风力机设计与仿真实例(单丽君 著)思维导图
风力发电机整体结构PPT课件
b.桩位偏差合格(1/3D) c.桩头清理(油污,砼碎块)
2021
20
2.2.钢筋检验 a.出厂合格证 b.复检合格证明 c..钢筋机械连接抗 拉试验合格证明 d.表面清理
2021
21
2.3.基础环的检验和固定
a.基础环合格证明,外观检查
b.基本尺寸的现场检验(L法兰)
风力发电机机组对基础的所产生的载荷主要 应考虑机组自重Q和倾覆力矩Mn
2021
14
7.REpower对风机基础的具体要求 混凝土和钢筋用量(如图)
2021
15
8.预埋管
布置保护电缆,但同时对基础结构 不利,施工时布置均匀相互间留有间 距,尽量减少对基础结构的影响。
2021
16
预埋管
2021
2021
8
3.基础设计满足以下两个条件
3.1.要求作用于地基上的载荷不超 过地基的容许应力,保证地基有足够 的安全储备
3.2.控制基础的沉降,使其不超过 地基容许变形值
2021
9
4.风电机组基础的种类
风力发电机基础均为钢筋混凝土独立基础, 根据风电场工程地质条件和地基承载力和风 机载荷的不同分为:天然重力基础和桩基础 (本风场选用桩基础)。
提供必要的锁紧力矩,以保障风 力发电机组的安全运行
2021
41
风机偏航系统的组成
偏航系统由风向标传感器、偏航轴承、 偏航驱动电机、偏航制动器、扭缆保护 装置等几个部分组成。
2021
42
风向标传感器
MM82风机有两个待加热的风速 计安装在气象塔上。气象塔被接 地并具有围绕风速计的雷电捕获 回路。
2021
50
解缆和扭缆保护装置
风力机叶轮设计与叶片空气动力学仿真分析
风力机叶轮设计与叶片空气动力学仿真分析一、概述作用在叶轮上的空气动力是风力机最主要的动力来源,也是造成各个零部件的主要的载荷来源。
要计算风力发电机组的载荷就必须先计算出空气作用在叶片上的作用力。
除了气动载荷,风力机叶片在风机工作中受到的作用力主要还受到惯性力,特别应该考虑重力、离心力和陀螺力等。
风力机的叶片设计分气动设计和结构设计两大部分,气动性能计算为气动设计结果提供评价和反馈,并为叶片的结构设计提供气动载荷等原始数据。
气动性能计算的准确性,直接影响叶片的气动性能和结构安全,从而影响风力机的运行效率和运行安全。
二、风力机叶片几何参数1.风力机叶片翼型几何参数和气流角翼型是组成风力机叶片的基本元素,因此,翼型的气动特性对风力机的性能起着决定性的作用。
以一个静止的翼型为例,其受到气流作用,风速为v,方向与翼型截面平行。
图1 翼型的几何参数和气流角翼型的尖尾(点B)称为后缘。
圆头上的A点称为前缘,距离后缘最远。
l——翼型的弦长,是两端点A、B连线方向上翼型的最大长度;C——翼型最大厚度,即弦长法线方向之翼型最大厚度;C——翼型相对厚度,CCl=,通常为10%~15%;翼型中线—从前缘点开始,与上、下表面相切诸圆之圆心的连线,一般为曲线;f——翼型中线最大弯度;f——翼型相对弯度,ffl =;α——攻角,是来流速度方向与弦线间的夹角;φo——零升力角,它是弦线与零升力线间的夹角;φ——升力角,来流速度方向与零升力线间的夹角。
α=φ+φ0 (2‐1)此处φ0是负值,α和φ是正值。
2..NACA四位数字翼型族NACA四位数字翼型分为对称翼型和有弯度翼型两种。
对称翼型即为基本厚度翼型,有弯度翼型由中弧线与基本厚度翼型迭加而成。
中弧线为两段抛物线,在中弧线最高点二者水平相切。
四位数字翼型的表达形式为NACAXXXX第一个数字表示最大相对弯度的百倍数值;第二个数字表示最大弯度相对位置的十倍数值;最后两个数字表示最大相对厚度t的百倍数值。
风力发电机PPT课件
图3-15 电磁式直流发电机结构
2023/8/18
第28页/共119页
(2)永磁式交流同步发电机
永磁式交流同步发电机的转子 上没有励磁绕组,因此无励磁绕 组的铜损耗,发电机的效率高; 转子上无集电环,发电机运行更 可靠;采用钕铁硼永磁材料制造 的发电机体积小,重量轻,制造 工艺简ቤተ መጻሕፍቲ ባይዱ,因此广泛应用于小型 及微型风力发电机中。
2023/8/18
第37页/共119页
2)超同步运行状态。此时n>n1,转差率s<0,转子中的电流相序发 生了改变,频率为f2的转子电流产生的旋转磁场的转速与转子转速反方
向,功率流向如图所示。
3)同步运行状态。此时n=n1,f2=0,转子中的电流为直流,与同步
发电机相同。
2023/8/18
第38页/共119页
1
6
S
5
N
N
S 4
2 3
图3-17 凸极式永磁发电机结构示意图
