⊙⊙EDO =30°,⊙AC =2,⊙OA =OD =1,⊙图中阴影部分的面积为:22601301+=3603604ππ⨯⨯⨯⨯π, 故答案为:4π. 【点拨】本题主要考查扇形面积、矩形的性质及等边三角形的性质与判定,熟练掌握扇形面积、矩形的性质及等边三角形的性质与判定是解题的关键.40.3【分析】作AF ⊙BC 于F ,解直角三角形分别求出AC 、BC ,根据扇形面积公式、三角形面积公式计算即可.【详解】作AF ⊙BC 于F ,⊙⊙ABC =45°,⊙AF =BF =2AB 在Rt⊙AFC 中,⊙ACB =30°,⊙AC =2AF =FC =tan ∠AF ACF , 由旋转的性质可知,S ⊙ABC =S ⊙EDC ,⊙图中线段AB 扫过的阴影部分的面积=扇形DCB 的面积+⊙EDC 的面积﹣⊙ABC 的面积﹣扇形ACE 的面积=扇形DCB 的面积﹣扇形ACE 的面积﹣260360π⨯,.【点拨】本题考查的是扇形面积计算,掌握扇形面积公式S=2360n Rπ是解题的关键.41.25 12π【解析】【详解】由题意得,S⊙AED=S⊙ABC,由题图可得,阴影部分的面积= S⊙AED+S扇形ABD-S⊙ABC,⊙阴影部分的面积= S扇形ABD=2 30525π36012π⨯=.故答案为25 12π.42.5π【分析】根据旋转的性质可以得到阴影部分的面积=扇形DAB的面积-扇形EAC的面积,利用扇形的面积公式即可求解.【详解】解:⊙将ABC绕点A逆时针旋转120︒得ADE,⊙S⊙ABC= S⊙ADE,⊙阴影部分的面积=扇形DAB的面积+S⊙ADE-扇形EAC的面积-S⊙ABC=扇形DAB的面积-扇形EAC的面积⊙阴影部分的面积221205 12041360360πππ⨯⨯⨯=-=⨯,故答案为:5π.【点拨】本题考查了旋转的性质以及扇形的面积公式,根据旋转的性质推出:阴影部分的面积=扇形DAB的面积-扇形EAC的面积是解题关键.43.π-2【解析】【分析】先求出扇形面积,再求三角形面积,阴影面积=扇形面积-三角形面积.【详解】由已知可得,S 阴影=S 扇形OAB -S ⊙OAB =290212223602ππ-⨯⨯=-. 故答案为π-2【点睛】本题考核知识点:扇形面积. 解题关键点:熟记扇形面积公式,用求差法得到阴影面积.44.π﹣2【分析】先根据圆周角定理证得⊙BOC=90°,从而得出⊙OBC 是等腰直角三角形,然后根据S 阴影=S 扇形OBC -S ⊙OBC 即可求得.【详解】解:⊙⊙BAC=45°,⊙⊙BOC=90°,⊙⊙OBC 是等腰直角三角形,⊙OB=2,⊙S 阴影=S 扇形OBC -S ⊙OBC =14π×22-12×2×2=π-2. 故答案为π﹣2【点拨】本题考查的是圆周角定理及扇形的面积公式,熟记扇形的面积公式是解答此题的关键.45.43π【解析】【分析】连接OC,用扇形OBC 的面积减去OBC 的面积即可.【详解】如图:连接OC,点C 是以AB 为直径的半圆O 的三等分点,60,120,AOC BOC ∴∠=∠=,OA OC =OAC ∴是等边三角形,60,2,A OA OC AC ∴∠====S 扇形OBC 2120π24π.3603⨯== 1111122tan 603,22222OBC ABC S S AC BC ==⨯⋅=⨯⨯⨯=则阴影部分的面积为:43π故答案为43π 【点拨】考查不规则图形面积的计算,掌握扇形的面积公式是解题的关键.46.π-1【分析】延长DC ,CB 交⊙O 于M ,N ,根据圆和正方形的面积公式即可得到结论.【详解】解:延长DC ,CB 交⊙O 于M ,N ,则图中阴影部分的面积=14×(S 圆O −S 正方形ABCD )=14×(4π−4)=π−1, 故答案为π−1.【点拨】本题考查了圆中阴影部分面积的计算,正方形的性质,正确的识别图形是解题的关键.472π3- 【分析】先根据已知条件证明四边形AOEF 为菱形,再得到ΔEOB 为等边三角形,求出AE 的长,得到弓形的面积,再利用ΔFDE S S S =-阴弓即可求解.【详解】解:连接OE EF ,连接OF 交AE 与点G .连接BE⊙点E 是BF 的中点即=EF BE ,C 30∠=︒.⊙EF BE DAB 60∠==︒,又OF AO =⊙AEC 90ΔAFO ∠=︒,为等边三角形⊙AF AO OE EF ===,即四边形AOEF 为菱形,⊙EF AO ,从而DFE FAO 60∠∠==︒⊙AB 为直径⊙AEB 90∠=︒又⊙CD 为切线⊙OE CD ⊥⊙EOC 60∠=︒又OE OB =,⊙ΔEOB 为等边三角形.⊙BE 2=,EBA 60∠=︒,⊙AEsin EBA sin60AB ∠=︒=,即AE AB sin604=⋅︒==.2AOE AOEF 114π2S S S π22323=-=⨯-⨯⨯=-弓EF 扇菱形即2πS 3=弓在RT⊙FDE 中,DEsin DFE sin60EF ∠=︒=即ED EFsin6022=︒=⨯=⊙DF 1==⊙ΔFDE 12π2πS S S 12323⎛=-=⨯=- ⎝阴弓.2π3-.【点拨】此题主要考查了扇形的面积计算以及三角形面积求法等知识,根据图形的特点求出弓形的面积是解题的关键.48.232π- 【分析】先根据题目条件计算出OD ,CD 的长度,判断BOC 为等边三角形,之后表示出阴影面积的计算公式进行计算即可.【详解】在Rt COD 中,30,2AOC OC OA ︒∠===⊙1,CD OD ==⊙90AOB ︒∠=⊙60BOC ︒∠=⊙OB OC =⊙BOC 为等边三角形⊙BOC =COD BOC S S S S +-△△阴影扇形221602122360π⨯=+-232π=-故答案为:232π-【点拨】本题考查了阴影面积的计算,熟知不规则阴影面积的计算方法是解题的关键. 49.(1)⊙A =20°;(2)119π.【分析】(1)根据圆周角定理求出⊙AOP ,根据切线的性质计算,得到答案;(2)根据弧长公式计算即可.【详解】解:(1)由圆周角定理得,⊙AOP =2⊙C =70°⊙P A 切⊙O 于点P ,⊙⊙APO =90°,⊙⊙A =20°;(2)⊙BOC =180°﹣⊙AOP =110°, ⊙1102180BA π==119π. 【点拨】本题考查的是切线的性质、弧长的计算,掌握圆的切线垂直于经过切点的半径是解题的关键.50.嘉琪的解法不正确,见解析【分析】连接AO ,OB ,根据圆周角定理可得60AOB ∠=︒,进而得到OAB ∆是等边三角形,然后根据弧长计算公式可得答案.【详解】解:嘉琪的解法不正确,理由如下:如图,连接AO ,OB ,AB 所对的圆周角为30,60AOB ∴∠=︒,AO BO =,OAB ∴∆是等边三角形,5AB cm =,∴AB 的长为:6055()1803cm ππ⨯=. 【点拨】此题主要考查了圆周角定理和弧长计算公式,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.注意:弧长公式。

人教版九年级数学上册《24.4 弧长和扇形面积》练习题-附参考答案

人教版九年级数学上册《24.4 弧长和扇形面积》练习题-附参考答案

人教版九年级数学上册《24.4 弧长和扇形面积》练习题-附参考答案一、选择题1.已知圆心角为120°的扇形的弧长为6π,该扇形的面积为()A.12πB.21πC.27πD.36π2.如图,⊙O的半径为3,AB为弦,若∠ABC=30°,则AC⌢的长为()A.πB.1 C.1.5 D.1.5π3.如图,将边长为3的正方形铁丝框ABCD,变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ADB的面积为()A.3 B.6 C.9 D.3π4.如图,分别以等边三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若等边三角形边长为3cm,则该莱洛三角形的周长为()A.2πB.9 C.3πD.6π5.如图,四边形OABC为菱形,∠AOC=120°,点B、C在以点O为圆心的EF⌢上,若OA=1,∠1=∠2,则扇形OEF的面积为()A.π6B.π4C.π3D.2π36.如图,正方形ABCD的边长为2,O为对角线的交点,点E,F分别为BC,AD的中点.以C为圆心,BC为半径作圆弧BD,再分别以E,F为圆心,BE为半径作圆弧BO,OD,则图中阴影部分的面积为()A.π−1B.π−3C.π−2D.4−π7.如图,四边形ABCD是半径为2的⊙O的内接四边形,连接OA,OC.若∠AOC:∠ABC=4:3,则AC⌢的长为()A.35πB.45πC.65πD.85π8.如图,以矩形ABCD的顶点A为圆心,AD长为半径画弧交边BC于点E,E恰为边BC的中点,AD=4 √3则图中阴影部分的面积为()A.18√3−8πB.18√3−4πC.24√3−8πD.12√6−6π二、填空题9.一个扇形的半径是3cm,圆心角是60°,则此扇形的面积是cm2.10.如果一个扇形的弧长等于它所在圆的半径,那么此扇形叫做“完美扇形”.已知某个“完美扇形”的周长等于6,那么这个扇形的面积等于.11.如图,半径为2的⊙O与正五边形ABCDE的边AB,DE分别相切于点B,D,则劣弧BD的长为.12.如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,CD=2√3,则阴影部分的面积为.⌢围成的图13.已知:如图,半圆O的直径AB=12cm,点C,D是这个半圆的三等分点,则弦AC,AD和CD形(图中阴影部分)的面积S是.三、解答题14.如图,在Rt△ABC中,∠C=90°,∠BAC=30°,BC=1,以B为圆心,BA为半径画弧交CB的延长线于点D,求弧AD的长15.如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2 √3 ,BF=2,求阴影部分的面积(结果保留π).16.如图,内接于,交于点,交于点,交于点,连接,CF .(1)求证:;(2)若的半径为,求的长结果保留.17.如图,已知AB 是O 的直径,点C 在O 上,D 为O 外一点,且90ADC ∠=︒ 2180B DAB ∠+∠=︒.(1)试说明:直线CD 为O 的切线;(2)若30,2B AD ∠=︒=求阴影部分的面积.1.C2.A3.C4.C5.C6.C7.D8.Aπ9.3210.2π11.8512.2π313.6πcm214.解:∵在Rt△ABC中,∠C=90°,∠BAC=30°,BC=1 ∴AB=2BC=2,∠ABC=90°-∠BAC=60°∴∠ABD=180°-∠ABC=120°∴弧AD=故答案为.15.(1)解:BC与⊙O相切.理由如下:连接OD.∵AD是∠BAC的平分线∴∠BAD=∠CAD.∴∠OAD=∠ODA∴∠CAD=∠ODA∴OD ∥AC∴∠ODB=∠C=90°即OD ⊥BC .又∵BC 过半径OD 的外端点D∴BC 与⊙O 相切;(2)解:设OF=OD=x ,则OB=OF+BF=x+2. 根据勾股定理得: OB 2=OD 2+BD 2 即 (x +2)2=x 2+12 ,解得:x=2 即OD=OF=2∴OB=2+2=4.在Rt △ODB 中,∵OD= 12 OB∴∠B=30°∴∠DOB=60°∴S 扇形DOF = 60π×4360 = 2π3 ,则阴影部分的面积为S △ODB ﹣S 扇形DOF = 12×2×2√3−2π3 = 2√3−2π3 . 故阴影部分的面积为 2√3−2π3 . 16.(1)证明:四边形是平行四边形.(2)解:连接由得∴的长. 17.(1)解:如图,连接OC OB OC =OCB B ∴∠=∠2AOC OCB B B ∴∠=∠+∠=∠2180B DAB ∠+∠=︒180AOC DAB ∴∠+∠=︒.OC AD ∴∥90ADC ∠=︒18090OCD ADC ∴∠=︒-∠=︒即CD OC ⊥,又OC 是O 的半径 ∴直线CD 为O 的切线.(2)如图,连接AC ,作OE BC ⊥,垂足为E ,则2BC BE = 30B ∠=︒260AOC B ∴∠=∠=︒OA OC =OAC ∴是等边三角形60OCA ∴∠=︒906030ACD ∴∠=︒-︒=︒ 12AD AC ∴= 2AD =4AC ∴=,即O 的半径为4 OE BC ⊥BE CE ∴=30,4B OB ∠=︒=2OE ∴=22224223BE OB OE ∴=-=-= 43BC ∴=1432BOC S BC OE ∴=⋅⋅=△ 30,B OB OC ∠=︒=120BOC ∴∠=︒2OBC 12041643433603OBC S S S ππ⨯⨯∴=-=-=-阴影扇△.。

