浙教版数学七年级上册第五单元《一元一次方程单元测试》

合集下载

浙教版数学七年级上册 第五章一元一次方程单元测试 (含答案)

浙教版数学七年级上册 第五章一元一次方程单元测试 (含答案)

浙教版数学七年级上册第五章一元一次方程一、选择题1.下列方程是一元一次方程的是( )A .y =2x−1B .x−1=0C .x 2=9D .3x−52.下列利用等式的基本性质变形错误的是( )A .若x−2=7,则x =7+2B .若−5x =15,则x =−3C .若13x =9,则x =3D .若2x +1=6,则2x =53.若x =2是关于x 的方程x−a =0的解,则a 的值是( )A .2B .1C .−1D .−24.由x 2−y3=1可以得到用x 表示y 的式子是( )A .y =3x−22B .y =32x−12C .y =3−32xD .y =32x−35.解方程x−13=1−3x +16,去分母后正确的是( )A .2x−1=1−(3x +1)B .2(x−1)=1−(3x +1)C .2(x−1)=6−(3x +1)D .(x−1)=6−3x +16.我国明代珠算家程大位的名著《直指算法统宗》里有一道算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设小和尚有x 人,依题意列方程得( )A .x3+3(100−x )=100B .3x +100−x3=100C .x3−3(100−x )=100D .3x−100−x3=1007.下列方程的变形中,正确的是( )A .方程3x−2=2x +1,移项,得3x−2x =−1+2;B .方程3−x =2−5(x−1),去括号,得3−x =2−5x−1;C .方程23x =32,未知数系数化为1,得x =1;D .方程x−12−x5=1化成5(x−1)−2x =10.8. 将 6 块形状、大小完全相同的小长方形,放入长为 m ,宽为 n 的长方形中,当两块阴影部分A,B 的面积 相等时, 小长方形其较短一边长的值为( )A .m 6B .m 4C .n 6D .n 49.已知|a−1|+(ab−2)2=0,则关于x 的方程xab+x (a +1)(b +1)+x (a +2)(b +2)+⋅⋅⋅+x(a +2021)(b +2021)=2022的解是( )A .2021B .2022C .2023D .202410.我国古代的“九宫图”是由3×3的方格构成的,每个方格均有不同的数,每一行、每一列以及每一条对角线上的三个数之和相等.如图给出了“九宫图”的一部分,请推算x 的值是( )2025x 23A .2020B .−2020C .2019D .−2019二、填空题11.已知4x +2y =3,用含x 的式子表示y =  .12.如图,在数轴上,点A,B 表示的数分别为a,b ,且a +b =0,若AB =2,则点A 表示的数为 .13.一张试卷有25道必答题,答对一题得4分,答错一题扣1分,某学生解答了全部试题共得70分,他答对了 道题.14.甲对乙说:“当我岁数是你现在的岁数时,你才4岁.”乙对甲说:“当我的岁数是你现在岁数时,你61岁.”则乙现在为 岁.15.如图,数轴上A ,B 点对应的实数分别是1和3.若点A 关于点B 的对称点为点C (即2AB =BC ),则点C 所对应的实数为 .16.一个四位正整数M ,如果千位数字与十位数字之和的两倍等于百位数字与个位数字之和,则称M 为“共进退数”,并规定F (M )等于M 的前两位数所组成的数字与后两位数所组成的数字之和,G (M )等于M 的前两位数所组成的数字与后两位数所组成的数字之差,如果F (M )=60,那么M 各数位上的数字之和为  ;有一个四位正整数N =1101+1000x +10y +z (0≤x ≤4,0≤y ≤9,0≤z ≤8,且为整数)是一个“共进退数”,且F (N )是一个平方数,G (N )13是一个整数,则满足条件的数N 是 .三、解答题17.解方程:2x +13−6x−16=1.18.当m 为何值时,关于x 的方程x−m 2−1=2x +m3的解是非负数.19.一艘轮船从A 地顺水航行到B 地用了4小时,从B 地逆水航行返回A 地比顺水航行多用了2小时,已知轮船在静水中的速度是25千米/时.(1)求水流的速度和A ,B 两地之间的距离;(2)若在A ,B 两地之间的C 地建立新的码头,使该轮船从A 地顺水航行到C 码头的时间是它从B 地逆水航行到C 码头所用时间的一半,问A ,C 两地相距多少千米?20.关于x 的两个一元一次方程x−1=a ①,3x +1=2a ②,已知方程①的解比方程②的解大1,求a的值.21.我们规定,若关于x 的一元一次方程ax =b 的解为x =b−a ,则称该方程为“差解方程”.例如:2x =4的解为x =2,且2=4−2,则该方程2x =4是差解方程.(1)判断:方程3x =4.5差解方程(填“是”或“不是”)(2)若关于x 的一元一次方程4x =m +3是差解方程,求m 的值.22.甲、乙两人加工机器零件,已知甲、乙两人一天共加工零件35个,甲每天加工零件的个数比乙每天加工零件的个数多5个.(1)问甲、乙两人每天各加工多少个零件?(2)现在工厂需要加工零件600个,先由两人合作一段时间,剩下的全部由乙单独完成,恰好20天完成任务,求两人合作的天数.23. 某条城际铁路线共有A ,B ,C 三个车站,每日上午均有两班次列车从A 站驶往C 站,其中D1001次列车从A 站始发,经停B 站后到达C 站,G1002次列车从A 站始发,直达C 站,两个车次的列车在行驶过程中保持各自的行驶速度不变.某校数学学习小组对列车运行情况进行研究,收集到列车运行信息如下表所示.列车运行时刻表A 站B 站C 站车次发车时刻到站时刻发车时刻到站时刻D10018:009:309:5010:50G10028:25途经B站,不停车10:30请根据表格中的信息,解答下列问题:(1)D1001次列车从A站到B站行驶了 分钟,从B站到C站行驶了 分钟;(2)记D1001次列车的行驶速度为v1,离A站的路程为d1;G1002次列车的行驶速度为v2,离A站的路程为d2.①v1v=▲;2②从上午8:00开始计时,时长记为t分钟(如:上午9:15,则t=75),已知v1=240千米/小时(可换算为4千米/分钟),在G1002次列车的行驶过程中(25≤t≤150),若|d1−d2|=60,求t的值.答案解析部分1.【答案】B2.【答案】C3.【答案】A4.【答案】D5.【答案】C6.【答案】A7.【答案】D8.【答案】A9.【答案】C10.【答案】D11.【答案】32−2x12.【答案】−113.【答案】1914.【答案】2315.【答案】33−216.【答案】15;310517.【答案】x=−3218.【答案】m≤−6519.【答案】(1)解:设水流的速度为x千米/时,A,B两地之间的距离为y千米,则轮船在顺水中的速度为(25+x)千米/时,在逆水中的速度为(25−x)千米/时.由题意,得{4(25+x)=y6(25−x)=y,解得{x=5 y=120.答:水流的速度为5千米/时,A,B两地之间的距离为120千米.(2)解:设A,C两地相距m千米.由题意,得m25+5=12×120−m25−5,解得m=3607.答:A,C两地相距3607千米.20.【答案】a=−121.【答案】(1)是(2)7322.【答案】(1)甲每天加工零件个数为20个,乙每天加工15个(2)两人合作的天数15天23.【答案】(1)90;60(2)解:①5 6;②解法示例:∵v1=4(千米/分钟),v1v2=56,∴v2=4.8(千米/分钟).∵4×90=360,∴A与B站之间的路程为360.∵360÷4.8=75,∴当t=100时,G1002次列车经过B站.由题意可如,当90≤t≤110时,D1001次列车在B站停车.∴G1002次列车经过B站时,D1001次列车正在B站停车.ⅰ.当25≤t<90时,d1>d2,∴|d1−d2|=d1−d2,∴4t−4.8(t−25)=60,t=75(分钟);ⅱ.当90≤t≤100时,d1≥d2,∴|d1−d2|=d1−d2,∴360−4.8(t−25)=60,t=87.5(分钟),不合题意,舍去;ⅲ.当100<t≤110时,d1<d2,∴|d1−d2|=d2−d1,∴4.8(t−25)−360=60,t=112.5(分钟),不合题意,舍去;ⅳ.当110<t≤150时,d1<d2,∴|d1−d2|=d2−d1,∴4.8(t−25)−[360+4(t−110)]=60,t=125(分钟).综上所述,当t=75或125时,|d1−d2|=60.。

