年高考文科数学试卷广东卷

合集下载

2022-2022广东高考文科数学试题分类汇总完整版(含答案)大

2022-2022广东高考文科数学试题分类汇总完整版(含答案)大

2022-2022广东高考文科数学试题分类汇总完整版(含答案)大广东高考文科数学1.集合与简易逻辑202210分20225分20225分20225分2022—2022近五年试题分类汇编C.必要非充分条件D.非充分非必要条件7、解析:本题考查正弦定理的应用。

由于202210分B=(A.)ab2R,所以a2RinA,inAinBb2RinB,所以ab2RinA2RinBinAinB,故“ab”是“inAinB”的充要条件,故选答案为A.2.复数20222022520225分20225分202210分(2022年高考广东卷第1小题)若集合A={0,1,2,3},B={1,2,4},则集合AA.{0,1,2,3,4}B.{1,2,3,4}C.{1,2}D.{0}(2022年高考广东卷第8小题)“某>0”是“3某2>0”成立的(A.)A.充分非必要条件B.必要非充分条件C.非充分非必要条件D.充要条件(2022年高考广东卷第2小题)22已知集A(某,y)某,y为实数,且某y1,B(某,y)某,y为实数,且某y1,则AB的元素个数(2022年高考广东卷第1小题)设复数z满足iz=1,其中i为虚数单位,则z=(A)A.-iB.iC.-1D.1(2022年高考广东卷第1小题)1.设i为虚数单位,则复数为(C)A.4B.3C.2D.1(2022年高考广东卷第2小题)2.设集合U1,2,3,4,5,6,M1,3,5,则CUM(A)A.2,4,6B.1,3,5C.1,2,4D.U(2022年高考广东卷第1题)1.已知集合34i(D)iA.43iB.43iC.43iD.43iS某某2某0,某R2,T某某22某0,某R,则(2022年高考广东卷第3题)3.若i(某+yi)=3+4i,某,y∈R,则某+yi的模是(D)A.2B.3C.4D.5(2022年高考广东卷第2题)2.已知复数z满足(34i)z25,则z()A.34iB.34iC.34iD.34i解析:本题考查复数的除法运算,属于基础题.zST(A)A.{0}B.{0,2}C.{-2,0}D.{-2,0,2}(2022年高考广东卷第1题)1.已知集合M2,3,4,N0,2,3,5,则MN()A.3,5B.3,4C.2,3D.0,2解析:本题考查集合的基本运算,属于基础题.MN2,3,故选C.(2022年高考广东卷)7.在ABC中,角A,B,C所对应的边分别为a,b,c,则“ab”是“inAinB”的()A.充分必要条件B.充分非必要条件-1-2525(34i)34i.故选A.34i34i(34i)10.对任意复数w1,w2,定义1212,其中2是2的共轭复数,对任意复数z1,z2,z3有如下四个命题:①(z1z2)z3(z1z3)(z2z3);②z1(z2z3)(z1z2)(z1z3);③(z1z2)z3z1(z2z3);④z1z2z2z1;则真命题的个数是()A.4B.3C.2D.1(2022年高考广东卷)10、解析:本题属于信息创新型题目,要求学生利用以学过的知识来解决新问题.对于①,z1z2z3z1z2z3z1z3z2z3z1z3z2z3对于②,z1z2z3z1z2z3.令z2abi,z3cdi,则z2z3acbdi,则z2z3acbdiA.(4,6)B.(4,6)C.(2,2)D.(2,2)(2022年高考广东卷第10小题)对任意两个非零的平面向量,,定义.若平面向量a,b满足nab0,a与b的夹角0,,且和都在集合|nZ中,则ab(D)42A.531B.C.1D.222(2022年高考广东卷)10.设a是已知的平面向量且a≠0。

广东高考数学试题及答案2024

广东高考数学试题及答案2024

广东高考数学试题及答案2024一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 若函数\( f(x) = x^2 - 4x + 3 \)的最小值是\( m \),则\( m \)的值为:A. 0B. 1C. 2D. 3答案:B2. 已知直线\( l_1 \)的方程为\( y = 2x + 1 \),直线\( l_2 \)的方程为\( y = -x + 3 \),则这两条直线的交点坐标为:A. (1, 3)B. (2, 3)C. (1, 2)D. (2, 1)答案:A3. 若复数\( z = 1 + i \),求\( z^2 \)的实部与虚部的和:A. 0B. 1C. 2D. 3答案:C4. 已知等差数列\( \{a_n\} \)的首项\( a_1 = 2 \),公差\( d = 3 \),求第10项\( a_{10} \)的值:A. 29B. 30C. 31D. 32答案:B5. 若三角形\( ABC \)的内角\( A \),\( B \),\( C \)满足\( A +B = 2C \),且\( \cos C = \frac{1}{2} \),则\( \sin A \)的值为:A. \( \frac{\sqrt{3}}{2} \)B. \( \frac{1}{2} \)C. \( \frac{\sqrt{2}}{2} \)D. \( \frac{\sqrt{6}}{3} \)答案:D6. 已知函数\( y = \ln(x+1) \)在点\( (0,0) \)处的切线斜率为:A. 1B. 0C. \( \frac{1}{e} \)D. \( \frac{1}{2} \)答案:A7. 若\( \sin \theta = \frac{3}{5} \),\( \theta \)为锐角,则\( \cos 2\theta \)的值为:A. \( \frac{7}{25} \)B. \( \frac{24}{25} \)C. \( \frac{16}{25} \)D. \( \frac{9}{25} \)答案:B8. 已知椭圆\( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \)的离心率为\( \frac{\sqrt{3}}{2} \),且\( a = 4 \),则\( b \)的值为:A. 2B. 4C. 6D. 8答案:C二、填空题:本题共4小题,每小题5分,共20分。

广东高考数学文科试卷含答案(WORD版)

广东高考数学文科试卷含答案(WORD版)