弧长与扇形面积练习题与答案

弧长与扇形面积练习题与答案

知识点:1、 弧长公式: l n R(牢记)180在半径是 R 的圆中, 360 度的圆心角多对的弧长就是圆的周长 Cn R2 12、扇形面积公式: S扇形=或 S 扇形= 1lR (牢记) 360 23、圆锥的侧面积和全面积(难点) 圆锥的侧面展开图形是一个扇形,这个扇形的半径是圆锥的母线长R ,扇形的弧长是圆锥底面圆的周长。

典型例题1.已知圆锥的高是 30cm ,母线长是 50cm ,则圆锥的侧面积是 【关键词】圆锥侧面积、扇形面积答案:22000 cm 2;2. (2010 年福建省晋江市) 已知:如图,有一块含 30 的直角三角板 OAB 的直角边长 BO的长恰与另一块等腰直角三角板 ODC 的斜边 OC 的长相等,把该套三角板放置在平面 直角坐标系中,且 AB 3.(1) 若双曲线的一个分支恰好经过点A ,求双曲线的解析式;(2) 若把含 30 的直角三角板绕点 O 按顺时针方向旋转后,斜边 OA 恰好与 x 轴重叠,点 A 落在点 A ,试求图中阴影部分的面积 (结果保留 ).弧长和扇形面积答案:解: (1) 在 Rt OBA 中, AOB 30 , AB 3,OBcot AOB ,AB∴ OB AB cot30 3 3 ,∴点 A 3,3 3设双曲线的解析式为 ykk 0x∴3 3 k, k 9 393 ,则双曲线的解析式为 y3x(2) 在 Rt OBA 中,AOB 30 , AB 3 ,AB3sin AOB , sin30 ,OAOA∴ OA 6.关键词】反比例函数、扇形面积 yBO C AyA由题意得: AOC 60 ,260 62360在 Rt OCD 中, DOC 45 , OC OB 3 3 ,OD OC cos45332 3622212 1 3627.S ODC OD2224S阴=S扇形 AOA'SODC6 2743. (2010 年浙江省东阳市)在如图的方格纸中,每个小方格 都是边长为 1 个单位的正方形, △ABC 的三个顶点 都在 格点上(每个小方格的顶点叫格点) .( 1)如果建立直角坐标系,使点 B 的坐标为(- 5,2 ),点C 的坐标为(- 2, 2),则点 A 的坐标为 ▲ ; (2) 画出 △ABC 绕点P顺时针旋转 90 后的△A 1B1C,并求线段 BC 扫过的面积 .关键词:扇形面积公式 答案:(1)A(-4,4)(2)图略线段 BC 扫过的面积= (4 -1 )= 15444、( 2010 福建德化) 已知圆锥的底面半径是 3cm ,母线长为 6cm ,则侧面积为__________________________________________________________ cm 2.(结果保留 π) 关键词:圆锥侧面积答案: 185、已知圆锥的底面半径为 关键词:圆锥的高 3,侧面积为 15 ,则这个圆锥的高为 ▲ 答案: 4S扇形 AOA'6(2010年门头沟区).如图,有一块半圆形钢板,直径AB=20cm,计划将此钢板切割成下底为 AB 的等腰梯形,上底CD的端点在圆周上,且 CD=10cm.求图中阴影部分的面积.【关键词】圆、梯形、阴影部分面积答案】 解:连结 OC , OD ,过点 O 作 OE ⊥CD 于点 E. ∵OE ⊥CD ,∴CE=DE=5, ∴OE= CO 2CE 2102 52 =5 3,∵∠ OED=9°0 ,DE= 1 OD , ∴∠DOE=3°0 ,∠DOC=6°0 . 2S△ OCD =2·OE ·CD= 25 3 (cm 2)50 2∴S 阴影 = S 扇形 - S △OCD = ( π- 25 3) cm3 50∴阴影部分的面积为 ( 530π- 25 3) cm 2.60102∴ S扇形36050(cm 2)33分7. (2010 年山东省济南市)如图,四边形 OABC 为菱形,点 ⌒B 、C 在以点 O 为圆心的 EF 上,若 OA =1,∠ 1=∠2,则扇形 OEF 的面积为 π π πA. B. C. 6 4 3 【关键词】扇形的面积 【答案】 C D.2πO8. ( 2010年台湾省) 如图(十三),扇形 AOB 中, OA=10, AOB =36 。

弧长以及扇形面积的计算-练习题 含答案知识分享

弧长以及扇形面积的计算-练习题 含答案知识分享

弧长以及扇形面积的计算副标题题号一二三总分得分一、选择题(本大题共3小题,共9.0分)1.如图,在中,,,以BC的中点O为圆心分别与AB,AC相切于D,E两点,则的长为A.B.C.D.【答案】B【解析】解:连接OE、OD,设半径为r,分别与AB,AC相切于D,E两点,,,是BC的中点,是中位线,,,同理可知:,,,由勾股定理可知,,故选:B.连接OE、OD,由切线的性质可知,,由于O是BC的中点,从而可知OD是中位线,所以可知,从而可知半径r的值,最后利用弧长公式即可求出答案.本题考查切线的性质,解题的关键是连接OE、OD后利用中位线的性质求出半径r的值,本题属于中等题型.2.一个扇形的弧长是,面积是,则此扇形的圆心角的度数是A. B. C. D.【答案】B【解析】解:一个扇形的弧长是,面积是,,即,解得:,,解得:,故选B利用扇形面积公式1求出R的值,再利用扇形面积公式2计算即可得到圆心角度数.此题考查了扇形面积的计算,以及弧长的计算,熟练掌握扇形面积公式是解本题的关键.3.的圆心角对的弧长是,则此弧所在圆的半径是A. 3B. 4C. 9D. 18【答案】C【解析】解:根据弧长的公式得到:解得.故选C.根据弧长的计算公式,将n及l的值代入即可得出半径r的值.此题考查了弧长的计算,解答本题的关键是熟练记忆弧长的计算公式,属于基础题,难度一般.二、填空题(本大题共1小题,共3.0分)4.如图,已知等边的边长为6,以AB为直径的与边AC、BC分别交于D、E两点,则劣弧的长为______.【答案】【解析】解:连接OD、OE,如图所示:是等边三角形,,,,、是等边三角形,,,,的长;故答案为:.连接OD、OE,先证明、是等边三角形,得出,求出,再由弧长公式即可得出答案.本题考查了等边三角形的性质与判定、弧长公式;熟练掌握弧长公式,证明三角形是等边三角形是解决问题的关键.三、解答题(本大题共1小题,共8.0分)5.如图,AB为半圆O的直径,AC是的一条弦,D为的中点,作,交AB的延长线于点F,连接DA.求证:EF为半圆O的切线;若,求阴影区域的面积结果保留根号和【答案】证明:连接OD,为的中点,,,,,,,,即,,为半圆O的切线;解:连接OC与CD,,,,又,,,,为等边三角形,,,,,,在中,,,在中,,,,,,由,是等边三角形,,,,故,.【解析】直接利用切线的判定方法结合圆心角定理分析得出,即可得出答案;直接利用得出,再利用,求出答案.此题主要考查了切线的判定与性质以及扇形面积求法等知识,得出是解题关键.。

《弧长及扇形面积》练习题(含答案)

《弧长及扇形面积》练习题(含答案)

ED6题CBAC 71()题B AC 72()题B ACE D 8题BAEC D10题BA《弧长及扇形面积》练习题1.如图是排水管的横截面,此管道的半径为54㎝,水面以上部分的弓形的弧长为30π㎝,则这段弓形弧所对的圆心角度数为 。

2.阴影部分是某广告标志,已知两弧所在圆的半径为20cm 和10cm,∠AOB=120°,则S 阴= .3.某种商标图案如图所示(阴影部分),已知菱形ABCD 的边长为4,∠A=60°,是以A 为圆心,AB 长为半径的弧,是以B 为圆心,BC 长为半径的弧,则该商标图案的面积为 。

4.如图,四边形OABC 为菱形,点B ,C 在以O 为圆心的上,若OA=3,∠1=∠2,则S 扇形OEF = 。

5.如图,⊙O 2与⊙O 3外切于点C,⊙O 1分别与⊙O 2、⊙O 3内切于A 、B,若⊙O 1的半径为6,⊙O 2、⊙O 3的半径为2,则图中阴影部分的周界长为 ,阴影部分的面积为 。

6.如图,△ABC 中,∠C=90°,AB=12㎝,∠ABC=60°,将△ABC 以点B 为中心顺时针旋转,使点C 旋转到AB 边上的点D 处,则AC 边扫过的图形(阴影部分) 的面积为 。

7.如图,Rt △ABC 中,∠C=90°,AC=3,BC=4,①若⊙C 与AB 相切,则图中阴影部分的面积为 。

②若⊙O 与三角形的三边都相切,则图中阴影部分的面积为 。

8.如图,Rt △ABC 中,∠C=90°,∠A=30°,BC=4,分别以A 、B 为圆心,AC 、BC 长为半径画弧交AB 于D 、E ,则阴影部分的面积为 。