1—定子齿 2—定子轭 3—永磁体转子 4—转子轴 5—气隙 6—定子绕组
2023/8/18
第29页/共119页
(3)硅整流自励式交流同步发电机
如下图,硅整流自励式交流同步发电机电路原理图。
硅整流自励式交流同步发电机一般带有励磁调节器,通过自动调节励 磁电流的大小,来抵消因风速变化而导致的发电机转速变化对发电机 端电压的影响,延长蓄电池的使用寿命,提高供电质量。
本章主要内容
3.1 风的特性及风能利用 3.2 风力发电机组及工作原理 3.3 风力发电机组的控制策略 3.4 风力发电机组的并网运行和功率补偿 3.5 风力发电的经济技术性评价
2023/8/18
第1页/共119页
风力发电机概述ppt精选课件
精选ppt课件2021
10
❖ 借助偏航驱动电机转动机座,以使转子叶片调整 风向的最佳切入角度。偏航装置由电子控制器操 作,电子控制器可以通过风向标来探知风向。通 常,在风改变其方向时,风电机一次只会偏转几 度。
精选ppt课件2021
11
❖ 工作原理如下: 风向标作为感应元件将风向的变化用电信号传
几乎所有水平轴的风电机都会强迫偏航。即使用 一个带有电动机及齿轮箱的机构来保持风电机对 着风偏转。1.5兆瓦风电机上的偏航机构上可以看 到环绕内圈的偏航轴承,当系统接到偏航指令时, 偏航电机开始运转,通过偏航驱动减速齿轮箱减 速之后驱动偏航轴承已实现偏航。
精选ppt课件2021
13
❖ 解缆
电缆用来将电流从风电机运载到塔下。但是当风 电机偶然沿一个方向偏转太长时间时,电缆将越 来越扭曲。此时我们的风机上安装有一个偏航计 数器,当风机同一个方向转动一定的圈数之后, 计数器给系统一个指令,系统控制风机往回转动, 偏航刹车主机室的转动按照指令的方向,偏航电 机转动,液压刹车系统处于释放状态,当偏航电 机停止转动时,液压刹车系统处于刹车状态,将 主机室固定在相应的位置上,实现解缆。
1.机座
2.传动链(主轴、齿轮箱)
3. 偏航组件(偏航驱动、偏航刹车钳、偏航轴承)
4.踏板和棒 5.电缆线槽 6.发电机
7.联轴器 8.液压站 9.冷却泵(风冷型无)
10.滑环组件 11.自动润滑 12.吊车
13.机舱柜 14.机舱罩 15.机舱加热器
16.轮毂
17.叶片
18.电控系统等。
精选ppt课件2021
精选ppt课件2021
9
❖ 为了使风机的桨叶转子工作事始终朝向某个方向, 在风机内安设了偏航系统,风力机的偏航系统即 对风装置。其作用在于当风速矢量的方向变化时, 精密的测风仪器将检测信号传输给电脑的软件, 经过分析后驱动偏航系统的电机和齿轮箱使风机 尽可能的减少风能损失,快速平稳地对准风向, 以便风轮获得最大的风能。
20千瓦风力发电机设计(全套图纸)
前言自然界的风是可以利用的资源,然而,我们现在还没有很好的对它进行开发。
这就向我们提出了一个课题:我们如何开发利用风能?自然风的速度和方向是随机变化的,风能具有不确定特点,如何使风力发电机的输出功率稳定,是风力发电技术的一个重要课题。
迄今为止,已提出了多种改善风力品质的方法,例如采用变转速控制技术,可以利用风轮的转动惯量平滑输出功率。
由于变转速风力发电组采用的是电力电子装置,当它将电能输出输送给电网时,会产生变化的电力协波,并使功率因素恶化。
因此,为了满足在变速控制过程中良好的动态特性,并使发电机向电网提供高品质的电能,发电机和电网之间的电力电子接口应实现以下功能:一,在发电机和电网上产生尽可能低的协波电波;二,具有单位功率因素或可控的功率因素;三,使发电机输出电压适应电网电压的变化;四,向电网输出稳定的功率;五,发电机磁转距可控。
此外,当电网中并入的风力电量达到一定程度,会引起电压不稳定。
特别是电网发生短时故障时,电压突降,风力发电机组就无法向电网输送能量,最终由于保护动作而从电网解列。
在风能占较大比例的电网中,风力发电机组的突然解列,会导致电网的不稳定。
因此,用合理的方法使风力发电机组电功率平稳具有非常重要的意义。
本文通过对风力发电机的总体设计,叶片、轮毂机构的设计,水平回转机构的设计,齿轮箱系统的设计,以达到利用风能发电的目的,有效利用风能资源,减少对不可再生资源的消耗,降低对环境的污染。
本论文在王慧老师的悉心教导之下,通过研读各著作期刊,经过多次的修改。
由于作者水平有限,论文中难免出现点差错,恳请读者指正。
1 概述1.1风力发电机的发展史简介我国是最早使用风帆船和风车的国家之一,至少在3000年前的商代就出现了帆船,到唐代风帆船已广泛用于江河航运。
最辉煌的风帆时代是明代,14世纪初叶中国航海家郑和七下西洋,庞大的风帆船队功不可没。