普通高等学校招生全国统一考试(广东卷)数学 (文科)一、选择题{}{}{}{}{}{}1.2,3,4,0,2,3,5,()..0,2.2,3.3,4.3,5M N M N A B C D ===已知集合则答案:B2.(34)25,()..34.34.34.34z i z z A iB iC iD i-==---+-+已知复数满足则答案:D 2525(34)25(34):=34,.34(34)(34)25i i z i D i i i ++===+--+提示故选 3.(1,2),(3,1),()..(2,1).(2,1).(2,0).(4,3)a b b a A B C D =-=--已知向量则答案:B284.,04,2().03.7.8.10.11x y x y x z x y y A B C D +≤⎧⎪≤≤=+⎨⎪≤≤⎩若变量满足约束条件则的最大值等于 答案:C提示:作出可行域(为一个五边形及其内部区域),易知在点(4,2)处目标函数取到最大值10. 选C. 5.下列函数为奇函数的是( ).A.x x212- B.x x sin 3 C.1cos 2+x D.xx 22+ 答案:A111:()2,(),()22(),222(),A .x xxx x x f x f x R f x f x f x --=--=-=-=-∴提示设则的定义域为且为奇函数故选6.1000,,40,()..50.40.25.20:1000:25.40A B C D C=为了解名学生的学习情况采用系统抽样的方法从中抽取容量为的样本则分段的间隔为答案提示分段的间隔为7.,,,,,,sin sin ().....::,,,sin ,sin ,sin sin .sin sin ABC A B C a b c a b A B A B C D Aa ba b A B a b A B A B∆≤≤=∴≤⇔≤在中角所对应的边分别为则“”是“”的充分必要条件充分非必要条件必要非充分条件非充分非必要条件答案提示由正弦定理知都为正数22228.05,11().165165....05,50,160,16(5)21(16)5,x y x y k k k k A B C D k k k k k k <<-=-=--<<∴->->+-=-=-+若实数满足则曲线与曲线的实半轴长相等虚半轴长相等离心率相等焦距相等答案:D提示:从而两曲线均为双曲线,又故两双曲线的焦距相等,选D.1234122334141414149.,,,,,//,,()...//..l l l l l l l l l l A l l B l l C l l D l l ⊥⊥⊥若空间中四条两两不同的直线满足则下列结论一定正确的是与既不垂直也不平行与的位置关系不确定答案:D1212122212310.,,=,,,,z z z ωωωωωωωω*对任意复数定义其中是的共轭复数对任意复数有如下四个命题:①1231323()()();z z z z z z z +*=*+*②1231213()()()z z z z z z z *+=*+*;③123123()();z z z z z z **=**④1221z z z z *=*;则真命题的个数是( )A.1B.2C.3D.412312313231323123123123121312131231231231231231:()()()()()();()()()()()()();(),()()(),,;Bz z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z ++++=+=+=+====≠答案提示:①*===*+*,故①是真命题②**+*,②对③左边=*=右边*左边右边③错 ④左边=2122121,,,z z z z z z z ==≠*右边=*左边右边故④不是真命题.综上,只有①②是真命题,故选B.二、填空题(一)必做题(11-13)''142511.53(0,2)_______.:520:5,5,25,520.12.,,,d,e ________.2:542:105x x x y e x y y e y y x x y a b c a C P C ==-+-++==-∴=-∴+=-++====曲线在点处的切线方程为答案提示所求切线方程为即从字母中任取两个不同字母,则取到字母的概率为答案提示13.等比数列{}n a 的各项均为正数,且154a a =,则2122232425log +log +log +log +log =a a a a a ________.212223242525242322212152:5:log log log log log ,log log log log log ,25log ()5log 410,5.S a a a a a S a a a a a S a a S =++++=++++∴===∴=答案提示设则2121214.()2cos sin cos =1.,,_____________.C C x C C ρθθρθ=坐标系与参数方程选做题在极坐标系中,曲线与的方程分别为与以极点为平面直角坐标系的原点,极轴为轴的正半轴建立平面直角坐标系则曲线与交点的直角坐标为2221212:(1,2):2cos sin 2cos =sin ,2,1,,(1,2).C y x C x C C ρθθρθρθ===∴答案提示由得()故的直角坐标方程为:的直角坐标方程为:交点的直角坐标为15.()1,,2,,___________.:3:, 3.ABCD E AB EB AE AC DE F CDF AEF CDF CD EB AECDFAEF AEF AE AE=∆=∆∆+∆∆∴===∆几何证明选讲选做题如图在平行四边形中点在上且与交于点的周长则的周长答案的周长提示显然的周长三、解答题16.(本小题满分12分)已知函数()sin(),3f x A x x R π=+∈,且532()122f π= (1) 求A 的值;(2) 若()()3,(0,)2f f πθθθ--=∈,求()6f πθ-5533232:(1)()sin()sin ,2 3.12123422(2)(1):()3sin(),3()()3sin()3sin()333(sin cos cos sin )3(sin()cos cos()sin )33336cos sin 333cos 31cos ,()336f A A A f x x f f f πππππππθθθθππππθθθθπθθπθθ=+==∴=⋅==+∴+-=++-+=++-+-===∴=∴-=解由得1sin()3sin()3cos 3 1.6323πππθθθ-+=-==⨯=17. 某车间20名工人年龄数据如下表:(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3)求这20名工人年龄的方差.:(1)2030,401921.-=解这名工人年龄的众数为极差为 (2)茎叶图如下:()2222222(1928329330531432340)3:30,20120:(11)3(2)3(1)50413210201(121123412100)2012522012.6+⨯+⨯+⨯+⨯+⨯+=⎡⎤-+⨯-+⨯-+⨯+⨯+⨯+⎣⎦=+++++=⨯=年龄的平均数为故这名工人年龄的方差为18.2,,,1, 2.3://,,,,,.(1):;(2).ABCD PD ABCD AB BC PC EF DC E F PD PC EF P AD M MF CF CF MDF M CDE ⊥===⊥⊥-如图四边形为矩形平面作如图折叠折痕其中点分别在线段上沿折叠后点叠在线段上的点记为并且证明平面求三棱锥的体积00:(1):,,,,,,,,,,,,,.11(2),,60,30,==,22,PD ABCD PD PCD PCD ABCD PCD ABCD CD MD ABCD MD CD MD PCD CF PCD CF MD CF MF MD MF MDF MD MF M CF MDF CF MDF CF DF PCD CDF CF CD DE EF DC D ⊥⊂∴⊥=⊂⊥∴⊥⊂∴⊥⊥⊂=∴⊥⊥∴⊥∠=∴∠=∴解证明平面平面平面平面平面平面平面平面又平面平面平面又易知从而∥2222221333132,=,,,,2442833336()(),44211362.338216CDE M CDE CDE CF DE DE PE S CD DE P CP MD ME DE PE DE V S MD ∆-∆=∴=∴==⋅==-=-=-=∴=⋅=⋅⋅=即{}{}222119.,(3)3()0,.(1);(2);n n n n n n a n S S S n n S n n n N a a *-+--+=∈设各项均为正数的数列的前项和为且满足求的值求数列的通项公式1 92 8 8 8 9 9 93 0 0 0 0 0 1 1 1 1 2 2 24 0(3)证明:对一切正整数n ,有()()().311111112211<+++++n n a a a a a a221111*********2221:(1)1:(1)320,60,(3)(2)0,0,2, 2.(2)(3)3()0,:(3)()0,0(),0,30,,2,(1)(1)n n n n n n n n n n n n S S S S S S S S a S n n S n n S S n n a n N S S S n n n a S S n n n n *-=---⨯=+-=∴+-=>∴==⎡⎤-+--+=+-+=⎣⎦>∈∴>+>∴=+⎡∴≥=-=+--+-⎣解令得即即由得从而当时12211222,221,2().313(3),()(),221644111111113(1)2(21)44()()()24411111111144(1)()(1)4444111(1)(1)(n k k n n a a n n N k k k N k k k k a a k k k k k k k k k k a a a a a a **⎤=⎦==⨯∴=∈∈+>+-=-+∴==⋅<⋅+++-+⎡⎤⎢⎥=⋅=⋅-⎢⎥⎡⎤⎢⎥-+--⋅+-⎢⎥⎣⎦⎣⎦∴+++++又当时1)1111111()()11111141223(1)444444111111().11434331(1)44n n n n n +⎡⎤⎢⎥<-+-++-⎢⎥⎢⎥-----+-⎣⎦=-=-<+-+-22220022222520.:1(0)(5,0),.3(1);(2)(,),,.55:(1)5,,3,954,31.94(2),,4x y C a b a b C P x y C P C P c c e a b a c a a x y C x y +=>>====∴==-=-=∴+=已知椭圆的一个焦点为离心率为求椭圆的标准方程若动点为椭圆外一点且点到椭圆的两条切线相互垂直求点的轨迹方程解椭圆的标准方程为:若一切线垂直轴则另一切线垂直于轴则这样的点P 共个002200222000022222000000(3,2),(3,2).(),(),194(94)18()9()40,,0,(18)()36()4(94)0,4()4y y k x x x y y k x x y k x k y kx x y kx k y kx y kx k y kx -±±-=-=-++=⎡⎤++-+--=∆=⎣⎦⎡⎤----+=--⎣⎦,它们的坐标分别为若两切线不垂直于坐标轴,设切线方程为即将之代入椭圆方程中并整理得:依题意即:即22222000001220220022(94)0,4(9)240,,1,:1,913,(3,2),(3,2),13.k y x k x y k y k k x x y P x y +=-∴--+-=∴=-=--∴+=-±±∴+=两切线相互垂直即显然这四点也满足以上方程点的轨迹方程为3200121.()1().3(1)();111(2)0,(0,)(,1),()=().222f x x x ax a R f x a x f x f =+++∈<∈已知函数求函数的单调区间当时试讨论是否存在使得'22'2'':(1)()2,20:44,1,0,()0,()(,).1,2011,(,11),()0,(),(11,11),()0,(),(11,)f x x x a x x a a a f x f x a x x a a x a f x f x x a a f x f x x a =++++=∆=-∴≥∆≤∴≥-∞+∞<++=-±-∈-∞--->∴∈----+-<∈-+-+∞解方程的判别式当时此时在上为增函数当时方程的两根为当时此时为增函数当时此时为减函数当时',()0,(),,1,()(,),1,()(,11),(11,),()(11,11).f x f x a f x a f x a a f x a a >≥-∞+∞<-∞----+-+∞----+-此时为增函数综上时在上为增函数当时的单调递增区间为的单调递减区间为323200003322000200000020000200111111(2)()()1()()()12332221111()()()3222111111()()()()()3224222111()()23612211()(4122f x f x x ax a x x a x x x x x x a x x x x x a x x ⎡⎤-=+++-+++⎢⎥⎣⎦⎡⎤⎡⎤=-+-+-⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤=-+++-++-⎢⎥⎣⎦=-+++++=-+00020020014712)111(0,)(,1),()(),222114147120(0,)(,1).220,1416(712)4(2148)0,14221487214872148:,0,,8447+2148,01,721484x a x f x f x x a a a a a a ax x a a ++∴∈=+++=<∴∆=-+=->-±--±--+-=>∴--<<<-<若存在使得必须在上有解方程的两根为只能是依题意即0000025711,492148121,,12127+2148155=,,,,424425557111(,)(,),(0,)(,1)()().124412222257511(,][,0),(0,)(,1)()(1212422a a a a x a a x f x f a x f x f ∴<-<-<<---=-≠-∴∈----∈=⎧⎫∈-∞---∈=⎨⎬⎩⎭即又由得故欲使满足题意的存在则当时存在唯一的满足当时不存在使1).2。