9.如图,矩形ABCD 中,AB=2,BC=2 3 ,以BC 中点E 为圆心,作 切AD 于点H ,与AB 、CD交于M 、N ,则阴影部分的面积为 。

10.如图,⊙A 、⊙B 、⊙C 、⊙D 、⊙E 相互外离,它们的半径都是1,顺次连接五个圆心得到五边形ABCDE ,则五个扇形的面积之和为 。

小学数学扇形试题及答案

小学数学扇形试题及答案

小学数学扇形试题及答案1、计算扇形弧长和扇形面积已知扇形半径为r,圆心角为θ(度)扇形弧长= (θ/360) × 2πr扇形面积= (θ/360) × πr²2、练习题一小明制作了一个扇形,半径为5 cm,圆心角为60度。

请计算这个扇形的弧长和面积。

解答:弧长= (60/360) × 2π × 5 = π × 5 = 15.71 cm面积= (60/360) × π × 5² = 0.28π × 25 = 4.36 cm²3、练习题二小红画了一个扇形,半径为8 cm,扇形面积为50.24 cm²。

请计算这个扇形的圆心角和弧长。

解答:扇形面积= (θ/360) × π × 8² = (θ/360) × 64π因为扇形面积为50.24 cm²,所以有:(θ/360) × 64π = 50.24(θ/360) × π = 0.784θ/360 = 0.784/πθ ≈ 0.249 × 360 ≈ 89.64度 (约等于89度)弧长= (89/360) × 2π × 8 ≈ 12.57 c m4、练习题三小华在一张纸上画了一个扇形,扇形面积为28.26 cm²,圆心角为60度。

请计算这个扇形的半径和弧长。

解答:扇形面积= (60/360) × π × r² = (1/6) × π × r²因为扇形面积为28.26 cm²,所以有:(1/6) × π × r² = 28.26r² = (28.26 × 6) / πr² ≈ 53.79r ≈ √53.79 ≈ 7.34 cm弧长= (60/360) × 2π × 7.34 ≈ 7.71 cm5、练习题四小明画了一个扇形,扇形弧长为12.56 cm,圆心角为45度。

圆的弧长与扇形面积练习题

圆的弧长与扇形面积练习题

圆的弧长与扇形面积练习题一、选择题1、已知扇形的圆心角为120°,半径为3cm,则扇形的面积是()A 3π cm²B 9π cm²C 6π cm²D 12π cm²2、若扇形的弧长是 16cm,面积是 56cm²,则它的半径是()A 7cmB 8cmC 7cm 或 8cmD 14cm3、一个扇形的半径为 8cm,弧长为16π/3 cm,则扇形的圆心角为()A 60°B 120°C 150°D 180°4、已知一个扇形的面积为12π,圆心角为 120°,则此扇形的半径为()A 6B 9C 12D 155、扇形的圆心角扩大到原来的 2 倍,半径缩小到原来的一半,此时扇形的面积是原来扇形面积的()A 2 倍B 4 倍C 1/2D 1/4二、填空题1、若扇形的半径为 6cm,圆心角为 60°,则扇形的弧长为______cm,面积为______cm²。

2、一个扇形的弧长是20π cm,面积是240π cm²,则扇形的圆心角是______度。

3、扇形的圆心角为 150°,弧长为20π cm,则扇形的半径为______cm,面积为______cm²。

4、已知扇形的半径为 3cm,面积为9π/2 cm²,则扇形的弧长为______cm,圆心角为______度。

5、若扇形的面积为3π,弧长为2π,则扇形的半径为______,圆心角为______度。

三、解答题1、已知扇形的圆心角为 120°,面积为300π,求扇形的半径和弧长。

2、一个扇形的弧长为10π,面积为25π,求扇形的圆心角和半径。

3、扇形的半径为 8,弧长为12π,求扇形的面积和圆心角。

4、已知扇形的面积为18π,圆心角为 60°,求扇形的弧长和半径。

5、扇形的弧长为20π,面积为240π,求扇形的半径和圆心角。

非学科数学学培训-扇形的面积以及弧长的计算(资料附答案)

非学科数学学培训-扇形的面积以及弧长的计算(资料附答案)

自学资料一、扇形的面积【知识探索】1.圆的面积,圆周所对的圆心角是360°,所以(1)1°的扇形面积;第1页共15页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训(2)圆心角所对弧长.2.(其中为扇形的弧长,为半径).【说明】扇形的面积除了与圆的半径有关还与组成扇形的圆心角的大小有关.当半径固定时,圆心角越大,扇形面积也就越大.【错题精练】例1.已知圆锥的底面半径为5cm,母线长为13cm,则这个圆锥的侧面积是()A. 60πcm2;B. 65πcm2;C. 120πcm2;D. 130πcm2.【答案】B例2.如图,在一张直径为20cm的半圆形纸片上,剪去一个最大的等腰直角三角形,剩余部分恰好组成一片树叶图形,则这片树叶的面积是cm2.【答案】50π−100.例3.如图,正△ABC内接于半径为1cm的圆,则阴影部分的面积为cm2.【答案】π−3√34第2页共15页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训例4.今年寒假期间,小芮参观了中国博物馆,如图是她看到的折扇和团扇,已知折扇的骨柄长为30cm,扇面的宽度是18cm,折扇张开的角度为120°,若这两把扇子的扇面面积相等,则团扇的半径为()cm.A. 6√7;B. 8√7;C. 6√6;D. 8√6.【答案】A例5.已知,如图,点C,D在⊙O上,直径AB=6cm,弦AC,BD相交于点E,若CE=BC,则阴影部分面积为()A. π−94√3;B. 94π−92;C. 32π−94√3;D. 32π−92.【答案】B例6.如图,点A、B、C在⊙O上,若∠BAC=45°,OB=2,则图中阴影部分的面积为()A. π−2;B. 23π−1;第3页共15页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训C. π−4;D. 23π−2.【答案】A例7.如图,已知AB是⊙O的直径,点C在⊙O上,延长BC至点D,使得DC=BC,直线DA与⊙O的另一个交点为E,连结AC,CE.(1)求证:CD=CE;(2)若AC=2,∠E=30∘,求阴影部分(弓形)面积.【解答】(1)证明:∵AB是直径,∴∠ACB=90∘,∵DC=BC,∴AD=AB,∴∠D=∠ABC,∵∠E=∠ABC,∴∠E=∠D,∴CD=CE;(2)解:由(1)可知:∠ABC=∠E=30∘,∠ACB=90∘,∴∠CAB=60∘,AB=2AC=4,在Rt△ABC中,由勾股定理得到BC=2√3,连接OC,则∠COB=120∘,∴S阴=S扇形OBC−S△OBC=120⋅π⋅22360−12×12×2√3×2=4π3−√3.【答案】(1)略;(2)4π3−√3.第4页共15页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训【举一反三】1.如图,四边形ABCD是⊙O的内接四边形,AC为直径,点B是弧AC的中点,若AC=7,BD=6,则由四个弓形组成的阴影部分的面积为.π−18【答案】4942.如图,扇形AOB的圆心角为直角,边长为1的正方形OCDE的顶点C,E,D分别在OA,OB,弧AB上,过点A作AF⊥ED,交ED的延长线于点F,则图中阴影部分的面积等于.【答案】√2−13.如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30∘,CD=2√3,则阴影部分图形的面积为.第5页共15页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训【答案】2π3.4.如图,AB是⊙O的直径,BC是弦,连接OC,过点C的切线交BA的延长线于点D,且OC=CD=2.(1)求劣弧AC的长.(2)求阴影部分弓形的面积.【解答】(1)解:∵CD切圆O于点C,∴OC⊥CD,∵OC=OD,∴∠COD=45∘,∴l弧AC=π2;(2)解:∵S扇形COB=3π2,∵S△AOC=√3,∴S阴=3π2−√3.【答案】(1)π2;(2)3π2−√3.5.如图,在Rt△AOB中,∠AOB=90∘,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是()A. π;B. 5π4;C. 3+π;D. 8−π.第6页共15页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训【答案】D6.如图,小明自制一块乒乓球拍,正面是半径为8cm的⊙O,弦AB将圆周分为1:3两部分,弓形ACB (阴影部分)粘贴胶皮,则胶皮面积为cm2.(结果保留π)【答案】(32+48π).7.如图,AB为半圆O的直径,AC是⊙O的一条弦,D为弧BC的中点,作DE⊥AC,交AB的延长线于点F,连接DA若∠F=30∘,DF=6,则阴影区域的面积.−2π.【答案】9√32二、弧长【知识探索】1.圆的周长,圆周所对的圆心角是360°,所以(1)1°圆心角所对弧长;(2)圆心角所对弧长.【说明】也可以用表示的长.【错题精练】第7页共15页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训例1.如图,点O、A、B的坐标分别为(0,0)、(3,0)、(3,-2),将△OAB绕点O按逆时针方向旋转90°得到△OAapos;Bapos;.(1)画出旋转后的△OAapos;Bapos;,并求出点Bapos;的坐标;(2)求点A旋转到点Aapos;所经过的路线长(结果保留π).【解答】(1)解:如图,△OAapos;Bapos;为旋转后所得的图形,Bapos;(2,3);(2)解:点A旋转到点Aapos;所经过的路线长=14×2×3π=32π.【答案】(1)(2,3);(2)32π.例2.如图,在△ABC中,∠ACB=90∘,分别以AC、BC、AB为直径作半圆,记三个半圆的弧长分别为m,n,l,则下列各式成立的是()A. m+n<l;B. m+n=l;C. m2+n2>l2;D. m2+n2=l2.【答案】D例3.若一个圆锥的侧面展开图是半径为10cm,圆心角为120°的扇形,则该圆锥的底面半径是()A. 310cm; B. 103cm;C. 203cm; D. 320cm.【答案】B第8页共15页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训例4.如图,在平面直角坐标系中,△ABC的顶点为A(﹣3,﹣2),B(﹣5,3),C(0,4).(1)以C为旋转中心,将△ABC绕C逆时针旋转90°,画出旋转后的对应的△A1B1C1,写出点A1的坐标;(2)求出(1)中点B旋转到点B1所经过的路径长(结果保留根号和π).【解答】(1)如图:∴点A1的坐标(6,1)(2)点B旋转到点B1所经过的路径长=π×BC×90180=√26π2.【答案】(1)A1(6,1),作图见解答;(2)√26π2.例5.如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求的长.第9页共15页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训【解答】(1)∵AB是⊙O的直径,∴∠ADB=90°,∵OC∥BD,∴∠AEO=∠ADB=90°,即OC⊥AD,∴AE=ED;(2)∵OC⊥AD,∴,∴∠ABC=∠CBD=36°,∴∠AOC=2∠ABC=2×36°=72°,∴.【答案】(1)见解答;(2)2π.例6.如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b,然后把半圆沿直线b进行无滑动滚动,使半圆的直径与直线b重合为止,则圆心O运动路径的长度等于.【答案】5π.【举一反三】1.走进中国科技馆,同学们会在数学区发现截面为“莱洛三角形”的轮子.如图,分别以等边△ABC的三个顶点为圆心,边长为半径画弧,则弧AB,弧BC,弧AC组成的封闭图形就是“莱洛三角形”.若AB =3,则此“莱洛三角形”的周长为.第10页共15页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训【答案】3π2.如图,在Rt△ABC中,∠A=90°,BC=2√2,以BC的中点O为圆心⊙O分别与AB,AC相切于D,E两点,则的长为()A. π4; B. π2;C. π;D. 2π.【答案】B3.如图,将边长为a的正六边形A1A2A3A4A5A6在直线l上由图1的位置按顺时针方向向右作无滑动滚动,当A1第一次滚动到图2位置时,顶点A1所经过的路径的长为()A. 4+2√33πa;B. 8+4√33πa;C. 4+√33πa;D. 4+2√36πa.【答案】A4.如图,边长为2的菱形ABCD绕点A旋转,当B、C两点恰好落在扇形AEF的弧EF上时,弧BC的长度等于();A. π2B. π;3;C. 3π4D. 2π.3【答案】D5.如图,AB是半圆O的直径,点C在半圆O上,AB=4cm,∠CAB=60∘,P是弧上的一个动点,连接AP,过C点作CD⊥AP于D,连接BD,在点P移动的过程中,BD的最小值是.【答案】(√13−1)cm6.如图,正方形ABCD中,分别以B、D为圆心,以正方形的边长a为半径画弧,形成树叶形(阴影部分)图案,则树叶形图案的周长为()A. πa;B. 2πa;πa; D. 3a.C. 12【答案】A1.如图,在Rt△ABC中,∠A=60∘,AB=1,将Rt△ABC绕点C按顺时针方向旋转到△A1B1C的位置,点A1刚好落在BC的延长线上,则点A从开始到结束所经过的路径长为(结果保留π).π.【答案】532.已知一条圆弧的度数为60°,弧长为10π,则此圆弧的半径为()A. 15;B. 30;C. √30;D. 15π.【答案】B.3.如图,在△ABC中,AB=AC,圆O是△ABC的外接圆,D为弧AC的中点,E是BA的延长线上的一点,∠DAE=105∘.(1)求∠CAD的度数;(2)若圆O的半径为3,求弧BC的长.【解答】(1)解:∵AB=AC,∴∠ABC=∠ACB.∵D为弧AC的中点,∴∠ABC=2∠DCA=2∠DAC.∴∠ACB=2∠DCA.∵四边形ABCD内接于⊙O,∴∠BCD=∠DAE=105∘.∴∠ACB+∠DCA=105∘.即3∠DCA=105∘,∴∠DAC=∠DCA=35∘.(2)解:∵∠DAC=∠DCA=35∘,∴∠BAC=180∘−105∘−35∘=40∘.∴∠BOC=2∠BAC=80∘.∴l=nπR180=80⋅3π180=4π3.【答案】(1)35°;(2)4π3.4.如图,在扇形AOB中,∠AOB=90∘,点C是弧AB的中点,点D在OB上,点E在OB的延长线上,当正方形CDEF的边长为2时,阴影部分的面积为()A. π−2;B. π−4;C. 2π−2;D. 2π−4.【答案】A5.如图,⊙O的半径为6,MN为直径,AB,CD为弦,且AB∥MN∥CD,弧AB与弧CD的度数和为150°,则图中两块阴影部分的面积和为.【答案】15π.。