明代以后风车得到了广泛的应用,我国沿海沿江的风帆船和用风力提水灌溉或制盐的做法,一直延续到20世纪50年代,仅在江苏沿海利用风力提水的设备增达20万台。
课程设计--风力机讲解
机械与动力工程学院风力机空气动力学课程设计设计题目:小型三叶片风力机叶片设计设计人:王伦班级:风能1101组号: 4指导教师:姚桂焕设计时间:2周成绩:日期:2014.6.23-2014.7.4设计内容及要求第一章风力机发展程风能作为一种清洁的可再生能源,越来越受到世界各国的重视。
其蕴量巨大,全球的风能约为2.74×10^9MW,其中可利用的风能为2×10^7MW,比地球上可开发利用的水能总量还要大10倍。
风很早就被人们利用--主要是通过风车来抽水、磨面等,而现在,人们感兴趣的是如何利用风来发电。
把风的动能转变成机械动能,再把机械能转化为电力动能,这就是风力发电。
风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。
依据目前的风车技术,大约是每秒三米的微风速度(微风的程度),便可以开始发电。
风力发电正在世界上形成一股热潮,因为风力发电不需要使用燃料,也不会产生辐射或空气污染。
1.1风力机简介风力机,将风能转换为机械功的动力机械,又称风车。
广义地说,它是一种以太阳为热源,以大气为工作介质的热能利用发动机。
许多世纪以来,它同水力机械一样,作为动力源替代人力、畜力,对生产力的发展发挥过重要作用。
近代机电动力的广泛应用以及20世纪50年代中东油田的发现,使风力机的发展缓慢下来。
70年代初期,由于“石油危机”,出现了能源紧张的问题,人们认识到常规矿物能源供应的不稳定性和有限性,于是寻求清洁的可再生能源遂成为现代世界的一个重要课题。
风能作为可再生的、无污染的自然能源又重新引起了人们重视。
1.2风力机简史风车最早出现在波斯,起初是立轴翼板式风车,后又发明了水平轴风车。
风车传入欧洲后,15世纪在欧洲已得到广泛应用。
荷兰、比利时等国为排水建造了功率达66千瓦(90马力)以上的风车。
18世纪末期以来,随着工业技术的发展,风车的结构和性能都有了很大提高,已能采用手控和机械式自控机构改变叶片桨距来调节风轮转速。
风力机模型制作方案
风力机模型制作方案目的:运用材料制作出公司3KW风力发电机模型(比例10:1)。
我们严格按照设计理念、将风力机的特点在模型上表现出来,结合模型的特殊性、采取适当的渲染、夸张,以达到运用模型使潜在客户对我公司的3KW风力发电机油一个直观的认识。
3KW风力发电机模型主要有叶片、电机、机舱、塔架、底座构成。
下面我们将较为详细的介绍各个组成:制作源型:公司3kw风力机制作比例:实物与模型比例为 10:1模型尺寸数据:叶片数:3风轮直径:70cm转向:顺时针叶片长:34.4cm机舱全长:14.8cm机舱高:5.35cm塔架:100cm底座:1个首先介绍叶片,主要介绍设计图纸、材料、制作工艺。
叶片:图纸按照3KW小型风机叶片尺寸缩小为原图纸的十分之一,叶片是风力机的重要组成部分,根据低风特性,层次要求、在模型中表现出来。
叶片cad图纸材料:用木板制作出3片风力机叶片。
木材的选用依照重量轻、质地好的原则选取。
首选杉木制作工艺:叶片工装准备、检测工具(制作刀片模板)、制作工具。
叶片检测图:制作材料:硬纸板(用于制作刀片模版):刀片模板的制作按照叶片外形轮廓来制作,根据叶片三维图分别取10个等间距的截面,导出其截面CAD 图,将导出的图纸平铺在纸板上依次用铅笔画出轮廓线,完成后用剪刀裁剪出模板。
胶合木板 (厚度3.7cm 长度35.5cm ) 制作叶片的主要材料:我们选用质量轻强度较强的木板,分别用白乳胶粘合在一起,用工装压紧木板定型,成型后用木工刨子按刀片模板修整叶片(注意每次刨的时候要用力均匀),将刨完后的叶片用150砂纸打磨,打磨后将叶片刮上腻子,腻子固化后再打磨直到喷漆效果,最后喷漆。
压紧工装(可到机加接用)乳白胶:用来粘贴木材Cad图纸与模型叶片大小比 1:1腻子磁漆:用来做叶片的表面处理,使其光滑平整。
塔架:塔架用不锈钢管和不锈钢板胶皮等制作出风力机模型的塔架。
由于模型塔架不打拉绳塔架要大于10:1的比例。
4专题三:MSC.ADAMS风电机组仿真_图文(精)