2020年浙教版七年级上册第5章《一元一次方程》单元测试卷 含答案

2020年浙教版七年级上册第5章《一元一次方程》单元测试卷  含答案

2020年浙教版七年级上册第5章《一元一次方程》单元测试卷满分120分姓名:___________班级:___________学号:___________题号一二三总分分数一.填空题(共8小题,满分24分,每小题3分)1.方程x=2x+2的解是x=.2.已知方程(m﹣1)x|m|﹣5=0是关于x的一元一次方程,则m的值为.3.2x﹣1与﹣x+2互为相反数,那么x的值是.4.已知关于x的绝对值方程2||x﹣1|﹣2|=a有三个解,则a=.5.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,设这个班有x名学生,则可列一元一次方程为.6.某商贩卖出两双皮鞋,相比进价,一双盈利30%,另一双亏本10%,两双共卖出200元.商贩在这次销售中刚好不亏不赚,则亏本的那双皮鞋的进价是元.7.我们知道,无限循环小数可以转化为分数,例如0.转化为分数时,可设0.=x,则3.=10x,两式相减得3=9x,解得x=,即0.=,则0.转化为分数是.8.已知关于x的方程9x﹣3=kx+11有正整数解,那么满足条件的所有整数k的和为.二.选择题(共10小题,满分30分,每小题3分)9.下列等式中,方程的个数为()①5+3=8;②a=0;③y2﹣2y;④x﹣3=8.A.1B.2C.3D.410.下列方程中,是一元一次方程的是()A.x2﹣x=3B.2x+1=C.2x﹣y=5D.=911.一元一次方程﹣x+6=2x的解为()A.x=6B.x=4C.x=2D.x=012.根据等式的基本性质,下列结论正确的是()A.若,则x=y B.若x=y,则C.若x+a=y﹣a,则x=y D.若x=y,则ax=by13.已知x=﹣1是方程x+2k=﹣1的解,那么k的值是()A.﹣1B.0C.1D.214.方程|2x+1|=5的解是()A.2B.﹣3C.±2D.2或﹣315.下列解方程去分母正确的是()A.由,得2x﹣1=3﹣3x B.由,得2x﹣2﹣x=﹣4C.由,得2 y﹣15=3y D.由,得3(y+1)=2 y+6 16.若关于x的方程6x+3a=22和方程3x+5=11的解相同,那么a的值为()A.B.C.10D.317.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用2小时,若船速为26千米/时,水速为3千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是()A.B.C.D.+218.如图,表中给出的是某月的月历,任意选取“H”型框中的7个数(如阴影部分所示).请你运用所学的数学知识来研究,则这7个数的和不可能是()A.63B.98C.140D.168三.解答题(共7小题,满分66分)19.(16分)解方程:(1)3x﹣6=﹣15﹣6x (2)(3)﹣2.5y﹣7.5y=5﹣16y (4)20.(6分)已知x=﹣2是关于x的方程a(x+3)=a+x的解,求代数式a2﹣2a+1的值.21.(7分)甲、乙两人在笔直的道路上练习赛跑,甲每秒跑7m,乙每秒跑6.5m,若甲让乙先跑了一段距离后,则甲在60s后追上了乙,试求甲让乙先跑的距离.22.(8分)某车间为提高生产总量,在原有16名工人的基础上,新调入若干名工人,使得调整后车间的总人数是调入工人人数的3倍多4人.(1)调入多少名工人;(2)在(1)的条件下,每名工人每天可以生产1200个螺柱或2000个螺母,1个螺柱需要2个螺母,为使每天生产的螺柱和螺母刚好配套,应该安排生产螺柱和螺母的工人各多少名?23.(9分)阅读材料:由绝对值的意义可知:当a≥0时,|a|=;当a≤0时,|a|=.利用这一特性,可以帮助我们解含有绝对值的方程.比如:方程|x﹣2|=3,当x﹣2≥0时,原方程可化为x﹣2=3,解得x=5;当x﹣2≤0时,原方程可化为x﹣2=﹣3,解得x=﹣1.所以原方程的解是x=5或x=﹣1.(1)请补全题目中横线上的结论.(2)仿照上面的例题,解方程:|3x+1|﹣5=0.(3)若方程|x﹣1|=m﹣1有解,则m应满足的条件是.24.(10分)“十一”期间,小聪跟爸爸一起去A市旅游,出发前小聪从网上了解到A市出租车收费标准如下:行程(千米)3千米以内满3千米但不超过8千米的部分8千米以上的部分收费标准(元)10元 2.4元/千米3元/千米(1)若甲、乙两地相距8千米,乘出租车从甲地到乙地需要付款多少元?(2)小聪和爸爸从火车站乘出租车到旅馆,下车时计费表显示17.2元,请你帮小聪算一算从火车站到旅馆的距离有多远?(3)小聪的妈妈乘飞机来到A市,小聪和爸爸从旅馆乘出租车到机场去接妈妈,到达机场时计费表显示70元,接完妈妈,立即沿原路返回旅馆(接人时间忽略不计),请帮小聪算一下乘原车返回和换乘另外的出租车,哪种更便宜?25.(10分)如图,数轴上有A,B两点,A在B的左侧,表示的有理数分别为a,b,已知AB=12,原点O是线段AB上的一点,且OA=2OB.(1)a=,b=;(2)若动点P,Q分别从A,B同时出发,向右运动,点P的速度为每秒2个单位长度,点Q的速度为每秒1个单位长度,设运动时间为t秒,当点P与点Q重合时,P,Q两点停止运动,当t为何值时,2OP﹣OQ=4.(3)在(2)的条件下,若当点P开始运动时,动点M从点A出发,以每秒3个单位长度的速度也向右运动,当点M追上点Q后立即返回,以同样的速度向点P运动,遇到点P后再立即返回,以同样的速度向点Q运动,如此往返,直到点P,Q停止时,点M也停止运动,求在此过程中点M行驶的总路程和点M停止运动时在数轴上所对应的有理数.参考答案一.填空题(共8小题,满分24分,每小题3分)1.解:方程x=2x+2移项得:x=﹣2.故填﹣2.2.解:∵方程(m﹣1)x|m|﹣5=0是关于x的一元一次方程,∴m﹣1≠0且|m|=1,解得:m=﹣1,故答案为:﹣1.3.解:根据题意得:2x﹣1﹣x+2=0,移项合并得:x=﹣1,故答案为:﹣14.解:∵2||x﹣1|﹣2|=a,∴|x﹣1|﹣2=±a,∴|x﹣1|=2±a,∴x﹣1=±(2±a),∴x=1±(2±a),∴x=3+a或3﹣a或﹣1﹣a或﹣1+a,∵方程有三个解,∴3+a=﹣1﹣a或3﹣a=﹣1+a,∴a=﹣4或4,∵a>0,∴a=4,故答案为4.5.解:设这个班有学生x人,由题意得,3x+20=4x﹣25.故答案是:3x+20=4x﹣25.6.解:设亏本的那双皮鞋的进价是x元,则盈利的那双皮鞋的进价是(200﹣x)元,依题意有(1+30%)(200﹣x)+(1﹣10%)x=200,解得x=150.故亏本的那双皮鞋的进价是150元.故答案为:150.7.解:设0.=x,则12.=100x,两式相减得:12=99x,解得:x==,即0.=,故答案为:.8.解:方程整理得:x=,由x为正整数,得到9﹣k=1或9﹣k=7或9﹣k=2或9﹣k=14,解得:k=8或2或7或﹣5,则所有整数k的和为:2+8+7﹣5=12.故答案为:12.二.选择题(共10小题,满分30分,每小题3分)9.解:①5+3=8,不含有未知数,故不是方程;②a=0,符合方程的定义,故是方程;③y2﹣2y,不是等式,故不是方程;④x﹣3=8,符合方程的定义,故是方程.所以②、④是方程,故选:B.10.解:A、该方程属于一元二次方程,故本选项不符合题意.B、该方程符合一元一次方程的定义,故本选项符合题意.C、该方程属于二元一次次方程,故本选项不符合题意.D、该方程属于分式方程,故本选项不符合题意.故选:B.11.解:﹣x+6=2x,移项,得﹣x﹣2x=﹣6,合并同类项,得﹣3x=﹣6,系数化为1,得x=2.故选:C.12.解:A、等式的两边同时乘以a得到:x=y,故本选项符合题意.B、当a=0时,该结论不成立,故本选项不符合题意.C、等式的两边应该同时加上a或者减去a,等式x=y不成立,故本选项不符合题意.D、等式的两边应该同时乘以a或b,故本选项不符合题意.故选:A.13.解:把x=﹣1代入方程x+2k=﹣1,得﹣1+2k=﹣1,解得:k=0.故选:B.14.解:根据题意,原方程可化为:2x+1=5或2x+1=﹣5,解得x=2或x=﹣3,故选:D.15.解:A、由,得2x﹣6=3﹣3x,此选项错误;B、由,得2x﹣4﹣x=﹣4,此选项错误;C、由,得5y﹣15=3y,此选项错误;D、由,得3(y+1)=2y+6,此选项正确;故选:D.16.解:解方程3x+5=11得到x=2,把x=2代入6x+3a=22就得到一个关于a的方程12+3a=22,解得a=.故选:A.17.解:设A港和B港相距x千米,根据题意得:=﹣2.故选:A.18.解:设最中间的数为x,∴这7个数分别为x﹣8、x﹣6、x﹣1、x、x+1、x+6、x+8,∴这7个数的和为:x﹣8+x﹣6+x﹣1+x+x+1+x+6+x+8=7x,当7x=63时,此时x=9,当7x=98时,此时x=14,当7x=140时,此时x=20,当7x=168时,此时x=24,由图可知:24的右下角没有数字.故选:D.三.解答题(共7小题,满分66分)19.解:(1)3x﹣6=﹣15﹣6x,3x+6x=6﹣15,9x=﹣9,x=﹣1;(2),,,x=﹣66;(3)﹣2.5y﹣7.5y=5﹣16y,16y﹣2.5y﹣7.5y=5,6y=5,y=;(4),66z+40=45z﹣80,66z﹣45z=﹣80﹣40,21z=﹣120,z=﹣.20.解:把x=﹣2代入方程得:a=﹣2,解得:a=﹣4,则原式=(a﹣1)2=25.21.解:设甲让乙先跑的距离为xm,依题意,得:7×60=6.5×60+x,解得:x=30.答:甲让乙先跑的距离为30m.22.解:(1)设调入x名工人,根据题意得:16+x=3x+4,解得:x=6,则调入6名工人;(2)16+6=22(人),设y名工人生产螺柱,根据题意得:2×1200y=2000(22﹣y),解得:y=10,22﹣y=22﹣10=12(人),则10名工人生产螺柱,12名工人生产螺母.23.解:(1)当a≥0时,|a|=a;当a≤0时,|a|=﹣a.故答案为:a,﹣a;(2)原方程化为|3x+1|=5,当3x+1≥0时,方程可化为3x+1=5,解得:x=,当3x+1≤0时,方程可化为3x+1=﹣5,解得:x=﹣2,所以原方程的解是x=或x=﹣2,(3)∵方程|x﹣1|=m﹣1有解,∴m﹣1≥0,解得:m≥1,故答案为:m≥1.24.解:(1)10+2.4×(8﹣3)=22(元);答:乘出租车从甲地到乙地需要付款22元;(2)设火车站到旅馆的距离为x千米.∵10<17.2<22,∴3≤x≤8.10+2.4(x﹣3)=17.2∴x=6.答:从火车站到旅馆的距离有6千米;(3)设旅馆到机场的距离为x千米,∵70>22,∴x>8.10+2.4(8﹣3)+3(x﹣8)=70∴x=24.所以乘原车返回的费用为:10+2.4×(8﹣3)+3×(24×2﹣8)=142(元);换乘另外车辆的费用为:70×2=140(元)所以换乘另外出租车更便宜.25.解:(1)∵AB=12,AO=2OB,∴AO=8,OB=4,∴A点所表示的实数为﹣8,B点所表示的实数为4,∴a=﹣8,b=4.故答案是:﹣8;4;(2)当0<t<4时,如图1,AP=2t,OP=8﹣2t,BQ=t,OQ=4+t,∵2OP﹣OQ=4,∴2(8﹣2t)﹣(4+t)=4,t==1.6,当点P与点Q重合时,如图2,2t=12+t,t=12,当4<t<12时,如图3,OP=2t﹣8,OQ=4+t,则2(2t﹣8)﹣(4+t)=4,t=8,综上所述,当t为1.6秒或8秒时,2OP﹣OQ=4;(3)当点P到达点O时,8÷2=4,此时,OQ=4+t=8,即点Q所表示的实数为8,如图4,设点M运动的时间为t秒,由题意得:2t﹣t=8,t=8,此时,点P表示的实数为8×2=16,所以点M表示的实数也是16,∴点M行驶的总路程为:3×8=24,答:点M行驶的总路程为24和点M最后位置在数轴上对应的实数为16.。