弧长与扇形面积试题及答案

弧长与扇形面积试题及答案

弧长与扇形面积一、选择题1.( 2016·湖北十堰)如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为()A. 10cm B. 15cm C. 10cm D. 20cm【考点】圆锥的计算.【分析】根据等腰三角形的性质得到OE的长,再利用弧长公式计算出弧CD的长,设圆锥的底面圆的半径为r ,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到 r ,然后利用勾股定理计算出圆锥的高.【解答】解:过O作 OE⊥AB 于 E,∵ OA=OD=60cm,∠ AOB=120°,∴∠ A=∠B=30°,∴OE= OA=30cm,∴弧 CD的长 ==20π,设圆锥的底面圆的半径为r ,则 2π r=20 π,解得 r=10 ,∴圆锥的高 ==20 .故选 D.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.2. (2016 兰州, 12,4 分)如图,用一个半径为5cm 的定滑轮带动重物上升,滑轮上一点P 旋转了108o ,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了()(A)π cm(B) 2π cm(C) 3π cm(D) 5π cm【答案】:C【解析】:利用弧长公式即可求解【考点】:有关圆的计算3. (2016 福州, 16,4 分 )如图所示的两段弧中,位于上方的弧半径为r 上,下方的弧半径为 r 下,则 r 上 = r 下.(填“<”“=”“<”)【考点】弧长的计算.【分析】利用垂径定理,分别作出两段弧所在圆的圆心,然后比较两个圆的半径即可.【解答】解:如图,r 上 =r 下.故答案为 =.【点评】本题考查了弧长公式:圆周长公式:C=2R2)弧长公式:l=(弧长为π(l,圆心角度数为 n,圆的半径为 R);正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一.4. (2016 ·四川资阳 ) 在 Rt △ ABC中,∠ ACB=90 BC 的长为半径作弧,交 AB于点D,若点D为积是()°,AC=2,以点B为圆心,AB的中点,则阴影部分的面A . 2 ﹣ πB . 4 ﹣ πC . 2 ﹣ πD . π【考点】扇形面积的计算.【分析】根据点 D 为 AB 的中点可知 BC=BD=AB ,故可得出∠A=30 °,∠ B=60 °,再由锐角三角函数的定义求出 BC 的长,根据 S 阴影=S △ABC ﹣S 扇形CBD 即可得出结论.【解答】解:∵D 为 AB 的中点,∴ BC=BD=AB ,∴∠ A=30 °, ∠ B=60 °.∵ AC=2,∴ BC=AC ? tan30 °=2?=2,∴S 阴影=S△ABC ﹣S 扇形CB D =×2 ×2﹣=2﹣π.故选 A .5. (2016 ·四 川 自 贡 ) 圆锥的底面半径为 4cm ,高为 5cm ,则它的表面积为( )A . 12πcm 2B .26πcm2C .πcm2 D .( 4 +16 ) πcm 2【考点】圆锥的计算.【专题】压轴题.【分析】利用勾股定理求得圆锥的母线长,则圆锥表面积 =底面积 +侧面积 =π×底面半径 2+底面周长 ×母线长 ÷2.【解答】解:底面半径为4cm ,则底面周长 =8πcm ,底面面积 =16 πcm 2;由勾股定理得,母线长 = cm ,圆锥的侧面面积 =×8π× =4 πcm 2,∴它的表面积 =16π+4π=( 4+16) πcm 2,故选 D .【点评】本题利用了勾股定理,圆的周长公式和扇形面积公式求解.6. ( 2016·四川广安· 3 分)如图, AB 是圆 O 的直径,弦 CD ⊥ AB ,∠ BCD=30 °,CD=4 ,则 S 阴影=()A . 2πB . πC . πD . π【考点】圆周角定理;垂径定理;扇形面积的计算.【分析】根据垂径定理求得CE=ED=2 ,然后由圆周角定理知∠ DOE=60 °,然后通过解直角三角形求得线段 OD 、 OE 的长度,最后将相关线段的长度代入S阴影=S 扇形 ODB ﹣S △DOE +S △BEC.【解答】解:如图,假设线段 CD 、 AB 交于点 E ,∵AB 是⊙ O 的直径,弦 CD ⊥AB ,∴CE=ED=2,又∵∠ BCD=30 °,∴∠ DOE=2 ∠ BCD=60 °,∠ ODE=30 °, ∴OE=DE ?cot60°=2 ×=2, OD=2OE=4 ,∴S 阴影 =S 扇形 ODB ﹣ S△DOE +S △BEC = ﹣ OE ×DE+BE ?CE=﹣2+2=.故选 B .7. ( 2016 吉林长春, 7,3 分)如图, PA 、 PB 是⊙ O 的切线,切点分别为A 、B ,若 OA=2 ,∠P=60 °,则 的长为()A . πB . πC .D .【考点】弧长的计算;切线的性质.【专题】计算题;与圆有关的计算.【分析】由 PA 与 PB 为圆的两条切线,利用切线的性质得到两个角为直角,再利用四边形内角和定理求出∠ AOB 的度数,利用弧长公式求出的长即可.【解答】解:∵ PA 、 PB 是⊙ O 的切线,∴∠ OBP= ∠ OAP=90 °,在四边形 APBO 中,∠ P=60°,∴∠ AOB=120 °,∵ O A=2 ,∴的长 l==π,故选 C【点评】此题考查了弧长的计算,以及切线的性质,熟练掌握弧长公式是解本题的关键.8.( 2016 ·广东深圳)如图,在扇形AOB 中∠ AOB=90°,正方形 CDEF的顶点 C 是弧 AB 的中点,点 D 在 OB 上,点 E 在 OB 的延长线上,当正方形CDEF的边长为2 2 时,则阴影部分的面积为()A.24B.48C.28D.44答案:A考点:扇形面积、三角形面积的计算。