风电机组关键结构部件有限元分析培训专题三MSC ADAMS 专题三:MSC.ADAMS风电机组仿真陶永忠MSC.Software 公司北京办事处DISCLAIMERMSC.Software Corporation reserves the right to make changes in specifications and other information contained in this MSC Software Corporation reserves the right to make changes in specifications and other information contained in this document without prior notice.The concepts, methods, and examples presented in this text are for illustrative and educational purposes only, and are not intended to be exhaustive or to apply to any particular engineering problem or design. MSC.Software Corporation assumes no liability or responsibility to any person or company for direct or indirect damages resulting from the use of any li bilit ibilit t f di t i di t d lti f th finformation contained herein.User Documentation: Copyright©2005 MSC.Software Corporation. Printed inU.S.A. All Rights Reserved.y yThis notice shall be marked on any reproduction of this documentation, in whole or in part. Any reproduction or distribution of this document, in whole or in part, without the prior written consent of MSC.Software Corporation is prohibited.MSC and MSC. are registered trademarks and service marks of MSC.Software Corporation. MSC.Actran, MSC.ADAMS, MSC.Dytran, MSC.EASY5,MSC.FlightLoads, MSC.Fatigue, MSC.Marc, MSC.Marc Mentat, MSC.Nastran,MSC.Patran, minate Modeler, MSC.Mvision, MSC.Robust Design, SimDesigner, MSC.SimManager, MSC.SOFY,MSC Laminate Modeler MSC Mvision MSC Robust Design SimDesigner MSC SimManager MSC SOFYMSC.visualNastran Desktop, and MSC.visualNastran for Windows are all trademarks of MSC.Software Corporation. NASTRAN is a registered trademark of the National Aeronautics and Space Administration. MSC.Nastran is an enhanced proprietary version developed and maintained by MSC.Software Corporation.All other trademarks are the property of their respective owners.All other trademarks are the property of their respective owners风电机组结构完整的风电机组仿真平台AeroDyn 气动载荷计算AdamsADAMS 系统模型——塔架、叶片、机舱、传动系、约束、载荷等线性/非线性FEA FAST 前处理MATLAB/Simulink控制系统——偏航、桨距角、刹车控制等应力应变分析EASY5液压系统弹性体模拟FEA 详细的齿轮系统模型详细的轴承系统模型疲劳分析软件疲劳寿命分析前处理过程成模型FAST前处理过程生成模型•FAST为NREL开发的ADAMS软件前处理软件,替代原来的ADAMS/WT•FAST使用过程:拷贝练习文件到e:\wt_exercises〉命令提示符开始—〉所有程序—〉附件—〉命令提示符,进入DOS操作窗口cd wt_exercises(进入练习目录wt exercisesfast test12.fst(生成ADAMS模型,包括一个adm文件和个acf文件文件和一个Dir test* 查看一下是否生成相应文件。