第5章 一元一次方程数学七年级上册-单元测试卷-浙教版(含答案)

第5章 一元一次方程数学七年级上册-单元测试卷-浙教版(含答案)

第5章一元一次方程数学七年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、在一个笼子里面放着几只鸡与几只兔,数了数一共有14个头,44只脚.问鸡兔各有几只?设鸡为x只得方程()A.2x+4(14-x)=44B.4x+2(14-x)=44C.4x+2(x-14)=44 D.2x+4(x-14)=442、方程去分母后正确的结果是()A. B. C.D.3、甲队有32人,乙队有28人,现从乙队抽x人到甲队,使甲队人数是乙队人数的2倍,据题意,可列方程为()A.32+x=56B.32=2(28-x)C.32+x=2(28-x)D.2(32+x)=28-x4、若是方程的解,则a的值是()A. B. C. D.5、小悦买书需用48元钱,付款时恰好用了1元和5元的纸币共12张.设所用的1元纸币为x张,根据题意,下面所列方程正确的是( )A.x+5(12-x)=48B.x+5(x-12)=48C.x+12(x-5)=48D.5x (12-x)=486、若关于x的方程2k﹣3x=4与x﹣2=0的解相同,则k的值为()A.﹣10B.10C.﹣5D.57、足球的表面一般是由若干黑色五边形和白色六边形围成的,一个足球的表面共有32个皮块.设白皮有x块,则黑皮有块,每块白皮有六条边,共有6x条边,因为每块白皮有三条边和黑皮连在一起,故黑皮共有3x条边.要求出白皮、黑皮的块数,列出的方程正确的是()A. B. C. D.8、根据“x的3倍与5的和比x的少2”列出方程是().A.3x+5= -2B.3x+5= +2C.3(x+5)= -2D.3(x+5)= +29、以下等式变形不正确的是()A.由x+2=y+2,得到x=yB.由2a﹣3=b﹣3,得到2a=bC.由am=an,得到m=n D.由m=n,得到2am=2an10、方程5+3x=0的解是()A. B. C. D.11、下列方程是一元一次方程的是()A.x+y=4B.x 2=5C.y=7D. =1012、老师在新生分组时发现,若每组7人则多2人,若每组8人则少4人,那么这个班的人数是()A.40B.44C.51D.5613、下列方程中,是一元一次方程的是( )A. B. C. D.14、下列方程变形中,正确的是()A.由 3 x=-4 ,系数化为 1 得 x = ;B.由 5=2 -x ,移项得 x =5 -2 ;C.由,去分母得 4( x -1) -3(2 x+3)=1 ; D.由 3x - (2 -4 x) =5 ,去括号得 3x+4 x - 2 = 515、如图,∠AOB为平角,且∠AOC=∠BOC,则∠BOC的度数是()A.140°B.135°C.120°D.40°二、填空题(共10题,共计30分)16、调查显示,某商场一款运动鞋的售价是销量的反比例函数(调查获得的部分数据如下表).售价(元/双) 200 240 250 400 销售量(双)30 25 24 15已知该运动鞋的进价为180元/双,要使该款运动鞋每天的销售利润达到2400元,则其售价应定为________元.17、若的倒数是-7,则的值是________.18、若关于x的方程x+2=a和2x﹣4=4有相同的解,则a=________.19、如果2x-5=6,那么2x=________,其依据是________.20、若关于x的方程5x﹣1=2x+a的解与方程4x+3=7的解相同,则a=________.21、某商店将彩电按成本价提高50%,然后在广告上写“大酬宾,八折优惠”,结果每台彩电仍获利270元,那么每台彩电成本价是________.22、整理一批数据,甲单独完成需要30小时,乙单独完成需要60小时,现在由甲乙两人合作5小时后,剩余的由乙单独做,还需要________小时完成.23、若x=2是方程8﹣2x=ax的解,则a=________24、已知x=5是方程ax﹣7=20+2a的解,则a=________25、若一个多边形的内角和与外角和相等,则这个多边形的边数为________三、解答题(共5题,共计25分)26、解方程: 3(2x+3)=11x-6.27、列方程或方程组解应用题:已知有23人在甲处劳动,17人在乙处劳动.现共调20人去支援,要使在甲处劳动的人数是在乙处劳动的人数的2倍,问应调往甲、乙两处各多少人?28、某机械厂加工车间有84名工人,平均每人每天加工大齿轮16个或者小齿轮10个,已知1个大齿轮与2个小齿轮刚好配成一套,问分别安排多少名工人加工大,小齿轮,才能使每天加工的大小齿轮刚好配套?29、今年春节期间,张华同学和父母一起到距离家200公里的景区旅游.出发前,汽车油箱内储油45升;当行驶120公里时,发现油箱剩余油量为33升;已知油箱中剩余油量少于3升时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.30、甲队有50辆汽车,乙队有41辆汽车,将甲队一部分汽车调到乙队,使乙队的车数比甲队车数的2倍还多1辆,求从甲队调到乙队汽车的辆数.参考答案一、单选题(共15题,共计45分)2、B3、C4、D5、A6、D7、B8、A9、C10、B11、C12、B13、D14、D15、A二、填空题(共10题,共计30分)16、17、18、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。