中考数学复习《圆的弧长和图形面积的计算》练习题含答案

中考数学复习《圆的弧长和图形面积的计算》练习题含答案

中考数学复习 圆的弧长和图形面积的计算一、选择题1.扇形的半径为30 cm ,圆心角为120°,此扇形的弧长是( A ) A .20π cm B .10π c m C .10 cm D .20 cm【解析】弧长=120π×30180=20π(cm),故选A.2.如图,⊙O 是△ABC 的外接圆,BC =2,∠BAC =30°,则劣弧BC 的长等于( A ) A.2π3 B.π3 C.23π3 D.3π3【解析】如图,连结OB ,OC ,∵∠BAC =30°,∴∠BOC =2∠BAC =60°,又OB =OC ,∴△OBC 是等边三角形,∴BC =OB =OC =2,∴劣弧BC 的长为60π×2180=2π3.,第2题图) ,第3题图)3.如图,在Rt △ABC 中,AC =5 cm ,BC =12 cm ,∠ACB =90°,把Rt △ABC 所在的直线旋转一周得到一个几何体,则这个几何体的侧面积为( B )A .60π cm 2B .65π cm 2C .120π cm 2D .130π cm 2【解析】∵在Rt △ABC 中,AC =5 cm ,BC =12 cm ,∠ACB =90°,∴由勾股定理得AB=13 cm ,∴圆锥的底面周长=10π cm ,∴几何体的侧面积=12×10π ×13=65π (cm 2) .故选B.4.如图,⊙O 的半径为3,四边形ABCD 内接于⊙O ,连结OB ,OD ,若∠BOD =∠BCD ,则BD ︵的长为( C )A .π B.32π C .2π D .3π【解析】根据圆内接四边形对角互补可得∠BCD +∠A =180°,由圆周角定理可得∠BOD =2∠A ,再由∠BOD =∠BCD 可得2∠A +∠A =180°,所以∠A =60°,即可得∠BOD =120°,所以BD ︵的长=120π×3180=2π;故选C.,第4题图) ,第5题图)5.用等分圆周的方法,在半径为1的图中画出如图所示图形,则图中阴影部分面积为( A )A .π-332B .π-3 3 C.332 D .π-334【解析】如图,设AB 的中点P ,连结OA ,OP ,AP ,△OAP 的面积是:34×12=34,扇形OAP 的面积是:S 扇形=π6,AP 直线和AP 弧面积:S 弓形=π6-34,阴影面积:3×2S 弓形=π-332. 二、填空题6.如图,扇形纸扇完全打开后,外侧两竹条AB ,AC 的夹角为120°,AB 长为30 cm ,求则BC ︵的长为__20π_cm __.(结果保留π)【解析】根据弧长公式l =n πr 180可得:弧BC 的长=n πr 180=120×π×30180=20π (cm).7.120°的圆心角所对的弧长是6π,则此弧所在圆的半径是__9__.【解析】根据弧长的公式l =n πr 180,得到6π=120πr180,解得r =9.8.如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD 的面积为__25__.【解析】扇形ABD 的弧长DB ︵=BC +DC =10,扇形ABD 的半径为正方形的边长5,∴S扇形ABD =12×10×5=25.9.如图,在▱ABCD 中,AB 为⊙O 的直径,⊙O 与DC 相切于点E ,与AD 相交于点F ,已知AB =12,∠C =60°,则FE ︵的长为__π__.【解析】如图连结OE ,OF ,∵CD 是⊙O 的切线,∴OE ⊥CD ,∴∠OED =90°,∵四边形ABCD 是平行四边形,∠C =60°,∴∠A =∠C =60°,∠D =120°,∵OA =OF ,∴∠A =∠OF A =60°,∴∠DFO =120°,∴∠EOF =360°-∠D -∠DFO -∠DEO =30°,FE ︵的长=30π×6180=π.故答案为π.三、解答题10.如图,AB 切⊙O 于点B ,OA =2,∠OAB =30°,弦BC ∥OA .求劣弧BC 的长.(结果保留π)解:连结OC ,OB ,∵AB 为圆O 的切线,∴∠ABO =90°,在Rt △ABO 中,OA =2,∠OAB =30°,∴OB =1,∠AOB =60°,∵BC ∥OA ,∴∠OBC =∠AOB =60°,又OB=OC ,∴△BOC 为等边三角形,∴∠BOC =60°,∴劣弧BC 长为60π×1180=π311.如图,在平面直角坐标系中,点A ,B ,C 的坐标分别为(-1,3),(-4,1),(-2,1),先将△ABC 沿一确定方向平移得到△A 1B 1C 1,点B 的对应点B 1的坐标是(1,2),再将△A 1B 1C 1绕原点O 顺时针旋转90°得到△A 2B 2C 2,点A 1的对应点为点A 2.(1)画出△A 1B 1C 1,△A 2B 2C 2;(2)求出在这两次变换过程中,点A 经过点A 1到达A 2的路径总长.解:(1)如图,△A 1B 1C 1,△A 2B 2C 2即为所作(2)OA 1=42+42=42,点A 经过点A 1到达A 2的路径总长=52+12+90π×42180=26+22π12.如图,AB 与⊙O 相切于点C ,OA ,OB 分别交⊙O 于点D ,E ,CD ︵=CE ︵. (1)求证:OA =OB ;(2)已知AB =43,OA =4,求阴影部分的面积.解:(1)连结OC ,则OC ⊥AB.∵CD ︵=CE ︵,∴∠AOC =∠BOC.在△AOC 和△BOC 中, ⎩⎨⎧∠AOC =∠BOC ,OC =OC ,∠OCA =∠OCB =90°,∴△AOC ≌△BOC (ASA ),∴OA =OB(2)由(1)可得AC =BC =12AB =23,∴在Rt △AOC 中,OC =2,∴∠AOC =∠BOC =60°,∴S △BOC =12BC· OC =12×23×2=23,S 扇形EOC =60°×π×22360°=23π,∴S 阴影=S △BOC -S 扇形EOC =23-23π13.如图,在正方形ABCD 中,AD =2,E 是AB 的中点,将△BEC 绕点B 逆时针旋转90°后,点E 落在CB 的延长线上点F 处,点C 落在点A 处.再将线段AF 绕点F 顺时针旋转90°得线段FG ,连结EF ,CG .(1)求证:EF ∥CG ;(2)求点C ,A 在旋转过程中形成的,与线段CG 所围成的阴影部分的面积.解:(1)在正方形ABCD 中,AB =BC =AD =2,∠ABC =90°,∵△BEC 绕点B 逆时针旋转90°得到△ABF ,∴△ABF ≌△CBE ,∴∠FAB =∠ECB ,∠ABF =∠CBE =90°,AF =EC ,∴∠AFB +∠FAB =90°,∵线段AF 绕点F 顺时针旋转90°得线段FG ,∴∠AFB +∠CFG =∠AFG =90°,∴∠CFG =∠FAB =∠ECB ,∴EC ∥FG ,∵AF =EC ,AF =FG ,∴EC =FG ,∴四边形EFGC 是平行四边形,∴EF ∥CG(2)∵AD =2,E 是AB 的中点,∴FB =BE =12AB =12×2=1,∴AF =AB 2+BF 2=22+12=5,由平行四边形的性质,△FEC ≌△CGF ,∴S △FEC =S △CGF ,∴S 阴影=S 扇形BAC+S △ABF +S △FGC -S 扇形FAG =90·π·22360+12×2×1+12×(1+2)×1-90π×(5)2360=52-π4。

人教版九年级上册数学同步练习《弧长和扇形面积》(习题+答案)

人教版九年级上册数学同步练习《弧长和扇形面积》(习题+答案)