风力发电机组各系统介绍ppt课件
五、冷却润滑系统
• 作用 1、对齿轮箱各轴承、各齿面提供足够的润滑。 2、对齿轮箱进行冷却散热。
38
39
• 冷却润滑系统组成 润滑油泵:将齿箱润滑油吸入,输出压力油。
40
滤油器:将油液过滤,给齿箱提供清洁的润滑 油,通常精度为10μm。 冷却器:通过与空气的热交换,将热油冷却。 连接管路:连接各个部件。 附件:提供滤油器堵塞报警,显示回油压力。
32
33
刹车系统的控制机构-液压系统
34
四、支承系统
• 塔架的作用 支承风力发电机组的机械部件,承受各部件作用在塔 架上的力和风载
• 基础的作用 安装、支承风力发电机组,平衡运行过程中产生的各 种载荷。
35
• 塔架 材料:Q345 轮毂高度:依据项目和当地风切变指数综合考虑 而定
36
• 基础 钢筋混凝土
叶
失速、定桨 玻璃钢 23.5m 、24m 49m、50m
3 2.5° 5°
8
轮
毂
• 轮毂材料: QT400-18或 QT350-22L
• 涂层:
HEMPEL
• 与桨叶连接: 高强度螺栓
9
主轴、轴承、轴承座 • 轴承:SFK 或FAG • 主轴:材料42CrMoA • 轴承座:材料QT400-18AL
43
• 3、通过过滤器的油液进入阀组,当油液温度较低时, 油液直接流回齿轮箱各个轴承和齿面的润滑点,这时 系统只起润滑作用。当油液温度达到设定值时,通过 阀的调配,油液全部强行通过冷却器,给油液进行冷 却后再流回齿轮箱各个润滑点。
44
19
偏航齿箱
参数: • 型式: 法兰联接的同轴行星(摆线)齿轮箱 • 额定输入功率: 1.5kW • 额定输入转速: 940rpm • 额定输出转速: 1.245rpm • 额定传动比: 755 • 额定输入扭矩: 15Nm • 使用环境温度 : -30℃~+40℃ • 噪声(声功率级):≤90 dB(A) • 润滑油: Mobil或Shell、BP的合成齿轮油
风力发电系统建模与仿真设计
(此文档为word格式,下载后您可任意编辑修改!)风力发电系统建模与仿真摘要:风力发电作为一种清洁的可再生能源利用方式,近年来在世界范围内获得了飞速的发展。
本文基于风力机发电建立模型,主要完成了以下工作:(1)基于风资源特点,建立了以风频、风速模型为基础的风力发电理论基础;(2)运用叶素理论,建立了变桨距风力机机理模型;(3)分析了变速恒频风力发电机的运行区域与变桨距控制的原理与方法,并给出了机组的仿真模型,为风力发电软件仿真奠定了基础;(4)搭建了一套基于PSCADEMTDC仿真软件的风力发电系统控制模型以及完整的风力发电样例系统模型,并且已初步实现风力机特性模拟功能。
关键词:风力发电;风频;风速;风力机;变桨距;建模与仿真1 风资源及风力发电的基本原理1.1 风资源概述(1)风能的基本情况[1]风的形成乃是空气流动的结果。
风向和风速是两个描述风的重要参数。
风向是指风吹来的方向,如果风是从东方吹来就称为东风。
风速是表示风移动的速度即单位时间内空气流动所经过的距离。
风速是指某一高度连续10min所测得各瞬时风速的平均值。
一般以草地上空10m高处的10min内风速的平均值为参考。
风玫瑰图是一个给定地点一段时间内的风向分布图。
通过它可以得知当地的主导风向。
风能的特点主要有:能量密度低、不稳定性、分布不均匀、可再生、须在有风地带、无污染、分布广泛、可分散利用、另外不须能源运输、可和其它能源相互转换等。
(2)风能资源的估算风能的大小实际就是气流流过的动能,因此可以推导出气流在单位时间内垂直流过单位截面积的风能,即风能密度,表示如下:(1-1) 式中,——风能密度(),是描述一个地方风能潜力的最方便最有价值的量;——空气密度();——风速()。
由于风速是一个随机性很大的量,必须通过一段时间的观测来了解它的平均状况,一个地方风能潜力的多少要视该地常年平均风能密度的大小。
因此需要求出在一段时间内的平均风能密度,这个值可以将风能密度公式对时间积分后平均来求得。