浙教版数学七年级上册第5章《一元一次方程》单元测试卷【附解析】

浙教版数学七年级上册第5章《一元一次方程》单元测试卷【附解析】

浙教版七年级上册第5章《一元一次方程》单元测试卷满分100分班级__________姓名__________学号__________成绩__________一.选择题(共10小题,满分30分,每小题3分)1.已知下列方程:①x﹣2=;②3x﹣1=0;③2x=5x﹣5;④x2+2x﹣1=0;⑤x=8;⑥3x+2y=0.其中一元一次方程的个数是()A.2B.3C.4D.52.下列方程的解为x=1的是()A.3x+2=2x+3B.x+1=C.6=5﹣x D.2x﹣1=23.若a=b+2,则下面式子一定成立的是()A.a﹣b+2=0B.3﹣a=b﹣1C.2a=2b+2D.﹣=14.关于x的方程2x+5a=1的解与方程x+2=0的解相同,则a的值是()A.﹣1B.1C.D.25.方程|2x+1|=5的解是()A.2B.﹣3C.±2D.2或﹣36.要将等式﹣x=1进行一次变形,得到x=﹣2,下列做法正确的是()A.等式两边同时加B.等式两边同时乘以2C.等式两边同时除以﹣2D.等式两边同时乘以﹣27.已知一元一次方程﹣3=2x﹣1,则下列解方程的过程正确的是()A.去分母,得3(2﹣x)﹣3=2(2x﹣1)B.去分母,得3(2﹣x)﹣6=2x﹣1 C.去分母,去括号,得6﹣3x﹣6=4x﹣2D.去分母,去括号,得6+3x﹣6=2x+1 8.随着传统节日“端午节”临近,某超市决定开展“欢度端午,回馈顾客”的活动,将进价为120元一盒的某品牌粽子按标价的8折出售,仍可获利20%,则该超市该品牌粽子的标价为__元.()A.180B.170C.160D.1509.一项工程,甲单独做5天完成,乙单独做8天完成.若甲先做1天,然后甲、乙合作完成此项工作的.若设甲一共做了x天,则所列方程为()A.B.C.D.10.如图,数轴上的点O和点A分别表示0和10,点P是线段OA上一动点.点P沿O→A→O以每秒2个单位的速度往返运动1次,B是线段OA的中点,设点P运动时间为t 秒(t不超过10秒).若点P在运动过程中,当PB=2时,则运动时间t的值为()A.秒或秒B.秒或秒秒或秒C.3秒或7秒D.3秒或秒或7秒或秒二.填空题(共6小题,满分24分,每小题4分)11.若2x3k﹣5=5是一元一次方程,则k=.12.由8x=3x﹣15移项,得8x﹣3x=﹣15.在此变形中,方程两边同时加上的式子是.13.当a=时,方程解是x=1?14.解方程5(x﹣2)=6(﹣).有以下四个步骤,其中第①步的依据是.解:①去括号,得5x﹣10=3x﹣2.②移项,得5x﹣3x=10﹣2.③合并同类项,得2x=8.④系数化为1,得x=4.15.定义新运算:aƱb=a﹣b+ab,例如:(﹣4)Ʊ3=﹣4﹣3+(﹣4)×3=﹣19,那么当(﹣x)Ʊ(﹣2)=2x时,x=.16.在一张普通的月历中,相邻三行里同一列的三个日期数之和为27,则这三个数分别是.三.解答题(共6小题,满分46分)17.(6分)解下列方程(1)2x=﹣3(x+5)(2)﹣1=18.(8分)已知关于x的一元一次方程4x+2m=3x﹣1,(1)求这个方程的解;(2)若这个方程的解与关于x的方程3(x+m)=﹣(x﹣1)的解相同,求m的值.19.(6分)某学校安排学生住宿,若每室住7人,则有10人无法安排;若每室住8人,则恰好空出2个房间.这个学校的住宿生有多少人?20.(8分)某班级想购买若干个篮球和排球,某文具店篮球和排球的单价之和为35元,篮球的单价比排球的单价的2倍少10元.(1)求篮球和排球的单价各是多少元;(2)该文具店有两种让利活动,购买时只能选择其中一种方案.方案一:所有商品打7.5折销售;方案二:全场购物每满100元,返购物券30元(不足100元不返券),购物券全场通用,若该班级需要购买15个篮球和10个排球,则哪一种方案更省钱,并说明理由.21.(9分)已知:如图,点A、点B为数轴上两点,点A表示的数为a,点B表示的数为b,a与b满足|a+4|+(b﹣8)2=0.动点P从点A出发,以2个单位长度/秒的速度沿数轴向右运动,同时动点Q从点B出发,以1个单位长度/秒的速度沿数轴向右运动.(1)直接写出a、b的值,a=,b=;(2)设点P的运动时间为t秒,当t为何值时,P、Q两点相距20个单位长度;(3)若在运动过程中,动点Q始终保持原速度原方向,动点P到达原点时,立即以原来的速度向相反的方向运动.设点P的运动时间为t秒,当t为何值时,原点O分线段PQ为1:3两部分.22.(9分)根据绝对值定义,若有|x|=4,则x=4或﹣4,若|y|=a,则y=±a,我们可以根据这样的结论,解一些简单的绝对值方程,例如:|2x+4|=5解:方程|2x+4|=5可化为:2x+4=5或2x+4=﹣5当2x+4=5时,则有:2x=1,所从x=当2x+4=﹣5时,则有:2x=﹣9;所以x=﹣故,方程|2x+4|=5的解为x=或x=﹣(1)解方程:|3x﹣2|=4;(2)已知|a+b+4|=16,求|a+b|的值;(3)在(2)的条件下,若a,b都是整数,则a•b的最大值是(直接写结果,不需要过程).参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:①x﹣2=,是方式方程;②3x﹣1=0,是一元一次方程;③2x=5x﹣5,是一元一次方程;④x2+2x﹣1=0,是一元二次方程;⑤x=8,是一元一次方程;⑥3x+2y=0,是二元一次方程.故选:B.2.解:A、把x=1代入方程3x+2=2x+3得:左边=3+2=5,右边=2+3=5,左边=右边,所以x=1是方程3x+2=2x+3的解,故本选项符合题意;B、x+1=,解得:x=﹣,所以x=1不是方程x+1=的解,故本选项不符合题意;C、6=5﹣x,解得:x=﹣1,所以x=1不是方程6=5﹣x的解;D、2x﹣1=2,解得:x=1.5,所以x=1不是方程2x﹣1=2的解,故本选项不符合题意;故选:A.3.解:∵a=b+2,∴a﹣b﹣2=0,所以A选项不成立;∵a=b+2,∴3﹣a=3﹣b﹣2=1﹣b,所以B选项不成立;∵a=b+2,∴2a=2b+4,所以C选项不成立;∵a=b+2,∴﹣=1,所以D选项成立.故选:D.4.解:由x+2=0,得x=﹣2;把x=﹣2代入2x+5a=1得:﹣4+5a=1,解得a=1.故选:B.5.解:根据题意,原方程可化为:2x+1=5或2x+1=﹣5,解得x=2或x=﹣3,故选:D.6.解:将等式﹣x=1进行一次变形,等式两边同时乘以﹣2,得到x=﹣2.故选:D.7.解:去分母得3(2﹣x)﹣6=2(2x﹣1)去括号得,6﹣3x﹣6=4x﹣2,移项得,﹣3x﹣4x=﹣2﹣6+6合并同类项得,﹣7x=﹣2,系数化为1得x=,故选:C.8.解:设该超市该品牌粽子的标价为x元,则售价为80%x元,由题意得:80%x﹣120=20%×120,解得:x=180.即该超市该品牌粽子的标价为180元.故选:A.9.解:设甲一共做了x天,由题意得:+=,故选:B.10.解:①当0≤t≤5时,动点P所表示的数是2t,∵PB=2,∴|2t﹣5|=2,∴2t﹣5=﹣2,或2t﹣5=2,解得t=或t=;②当5≤t≤10时,动点P所表示的数是20﹣2t,∵PB=2,∴|20﹣2t﹣5|=2,∴20﹣2t﹣5=2,或20﹣2t﹣5=﹣2,解得t=或t=.综上所述,运动时间t的值为秒或秒秒或秒.故选:B.二.填空题(共6小题,满分24分,每小题4分)11.解:∵2x3k﹣5=5是一元一次方程,∴3k﹣5=1,解得k=2,故答案为:2.12.解:由8x=3x﹣15移项,得8x﹣3x=﹣15,在此变形中,方程两边同时加上的式子是﹣3x.故答案为:﹣3x.13.解:把x=1代入原方程,得+=1,去分母,得:2(a﹣1)+3(1+a)=6,去括号,得:2a﹣2+3+3a=6,移项、合并同类项,得:5a=5,系数化为1,得:a=1,故答案为:1.14.解:第①步去括号的依据是:乘法分配律.故答案是:乘法分配律.15.解:∵aƱb=a﹣b+ab,(﹣x)Ʊ(﹣2)=2x,∴﹣x+2+2x=2x,解得x=2.故答案为:2.16.解:设三个数中最小的数为x,则另外两个数分别为(x+7),(x+14),依题意,得:x+x+7+x+14=27,解得:x=2,∴x+7=9,x+14=16.故答案为:2,9,16.三.解答题(共6小题,满分46分)17.解:(1)2x=﹣3(x+5),去括号,得:2x=﹣3x﹣15,移项,得:2x+3x=﹣15,合并同类项,得:5x=﹣15,系数化为1,得:x=﹣3;(2)﹣1=,去分母,得:3(5y﹣1)﹣18=2(4y﹣7),去括号,得:15y﹣3﹣18=8y﹣14,移项,得:15y﹣8y=3+18﹣14,合并同类项,得:7y=7,系数化为1,得:y=1.18.解:(1)移项,得4x﹣3x=﹣1﹣2m,所以x=﹣1﹣2m;(2)去括号,得3x+3m=﹣x+1,移项,得4x=1﹣3m解得x=由于两个方程的解相同,∴﹣1﹣2m=即﹣4﹣8m=1﹣3m解,得m=﹣1答:m的值为﹣1.19.解:设这个学校的有x间宿舍,由题意可知:7x+10=8(x﹣2),解得:x=26,∴这个学校的住宿生为:8×24=192,答:这个学校的住宿生有192人.20.解:(1)设排球的单价是x元,则篮球的单价是(2x﹣10)元,依题意,得:x+2x﹣10=35,解得:x=15,∴2x﹣10=20.答:篮球的单价是20元,排球的单价是15元.(2)选择方案一更省钱,理由如下:选择方案一所需费用为(20×15+15×10)×=337.5(元);选择方案二所需最低费用为20×15+15×10﹣×3=360(元).∵337.5<360,∴选择方案一更省钱.21.解:(1)依题意有:a+4=0,b﹣8=0,解得:a=﹣4;b=8;(2)AB=8﹣(﹣4)=12,依题意有2x﹣x=12+20,解得x=32;(3)①3(4﹣2t)=8+t,解得:t=;②3(2t﹣4)=8+t,解得:t=4;③2t﹣4=3(8+t),解得:t=﹣28(舍去).故当t为秒或4秒时,原点O分线段PQ为1:3两部分.故答案为:﹣4,8.22.解:(1)解方程:|3x﹣2|=43x﹣2=4或3x﹣2=﹣4解得x=2或x=﹣,故方程|3x﹣2|=4的解为x=2,x=﹣;(2)已知|a+b+4|=16,a+b+4=16或a+b+4=﹣16解得a+b=12或a+b=﹣20所以|a+b|=12或20,答:|a+b|的值为12或20;(3)在(2)的条件下,若a,b都是整数,a+b=12或a+b=﹣20,根据有理数乘法法则可知:当a=﹣10,b=﹣10时,a•b取得最大值,最大值为100.答:a•b的最大值是100.故答案为100.。