24.4 弧长和扇形面积内容提要1.在半径为r 的圆中,n ︒的圆心角所对的弧长为l ,扇形面积为S ,则有(1)2360180n n rl r ππ=⋅=; (2)2213603602n n r S r lr ππ=⋅==.2.圆锥的侧面展开图是扇形,这个扇形的半径是圆锥的母线长,弧长是圆锥底面圆的周长.3.圆锥的全面积是侧面扇形面积与底面圆的面积之和. 24.4.1 弧长和扇形面积基础训练1.在半径为9cm 的圆中,60︒的圆心角所对的弧长为cm. 2.若一个扇形的弧长为43π,半径为6,则此扇形的面积为.3.已知扇形的圆心角为150︒,它所对的弧长为20πcm ,则扇形的半径为cm ,扇形的面积是2cm .4.已知扇形的弧长是2πcm ,半径为12cm ,则这个扇形的圆心角( ) A .60︒B .45︒C .30︒D .20︒5.如图,一块边长为10cm 的正方形木板ABCD 在水平桌面上绕点D 按顺时针方向旋转到'''A B C D 的位置时,顶点B 从开始到结束所经过的路径长为( )A .20cmB .202cmC .10πcmD .52πcm6.如图所示,扇形AOB 的圆心角为120︒,半径为2,则图中阴影部分的面积为( ) A .433πB .4233π-C .433π D .43π7.如图,正方形ABCD中,分别以B,D为圆心,以正方形的边长a为半径画弧,形成树叶形(阴影部分)图案,求树叶图案的周长与面积.8.如图,在O中,弦BC垂直于半径OA,垂足为E,D是优弧BC上一点,连接BD,AD,BC=cm.∠=︒,弦6OC,30ADB(1)求BC的长度;(2)求图中阴影部分的面积.24.4.2圆锥的侧面积和全面积基础训练1.已知圆锥的底面直径为4,母线长为6,则它的侧面积为,全面积是.2.已知圆锥的母线长是10cm,侧面展开图的面积是2π,则这个圆锥的底面半径是60cmcm.3.小明要用圆心角为120︒,半径是27cm的扇形纸片卷成一个圆锥形纸帽,做成后这个纸帽的底面直径为cm(不计接缝部分,材料不剩余).4.若一个圆锥的底面积为4πcm ,高为42cm ,则该圆锥的侧面展开图的圆心角的度数是( ) A .40︒B .80︒C .120︒D .150︒5.如果一个圆锥的主观图是正三角形,则其侧面展开图的圆心角为( ) A .120︒B .156︒C .180︒D .208︒6.在ABC ∆中,90C ∠=︒,12AC =,5BC =,现在以AC 为轴旋转一周得到一个圆锥,则该圆锥的表面积为( ) A .130πB .90πC .25πD .65π7.如果圆锥的底面圆的半径是8,母线的长是15,求这个圆锥侧面展开图的扇形的圆心角的度数.8.如图,从直径为4cm 的圆形纸片中,剪出一个圆心角为90︒的扇形OAB ,且点O ,A ,B 在圆周上,把它围成一个圆锥,求圆锥的底面圆的半径.能力提高1.如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.已知正三角形的边长为1,由凸轮的周长等于.2.如图,一根5m 长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A (羊只能在草地上活动),那么小羊A 在草地上的最大活动区域面积( ) A .21712m π B .2176m π C .2254m π D .27712m π3.如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF 长为10cm.母线()OE OF 长为10cm ,在母线OF 上的点A 处有一块爆米花残渣,且2FA =cm ,一只蚂蚁从杯口的点E 处沿圆锥表面爬行到A 点,则此蚂蚁爬行的最短距离为cm.4.如图,有一直径为4的圆形铁皮,要从中剪出一个最大圆心角为60︒的扇形ABC .那么剪下的扇形ABC (阴影部分)的面积为;用此剪下的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径r =.5.如图,四边形ABCD 是菱形,60A ∠=︒,2AB =,扇形BEF 的半径为2,圆心角为60︒,则图中阴影部分的面积是( ) A .233π B .233πC .3πD .3π6.若圆锥的侧面展开图为半圆,则该圆锥的母线l 与底面半径r 的关系是( ) A .2l r =B .3l r =C .l r =D .32l r =7.如图,矩形ABCD 中,4AB =,3BC =,边CD 在直线l 上,将矩形ABCD 沿直线l 作无滑动翻滚,当点A第一次翻滚到点1A的位置时,(1)画出点A经过的路线;(2)求出点A经过的路线长为多少?8.如图,P,C是以AB为直径的半圆O上的两点,10AB=,CP的长为52π,连接PB交AC于点M,线段MC与弦BC的长度相等吗?为什么?9.如图,在Rt ABC∆中,90C∠=︒,4AC=,2BC=,分别以AC,BC为直径画半圆,求图中阴影部分的面积(结果保留π).10.如图,已知O 的半径为4,CD 是O 的直径,AC 为O 的弦,B 为CD 的延长线上的一点,30ABC ∠=︒,且AB AC =. (1)求证:AB 为O 的切线; (2)求弦AC 的长; (3)求图中阴影部分的面积.内容提要1.如图,正三角形ABC 的边长为1cm ,将线段AC 绕点A 顺时针旋转120︒至1AP ,形成扇形1D ;将线段1BP 绕点B 顺时针旋转120︒至2BP ,形成扇形2D ;将线段2CP 绕点C 顺时针旋转120︒至3CP ,形成扇形3D ;将线段3AP 绕点A 顺时针旋转120︒至4AP ,形成扇形1D ……设n l 为扇形n D 的弧长()1,2,3,n =,回答下列问题: (1)按照要求填表:n1 2 3 4 n l(2n n D (设地球赤道半径为6400km )?2.在一次数学探究性学习活动中,某学习小组要制作一个圆锥体模型,操作规则是:在一块边长为16cm的正方形纸片上剪出一个扇形和一个圆,使得扇形围成圆锥的侧面时,圆恰好是该圆锥的底面,他们首先设计了如图所示的方案二.(两个方案的图中,圆与正方形相邻两边及扇形的弧均相切.方案一中扇形的弧与正方形的两边相切.)(1)请说明方案一不可行的理由;(2)判断方案二是否可行?若要行,请确定圆锥的母线长及其底面圆半径;若不可行,请说明理由.数学应用应用1当四边形ABCD的四个内角满足时,则过A,B,C,D四点能作一个圆.应用2如图,点M,N,C在O上,点A在O外,点B在O内,则A∠∠,B∠,MCN 三个角的大小关系是.应用3已知四边形ABCD,过顶点A,B,C三点作O.①若180∠+∠=︒,则点D在O.B D②若180∠+∠>︒,则点D在O.B D③若180B D∠+∠<︒,则点D在O.整理归纳1.在学习本章内容时,注意结合课本知识和生活周围的一些实例,以加深相关概念的认识,如:圆、圆周角、三角形的内心和外心、圆锥侧面展开图等.2.圆的轴对称性和旋转对称性是理解圆中各类性质与定理的基础,要学会用对称性来分析和解决问题.3.在解决与本章内容有关的问题时,转化思想有着广泛的应用.如:可以将判定点和圆、直线和圆的位置关系等转化为实数大小的比较问题;利用圆心角、弦、弧的关系将角、线段、弧线之间的等量关系进行转化;将不规则图形的计算转化成规则图形的计算等.4.学习中注意前后知识之间的联系,及与其他章节知识的联系,形成综合运用知识的能力.如:利用圆周角和圆心角的关系,寻找(或构造)直角三角形,利用直角三角形的相关知识解决问题;根据圆锥的侧面展开图是扇形的特点,利用扇形的相关计算公式解决问题.5.注意分类讨论,避免答案不全.如:探索圆周角和圆心角的关系时分三种情况;两圆相切时,有内切和外切两种情形等.数学实践圆在凸多边形上无滑动滚动时圆心运动轨迹的研究广州一中实验学校初三实验2班梁家瑜指导老师罗小颖在一次测验中,有下面一道题:半径为R的圆在边长为a的正三角形的边上无滑动滚动一周,求圆心所经过的路程长为多少?当时,我忽略了圆在三角形的角上运动时圆心运动轨迹的特点,所以没有做对,该题答案是圆心运动所经过的路程的长等于等边三角形的周长与圆的周长的和.于是我猜想,圆在一般的三角形中无滑动滚动有没有特殊规律呢?为此我对圆在三角形上无滑动滚动时圆心的运动轨迹作了探讨.1.圆在三角形的边上无滑动滚动时,圆心轨迹如图1.圆心所经过的路程的长为IH ID DE EF FG GH +++++,其中四边形IACH ,DEBA ,FBCG 为矩形,所以IH CA =,DE AB =,GF BC =,3609090180IAD CAB CAB ∠=︒-︒-︒-∠=︒-∠, 3609090180HCG ACB ACB ∠=︒-︒-︒-∠=︒-∠,3609090180FBE ABC ABC ∠=︒-︒-︒-∠=︒-∠.设圆的半径为R ,根据弧长定理得1802360BAC ID R π︒-∠=⋅︒,1802360ABC EF R π︒-∠=⋅︒,1802360ACBHG R π︒-∠=⋅︒.所以()2180180180360RID EF HG BAC ACB ABC π++=⋅︒-∠+︒-∠+︒-∠︒. 因为180BAC ABC ACB ∠+∠+∠=︒, 所以()21801801801802360RID EF HG R ππ++=⋅︒+︒+︒-︒=︒. 由此可以发现,三段弧的长度之和恰好等于圆的周长.所以圆在三角形ABC 边上无滑动滚动时,圆心的运动轨迹的长度为AB AC BC C +++圆.因为AB BC CA C ++=三角形,设圆心轨迹长度为S ,则有S C C =+圆 三角形. 因此圆在一般三角形上的无滑动滚动时,圆心所经过的路程的长也符合圆在等边三角形边上无滑动滚动的规律,既然如此,那么圆在一般四边形中无滑动滚动又有什么规律呢?2.圆在四边形的边上无滑动滚动时,圆心轨迹如图2.圆心所经过的路程的长为EF FG GH HI IJ JK KL LE +++++++.3609090180KDJ CDA CDA ∠=︒-︒-︒-∠=︒-∠, 3609090180LAE DAB DAB ∠=︒-︒-︒-∠=︒-∠, 3609090180FBG ABC ABC ∠=︒-︒-︒-∠=︒-∠, 3609090180ICH BCD BCD ∠=︒-︒-︒-∠=︒-∠.设圆的半径为R ,根据弧长定理得1802360ABC FG R π︒-∠=⋅︒,1802360BCDHI R π︒-∠=⋅︒,1802360CDA JK R π︒-∠=⋅︒,1802360DABLE R π︒-∠=⋅︒,所以FG HI JK LE +++()2180180180180360RABC BCD CDA DAB π=⋅︒-∠+︒-∠+︒-∠+︒-∠︒. 而360ABC BCD CDA DAB ∠+∠+∠+∠=︒, 所以()27203602360RFG HI JK LE R ππ+++=⋅︒-︒=︒. 由此可发现,四段弧的长度之和恰好也等于圆的周长,而AB BC CD DA +++为四边形ABCD 的周长.设圆心运动的距离为S ,则有S C C =+圆 四边形. 3.圆在凸多边形上无滑动滚动的研究既然三角形、四边形圆心运动路程分别为S C C =+圆三角形,S C C =+圆四边形,那么n 边形有什么规律呢?观察前面,不难发现,圆心作直线运动时圆心所走的线段与多边形的边长是平行且相等的,是矩形的对边,由此我们可以得到圆心轨迹中的直的线段之和等于多边形的周长,而圆心所走的总长为线段总长的弧长总长之和.设现有一个n 边形,且这个n 边形的内角为1∠,2∠,…,n ∠.那么n 段弧分别为18012360R π︒-∠⋅︒,18022360R π︒-∠⋅︒,…,1802360n R π︒-∠⋅︒. 设圆弧总长为L ,相加得()218018018012360R L n π=⋅︒+︒++︒-∠-∠--∠︒因为n 边形内角和为()()18023n n ︒⋅-≥, 所以代入得()21801802360R L n n π=⋅︒⋅-︒⋅-⎡⎤⎣⎦︒ ()21802360R n n π=⋅︒⋅-+⎡⎤⎣⎦︒ ()218022360R R ππ=⋅︒⋅=︒. 因此弧长之和为2R π,即圆的周长.设圆心运动距离为S ,则有S =弧长之和+多边形周长,即S C C =+圆多边形.因此,当圆在凸多边形边上无滑动滚动时,圆心运动所经过的路程的长度等于圆的周长与凸多边形的周长之和.学业评价24.4 参考答案:24.4.1 弧长和扇形面积基础训练1.3π 2.4π 3.24 240π 4.C 5.D 6.A 7.周长:a π,面积:2212a a π- 8.(1)43cm π (2)2(433)cm π- 24.4.2 圆锥的侧面积和全面积基础训练1.12π 16π 2.6 3.18 4.C 5.C 6.B 7.192︒ 8.2 能力提高1.π 2.D 3.241 4.2π 3 5.B 6.A 7.(1)如图 (2)6π8.MC BC =(提示:90C ∠=︒,45PBC ∠=︒) 9.542π- 10.(1)图 (2)43 (3)8433π+拓展探究 1.(1)123l π=,243l π=,363l π=,483l π=. (2)6400640000000km cm =,由226400000003n ππ=⨯,91.9210n =⨯. 2.(1)因为扇形的弧长902168360ππ︒=⨯⨯=︒,圆锥底面周长2r π=,所以圆的半径为4cm .由于所给正方形纸片的对角线长为2cm ,而制作这样的圆锥实际需要正方形纸片的对角线长为1642(202)cm ++=+,2042162+>(2)方案二可行.设圆锥底面圆的半径为r cm ,圆锥的母线长为R cm ,则(12)162r R ++=①,224R r ππ=②.由②得4R r =,代入①得(5r +=,所以r ==,所以R = 数学应用应用1 180A C ∠+∠=︒或180B D ∠+∠=︒ 应用2 A MCN B ∠<∠<∠ 应用3 ①上②内 ③外。

人教版 九年级数学上册 24.4 弧长和扇形面积 课后训练(含答案)

人教版 九年级数学上册 24.4 弧长和扇形面积 课后训练(含答案)