普通高等学校招生国统一考试数学文试题广东卷,含答案

普通高等学校招生国统一考试数学文试题广东卷,含答案

卜人入州八九几市潮王学校2021年普通高等招生全国统一考试数学文试题〔卷,含答案〕本试题一共4页,21小题,总分值是150分,考试用时120分钟。

本卷须知:1.答卷前,所有考生必须用黑色字迹“条形码粘贴处〞。

2.选择题每一小题在选出答案以后,需要用2B 铅笔把答题卡上对应题目选项之答案信息点涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或者签字笔答题,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来之答案,然后再写上新之答案;不准使用铅笔和涂改液。

不按以上要求答题之答案无效。

4.答题选做题时,请先需要用2B 铅笔填涂选做题的题号对应的信息点,再答题。

漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

在在考试完毕之后以后,将试卷和答题卡一起交回。

参考公式:锥体体积公式13V Sh=,其中S 为锥体的底面积,h 为锥体的高. 线性回归方程y bx a =+中系数计算公式121()()()niii nii x x y y b x x ==--=-∑∑,a y bx =-, 样本数据12,,,n x x x 的HY 差,(n s x x =++-,其中x ,y 表示样本均值.n 是正整数,那么1221()()n n n n n n a b a b a a b ab b -----=-++++.一、选择题:本大题一一共10小题,每一小题5分,总分值是50分,在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的. 1.设复数z 满足1iz=,其中i 为虚数单位,那么z =A.i-B.i C.1-D.1 1.〔A〕.2.集合{(,)|,A x y x y=为实数,且221}x y+=,{(,)|,B x y x y=为实数,且1}x y+=,那么A B⋂的元素个数为A.4B.3 C.2D.1 2.〔C〕3.向量(1,2),(1,0),(3,4)===a b c.假设λ为实数,()λ+a b∥c,那么λ=A.14B.12C.1D.23.〔B〕4.函数1()lg(1)1f x xx=++-的定义域是A.(,1)-∞-B.(1,)+∞C.(1,1)(1,)-⋃+∞D.(,)-∞+∞4.〔C〕.5.不等式2210x x-->的解集是A.1(,1)2-B.(1,)+∞C.(,1)(2,)-∞⋃+∞D.1(,)(1,)2-∞-⋃+∞5.〔D〕6.平面直角坐标系xOy上的区域D由不等式组2xyx⎧⎪⎨⎪⎩≤≤≤给定.假设(,)M x y为D上的动点,点A的坐标为,那么z OM OA=⋅的最大值为A.3B.4 C..6.〔B〕正视图侧视图 图2俯视图图37.正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数一共有A .20B .15C .12D .10 7.〔D 〕8.设圆C 与圆22(3)1x y +-=外切,与直线0y =相切,那么C 的圆心轨迹为 A.抛物线B .双曲线C .椭圆D .圆 8.〔A〕.9.如图1~3,某几何体的正视图〔主视图〕,侧视图〔左视图〕和俯视图分别是等边三角形,等腰三角形和菱形,那么该几何体的体积为 A ..4 C ..29.〔C 〕10.设(),(),()f x g x h x 是R ()f g ()x 和()f g ()x :对任意x ∈R ,()f g ()x =(())f g x ;()f g ()x =()()f x g x ,那么以下等式恒成立的是 A .(()f g h )()x =(()f h ()g h )()x B .(()f g h )()x=(()f h ()g h )()x C .(()f g h )()x =(()f g ()g h )()x D .(()f g h )()x =(()f g  ()g h )()x 10.〔B 〕二、填空题:本大题一一共5小题,考生答题4小题,每一小题5分,总分值是20分. 〔一〕必做题〔9~13题〕11.{}n a 是递增的等比数列,假设22a =,434a a -=,那么此数列的公比q =.11.2.2243224422402(2)(1)0a a a q a q q q q q -=⇒-=⇒--=⇒-+=2q ⇒=或者1q =-∵{}n a 是递增的等比数列,∴2q =12.设函数3()cos 1f x x x =+.假设()11f a =,那么()f a -=.12.9-3()cos 111f a a a =+=,即3()cos 10f a a a ==,那么33()()cos()1cos 11019f a a a a a -=--+=-+=-+=-13.为理解篮球爱好者小李的投篮命中率与打篮球时间是之间的关系,下表记录了小李某月1号到5号每天打篮球时间是x 〔单位:小时〕与当天投篮命中率y 之间的关系:小李这5天的平均投篮命中率为;用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率为. 13.0.5;0.53小李这5天的平均投篮命中率1(0.40.50.60.60.4)0.55y =++++=3x =,1222221()()0.2000.1(0.2)0.01(2)(1)012()niii nii x x y y b x x ==--++++-===-+-+++-∑∑,0.47a y bx =-=∴线性回归方程0.010.47y x =+,那么当6x =时,0.53y =∴预测小李该月6号打6小时篮球的投篮命中率为0.53 〔二〕选做题〔14~15题,考生只能从中选做一题〕14.〔坐标系与参数方程选做题〕两曲线参数方程分别为sin x y θθ⎧=⎪⎨=⎪⎩(0)θπ<≤和图4BAC D E F254x ty t ⎧=⎪⎨⎪=⎩(t ∈)R ,它们的交点坐标为___________.14.25(1,)5.5cos sin x y θθ⎧=⎪⎨=⎪⎩表示椭圆2215x y +=(5501)x y -<≤≤≤且,254x ty t⎧=⎪⎨⎪=⎩表示抛物线245y x =22221(5501)5450145x y x y x x x y x ⎧+=-<≤≤≤⎪⎪⇒+-=⇒=⎨⎪=⎪⎩且或者5x =-〔舍去〕,又因为01y ≤≤,所以它们的交点坐标为25(1,)515.〔几何证明选讲选做题〕如图4,在梯形ABCD 中,AB ∥CD ,4AB =,2CD =,,E F 分别为,AD BC 上的点,且3EF =,EF ∥AB ,那么梯形ABFE 与梯形EFCD 的面积比为________.15.75如图,延长,AD BC ,AD BC P =∵23CD EF=,∴49PCD PEF S S ∆∆= ∵24CD AB=,∴416PCD PEF S S ∆∆= ∴75ABEFEFCDS S =梯形梯形三、解答题:本大题一一共6小题,总分值是80分.解答须写出文字说明、证明过程和演算步骤.PBAC D E F16.〔本小题总分值是12分〕函数1()2sin()36f x x π=-,x ∈R . 〔1〕求(0)f 的值;〔2〕设,0,2παβ⎡⎤∈⎢⎥⎣⎦,10(3)213f πα+=,6(32)5f βπ+=,求sin()αβ+的值.16.解:〔1〕(0)2sin()16f π=-=-〔2〕110(3)2sin[(3)]2sin 232613f πππααα+=+-==,即5sin 13α=16(32)2sin[(32)]2sin()3625f ππβπβπβ+=+-=+=,即3cos 5β=∵,0,2παβ⎡⎤∈⎢⎥⎣⎦,∴12cos 13α==,4sin 5β==∴5312463sin()sin cos cos sin 13513565αβαβαβ+=+=⨯+⨯=17.〔本小题总分值是13分〕在某次测验中,有6位同学的平均成绩为75分.