浙教版2022年七年级上册第5章《一元一次方程》单元检测题(含解析)

浙教版2022年七年级上册第5章《一元一次方程》单元检测题(含解析)

浙教版2022年七年级上册第5章《一元一次方程》单元检测题满分100分一、选择题(共30分)1.下列说法中正确的是( )A .含有未知数的式子叫方程B .能够成为等式的式子叫方程C .方程就是等式,等式就是方程D .方程就是含有未知数的等式 2.下列方程是一元一次方程的是( )A .3412x x +=-B .2210x x +-=C .235x y -=D .132x x -= 3.下列方程中,解为2x =-的是( )A .22x x -=B .3121x x +=-C .313x x -=+D .322x x +=--4.运用等式性质进行的变形,正确的是( )A .如果33a b =,那么a b =B .如果a b =,那么a b c c= C .如果a b =,那么a c b c +=-D .如果23a a =,那么3a = 5.方程3141136x x --=-去分母后,正确的是( ) A .2(31)1(41)x x -=-- B .2(31)641x x -=-- C .2(31)6(41)x x -=-- D .31141x x -=-+6.一只蜗牛蚁在数轴上先向左爬6个单位,再向右爬3个单位,所在位置正好距离数轴原点2个单位,则蜗牛的起始位置所表示的数是( )A .5B .1-或5C .0或5-D .1或5 7.在解关于x 的方程2235x x a ++=-时,小颖在去分母的过程中,右边的“2-”漏乘了公分母15,因而求得方程的解为4x =,则方程正确的解是( )A .10x =-B .16x =C .203x =D .4x =8.一个两位数十位数字与个位数字的和是7,把这个两位数加上45,结果恰好等于个位与十位数字对调后组成的两位数,则这个两位数是( )A .16B .25C .34D .619.如图,在11月的日历表中用框数器“”框出3,5,11,17,19五个数,它们的和为55,若将 “”在图中换个位置框出五个数,则它们的和可能是( )A .40B .88C .107D .11010.若关于x 的方程534x kx -=+有整数解,那么满足条件的所有整数k 的和为( )A .20B .6C .4D .2 二、填空题(共18分)11.若方程()1230a a x --+=是关于x 的一元一次方程,则a 的值是_________.12.等式4152y y -=-移项,得到________.(不用求解)13.若8313x x ++-=,则x =___________.14.甲、乙两个足球队连续进打对抗赛,规定胜一场得3分,平一场得1分,负一场得0分,共赛10场,甲队保持不败,得22分,甲队胜___________场.15.《九章算术》中记载这样一道题:今有牛、马、羊食人苗.苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”大意是:现在有一头牛、一匹马、一只羊吃了别人家的禾苗.禾苗的主人要求这些动物的主人共计赔偿五斗粟米.羊的主人说:“我家羊只吃了马吃的禾苗的一半.”马的主人说:“我家马只吃了牛吃的禾苗的一半."按此说法,羊的主人应当赔偿给禾苗的主人多少斗粟米?设羊的主人赔x 斗,根据题意,可列方程为________. 16.规定一种新的运算:*2a b a b =--,求211*132x x -+=的解是 _____. 三、解答题(共52分)17.(6分)解方程 (1)()3836x +-= (2)1124x x -=--.18.(6分)解方程:(1)123(2)47x x --=+ (2)0.4320.20.5x x +--=19.(6分)一套仪器由2个A 部件和5个B 部件构成,用1m 3钢材可做40个A 部件或200个B 部件,现要用63m 钢材制作这种仪器,应用多少钢材做A 部件,多少钢材做B 部件,恰好能使这种仪器刚好配套?20.(6分)甲乙两人承包铺地砖任务,若甲单独做需20小时完成,乙单独做需要12小时完成.甲乙二人合做6小时后,乙有事离开,剩下的由甲单独完成.问甲还要几个小时才可完成任务?21.(9分)方程的解的定义:使方程两边相等的未知数的值.如果一个方程的解都是整数,那么这个方程叫做“立信方程”(1)若“立信方程”211x +=的解也是关于x 的方程()123x m --=的解,则=m ____________;(2)若关于x 的方程2340x x +-=的解也是“立信方程”26230x x n +--=的解,求n 的值.(3)关于x 的方程9314x kx -=+是“立信方程”,直接写出符合要求的正整数k 的值.22.(9分)某中学组织学生参加文艺汇演,如果单租45座客车若干辆,且每辆刚好坐满;如果单租60座客车,可少租一辆,且空15个座位.已知45座客车租金为每辆250元,60座客车租金为每辆300元,试问:(1)求参加文艺汇演的学生总人数是多少?(2)如果单租,哪种客车省钱?(3)如果同时租用两种客车分别租多少辆最省钱?-表示a与b之差的绝对值,实际上也可理解为a与b两数在数轴上所对应的两点之23.(10分)探究与发现:a bx-的几何意义是数轴上表示有理数x的点与表示有理数3的点之间的距离.间的距离.如3(1)如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且20AB=,则数轴上点B表示的数;x-=,则x=.(2)若82(3)拓展与延伸:在(1)的基础上,解决下列问题:动点P从O点出发,以每秒5个单位长度的速度沿数轴向右匀t t>秒.求当t为多少秒时?A,P两点之间的距离为2;速运动,设运动时间为()0(4)数轴上还有一点C所对应的数为30,动点P和Q同时从点O和点B出发分别以每秒5个单位长度和每秒10个单位长度的速度向C点运动,点Q到达C点后,再立即以同样的速度返回,点P到达点C后,运动停止.设运动t t>秒.问当t为多少秒时?P,Q之间的距离为4.时间为()0参考答案1.D【分析】根据方程的定义结合选项选出正确答案即可.【详解】A 、1x +含有未知数,但不是方程,A 选项错误;B 、213+=是等式,但不是方程,B 选项错误;C 、213+=是等式,但不是方程,C 选项错误;D 、方程就是含有未知数的等式,D 选项正确;故选:D .【点睛】主要考查了方程的定义,解题的关键是掌握方程的定义:含未知数的等式叫方程.2.A【分析】根据一元一次方程的定义,逐个判断即可.【详解】解:A 、符合一元一次方程的定义,故A 正确;B 、未知数的最高次数是2次,不是一元一次方程,故B 错误;C 、是二元一次方程,故C 错误;D 、分母中含有未知数,是分式方程,故D 错误.故选:A .【点睛】考查了一元一次方程的定义,方程的两边都是整式,只含有一个未知数,并且未知数的次数都是1,像这样的方程叫做一元一次方程.3.B【分析】根据方程解的定义,将方程的解代入方程的左边与右边,求代数式的值,验证方程左右两边的值是否相等即可.【详解】解:当2x =-,方程左边=22426x -=--=-,方程右边=-2,左边≠右边,故解为2x =-的不是选项A ; 当2x =-,方程左边=,()31321615x +=⨯-+=-+=-,方程右边=21415x -=--=-,左边=右边,故解为2x =-是选项B ;当2x =-,方程左边=()313217x -=⨯--=-,方程右边=3231x +=-+=,左边≠右边,故解为2x =-的不是选项C ; 当2x =-,方程左边=()32322624x +=⨯-+=-+=-,方程右边=()2220x =--=---=-2,左边≠右边,故解为2x =-的不是选项D ;故选择B .【点睛】考查方程的解,代数式的值,掌握方程的解;使方程左右两边值相等的未知数的值是方程的解是解题关键.4.A【分析】根据等式的基本性质,逐项判断即可求解.【详解】解:A 、如果33a b =,那么a b =,故本选项正确,符合题意; B 、如果a b =,当0c ≠时,那么a b c c =,故本选项错误,不符合题意; C 、如果a b =,那么a c b c +=+,故本选项错误,不符合题意;D 、如果23a a =,那么3a =或0,故本选项错误,不符合题意;故选:A【点睛】主要考查了等式的性质:等式的左、右两边同时加上或减去同一个数,等式仍然成立;等式的左、右两边同时乘上或除以同一个数(0除外),等式仍然成立.5.C【分析】方程两边乘以最小公倍数6,化简后即可作出判断.【详解】方程两边乘以最小公倍数6,得:3141616636x x --⨯=⨯-⨯, 即2(31)6(41)x x -=--;故选:C .【点睛】考查了解一元一次方程的去分母,注意去分母时,不要漏乘了右边的1,还有去分母后,分子若是多项式,则应把分子放到括号里.6.D【分析】设蜗牛的起始位置所表示的数为x ,根据题意可得632x -+=±,然后求解即可.【详解】解:设蜗牛的起始位置所表示的数为x ,蜗牛蚁在数轴上先向左爬6个单位,再向右爬3个单位,所在位置正好距离数轴原点2个单位,∴632x -+=±, 5x ∴=或1x =故选:D .【点睛】此题考查了数轴上的点所表示的数、绝对值的意义与一元一次方程的应用,熟练掌握点在数轴上移动时所表示的数的变化规律列出方程是解答此题的关键.7.A【分析】先根据小颖解方程的过程求出a 的值,然后正确求出原方程的解即可.【详解】解:由题意得()()5232x x a +=+-的解为4x =,∴()()542342a ⨯+=+-, 解得203a =, ∴2023235x x ++=-,去分母得:()20523303x x ⎛⎫+=+- ⎪⎝⎭, 去括号得:51032030x x +=+-,移项得:53203010x x -=--,合并得:220x =-,解得:10x =-,故选A .【点睛】主要考查了解一元一次方程,正确理解题意是解题的关键.8.A【分析】先设这个两位数的十位数字和个位数字分别为x ,7-x ,则这个两位数为10x+7-x=9x+7,对调后的两位数为10(7-x )+x=70-9x ,根据题意列出方程9x+7+45=70-9x ,解这个方程,求出这个两位数.【详解】解:设十位数字为x ,则个位数字为7-x ,由题意得:10x+7-x+45=10(7-x )+x ,解得:x=1,所以个位数为:7-x=7-1=6,答:这个两位数这16.故选:A .【点睛】此题主要考查了一元一次方程的应用,属于数字问题,培养学生用方程解决问题的能力.9.D【分析】设正中间的数为x ,则x 为整数,再求得这5个数的和为5x ,令5x 的值分别为40、88、107、110,分别列方程求出x 的值并进行检验,即可得到符合题意的答案.