人教版 九年级数学 24.4 弧长和扇形面积 课后训练一、选择题 1. 120°的圆心角所对的弧长是6π,则此弧所在圆的半径是( ) A . 3 B . 4 C . 9 D . 182. 如图,▱ABCD 中,∠B=70°,BC=6.以AD 为直径的☉O 交CD 于点E ,则的长为 ( )A .πB .πC .πD .π3. 如图AB 为半圆O 的直径,AB =4,C ,D 为AB ︵上两点,且AC ︵=15BD ︵.若∠CED =52∠COD ,则BD ︵的长为( )图A.59πB.78πC.89πD.109π4. (2019•遵义)圆锥的底面半径是5 cm ,侧面展开图的圆心角是180°,圆锥的高是A .53cmB .10 cmC .6 cmD .5 cm5. (2019•温州)若扇形的圆心角为90°,半径为6,则该扇形的弧长为A .3π2B .2πC .3πD .6π6. 如图,C 为扇形OAB 的半径OB 上一点,将△OAC 沿AC 折叠,点O 恰好落在AB ︵上的点D 处,且BD ︵l ∶AD ︵l =1∶3(BD ︵l 表示BD ︵的长).若将此扇形OAB 围成一个圆锥,则圆锥的底面半径与母线长的比为( )A .1∶3B .1∶πC .1∶4D .2∶97. (2019•南充)如图,在半径为6的⊙O 中,点A ,B ,C 都在⊙O 上,四边形OABC 是平行四边形,则图中阴影部分的面积为A .6πB .33C .3D .2π8. 如图在扇形OAB 中,∠AOB =150°,AC =AO =6,D 为AC 的中点,当弦AC沿AB ︵运动时,点D 所经过的路径长为( )图A .3πB.3πC.32 3πD .4π二、填空题9. 如图,扇形纸扇完全打开后,外侧两竹条AB ,AC 的夹角为120°,AB 长为30厘米,则BC ︵的长为________厘米(结果保留π).10. 如图,现有一张圆心角为108°,半径为40 cm的扇形纸片,小红剪去圆心角为θ的部分扇形纸片后,将剩下的纸片制作成一个底面圆半径为10 cm的圆锥形纸帽(接缝处忽略不计),则剪去的扇形纸片的圆心角θ为________.11. 已知一个圆心角为270°,半径为3 m的扇形工件未搬动前如图示,A,B两点触地放置,搬动时,先将扇形以点B为圆心,做如图示的无滑动翻转,再使它紧贴地面滚动,当A,B两点再次触地时停止,则圆心O所经过的路线长为________m.(结果用含π的式子表示)12. 一个圆锥的侧面积为8π,母线长为4,则这个圆锥的全面积为________.13. (2019•贵港)如图,在扇形OAB中,半径OA与OB的夹角为120 ,点A与点B 的距离为23,若扇形OAB恰好是一个圆锥的侧面展开图,则该圆锥的底面半径为__________.14. 如图所示,在Rt△ABC中,∠ACB=90°,AC=BC=2 2.若把Rt△ABC绕边AB所在直线旋转一周,则所得几何体的表面积为________.(结果保留π)15. 如图,已知A ,B ,C 为⊙O 上的三个点,且AC =BC =2,∠ACB =120°,点P 从点A 出发,沿AMB ︵向点B 运动,连接CP 与弦AB 相交于点D ,当△ACD 为直角三角形时,AMP ︵的长为________.三、解答题16. 如图,AB 为⊙O 的直径,C ,D 是半圆O 的三等分点,过点C 作AD 延长线的垂线CE ,垂足为E .(1)求证:CE 是⊙O 的切线;(2)若⊙O 的半径为2,求图中阴影部分的面积.17. (2019•襄阳)如图,点E 是ABC △的内心,AE 的延长线和ABC △的外接圆圆O相交于点D ,过D 作直线DG BC ∥. (1)求证:DG 是圆O 的切线;(2)若6DE =,BC =,求优弧BAC 的长.18. (2019•辽阳)如图,BE是⊙O的直径,点A和点D是⊙O上的两点,连接AE,AD,DE,过点A作射线交BE的延长线于点C,使EAC EDA∠=∠.(1)求证:AC是⊙O的切线;(2)若23CE AE==,求阴影部分的面积.人教版九年级数学24.4 弧长和扇形面积课后训练-答案一、选择题1. 【答案】C【解析】由扇形的弧长公式l=nπr180可得:6π=120π·r180,解得r=9.2. 【答案】B[解析]如图,连接OE.∵四边形ABCD是平行四边形,∴AD=BC=6,∠D=∠B=70°,∴OD=3.∵OD=OE,∴∠OED=∠D=70°,∴∠DOE=40°.∴的长==π.3. 【答案】D4. 【答案】A【解析】设圆锥的母线长为R,根据题意得2π·5180π180R=,解得R=10.即圆锥的母线长为10 cm,∴圆锥的高为:22105-=53cm.故选A.5. 【答案】C【解析】该扇形的弧长=90π63π180⨯=.故选C.6. 【答案】D7. 【答案】A【解析】如图,连接OB,∵四边形OABC是平行四边形,∴AB=OC,∴AB=OA=OB,∴△AOB是等边三角形,∴∠AOB=60°,∵OC∥AB,∴S△AOB=S△ABC,∴图中阴影部分的面积=S扇形AOB=60π366π360⋅⨯=,故选A.8. 【答案】C[解析] 如图∵D为AC的中点,AC=AO=6,∴OD ⊥AC ,∴AD =12AC =12AO , ∴∠AOD =30°,OD =3 3. 作BF =AC ,E 为BF 的中点.同理可得∠BOE =30°, ∴∠DOE =150°-60°=90°,∴点D 所经过的路径长为n πR 180=90π×3 3180=3 32π.二、填空题9. 【答案】20π【解析】由弧长公式得,l BC ︵的长=120π×30180=20π.10. 【答案】18°11. 【答案】6π[解析] 由题意易知∠AOB =90°,OA =OB ,∴∠ABO =45°,圆心O 旋转的长度为2×45π×3180=3π2(m),圆心O 平移的距离为270π×3180=9π2(m),则圆心O 经过的路线长为3π2+9π2=6π(m).12. 【答案】12π13. 【答案】43【解析】如图,连接AB ,过O 作OM AB ⊥于M ,∵120AOB ∠=︒,OA OB =,∴30BAO ∠=︒,3AM =2OA =, ∵240π22π180r ⨯=,∴43r =,故答案为:43.14. 【答案】82π [解析] 过点C 作CD ⊥AB 于点D .在Rt △ABC 中,∠ACB =90°,AC =BC =2 2, ∴AB =2AC =4,∴CD =2. 以CD 为半径的圆的周长是4π.故Rt △ABC 绕直线AB 旋转一周所得几何体的表面积是2×12×4π×2 2=8 2π.15. 【答案】43π或2π [解析] 易得⊙O 的半径为2,∠A =30°.要使△ACD 为直角三角形,分两种情况:①当点P 位于AMB ︵的中点时,∠ADC =90°,△ACD 为直角三角形,此时∠ACP =60°,可得∠AOP =120°,所以AMP ︵的长为120π×2180=43π;②当∠ACP =90°时,△ACD 为直角三角形,此时∠AOP =180°,所以AMP ︵的长为180π×2180=2π.综上可得,AMP ︵的长为43π或2π.三、解答题16. 【答案】解:(1)证明:连接OC . ∵C ,D 为半圆O 的三等分点, ∴AD ︵=CD ︵=BC ︵, ∴∠DAC =∠BAC . ∵OA =OC , ∴∠BAC =∠ACO , ∴∠DAC =∠ACO , ∴OC ∥AD . ∵CE ⊥AD ,∴CE ⊥OC ,∴CE 为⊙O 的切线. (2)连接OD . ∵AD ︵=CD ︵=BC ︵,∴∠AOD =∠COD =∠BOC =13×180°=60°. 又∵OC =OD ,∴△COD 为等边三角形, ∴∠CDO =60°=∠AOD , ∴CD ∥AB , ∴S △ACD =S △COD ,∴图中阴影部分的面积=S 扇形COD =60×π×22360=2π3.17. 【答案】(1)连接OD 交BC 于H ,如图,∵点E 是ABC △的内心,∴AD 平分BAC ∠,即BAD CAD ∠=∠, ∴BD CD =,∴OD BC ,BH CH =,∵DG BC ∥, ∴OD DG ⊥, ∴DG 是圆O 的切线. (2)连接BD 、OB ,如图, ∵点E 是ABC △的内心, ∴ABE CBE ∠=∠, ∵DBC BAD ∠=∠,∴DEB BAD ABE DBC CBE DBE ∠=∠+∠=∠+∠=∠, ∴6DB DE ==, ∵1332BH BC ==在Rt BDH △中,333sin 62BH BDH BD ∠===, ∴60BDH ∠=︒, 而OB OD =,∴OBD △为等边三角形,∴60BOD ∠=︒,6OB BD ==, ∴120BOC ∠=︒, ∴优弧BAC 的长=(360120)π68π180-⋅⋅=.18. 【答案】(1)如图,连接OA ,过O 作OF AE ⊥于F ,∴90AFO ∠=︒, ∴90EAO AOF ∠+∠=︒, ∵OA OE =,∴12EOF AOF AOE ∠=∠=∠,∵12EDA AOE ∠=∠,∴EDA AOF ∠=∠, ∵EAC EDA ∠=∠, ∴EAC AOF ∠=∠, ∴90EAO EAC ∠+∠=︒, ∵EAC EAO CAO ∠+∠=∠, ∴90CAO ∠=︒, ∴OA AC ⊥, ∴AC 是⊙O 的切线.11 / 11 (2)∵CE AE == ∴C EAC ∠=∠,∵EAC C AEO ∠+∠=∠, ∴2AEO EAC ∠=∠, ∵OA OE =,AEO EAO ∠=∠,∴2EAO EAC ∠=∠, ∵90EAO EAC ∠+∠=︒,∴30EAC ∠=︒,60EAO ∠=︒, ∴OAE △是等边三角形, ∴OA AE =,60EOA ∠=︒,∴OA =∴2πAOE S =扇形, 在Rt OAE △中,sin 32OF OA EAO =⋅∠==,∴11322AOE S AE OF =⋅=⨯=△∴阴影部分的面积=2π-。

中考真题测试题弧长与扇形面积 (含答案)

中考真题测试题弧长与扇形面积 (含答案)