用n x 表示编号为n (1,2,,6)n =的同学所得成绩,且前5位同学的成绩如下:〔1〕求第6位同学的成绩6x ,及这6位同学成绩的HY 差s ;〔2〕从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间〔68,75〕中的概率.17.解:〔1〕61(7076727072)756x +++++=,解得690x =C C E'图5HY差6(7s x x =++-==〔2〕前5位同学中随机选出的2位同学记为(,)a b ,,{1,2,3,4,5}a b ∈且a b ≠那么根本领件有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)一共10种这5位同学中,编号为1、3、4、5号的同学成绩在区间〔68,75〕中设A 表示随机事件“从前5位同学中随机选出2位同学,恰有1位同学成绩在区间〔68,75〕中〞那么A 中的根本领件有(1,2)、(2,3)、(2,4)、(2,5)一共4种,那么42()105P A ==18.〔本小题总分值是13分〕图5所示的几何体是将高为2,底面半径为1的直圆柱沿过轴的平面切开后,将其中一半沿切面向右程度平移后得到的.,,,A A B B ''分别为CD ,C D '',DE ,D E ''的中点,1122,,,O O O O ''分别为CD ,C D '',DE ,D E ''的中点.〔1〕证明:12,,,O A O B ''四点一共面;〔2〕设G 为AA '中点,延长1A O ''到H ',使得11O H A O ''''=.证明:2BO '⊥平面H B G ''.18.证明:〔1〕连接2,BO 22,O O '依题意得1122,,,O O O O ''是圆柱底面圆的圆心∴,,,CD C D DE D E ''''是圆柱底面圆的直径 ∵,,A B B ''分别为C D '',DE ,D E ''的中点∴1290A O D B O D ''''''∠=∠=∴1A O ''∥2BO '∵BB '//22O O ',四边形22O O B B''是平行四边形∴2BO ∥2BO '∴1A O ''∥2BO∴12,,,O A O B ''四点一共面〔2〕延长1A O '到H ,使得11O H AO ''=,连接1,,HH HO HB ''∵11O H A O ''''=∴1O H ''//2O B '',四边形12O O B H ''''是平行四边形∴12O O ''∥H B ''∵1222O O O O '''⊥,122O O B O ''''⊥,2222O O B O O ''''=∴12O O ''⊥面22O O B B '' ∴H B ''⊥面22O O B B '',2BO '⊂面22O O B B ''∴2BO H B '''⊥易知四边形AA H H ''是正方形,且边长2AA '=∵11tan 2HH HO H O H '''∠=='',1tan 2A G A H G A H '''∠=='' ∴1tan tan 1HO H A H G ''''∠⋅∠=∴190HO H A H G ''''∠+∠=∴1HO H G ''⊥易知12O O ''//HB ,四边形12O O BH ''是平行四边形∴2BO '∥1HO '∴2BO H G ''⊥,H GH B H ''''=∴2BO '⊥平面H B G ''. 19.〔本小题总分值是14分〕设0a >,讨论函数2()ln (1)2(1)f x x a a x a x =+---的单调性.19.解:函数()f x的定义域为(0,)+∞令2()2(1)2(1)1 g x a a x a x=---+①当13a<<时,∆>,令()0f x'=,解得x=那么当0x<<或者x>时,()0f x'>x<<时,()0 f x'<那么()f x在,)+∞上单调递增,在上单调递减②当113a≤≤时,∆≤,()0f x'≥,那么()f x在(0,)+∞上单调递增③当1a>时,0∆>,令()0f x'=,解得x=∵x>,∴x=那么当0x<<时,()0f x'>当x>()0f x'<那么()f x在上单调递增,在)+∞上单调递减20.〔本小题总分值是14分〕设b>,数列{}n a满足1a b=,111nnnnbaaa n--=+-(n≥2).〔1〕求数列{}na的通项公式;〔2〕证明:对于一切正整数n ,2n a ≤11n b ++.20.〔1〕解:∵111n n n nba a a n --=+-∴111n n n a ba n a n --=+- ∴1111nn n n a b a b --=⋅+ ①当1b =时,111n n n n a a ---=,那么{}n n a 是以1为首项,1为公差的等差数列 ∴1(1)1n nn na =+-⨯=,即1na = ②当0b >且1b ≠时,11111()11nn n n a b b a b --+=+--当1n =时,111(1)n n a b b b +=--∴1{}1n n a b +-是以1(1)b b -为首项,1b 为公比的等比数列∴111()11n nn a b b b +=⋅-- ∴111(1)1(1)nn n n n b a b b b b b -=-=---∴(1)1n n n n b b a b -=- 综上所述(1),01111nnn n b b b b a b b ⎧->≠⎪=-⎨⎪=⎩ 且, 〔2〕证明:①当1b =时,1212n n a b +=+=;②当0b >且1b ≠时,211(1)(1)nn n b b b b b ---=-++++要证121nna b+≤+,只需证12(1)11nnnn b bbb+-≤+-,即证2(1)1 1n n n bbb b-≤+-即证2121 1n n nnbb b b b--≤+ ++++即证211()(1)2n nnb b b b nb--+++++≥即证21121111()()2n nn nb b b b nb b b b--+++++++++≥∵21121111()()n nnnb b b bb b b b--+++++++++122nb n-≥+=,∴原不等式成立∴对于一切正整数n,2n a≤11nb++.21.〔本小题总分值是14分〕在平面直角坐标系xOy上,直线l:2x=-交x轴于点A.设P是l上一点,M是线段OP的垂直平分线上一点,且满足MPO AOP ∠=∠.〔1〕当点P在l上运动时,求点M的轨迹E的方程;〔2〕(1,1)T-,设H是E上动点,求HO HT+的最小值,并给出此时点H的坐标;〔3〕过点(1,1)T-且不平行于y轴的直线1l与轨迹E有且只有两个不同的交点,求直线1l的斜率k的取值范围.21.解:〔1〕如下列图,连接OM,那么PM OM=∵MPO AOP ∠=∠,∴动点M满足MP l⊥或者M在x的负半轴上,设(,)M x yxTxT①当MP l⊥时,2MP x =+,OM =2x +=,化简得244y x =+(1)x ≥- ②当M 在x 的负半轴上时,0y =(1)x <-综上所述,点M 的轨迹E 的方程为244y x =+(1)x ≥-或者0y =(1)x <- 〔2〕由〔1〕知M 的轨迹是顶点为(1,0)-,焦点为原点的抛物线和x 的负半轴0y =(1)x <-①假设H 是抛物线上的动点,过H 作HNl ⊥于N由于l 是抛物线的准线,根据抛物线的定义有HO HN=那么HO HT HN HT+=+当,,N H T 三点一共线时,HN HT+有最小值3TN =求得此时H 的坐标为3(,1)4--②假设H 是x 的负半轴0y =(1)x <-上的动点显然有3HO HT +>综上所述,HO HT +的最小值为3,此时点H 的坐标为3(,1)4--〔3〕如图,设抛物线顶点(1,0)A -,那么直线AT 的斜率12AT k =-∵点(1,1)T -在抛物线内部,∴过点T 且不平行于,x y 轴的直线1l 必与抛物线有两个交点那么直线1l 与轨迹E 的交点个数分以下四种情况讨论:①当12k ≤-时,直线1l 与轨迹E 有且只有两个不同的交点②当102k -<<时,直线1l 与轨迹E 有且只有三个不同的交点③当0k=时,直线1l 与轨迹E 有且只有一个交点④当0k>时,直线1l 与轨迹E 有且只有两个不同的交点综上所述,直线1l 的斜率k 的取值范围是1(,](0,)2-∞-+∞。