【详解】解:设正中间的数为x ,则x 为整数,这5个数的和为:86685x x x x x x +-+-++++=,当540x =时,得8x =,∴80x -=,∴8x =不符合题意;当588x =时,得885x =,不符合题意; 当5107x =时,得1075x =,不符合题意; 当5110x =时,得22x =,符合题意;∴它们的和可能是110,故选:D .【点睛】考查一元一次方程的解法、列一元一次方程解应用题等知识,设正中间的数为x ,求得五个数的和是5x 并分类讨论是解题的关键.10.A【分析】先解方程可得75x k=-,再根据关于x 的方程534x kx -=+有整数解,k 为整数,可得51k -=±或57k -=±,从而可得答案. 【详解】解:∴534x kx -=+,∴57x kx -=,即()57k x -=,当50k -≠时, ∴75x k=-, ∴关于x 的方程534x kx -=+有整数解,k 为整数,∴51k -=±或57k -=±,解得:4k =或6k =或2k =-或12k =,∴()4621220++-+=,∴满足条件的所有整数k 的和为20.故选A .【点睛】考查的是一元一次方程的解与方程的解法,掌握“方程的整数解的含义以及求解整数解的方法”是解的关键. 11.2-【分析】根据一元一次方程的定义列式求解即可.【详解】解:由题意得11a -=且20a -≠,解得2a =-.故答案为:2-.【点睛】考查了一元一次方程的定义,方程的两边都是整式,只含有一个未知数,并且未知数的次数都是1,象这样的方程叫做一元一次方程,熟练掌握定义是解答的关键.12.4251y y +=+【分析】利用等式的性质将方程移项即可.【详解】解:等式4152y y -=-,移项得:4251y y +=+,故答案为:4251y y +=+.【点睛】此题考查了解一元一次方程,熟练掌握等式的性质是解的关键.13.9-或4【分析】根据绝对值的性质进行分类讨论即可求解.【详解】解:当∴8x <-时, ∴8313x x ++-=,∴8313x x --+-=,解得:9x =-;∴83x -≤≤时, ∴8313x x ++-=,∴8313x x ++-=,即1113=,不符合题意;∴当3x >时, ∴8313x x ++-=,∴8313x x ++-=,解得:4x =,∴x 的值为9-或4,故答案为:9-或4.【点睛】主要考查了解绝对值方程,解一元一次方程,掌握绝对值的性质是解题的关键.14.6【分析】设甲胜了x 场,则平了()10x -场,根据“共赛10场,甲队保持不败,得22分”列出方程并解答.【详解】解:设甲队胜了x 场,由题意得:()31022x x +-=,解得6x =,答:甲队胜了6场,故答案为:6.【点睛】考查了一元一次方程的应用,解答的关键是明确题意,找出等量关系,列出方程.15.245++=x x x【分析】设羊的主人赔x 斗,则马的主人赔2x 斗,牛的主人赔4x 斗,根据题意,列出方程,即可求解.【详解】解:设羊的主人赔x 斗,则马的主人赔2x 斗,牛的主人赔4x 斗,根据题意得:245++=x x x .故答案为:245++=x x x【点睛】主要考查了一元一次方程的应用,明确题意,准确得到等量关系是解题的关键.16.57x = 【分析】已知等式利用题中的新定义化简,计算即可求出解. 【详解】解:根据题中的新定义化简得:2112132x x -+--=, 去分母得:()()12221316x x ---+=,去括号得:1242336x x -+--=,移项合并得:75x -=-, 解得:57x =. 故答案为:57x =. 【点睛】主要考查了解一元一次方程,以及有理数的混合运算,弄清题中的新定义是解的关键. 17.(1)5x =- (2)12x =-【分析】(1)按照去括号、移项、合并同类项、系数化为1的步骤解方程即可;(2)按照去分母、移项、合并同类项、系数化为1的步骤解方程即可.【详解】(1)解:()3836x +-=去括号得,32436x +-=,移项得,36243x =-+,合并同类项得,315x =-,系数化为1得,5x =-(2)1124x x -=-- 去分母得,2144x x -=--,移项得,2441x x +=-+,合并同类项得,63=-x ,系数化为1得,12x =- 【点睛】此题考查了一元一次方程,熟练掌握一元一次方程的解法是解题的关键.18.(1)117x =(2)2x =-【分析】(1)展开、移项、合并同类项、再将x 系数化为1;(2)先利用分数的基本性质把分母化为整数,再去分母,再合并同类项,再求解.【详解】(1)解:123(2)47x x --=+去括号得,123647x x -+=+,移项得,347126x x --=--,合并同类项得,711x -=-,系数化1得,117x =(2)0.4320.20.5x x +--= 原方程变形得,5221162x x +--=, 去分母得,()52262x x +--=,去括号得,52262x x +-+=,移项得,52226x x -=--,合并同类项得,36x =-,系数化1得,2x =-【点睛】考查了一元一次方程求解,解题的关键是熟练掌握解一元一次方程的步骤.19.应用43m 钢材做A 部件,23m 钢材做B 部件,恰好能使这种仪器刚好配套.【分析】设应用3m x 钢材做A 部件,(6-x )3m 钢材做B 部件,然后根据等量关系列出方程,求解即可.【详解】解:设应用3m x 钢材做A 部件,(6-x )3m 钢材做B 部件,根据题意得,5×40x =2×200(6-x )解得x =46-x =2.答:应用43m 钢材做A 部件,23m 钢材做B 部件,恰好能使这种仪器刚好配套.【点睛】考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.20.甲还要4个小时后可完成任务.【分析】先求出甲乙合作6小时完成的工作量为1162012⎛⎫+⨯ ⎪⎝⎭,设甲还要x 个小时后可完成任务,则完成的工作量为120x ,由前后完成的工作量之和为1为等量关系建立方程求出其解即可. 【详解】解:设甲还要x 个小时后可完成任务,根据题意,得:11161202012x ⎛⎫++⨯= ⎪⎝⎭, 解得:=4x .答:甲还要4个小时后可完成任务.【点睛】考查了列一元一次方程解工程问题的运用题的运用,工作总量=工作效率×工作时间的运用,在解答时根据各部分工作量之和=工作总量建立方程是关键.21.(1)1(2)5n =(3)8,10,26【分析】(1)求出211x +=的解,将之代入()123x m --=求出m 值即可.(2)将2340x x +-=转化为234x x += 代入26230x x n +--=即可求处n 的值.(3)先求9314x kx -=+解的表达式,然后利用“立信方程”的解都是整数的定义找出正整数解即可.(1)解:∴211x +=∴x = 0把x = 0代入()123x m --=得12(0)3m --= ,即123m +=解得:m = 1(2)解:∴2340x x +-=∴234x x +=∴222(3)268x x x x +=+=由题意可知,关于x 的方程2340x x +-=的解也是“立信方程”26230x x n +--=的解.将2268x x +=代入26230x x n +--=得830n --=,解得n = 5(3)解:解关于x 的方程9314x kx -=+得,()1799x k k=≠- 当9k -取1,1- ,17,17-时,即k 取8,10,-8,26时,x 的值为整数.∴符合要求的正整数k 的值为8,10,26.【点睛】主要考查一元一次方程的解的应用,能根据立信方程的定义是解的关键.22.(1)学生225人(2)单租60座的客车省钱(3)租1辆45座的客车和3辆60座的客车最省钱【分析】(1)设单租x 辆45座客车,则参加文艺汇演的学生总人数为45x 人,由题意得:4560115x x =--(),计算求出x 的值,进而可得45x 的值;(2)分别计算单租不同客车的租金,然后进行比较即可;(3)设租x 辆45座客车,y 辆60座客车,则4560225x y +=,根据x y ,均为正整数进行求解即可.解:设单租x 辆45座客车,则参加文艺汇演的学生总人数为45x 人,由题意得:4560115x x =--(),解得:5x =.则455225⨯=(人).∴参加文艺汇演的学生总人数为225人.(2)解:由题意知,单租45座客车,租金为52501250⨯=元;单租60座客车,租金为43001200⨯=元;∴12501200>,∴单租60座客车更省钱.(3)解:设租x 辆45座客车,y 辆60座客车,则4560225x y +=,∴x y ,均为正整数,解得:13x y ==,,∴租1辆45座客车,3辆60座客车最省钱.【点睛】考查了一元一次方程的应用.解题的关键在于理解题意,列出正确的方程.23.(1)12-(2)6或10(3)当t 为65秒时,A ,P 两点之间的距离为2 (4)当t 为85或165或6815或7615秒时,P ,Q 之间的距离为4【分析】(1)利用数轴上两点间的距离公式,找出点B 表示的数;(2)利用绝对值的定义(绝对值是指一个数在数轴上所对应点到原点的距离),去掉绝对值符号;(3)找准等量关系,正确列出一元一次方程;(4)分0215t <<,2156t ≤<或6t ≥三种情况,找出关于t 的一元一次方程. 【详解】(1)数轴上点B 表示的数82012=-=-.故答案为:12-;(2)∴82x -=,∴82x -=-或82x -=,故答案为:6或10.(3)当运动时间为t 秒时,点P 表示的数为5t , 依题意得:582t -=,即582t -=-或582t -=, 解得:65t =或2t =. 答:当t 为65秒或2秒时,A ,P 两点之间的距离为2. (4)P 到达C 点时间:()30056-÷=(秒),Q 到达C 点时间:212301510--÷=(秒). 当0215t <<时,P 、Q 都没有到达C 点, 点P 表示的数为5t ,点Q 表示的数为1012t -,依题意得:()510124t t --=,即1254t -=或5124t -=, 解得:85t =或165t =; 当2156t ≤<时,Q 已经到达C 点,P 没有到达C 点, 点P 表示的数为5t ,点Q 表示的数为10301072215t t ⎛⎫--+=-+ ⎪⎝⎭, 依题意得:()510724t t --+=,即72154t -=或15724t -=, 解得:6815t =或7615t =; 当6t ≥时,P 、Q 都已经到达C 点点P 表示的数为30,点Q 表示的数为10301072215t t ⎛⎫--+=-+ ⎪⎝⎭, 依题意得:()3010724t --+=, 解得:235t =(不合题意,舍去). 答:当 t 为85或165或6815或7615秒时,P ,Q 之间的距离为 4. 【点睛】考查了一元一次方程的应用、数轴以及绝对值,解题的关键是运用分类讨论的思想去解决问题.。