弧长与扇形面积1. (2014•广西贺州)如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE=,CE=1.则弧BD的长是()A.B.C.D.解答:解:连接OC,∵△ACE中,AC=2,AE=,CE=1,∴AE2+CE2=AC2,∴△ACE是直角三角形,即AE⊥CD,∵sinA==,∴∠A=30°,∴∠COE=60°,∴=sin∠COE,即=,解得OC=,∵AE⊥CD,∴=,∴===.故选B.2.(2014·台湾)如图,、、、均为以O点为圆心所画出的四个相异弧,其度数均为60°,且G在OA上,C、E在AG上,若AC=EG,OG =1,AG=2,则与两弧长的和为()A.πB.4π3C.3π2D.8π5解:设AC=EG=a,CE=2﹣2a,CO=3﹣a,EO=1+a,+=2π(3﹣a)×60°360°+2π(1+a)×60°360°=π6(3﹣a+1+a)=4π3.故选B.3. (2014·浙江金华)一张圆心角为45°的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为1,则扇形纸板和圆形纸板的面积比是【】A.5:4B.5:2C2D【答案】A.【解析】故选A.4.(2014年山东泰安)如图,半径为2cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为()A.(﹣1)cm2B.(+1)cm2C.1cm2D.cm2解:∵扇形OAB的圆心角为90°,假设扇形半径为2,∴扇形面积为:=π(cm2),半圆面积为:×π×12=(cm2),∴S Q+S M =S M+S P=(cm2),∴S Q=S P,连接AB,OD,∵两半圆的直径相等,∴∠AOD=∠BOD=45°,∴S绿色=S△AOD=×2×1=1(cm2),∴阴影部分Q的面积为:S扇形AOB﹣S半圆﹣S绿色=π﹣﹣1=﹣1(cm2).故选:A.5. (2014•海南)一个圆锥的侧面展开图形是半径为8cm,圆心角为120°的扇形,则此圆锥的底面半径为()cm cm cmr=r=cm6. (2014•黑龙江龙东)一圆锥体形状的水晶饰品,母线长是10cm,底面圆的直径是5cm,点A为圆锥底面圆周上一点,从A点开始绕圆锥侧面缠一圈彩带回到A点,则彩带最少用多少厘米(接口处重合部分忽略不计)()A.10πcm B. 10cm C. 5πcm D.5cm解答:解:由题意可得出:OA=OA′=10cm,==5π,解得:n=90°,∴∠AOA′=90°,∴AA′==10(cm),故选:B.7.(2014•莱芜)如图,AB为半圆的直径,且AB=4,半圆绕点B顺时针旋转45°,点A旋转到A′的位置,则图中阴影部分的面积为()D8.(2014•浙江绍兴)如图,圆锥的侧面展开图使半径为3,圆心角为90°的扇形,则该圆锥的底面周长为()πBπC Dr==∴r=,∴圆锥的底面周长为9.(2014•浙江)如图,半径为6cm的⊙O中,C、D为直径AB的三等分点,点E、F分别在AB两侧的半圆上,∠BCE=∠BDF=60°,连接AE、BF,则图中两个阴影部分的面积和为6cm2.解答:解:如图作△DBF的轴对称图形△HAG,作AM⊥CG,ON⊥CE,∵△DBF的轴对称图形△HAG,∴△ACG≌△BDF,∴∠ACG=∠BDF=60°,∵∠ECB=60°,∴G、C、E三点共线,∵AM⊥CG,ON⊥CE,∴AM∥ON,∴==,在RT△ONC中,∠OCN=60°,∴ON=sin∠OCN•OC=•OC,∵OC=OA=2,∴ON=,∴AM=2,∵ON⊥GE,∴NE=GN=GE,连接OE,在RT△ONE中,NE===,∴GE=2NE=2,∴S△AGE=GE•AM=×2×2=6,∴图中两个阴影部分的面积为6,故答案为6.10.(2014•广安)如图,在直角梯形ABCD中,∠ABC=90°,上底AD为,以对角线BD为直径的⊙O与CD切于点D,与BC交于点E,且∠ABD为30°.则图中阴影部分的面积为﹣π(不取近似值).AD=BD=2,OF=BC=4,=﹣﹣﹣=﹣=﹣11.(2014•绵阳)如图,⊙O的半径为1cm,正六边形ABCDEF内接于⊙O,则图中阴影部分面积为cm2.(结果保留π),=.故答案为:.12.(2014•重庆)如图,△OAB中,OA=OB=4,∠A=30°,AB与⊙O相切于点C,则图中阴影部分的面积为4﹣.(结果保留π)解答:解:连接OC,∵AB与圆O相切,∴OC⊥AB,∵OA=OB,∴∠AOC=∠BOC,∠A=∠B=30°,在Rt△AOC中,∠A=30°,OA=4,∴OC=OA=2,∠AOC=60°,∴∠AOB=120°,AC==2,即AB=2AC=4,则S阴影=S△AOB﹣S扇形=×4×2﹣=4﹣.故答案为:4﹣.13. (2014•黑龙江)如图,如果从半径为3cm的圆形纸片上剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径是 2 cm.第2题图解答:解:扇形的弧长为:=4πcm,圆锥的底面半径为:4π÷2π=2cm,故答案为:2.14. (2014•荆门)如图,在▱ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙A相交于点F.若的长为,则图中阴影部分的面积为.第3题图解答:解:连接AC,∵DC是⊙A的切线,∴AC⊥CD,又∵AB=AC=CD,∴△ACD是等腰直角三角形,∴∠CAD=45°,又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠CAD=∠ACB=45°,又∵AB=AC,∴∠ACB=∠B=45°,∴∠CAD=45°,∴∠CAD=45°,∵的长为,∴,解得:r=2,∴S阴影=S△ACD﹣S扇形ACD=.故答案为:.15.(2014•襄阳)如图,在正方形ABCD中,AD=2,E是AB的中点,将△BEC绕点B逆时针旋转90°后,点E落在CB的延长线上点F 处,点C落在点A处.再将线段AF绕点F顺时针旋转90°得线段FG,连接EF,CG.(1)求证:EF∥CG;(2)求点C,点A在旋转过程中形成的,与线段CG所围成的阴影部分的面积.=×====×1+﹣=﹣.16.(2014·昆明)如图,在△ABC 中,∠ABC =90°,D 是边AC 上的一点,连接BD ,使∠A =2∠1,E 是BC 上的一点,以BE 为直径的⊙O 经过点D .(1)求证:AC 是⊙O 的切线;(2)若∠A =60°,⊙O 的半径为2,求阴影部分的面积.(结果保留根号和π)第22题图17. (2014年钦州)如图,点B、C、D都在半径为6的⊙O上,过点C作AC∥BD交OB的延长线于点A,连接CD,已知∠CDB=∠OBD=30°.(1)求证:AC是⊙O的切线;(2)求弦BD的长;(3)求图中阴影部分的面积.解答:(1)证明:连接OC,OC交BD于E,∵∠CDB=30°,∴∠COB=2∠CDB=60°,∵∠CDB=∠OBD,∴CD∥AB,又∵AC∥BD,∴四边形ABDC为平行四边形,∴∠A=∠D=30°,∴∠OCA=180°﹣∠A﹣∠COB=90°,即OC⊥AC又∵OC是⊙O的半径,∴AC是⊙O的切线;(2)解:由(1)知,OC⊥AC.∵AC∥BD,∴OC⊥BD,∴BE=DE,∵在直角△BEO中,∠OBD=30°,OB=6,∴BE=OBcos30°=3,∴BD=2BE=6;(3)解:易证△OEB≌△CED,∴S阴影=S扇形BOC∴S阴影==6π.答:阴影部分的面积是6π.18.(2014•贵州)如图,点B、C、D都在⊙O上,过C点作CA∥BD交OD的延长线于点A,连接BC,∠B=∠A=30°,BD=2.(1)求证:AC是⊙O的切线;(2)求由线段AC、AD与弧CD所围成的阴影部分的面积.(结果保留π)第1题图解答:(1)证明:连接OC,交BD于E,∵∠B=30°,∠B=∠COD,∴∠COD=60°,∵∠A=30°,∴∠OCA=90°,即OC⊥AC,∴AC是⊙O的切线;(2)解:∵AC∥BD,∠OCA=90°,∴∠OED=∠OCA=90°,∴DE=BD=,∵sin∠COD=,∴OD=2,在Rt△ACO中,tan∠COA=,∴AC=2,∴S阴影=×2×2﹣=2﹣.19、(2013•雅安)如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD为⊙O的切线;(2)若BD的弦心距OF=1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)BF=,,=×﹣20、(2013•新疆)如图,已知⊙O的半径为4,CD是⊙O的直径,AC为⊙O的弦,B为CD延长线上的一点,∠ABC=30°,且AB=AC.(1)求证:AB为⊙O的切线;(2)求弦AC的长;(3)求图中阴影部分的面积.AC==4AC=4=8..=+4=+4+4。

苏科版九年级上册 2.7 弧长及扇形的面积 同步练习(含答案)

苏科版九年级上册   2.7 弧长及扇形的面积 同步练习(含答案)

初中数学苏科版九年级上册2.7弧长及扇形的面积同步测试一、单选题1.若扇形的圆心角为90°,半径为6,则该扇形的弧长为()A. B. C. D.2.若扇形的弧长是,半径是18,则该扇形的圆心角是()A. B. C. D.3.圆心角为,弧长为的扇形半径为()A. B. C. D.4.如图,AB为⊙O的直径,AB=30,点C在⊙O上,⊙A=24°,则的长为()A.9πB.10πC.11πD.12π5.如图1,一只蚂蚁从点O出发,以1厘米/秒速度沿着扇形AOB的边缘爬行一周。

设爬行时间为x秒,蚂蚁到点O的距离为y厘米,y关于x的函数图像如图2所示,则扇形的面积为()A.3B.6C.πD.π6.如图,OO是⊙ABC的外接圆,BC=3,⊙BAC=30°,则劣弧的长等于()A. B.π C. D.7.如图,在扇形中,为弦,,,,则的长为()A. B. C. D.8.如图,⊙O的半径为2,AB、CD是互相垂直的两条直径,点P是⊙O上任意一点(P与A、B、C、D不重合),经过P作PM⊙AB于点M,PN⊙CD于点N,点Q是MN的中点,当点P沿着圆周转过45°时,点Q走过的路径长为()A. B. C. D.9.如图,半径为2的半圆的初始状态是直径平行于桌面上的直线b,然后把半圆沿直线b进行无滑动滚动,使半圆的直径与直线b重合为止,则圆心O运动路径的长度等于()A.4B.6C.2πD.π+ 410.如图,若弧AB半径PA为18,圆心角为120°,半径为2的⊙,从弧AB的一个端点A (切点)开始先在外侧滚动到另一个端点B(切点),再旋转到内侧继续滚动,最后转回到初始位置,⊙自转的周数是()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

连接 OD、OE,先证明

是等边三角形,得出

求出
,再由弧长公式即可得出答案.
本题考查了等边三角形的性质与判定、弧长公式;熟练掌握弧长公式,证明三角形是等 边三角形是解决问题的关键.
三、解答题(本大题共 1 小题,共分) 9. 如图,AB 为半圆 O 的直径,AC 是
的一条弦,D
为 的中点,作
,交 AB 的延长线于点 F,
弧长以及扇形面积的计算
副标题
题号 得分



总分
一、选择题(本大题共 3 小题,共分)
1. 如图,在
中,

,以 BC 的中
点 O 为圆心 为 A.
分别与 AB,AC 相切于 D,E 两点,则 的长
B.
C. D.
【答案】B
【解析】解:连接 OE、OD,
设半径为 r,
分别与 AB,AC 相切于 D,E 两点,
2. 一个扇形的弧长是
,面积是
,则此扇形的圆心角的度数是
A. 【答案】B
【解析】解:
B.
一个扇形的弧长是
C.
,面积是
D.

,即

解得:


解得:

故选 B 利用扇形面积公式 1 求出 R 的值,再利用扇形面积公式 2 计算即可得到圆心角度数. 此题考查了扇形面积的计算,以及弧长的计算,熟练掌握扇形面积公式是解本题的关键.






【解析】 直接利用切线的判定方法结合圆心角定理分析得出
,即可得出答
案;
直接利用得出
,再利用
,求出答案.
此题主要考查了切线的判定与性质以及扇形面积求法等知识,得出

解题关键.
3.
的圆心角对的弧长是 ,则此弧所在圆的半径是
A. 3 【答案】C
B. 4
【解析】解:根据弧长的公式
C. 9
D. 18
得到:
解得 . 故选 C. 根据弧长的计算公式
,将 n 及 l 的值代入即可得出半径 r 的值.
此题考查了弧长的计算,解答本题的关键是熟练记忆弧长的计算公式,属于基础题,难 度一般.
二、填空题(本大题共 1 小题,共分)
4. 如图,已知等边
的边长为 6,以 AB 为直径的 与
边 AC、BC 分别交于 D、E 两点,则劣弧 的长为______.
5. 6. 7. 8. 【答案】 【解析】解:连接 OD、OE,如图所示:
是等边三角形,
, 、

, 是等边三角形,

, ,
的长

故答案为: .


是 BC 的中点,
是中位线,


同理可知:



由勾股定理可知


故选:B.
连接 OE、OD,由切线的性质可知

,由于 O 是 BC 的中点,从而可知
OD 是中位线,所以可知
,从而可知半径 r 的值,最后利用弧长公式即可求
出答பைடு நூலகம்.
本题考查切线的性质,解题的关键是连接 OE、OD 后利用中位线的性质求出半径 r 的值, 本题属于中等题型.
连接 DA.
10. 求证:EF 为半圆 O 的切线;
11. 若
,求阴影区域的面积
【答案】 证明:连接 OD,
结果保留根号和
为 的中点,
, ,
, , ,

,即

, 为半圆 O 的切线;
解:连接 OC 与 CD, , , ,



, 为等边三角形,

, ,




中,



中,







是等边三角形,
相关文档
最新文档