普通高等学校招生国统一考试数学文试题广东卷,含答案 试题

普通高等学校招生国统一考试数学文试题广东卷,含答案 试题

2021年普通高等招生全国统一考试数学文试题〔卷,含答案〕本套试卷一共4页,21小题,满分是150分。

考试用时120分钟。

考前须知:1.答卷前,所有考生必须用黑色字迹的钢笔或者签字笔将本人的姓名和考生号、试室号、座位号填写上在答题卡上。

需要用2B 铅笔将试卷类型〔B 〕填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处〞。

2.选择题每一小题在选出答案以后,需要用2B 铅笔把答题卡上对应题目选项之答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或者签字笔答题,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来之答案,然后再写上新之答案;不准使用铅笔和涂改液。

不按以上要求答题之答案无效。

4.答题选做题时.请先需要用2B 铅笔填涂选做题的题号对应的信息点,再答题。

漏涂、错涂、多涂的.答案无效。

5.考生必须保持答题卡的整洁。

在在考试完毕之后以后,将试卷和答题卡一起交回。

参考公式:锥体的体积公式V =13sh ,其中S 是锥体的底面积,h 是锥体的高. 一、选择题:本大题一一共10小题,每一小题5分,满分是50分.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的.1.假设集合A ={0,1,2,3},B ={1,2,4},那么集合A B =A .{0,1,2,3,4}B .{1,2,3,4}C .{1,2}D .{0}2.函数,f (x )=lg (x -1)的定义域是A .(2,+∞) B.(1,+∞) C.[1,+∞) D .[2,+∞)3.假设函数f(x)=3x +3x -与g(x)=33x x--的定义域均为R ,那么A .f(x)与g(x)均为偶函数B .f(x)为奇函数,g(x)为偶函数C .f(x)与g(x)均为奇函数D .f(x)为偶函数.g(x)为奇函数4.数列{n a }为等比数列,n S 是它的前n 项和.假设2a *3a =2a 1,且4a 与27a 的等差中项为54,那么5s = A .35 B .33 C .31 D .295.假设向量a =(1,1),b =(2,5),c =(3,x)满足条件(8a —b )·c =30,那么x=A .6B .5C .4D .36.假设圆心在x 轴上、半径为5的圆O 位于y 轴左侧,且与直线x+2y=0相切,那么圆O 的方程是A .22(5)5x y -+=B .22(5)5x y ++=C .22(5)5x y -+=D .22(5)5x y ++=7.假设一个椭圆长轴的长度、短轴的长度和焦距成等差数列,那么该椭圆的离心率是A . 45B .35C .25D .158.“x >0”是“32x >0”成立的A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件9.如图1,ABC 为正三角形,'''////AA BB CC ,''''32CC BB CC AB ⊥===平面ABC 且3AA ,那么多面体'''ABC A B C -的正视图(也称主视图)是10.在集合{a ,b ,c ,d}上定义两种运算⊕和⊗如下:那么d ⊗ ()a c ⊕=A .aB .bC .cD .d二、填空题:本大题一一共5小题.考生答题4小题.每一小题5分,满分是20分. 〔一〕必做题(11~13题)11.某城缺水问题比拟突出,为了制定节水管理方法,对全居民某年的月均用水量进展了抽样调查,其中4位居民的月均用水量分别为1x ,…,4x (单位:吨).根据图2所示的程序框图,假设1x ,2x ,3x 4x ,分别为1,1.5,1.5,2,那么输出的结果s 为 . 12.某居民2021~2021年家庭年平均收入x 〔单位:万元〕与年平均支出Y 〔单位:万元〕的统计资料如下表所示:根据统计资料,居民家庭年平均收入的中位数是 ,家庭年平均收入与年平均支出有 线性相关关系.13.a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,假设a =1,b =3,A +C =2B ,那么sin A = .〔二〕选做题〔14、15题,考生只能从中选做一题〕14.〔几何证明选讲选做题〕如图3,在直角梯形ABCD 中,DC ∥AB ,CB ⊥AB ,AB =AD =a ,CD =2a ,点E ,F 分别为线段AB ,CD 的中点,那么EF = .15.〔坐标系与参数方程选做题〕在极坐标系〔ρ,θ〕〔02θπ≤<〕中,曲线()cos sin 1ρθθ+=与()sin cos 1ρθθ-=的交点的极坐标为三、解答题:本大题一一共6小题,满分是80分.解答须写出文字说明、证明过程和演算步骤.16.〔本小题满分是l4分〕设函数()3sin 6f x x πω⎛⎫=+⎪⎝⎭,0ω>,(),x ∈-∞+∞,且以2π为最小正周期. 〔1〕求()0f ;〔2〕求()f x 的解析式;〔3〕94125f απ⎛⎫+= ⎪⎝⎭,求sin α的值. 17.〔本小韪满分是12分〕某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:〔1〕由表中数据直观分析,收看新闻节目的观众是否与年龄有关?〔2〕用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?〔3〕在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率.18.(本小题满分是14分)如图4,AEC 是半径为a 的半圆,AC 为直径,点E 为AC 的中点,点B 和点C 为线段AD 的三等分点,平面AEC 外一点F 满足FC ⊥平面BED ,FB =5a .〔1〕证明:EB FD ⊥;〔2〕求点B 到平面FED 的间隔 .19.〔本小题满分是12分〕某营养师要为某个儿童预定午餐和晚餐.一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C ;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C .另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C .假如一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?20.〔本小题满分是14分〕函数()f x 对任意实数x 均有()(2)f x kf x =+,其中常数k 为负数,且()f x 在区间[]0,2上有表达式()(2)f x x x =-.〔1〕求(1)f -,(2.5)f 的值;〔2〕写出()f x 在[]3,3-上的表达式,并讨论函数()f x 在[]3,3-上的单调性; 〔3〕求出()f x 在[]3,3-上的最小值与最大值,并求出相应的自变量的取值.21.〔本小题满分是14分〕曲线2n C y nx =:,点(,)(0,0)n n n n n P x y x y >>是曲线n C 上的点(1,2n =…). 〔1〕试写出曲线n C 在点n P 处的切线n l 的方程,并求出n l 与y 轴的交点n Q 的坐标 〔2〕假设原点(0,0)O 到n l 的间隔 与线段n n P Q 的长度之比获得最大值,试求试点n P 的坐标(,n n x y );〔3〕设m 与k 为两个给定的不同的正整数,n x 与n y 是满足〔2〕中条件的点n P 的坐标,证明:n 1,2,)=…参考答案一、选择题:本大题一一共10小题,每一小题5分,满分是50分.1. A 2. B 3. D 4. C 5. C6. D 7. B 8. A 9. D 10. A二、填空题:本大题一一共5小题,考生答题4小题,每一小题5分,满分是20分。

2019年广东省高考数学试卷(文科)(附详细答案)

2019年广东省高考数学试卷(文科)(附详细答案)

则下列结论一定正确的是(

第 1 页(共 19 页)
A.l1⊥l4 B.l1∥l4
C.l1 与 l4 既不垂直也不平行
D. l1 与 l4 的位置关系不确定
10.(5 分)对任意复数 ω1,ω2,定义 ω1* ω2=ω1 2,其中 2 是 ω2 的共轭复数,
对任意复数 z1,z2, z3 有如下命题:
【解答】 解:在正方体中,若 AB 所在的直线为 l 2,CD 所在的直线为 l3,AE 所在
的直线为 l1,
若 GD 所在的直线为 l4,此时 l1∥l4,
第 8 页(共 19 页)
若 BD 所在的直线为 l4,此时 l1⊥l4, 故 l1 与 l4 的位置关系不确定, 故选: D.
【点评】 本题主要考查空间直线平行或垂直的位置关系的判断,比较基础.
log2a1+log2a2+log2a3+log2a4+log2a5=

(二)(14-15 题,考生只能从中选做一题) 【坐标系与参数方程选做题】 14.(5 分)在极坐标系中,曲线 C1 与 C2 的方程分别为 2ρco2sθ =sin 与θ ρ cos θ,=1
以极点为平面直角坐标系的原点,极轴为 x 轴的正半轴,建立平面直角坐标系,
10.(5 分)对任意复数 ω1,ω2,定义 ω1* ω2=ω1 2,其中 2 是 ω2 的共轭复数,
对任意复数 z1,z2, z3 有如下命题:
①( z1+z2) *z3=(z1*z 3)+(z2*z3) ② z1* ( z2+z3)=(z1*z 2)+(z1*z3)
③( z1*z2) *z3=z1* (z2*z3); ④ z1*z2=z2*z1

2020广东高考文科数学试卷及答案

2020广东高考文科数学试卷及答案

绝密★启用前2020年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2=--<=-,则A B=()A x x x B{|340},{4,1,3,5}- B. {1,5}A. {4,1}C. {3,5}D. {1,3}2.若3z()z=++,则||=12i iA. 0B. 1C. 2D. 23.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A.51- B.51- C.51+ D.51+ 4.设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为( ) A. 15B.25 C.12D. 455.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( ) A. y a bx =+B. 2y a bx =+ C. e xy a b =+D. ln y a b x =+6.已知圆2260x y x +-=,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( )A. 1B. 2C. 3D. 47.设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为( )A.10π9 B.7π6 C. 4π3D. 3π28.设3log 42a =,则4a -=( ) A.116B.19C.18D.169.执行下面的程序框图,则输出的n =( )A. 17B. 19C. 21D. 2310.设{}n a 等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=( )A. 12B. 24C. 30D. 3211.设12,F F 是双曲线22:13y C x -=两个焦点,O 为坐标原点,点P 在C 上且||2OP =,则12PF F △的面积为( ) A.72B. 3C.52D. 212.已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A. 64πB. 48πC. 36πD. 32π二、填空题:本题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件220,10,10,x y x y y +-≤⎧⎪--≥⎨⎪+≥⎩则z =x +7y 的最大值为______________.14.设向量(1,1),(1,24)a b m m =-=+-,若a b ⊥,则m =______________. 15.曲线ln 1y x x =++一条切线的斜率为2,则该切线的方程为______________.16.数列{}n a 满足2(1)31nn n a a n ++-=-,前16项和为540,则1a = ______________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A ,B ,C ,D 四个等级.加工业务约定:对于A 级品、B 级品、C 级品,厂家每件分别收取加工费90元,50元,20元;对于D 级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表乙分厂产品等级的频数分布表等级 A B C D 频数 28173421(1)分别估计甲、乙两分厂加工出来的一件产品为A 级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?18.ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°. (1)若a =3c ,b =27,求ABC 的面积;(2)若sin A +3sin C =2,求C . 19.如图,D 为圆锥的顶点,O 是圆锥底面的圆心,ABC 是底面的内接正三角形,P 为DO 上一点,∠APC =90°.(1)证明:平面P AB ⊥平面P AC ;(2)设DO 23π,求三棱锥P −ABC 的体积. 20.已知函数()(2)xf x e a x =-+.(1)当1a =时,讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围.21.已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程; (2)证明:直线CD 过定点.(二)选考题:共10分。

普通高等学校招生全国统一考试数学文试题(广东卷,含答案)

普通高等学校招生全国统一考试数学文试题(广东卷,含答案)