第5章 一元一次方程数学七年级上册-单元测试卷-浙教版(含答案)

第5章 一元一次方程数学七年级上册-单元测试卷-浙教版(含答案)

第5章一元一次方程数学七年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、下列四组变形中,变形正确的是()A.由5x+7=0得5x=﹣7B.由2x﹣3=0得2x﹣3+3=0C.由=2得x=D.由5x=7得x=352、在解方程=1-时,去分母后正确的是()A.5x=1﹣3(x﹣1)B.x=1﹣(3x﹣1)C.5x=15﹣3(x﹣1) D.5x=3﹣3(x﹣1)3、若a=b-3,则b-a=()A.3B.-3C.0D.64、已知等式ax=ay,则下列变形不正确的是()A.x=yB.ax﹣1=ay﹣1C.D.3﹣ax=3﹣ay5、有m辆校车及n个学生,若每辆校车乘坐40名学生,则还有10名学生不能上车;若每辆校车乘坐43名学生,则只有1名学生不能上车.现有下列四个方程:①40m+10=43m﹣1;②= ;③= ;④40m+10=43m+1.其中正确的是()A.①②B.②④C.②③D.③④6、方程3x﹣1=4的解是()A.-B.C.﹣1D.17、如果x=2是方程x+a=5的解,那么a的值是( )A.-3B.-1C.2D.38、如果x=3是方程a+x=2x-a的解,那么a的值为()A.2B.6C.-1D.129、一件衣服标价132元,若以9折降价出售,仍可获利10%,则这件衣服的进价是( )A.106元B.105元C.118元D.108元10、如图,水平桌面上有个内部装水的长方体箱子,箱内有一个与底面垂直的隔板,且隔板左右两侧的水面高度为别为40公分,50公分,今将隔板抽出,若过程中箱内的水量未改变,且不计箱子及隔板厚度,则根据图中的数据,求隔板抽出后水面静止时,箱内的水面高度为多少公分()A.43B.44C.45D.4611、某人驾驶一小船航行在甲,乙码头之间,顺水航行需6h,逆水航行比顺水航行多用2h,若水流的速度是每小时2 km ,那么船在静水中的平均速度为每小时多少千米()A.14B.15C.16D.1712、已知关于x的方程2x﹣a=x﹣1的解是非负数,则a的取值范围为()A.a≥1B.a>1C.a≤1D.a<113、下列四组变形中,属于移项变形的是()A.由5 x+10=0,得5 x=﹣10B.由,得x=12C.由3 y=﹣4,得D.由2 x﹣(3﹣x)=6,得2 x﹣3+ x=614、已知等式,下列变形不一定成立的是()A. B. C. D.15、李老师奖励在数学竞赛中的优胜者,给小明80元去购买奖品笔记本和钢笔共30件,已知每本笔记本2元,每支钢笔5元,那么小明最多能买()支钢笔?A.5B.6C.7D.8二、填空题(共10题,共计30分)16、在等式两边同时________得;17、一件商品的进价为a元,将进价提高100%后标价,再按标价打七折销售,则这件商品销售后的利润为________元.18、若将一个两位数的十位数字与个位数字对调后所得的新两位数是其数字和的3倍,则原两位数是________;19、某商场将一款品牌时装按标价打九折出售,可获利80%,若按标价打七折出售,可获利________%.20、已知关于的方程是一元一次方程,则的值为________.21、“五一”长假小明和父母一起去云南旅游,他们到“野象谷”游玩是乘坐缆车进谷的,小明听导游说,这里的缆车单程长为2.35千米,在钢缆上来回均匀地安装着188个吊窗,并且这些吊窗按顺序编号:1,2,3,4,…,187,188.小明入谷时乘坐的是45号吊窗,途中他观察迎面而来的吊窗的编号,他先看到142号,过一会他又看到145号,那么当他和145号吊窗并排时,他离缆车终点还有约________22、某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润率增加了8个百分点,那么经销这种商品原来的利润率是________%(注:利润率= ×100%).23、某正数的两个平方根分别是和,的立方根是,则的算术平方根为________.24、将方程写成用含x的代数式表示y,则y=________.25、已知等式,无论x取何值等式都成立,则________.三、解答题(共5题,共计25分)26、若方程的解和关于的方程的解相同,求的值.27、在一次美化校园活动中,先安排31人去拔草,18人去植树,后又增派20人去支援他们,结果拔草的人数是植树的人数的2倍.问支援拔草和植树的分别有多少人?(只列出方程即可)28、如图,射线OC的端点O在直线AB上,∠AOC的度数比∠BOC的3倍多20°,求∠BOC的度数是多少?29、今年春节期间,张华同学和父母一起到距离家200公里的景区旅游.出发前,汽车油箱内储油45升;当行驶120公里时,发现油箱剩余油量为33升;已知油箱中剩余油量少于3升时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.30、甲、乙两人在笔直的道路上练习赛跑,甲每秒跑7m,乙每秒跑6.5m,若甲让乙先跑了一段距离后,则甲在60s后追上了乙,试求甲让乙先跑的距离.参考答案一、单选题(共15题,共计45分)1、A2、C3、A4、A5、D6、B7、D8、A9、D10、B11、A12、A13、14、C15、B二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。

浙教版七年级上册数学 第五章一元一次方程单元测试卷(含答案)

浙教版七年级上册数学 第五章一元一次方程单元测试卷(含答案)