普通高等学校招生全国统一考试数学文试题(广东卷,含答案)本试卷共4页,21小题,满分150分。

考试用时120分钟。

注意事项:1. 答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B铅笔将试卷类型(A)填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2. 选择题每小题选出答案后,用2B铅笔将答题卡上对应题目悬想的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3. 费选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡个项目指定区域内相应位置上;如需改动,先花掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4. 作答选做题时,请先用2B铅笔填涂选做题的题号对应的信息点,在作答。

漏涂、错涂、多涂的,答案无效。

5. 考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:锥体的体积公式V=13Sh,其中S是锥体的底面积,h是锥体的高。

一、选择题:本大题共10小题,每小题5分,满分50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集U=R,则正确表示集合M={—1,0,1}和N={210x x+=}关系的韦恩(Venn)图是2.下列n的取值中,使i n =1(i是虚数单位)的是A.n=2 B.n=3 C.n=4 D.n=53.已知平面向量a =(x,1),b =(—x,x2),则向量a+bA.平行于x轴B.平行于第一、三象限的角平分线C .平行于y 轴D .平行于第二、四象限的角平分线4.若函数()y f x =是函数()x 0y a ≠=a >,且a 1的反函数,且(2)1f =,则()f x = A .2log x B .12x C . 12log x D .22x - 5.已知等比数列{}n a 的公比为正数,且23952a a a •=,2a =1,则1a =A .12B C . D .26.给定下列四个命题:①若一个平面内的两条直线与另外一个平面都平行,那么这两个平面相互平行; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直。

2021年高考真题——文科数学(广东卷)

2021年高考真题——文科数学(广东卷)

普通高等学校招生全国统一考试(广东卷)数学(文科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合{}{}5,3,2,0,4,3,2==N M ,则N M ( )A. {}2,0B. {}3,2C. {}4,3D. {}5,3(2)已知复数z 满足25)43(=-z i ,则=z ( )A.i 43--B. i 43+-C. i 43-D. i 43+(3)已知向量)1,3(),2,1(==b a ,则=-a b ( )A. )1,2(-B. )1,2(-C. )0,2(D. )3,4((4)若变量y x ,满足约束条件⎪⎩⎪⎨⎧≤≤≤≤≤+304082y x y x 则y x z +=2的最大值等于( )A. 7B. 8C. 10D. 115.下列函数为奇函数的是( ) A.x x 212- B.x x sin 3 C.1cos 2+x D.x x 22+6.为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为()A.50B.40C.25D.207.在ABC ∆中,角A,B,C 所对应的边分别为,,,c b a 则“b a ≤”是 “B A sin sin ≤”的( )A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件8.若实数k 满足05k <<,则曲线221165x y k -=-与曲线221165x y k -=-的( ) A.实半轴长相等 B.虚半轴长相等 C.离心率相等 D.焦距相等9.若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,,l l l l l l ⊥⊥∥则下列结论一定正确的是( )A .14l l ⊥ B.14l l ∥ C.1l 与4l 既不垂直也不平行 D.1l 与4l 的位置关系不确定10.对任意复数12,,w w 定义1212,ωωωω*=其中2ω是2ω的共轭复数,对任意复数123,,z z z 有如下四个命题: ①1231323()()();z z z z z z z +*=*+*②1231213()()()z z z z z z z *+=*+*;③123123()();z z z z z z **=**④1221z z z z *=*;则真命题的个数是( )A.1B.2C.3D.4二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(11—13题)11.曲线53xy e =-+在点()0,2-处的切线方程为________. 12.从字母,,,,a b c d e 中任取两个不同字母,则取字母a 的概率为________.13.等比数列{}n a 的各项均为正数,且154a a =,则2122232425log +log +log +log +log =a a a a a ________.(二)选做题(14-15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,曲线1C 与2C 的方程分别为θθρsin cos 22=与1cos =θρ,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 与2C 的直角坐标为________15.(几何证明选讲选做题)如图1,在平行四边形ABCD 中,点E 在AB 上且AC AE EB ,2=与DE 交于点F 则______=∆∆的周长的周长AEF CDF三.解答题:本大题共6小题,满分80分16.(本小题满分12分)已知函数()sin(),3f x A x x R π=+∈,且532()122f π= (1) 求A 的值; (2) 若()()3,(0,)2f f πθθθ--=∈,求()6f πθ- 17(本小题满分13分)某车间20名工人年龄数据如下表:(1) 求这20名工人年龄的众数与极差;(2) 以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3) 求这20名工人年龄的方差.18(本小题满分13分)如图2,四边形ABCD 为矩形,PD ⊥平面ABCD ,AB=1,BC=PC=2,作如图3折叠,折痕EF ∥DC.其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 在线段AD 上的点记为M ,并且MF ⊥CF.(1) 证明:CF ⊥平面MDF(2) 求三棱锥M-CDE 的体积.19.(本小题满分14分)设各项均为正数的数列{}n a 的前n 项和为n S ,且n S 满足 ()()*∈=+--+-N n n n S n n S n n ,033222.(1)求1a 的值;(2)求数列{}n a 的通项公式;(3)证明:对一切正整数n ,有()()().311111112211<+++++n n a a a a a a 20(本小题满分14分) 已知椭圆()01:2222>>=+b a b y a x C 的一个焦点为()0,5,离心率为35。

2020年广东高考(文科)数学试题及答案

2020年广东高考(文科)数学试题及答案
15.曲线 的一条切线的斜率为2,则该切线的方程为______________.
【答案】
【解析】
【分析】
设切线的切点坐标为 ,对函数求导,利用 ,求出 ,代入曲线方程求出 ,得到切线的点斜式方程,化简即可.
【详解】设切线的切点坐标为 ,
【详解】由图可得:函数图象过点 ,
将它代入函数 可得:
又 是函数 图象与 轴负半轴的第一个交点,
所以 ,解得:
所以函数 的最小正周期为
故选:C
【点睛】本题主要考查了三角函数的性质及转化能力,还考查了三角函数周期公式,属于中档题.
8.设 ,则 ()
A. B. C. D.
【答案】B
【解析】
【分析】
根据已知等式,利用指数对数运算性质即可得解
据此结合目标函数的几何意义可知目标函数在点A处取得最大值,
联立直线方程: ,可得点A的坐标为: ,
据此可知目标函数的最大值为: .
故答案为:1.
【点睛】求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合 则 ()
A. B.
C. D.
2.若 ,则 ()
A.0B.1
C. D.2
3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()

年高考广东卷数学文科试卷含答案

年高考广东卷数学文科试卷含答案

2007年普通高等学校招生全国统一考试(广东卷)数学(文科)本试卷共4页,21小题,满分150分。

考试用时l20分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B 铅笔将试卷类型(A)填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色宁迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B 铅笔填涂选做题的题号(或题组号)对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:锥体的体积公式,其中是锥体的底面积,是锥体的高. 13V Sh =S h 如果事件、互斥,那么. A B ()()()P A B P A P B +=+用最小二乘法求线性同归方程系数公式一、选择题:本大题共l0小题,每小题5分,满分50分.在每小题给出的四个选项中。

只有一项是符合题目要求的。

1.已知集合M={x|},N={x|},则M ∩N= 10x +>101x>- A .{x|-1≤x <0} B .{x |x>1} C .{x|-1<x <0} D .{x |x ≥-1}2.若复数是纯虚数(是虚数单位,是实数),则 (1)(2)bi i ++i b b = A .-2 B . C. D .2 12-3.若函数(),则函数在其定义域上是3()f x x =x R ∈()y f x =-A .单调递减的偶函数 B.单调递减的奇函数 C .单凋递增的偶函数 D.单涮递增的奇函数4.若向量、满足||=||=1,与的夹角为,则+ a b a b a b 60︒a a a b = A .B . C. .21232315.客车从甲地以60km /h 的速度匀速行驶1小时到达乙地,在乙地停留了半小时,然后以80km /h 的速度匀速行驶l 小时到达丙地。

广东高考文科数学试题及答案详细解析选择、填空、解答全解全析

广东高考文科数学试题及答案详细解析选择、填空、解答全解全析

绝密★启用前试卷种类:B2021年一般高等学校招生全国一致考试〔广东卷〕数学〔文科〕分析版V 1Sh,此中S 为锥体的底面积, h为锥体的高.参照公式:锥体体积公式3n(x i x)(y i y)bi1nx )2线性回归方程ybxa中系数计算公式i1(x i ,ay bx ,样本数据x 1,x 2,1[(x 1x )2 (x 2x )2(x n x)2],xn 的标准差,n此中x,y表示样本均值.n 是正整数,那么a nb n (a b)(a n1 a n2b ab n2 b n1).一、选择题:本大题共10小题,每题 5分,总分值 50分,在每题给出的四个选项中,只有一项为哪一项切合题目要求的.1.设复数z 知足iz1,此中i为虚数单位,那么A .i B.iC.1D.1ii【分析】z(i)2.会合A{(x,y)|x,y 为实数,且x 221},B{(x,y)|x,y 为实数,且xy1},那么AB的元素个数为A .4B.3C .2D .1【分析】会合A 表示由圆21表示直线 y x 上全部点的会合,∵直上全部点构成的会合,会合线过园内点〔0,0〕,∴直线与圆有两个交点,故答案为C .3.向量a(1,2),b (1,0),c(3,4).假定为实数,(ab )∥c,那么1A .4B.2C.1D.2【分析】ab (1,2),由(ab )∥c ,得64(1)0,解得1,故答案为B 。

2第1页共14页1l g(1x )f (x)4.函数1x的定义域是A .(,1)B.(1,)C.(1,1)(1,)D.(,)1x0且x1,那么f(x)的定义域是(1,1)(1,),故答案【分析】要使函数存心义,那么xx110为C。

5.不等式2x2x10的解集是(1,1)B.(1,)C.(,1)(2,)(,1)(1,)A.2D.2【分析】2x2x10(x1)(2x1)0x1或x1,那么不等式的解集为(,1)(1,),22故答案为D。

2021年普通高等学校招生全国统一考试(广东卷)数学试题 (文科) 解析版

2021年普通高等学校招生全国统一考试(广东卷)数学试题 (文科) 解析版

绝密★启用前 试卷类型:B2012年普通高等学校招生全国统一考试(广东卷)数学(文科)一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 设i 为虚数单位,则复数34ii+= A. 43i -- B. 43i -+ C. 43i + D. 43i -1. D. 34(34)()43()i i i i i i i ++⨯-==-⨯-.2. 设集合{1,2,3,4,5,6}U =,{1,3,5}M =,则UM =A. {2,4,6}B. {1,3,5}C. {1,2,4}D. U 2. A. UM ={2,4,6}.3. 若向量(1,2)AB =,(3,4)BC =,则AC =A. (4,6)B. (4,6)--C. (2,2)--D. (2,2) 3. A. (4,6)AC AB BC =+=.4. 下列函数为偶函数的是A. sin y x =B. 3y x = C. xy e =D. y = 4. D. 选项A 、B 为奇函数,选项C 为非奇非偶函数.5. 已知变量x ,y 满足约束条件1110 x y x y x +≤⎧⎪-≤⎨⎪+≥⎩,则2z x y =+的最小值为A. 3B. 1C. 5-D. 6-5. C. 不等式组表示的平面区域为如图所示的阴影部分,2z x y =+可化为直线1122y x z =-+,则当该直线过点(1,2)A --时,x +z 取得最小值,min 12(2)5z =-+⨯-=-.6. 在△ABC 中,若60A ∠=,45B ∠=,BC =AC =A.B.C.D.26. B. 根据正弦定理,sin sin BC ACA B=,则sin sin BC B AC A ⋅===.7. 某几何体的三视图如图1所示,它的体积为 A. 72π B. 48π C. 30π D. 24π7. C. 该几何体是圆锥和半球体的组合体,则它的体积2311434330323V V V πππ=+=⋅⋅+⋅⋅=圆锥半球体.8. 在平面直角坐标系xOy 中,直线3450x y +-=与圆224x y += 相交于A 、B 两点,则弦AB 的长等于A.B.C.D . 18. B. 圆心(0,0)到直线3450x y +-=的距离1d ==,则222()32AB r d =-=,即AB =9. 执行如图2所示的程序框图,若输入n 的值为6,则输出s 的值为A. 105B. 16C. 15D. 1 9. C. 13515s =⨯⨯=10. 对任意两个非零的平面向量α和β,定义=⋅⋅αβαβββ.若两个非零的平面向量a ,b 满足a 与b 的夹角,42ππθ⎛⎫∈⎪⎝⎭,图2图1正视图 俯视图侧视图且a b 和b a 都在集合2n n ⎧⎫∈⎨⎬⎭⎩Z 中,则=a bA.52 B. 32 C. 1 D. 1210. D. =⋅⋅a b a b b b 2cos cos θθ⋅==a b a b b,同理有cos θ=b b a a a b 和b a 都在集合2n n ⎧⎫∈⎨⎬⎭⎩Z 中,即2cos θa b 和2cos θb a 是整数, 取3πθ=,则a b和b a是整数,则1==a b ba,则=a b 12.二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11 ~ 13题)11. 函数y x=的定义域为 .11. [)()1,00,-+∞. 10100x x x x +≥⎧⇒≥-≠⎨≠⎩且,即函数y x=的定义域为[)()1,00,-+∞.12. 若等比数列{}n a 满足2412a a =,则2135a a a = . 12. 14. 224312a a a ==,则24135314a a a a ==13. 由正整数组成的一组数据1234,,,x x x x ,其平均数和中位数都是2,且标准差等于1,则这组数据为 .(从小到大排列)13. 1,1,3,3. 不妨设1234x x x x ≤≤≤,*1234,,,x x x x ∈N ,依题意得12348x x x x +++=,1s ==, 即22221234(2)(2)(2)(2)4x x x x -+-+-+-=,所以43x ≤则只能121x x ==,343x x ==,则这组数据为1,1,3,3(二)选做题(14 ~ 15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在平面直角坐标系xOy 中,曲线1C 和2C 的参数方程分别为x y θθ⎧=⎪⎨=⎪⎩(θ为参数,02πθ≤≤)和1x y ⎧=⎪⎪⎨⎪=⎪⎩(t为参数),则曲线1C 和2C 的交点坐标为 .14. (2,1). 曲线1C 的方程为225x y +=(0x ≤≤,曲线2C 的方程为1y x =-2251x y y x ⎧+=⇒⎨=-⎩2x =或1x =-(舍去),则曲线1C 和2C 的交点坐标为(2,1).15.(几何证明选讲选做题)如图3所示,直线PB 与圆O 相切于点B ,D 是弦AC 上的点,PBA DBA ∠=∠. 若AD m =,AC n =,则AB = .15.由弦切角定理得PBA C DBA ∠=∠=∠,则△ABD ∽△ACB,AB ADAC AB=,则2AB AC AD mn =⋅=,即AB =.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数()cos 46x f x A π⎛⎫=+ ⎪⎝⎭,x ∈R ,且3f π⎛⎫= ⎪⎝⎭(1)求A 的值; (2)设0,2παβ⎡⎤,∈⎢⎥⎣⎦,4304317f απ⎛⎫+=- ⎪⎝⎭,28435f βπ⎛⎫-= ⎪⎝⎭,求cos()αβ+的值.16. 解:(1)cos cos 312642f A A A ππππ⎛⎫⎛⎫=+===⎪ ⎪⎝⎭⎝⎭,解得2A = (2)43042cos 2cos 2sin 336217f πππαπααα⎛⎫⎛⎫⎛⎫+=++=+=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即15sin 17α= 图3PABCDO2842cos 2cos 3665f ππβπββ⎛⎫⎛⎫-=-+== ⎪ ⎪⎝⎭⎝⎭,即4cos 5β=因为0,2παβ⎡⎤,∈⎢⎥⎣⎦,所以8cos 17α==,3sin 5β== 所以8415313cos()cos cos sin sin 17517585αβαβαβ+=-=⨯-⨯=-17.(本小题满分13分)某校100名学生期中考试语文成绩的频率分布直方图 如图4所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a 的值;(2)根据频率分布直方图,估计这100名学生语文成 绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x ) 与数学成绩相应分数段的人数(y )之比如下表所示,求 数学成绩在[50,90)之外的人数.17. 解:(1)依题意得,10(20.020.030.04)1a +++=,解得0.005a = (2)这100名学生语文成绩的平均分为:550.05650.4750.3850.2950.0573⨯+⨯+⨯+⨯+⨯=(分)(3)数学成绩在[50,60)的人数为:1000.055⨯=数学成绩在[60,70)的人数为:11000.4202⨯⨯= 数学成绩在[70,80)的人数为:41000.3403⨯⨯=数学成绩在[80,90)的人数为:51000.2254⨯⨯=所以数学成绩在[50,90)之外的人数为:100520402510----=图4PA BCHFE D图518.(本小题满分13分)如图5所示,在四棱锥P ABCD -中,AB ⊥平面PAD ,//AB CD ,PD AD =,E 是PB 的中点,F 是CD 上的点且12DFAB =,PH 为△PAD 中AD 边上的高. (1)证明:PH ⊥平面ABCD ; (2)若1PH =,AD =1FC =,求三棱锥E BCF -的体积;(3)证明:EF ⊥平面PAB .18. 解:(1)证明:因为AB ⊥平面PAD ,所以PH AB ⊥因为PH 为△PAD 中AD 边上的高 所以PH AD ⊥ 因为AB AD A =所以PH ⊥平面ABCD(2)连结BH ,取BH 中点G ,连结EG 因为E 是PB 的中点, 所以//EG PH因为PH ⊥平面ABCD所以EG ⊥平面ABCD则1122EG PH ==111332E BCFBCF V S EG FC AD EG -∆=⋅=⋅⋅⋅⋅=12 (3)证明:取PA 中点M ,连结MD ,ME因为E 是PB 的中点所以1//2ME AB = 因为1//2DF AB =所以//ME DF =所以四边形MEDF 是平行四边形 所以//EF MD 因为PD AD = 所以MD PA ⊥因为AB ⊥平面PAD , 所以MD AB ⊥ 因为PA AB A =所以MD ⊥平面PAB 所以EF ⊥平面PABPABCHFEDGM19. (本小题满分14分)设数列{}n a 前n 项和为n S ,数列{}n S 的前n 项和为n T ,满足22n n T S n =-,*n ∈N .(1)求1a 的值;(2)求数列{}n a 的通项公式. 19. 解:(1)当1n =时,1121T S =-因为111T S a ==,所以1121a a =-,求得11a =(2)当2n ≥时,221112[2(1)]2221n n n n n n n S T T S n S n S S n ---=-=----=--+所以1221n n S S n -=+- ① 所以1221n n S S n +=++ ② ②-①得 122n n a a +=+ 所以122(2)n n a a ++=+,即1222n n a a ++=+(2)n ≥求得123a +=,226a +=,则21222a a +=+ 所以{}2n a +是以3为首项,2为公比的等比数列所以1232n n a -+=⋅所以1322n n a -=⋅-,*n ∈N20.(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆1C :22221x y a b+=(0a b >>)的左焦点为1(1,0)F -,且点(0,1)P 在1C 上. (1)求椭圆1C 的方程;(2)设直线l 同时与椭圆1C 和抛物线2C :24y x =相切,求直线l 的方程. 20. 解:(1)因为椭圆1C 的左焦点为1(1,0)F -,所以1c =,点(0,1)P 代入椭圆22221x y a b +=,得211b=,即1b =,所以2222a b c =+=所以椭圆1C 的方程为2212x y +=. (2)直线l 的斜率显然存在,设直线l 的方程为y kx m =+,2212x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 并整理得222(12)4220k x kmx m +++-= 因为直线l 与椭圆1C 相切,所以2222164(12)(22)0k m k m ∆=-+-= 整理得22210k m -+= ①24y x y kx m⎧=⎨=+⎩,消去y 并整理得222(24)0k x km x m +-+= 因为直线l 与抛物线2C 相切,所以222(24)40km k m ∆=--= 整理得1km = ②综合①②,解得2k m ⎧=⎪⎨⎪=⎩或2k m ⎧=-⎪⎨⎪=⎩ 所以直线l的方程为y x =+y x =21.(本小题满分14分)设01a <<,集合{|0}A x x =∈>R ,2{|23(1)60}B x x a x a =∈-++>R ,D A B =.(1)求集合D (用区间表示)(2)求函数32()23(1)6f x x a x ax =-++在D 内的极值点. 21. 解:(1)令2()23(1)6g x x a x a =-++229(1)4893093(31)(3)a a a a a a ∆=+-=-+=--① 当103a <≤时,0∆≥,方程()0g x =的两个根分别为1334a x +=,2334a x ++=所以()0g x >的解集为3333(,()44a a +++-∞+∞因为12,0x x >,所以D A B ==3333(0,()44a a +++∞ ② 当113a <<时,0∆<,则()0g x >恒成立,所以D A B ==(0,)+∞ 综上所述,当103a <≤时,D =3333(0,)()44a a +++∞; 当113a <<时,D =(0,)+∞ (2)2()66(1)66()(1)f x x a x a x a x '=-++=--, 令()0f x '=,得x a =或1x =① 当103a <≤时,由(1)知D =12(0,)(,)x x +∞ 因为2()23(1)6(3)0g a a a a a a a =-++=->,(1)23(1)6310g a a a =-++=-≤ 所以1201a x x <<<≤,所以(),()f x f x '随x 的变化情况如下表:所以()f x 的极大值点为x a =,没有极小值点 ② 当113a <<时,由(1)知D =(0,)+∞ 所以(),()f x f x '随x 的变化情况如下表:所以()f x 的极大值点为x a =,极小值点为1x = 综上所述,当103a <≤时,()f x 有一个极大值点x a =,没有极小值点; 当113a <<时,()f x 有一个极大值点x a =,一个极小值点1x =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

年高考文科数学试卷广东

It was last revised on January 2, 2021
2019年普通高等学校招生全国统一考试(广东卷)
数学(文科)
一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合{}{}5,3,2,0,4,3,2==N M ,则N M ( )
A. {}2,0
B. {}3,2
C. {}4,3
D. {}5,3
(2)已知复数z 满足25)43(=-z i ,则=z ( )
A.i 43--
B. i 43+-
C. i 43-
D. i 43+
(3)已知向量)1,3(),2,1(==b a ,则=-a b ( )
A. )1,2(-
B. )1,2(-
C. )0,2(
D. )3,4(
(4)若变量y x ,满足约束条件⎪⎩
⎪⎨⎧≤≤≤≤≤+304082y x y x 则y x z +=2的最大值等于( )
A. 7
B. 8
C. 10
D. 11
5.下列函数为奇函数的是( ) A.x x 2
12- B.x x sin 3 C.1cos 2+x D.x x 22+ 6.为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )
.40 C
7.在ABC ∆中,角A,B,C 所对应的边分别为,,,c b a 则“b a ≤”是 “B A sin sin ≤”的( )
A.充分必要条件
B.充分非必要条件
C.必要非充分条件
D.非充分非必要条件
8.若实数k 满足05k <<,则曲线221165x y k -=-与曲线22
1165
x y k -=-的( ) A.实半轴长相等 B.虚半轴长相等 C.离心率相等 D.焦距相等
9.若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,,l l l l l l ⊥⊥∥则下列结论一定正确的是( )
A .14l l ⊥ B.14l l ∥ C.1l 与4l 既不垂直也不平行 D.1l 与4l 的位置关系不确定
10.对任意复数12,,w w 定义1212,ωωωω*=其中2ω是2ω的共轭复数,对任意复数123,,z z z 有如下四个
①1231323()()();z z z z z z z +*=*+*②1231213()()()z z z z z z z *+=*+*;
③123123()();z z z z z z **=**④1221z z z z *=*;
则真
.2 C
二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.
(一)必做题(11—13题)
11.曲线53x y e =-+在点()0,2-处的切线方程为________.
12.从字母,,,,a b c d e 中任取两个不同字母,则取字母a 的概率为________.
13.等比数列{}n a 的各项均为正数,且154a a =,则
2122232425log +log +log +log +log =a a a a a ________.
(二)选做题(14-15题,考生只能从中选做一题)
14.(坐标系与参数方程选做题)在极坐标系中,曲线1C 与2C 的方程分别为θθρsin cos 22=与1cos =θρ,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 与2C 的直角坐标为________
15.(几何证明选讲选做题)如图1,在平行四边形ABCD 中,点E 在AB 上且
AC AE EB ,2=与DE 交于点F 则______=∆∆的周长
的周长AEF CDF 三.解答题:本大题共6小题,满分80分
16.(本小题满分12分)
已知函数()sin(),3
f x A x x R π=+∈,且5()12f π= (1) 求A 的值;
(2) 若()()(0,)2f f πθθθ--=∈,求()6
f π
θ- 17(本小题满分13分)
某车间20名工人年龄数据如下表:
(1) 求这20名工人年龄的众数与极差;
(2) 以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;
(3) 求这20名工人年龄的方差.
18(本小题满分13分)
如图2,四边形ABCD 为矩形,PD ⊥平面ABCD ,AB=1,BC=PC=2,作如图3折叠,折痕EF ∥DC.其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 在线段AD 上的点记为M ,并且MF ⊥CF.
(1) 证明:CF ⊥平面MDF
(2) 求三棱锥M-CDE 的体积.
19.(本小题满分14分)
设各项均为正数的数列{}n a 的前n 项和为n S ,且n S 满足
()()
*∈=+--+-N n n n S n n S n n ,033222. (1)求1a 的值;
(2)求数列{}n a 的通项公式;
(3)证明:对一切正整数n ,有
()()().311111112211<+++++n n a a a a a a 20(本小题满分14分) 已知椭圆()01:22
22>>=+b a b y a x C 的一个焦点为()0,5,离心率为3
5。

(1)求椭圆C 的标准方程;
(2)若动点()00,y x P 为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.
21.(本小题满分14分)
已知函数321()1()3
f x x x ax a R =+++∈ (1) 求函数()f x 的单调区间;
(2) 当0a <时,试讨论是否存在011(0,)(,1)22x ∈,使得01()()2f x f =。

相关文档
最新文档