浙教版七上数学第五章一元一次方程一、选择题1.下列方程中,是一元一次方程的是( )A.x2−4x=3B.3x−1=x2C.x+2y=1D.xy−3=52.下列等式变形正确的是( )A.若a=b,则a+c=b−c B.若ac=bc,则a=bC.若a=b,则ac=bcD.若(m2+1)a=(m2+1)b,则a=b3.已知关于x的方程8−3x=ax的解是x=−2,则a的值为( )A.1B.7C.52D.−74.把方程3x+2x−13=3−x+12去分母正确的是( )A.18x+2(2x−1)=18−3(x+1)B.3x+(2x−1)=3−(x+1)C.18x+(2x−1)=18−(x+1)D.3x+2(2x−1)=3−3(x+1)5.若x=1是关于x的方程3x−2m=1的解,则m的值是( )A.−1B.1C.−2D.36.如图,数轴上依次有A,B,C三点,它们对应的数分别是a,b,c,若BC=2AB=6,a+b+c=0,则点C对应的数为( )A.4B.5C.6D.87.如图,是2024年1月的月历,任意选取“十”字型中的五个数(比如图中阴影部分),若移动“十”字型后所得五个数之和为115,那么该“十”字型中正中间的号数为( )A.20B.21C.22D.238.《九章算术》中有如下问题:“以绳测井,若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺.问绳长、井深各几何?”其题意是:用绳子测量水井深度,如果将绳子折成三等份,那么每等份绳长比水井深度多四尺;如果将绳子折成四等份,那么每等份绳长比水井深度多一尺.问绳长和井深各多少尺?设绳长为x尺,则根据题意,可列方程为( )A.x3+4=x4+1B.x3−4=x4−1C.x3−1=x4−4D.x3−4=x4+19.如图,线段AB=24cm,动点P从A出发,以2cm/s的速度沿AB运动,M为AP的中点,N为BP的中点.以下说法正确的是( )①运动4s后,PB=2AM;②PM+MN的值随着运动时间的改变而改变;③2BM−BP的值不变;④当AN=6PM时,运动时间为2.4s.A.①②B.②③C.①②③D.②③④10.有一组非负整数:a1,a2,…,a2022.从a3开始,满足a3=|a1−2a2|,a4=|a2−2a3|,a5=|a3−2 a4|,…,a2022=|a2020−2a2021|.某数学小组研究了上述数组,得出以下结论:①当a1=2,a2=4时,a4=6;②当a1=3,a2=2时,a1+a2+a3+⋯+a20=142;③当a1=2x−4,a2=x,a5=0时,x=10;④当a1=m,a2=1(m≥3,m为整数)时,a2022=2020m−6059.其中正确的结论个数有( )A.1个B.2个C.3个D.4个二、填空题11.由a=b,得ac =bc,那么c应该满足的条件是 .12.如果方程3x m+1+2=0是关于x的一元一次方程,那么m的值是 .13.如果|x+8|=5,那么x= .14.若关于x的方程5x-1=2x+a的解与方程4x+3=7的解互为相反数,则a= .15.对于非零自然数a和b,规定符号⊗的含义是:a⊗b=m×a+b2×a×b(m是一个确定的整数).如果1⊗4=2⊗3,那么3⊗4等于 16.人民路有甲乙两家超市,春节来临之际两个超市分别给出了不同的促销方案:甲超市购物全场8.8折.乙超市购物①不超过200元,不给予优惠;②超过200元而不超过600元,打9折;③超过600元,其中的600元仍打9折,超过600元的部分打8折.(假设两家超市相同商品的标价都一样)当标价总额是 元时,甲、乙两家超市实付款一样.三、解答题17.解方程:(1)3x+5=2(x+4)(2)3x−14=1−x+8618.已知a-2(4-x)=5a是关于x的方程,且与方程6-x=x+32有相同的解.(1)求a的值.(2)求多项式8a2−2a+7−5的值.若两个一元一次方程的解相差1,则称解较大的方程为另一个方程的“后移方程”例如:方程x−2=0是方程x−1=0的“后移方程”19.判断方程2x+1=0是否为方程2x+3=0的“后移方程”;20.若关于x的方程3(x−1)−m=m+32是关于x的方程2(x−3)−1=3−(x+1)的“后移方程”,求m的值.21.一项工程,甲队独做10ℎ完成,乙队独做15ℎ完成,丙队独做20ℎ完成,开始时三队合作,中途甲队另有任务,由乙、丙两队完成,从开始到工程完成共用了6ℎ,问甲队实际工作了几小时?22.将连续奇数1,3,5,7,9,…排列成如下的数表:(1)设中间数为x,用式子表示十字框中五个数之和.(2)十字框中的五个数之和能等于2024吗?若能,请写出这五个数;若不能,请说明理由.23.用A,B两种型号的机器生产相同的产品,产品装入同样规格的包装箱后运往仓库.已知每台B型机器比A型机器一天多生产2件产品,3台A型机器一天生产的产品恰好能装满5箱,4台B型机器一天生产的产品恰好能装满7箱.每台A型机器一天生产多少件产品?每箱装多少件产品?下面是解决该问题的两种方法,请选择其中的一种方法,完成分析填空和解答.【方法一】分析:设每箱装x件产品,则3台A型机器一天共生产①▲)件产品,4台B型机器一天共生产( ▲)件产品,再根据题意列方程.【方法二】分析:设每台A型机器一天生产x件产品,则每台B型机器一天生产(x+2)件产品,3台A型机器一天共生产(①▲)件产品,4台B型机器一天共生产(②▲)件产品,再根据题意列方程.解:设每箱装x 件产品.答:(写出完整的解答过程)解:设每台A 型机器一天生产x 件产品答:(写出完整的解答过程)24.如图,点A 、B 、C 、D 在数轴上,点A 表示的数是−3,点D 表示的数是9,AB =2,CD =1.(1)线段BC =______.(2)若点B 以每秒1个单位长度的速度向右匀速运动,同时点C 以每秒2个单位长度的速度向左匀速运动,运动t 秒后,BC =3,求t 的值.(3)若线段AB 以每秒1个单位长度的速度向左匀速运动,同时线段CD 以每秒2个单位长度的速度向左匀速运动,M 是AC 中点,N 为BD 中点,运动t 秒后(0<t <9),求线段MN 的长度.答案解析部分1.【答案】B2.【答案】D3.【答案】D4.【答案】A5.【答案】B6.【答案】B7.【答案】D8.【答案】B9.【答案】D10.【答案】B11.【答案】c≠012.【答案】013.【答案】-13或-314.【答案】-415.【答案】111216.【答案】75017.【答案】(1)x=3(2)x=−1 1118.【答案】(1)解:6-x=x+32,去分母得:12-2x=x+3,移项合并得:-3x=-9,解得:x=3,把x=3代入a-2(4-x)=5a得:a-2=5a,解得:a=-1 2.(2)解:当a=-12时,原式=-2【答案】19.方程2x+1=0是方程2x+3=0的后移方程20.m=521.【答案】解:设三队合作时间为xh,乙、丙两队合作为(6−x)ℎ,总工程量为1,由题意得:(110+115+120)x+(115+120)(6−x)=1,解得:x=3,答:甲队实际工作了3小时22.【答案】(1)解:设中间数为x,则另4个数分别为x−16、x+16、x−2、x+2,所以十字框中五个数之和为x+(x−16)+(x+16)+(x−2)+(x+2)=5x.(2)解:设中间的数为x,依题意可得:5x=2024,解得:a=404.8因为a=404.8不是整数,与题目的a是奇数不符,所以5数之和不能等于2024.23.【答案】解:【方法一】①设每箱装x件产品,则3台A型机器一天共生产3x件产品,4台B型机器一天共生产7x件产品,依题意列方程,得5x3+2=7x4,解得:x=24,故5x3=40,即每台A型机器一天生产40件产品,每箱装24产品.【方法二】设每台A型机器一天生产x件产品,则每台B型机器一天生产(x+2)件产品,3台A型机器一天共生产3x件产品,4台B型机器一天共生产4(x+2)件产品,依题意列方程,得3x5=4(x+2)7,解得:x=40,故3x5=24,即每台A型机器一天生产40件产品,每箱装24产品. 24.【答案】(1)9(2)2或4(3)3 2。

浙教版七年级上册第5章《一元一次方程》单元测试卷含答案

浙教版七年级上册第5章《一元一次方程》单元测试卷含答案

浙教版七年级上册第 5 章《一元一次方程》单元测试卷满分 100 分姓名:___________班级:___________学号:___________题号 得分一二三总分一.选择题(共 10 小题,满分 30 分,每小题 3 分) 1.下列式子是一元一次方程的是( )A .3x ﹣1=B .x 2﹣4x =2C .x+2y =3D .xy ﹣3=62.x =2 是下列方程( A .2x =6 )的解.B .(x ﹣3)(x+2)=0C .x 2=3D .3x ﹣6=0 3.把方程 x =1 变形为 x =2,其依据是( )A .等式的性质 1B .等式的性质 2C .乘法结合律D .乘法分配律 4.根据等式的性质,下列选项中等式不一定成立的是( )A .若 a =b ,则 a+2=b+2 C .若 = ,则 x =yB .若 ax =bx ,则 a =b D .若 3a =3b ,则 a =b5.解一元一次方程 9﹣3y =5y+5,移项正确的是( A .﹣3y+5y =5+9 B .﹣3y ﹣5y =5﹣9C .﹣3y ﹣5y =5+9D .﹣3y+5y =5﹣96.把方程 )+=16 的分母化为整数,结果应为(B . )A . C .+=16+=16 =160﹣ =160D .+7.已知 x =1 是方程 A .4﹣ = k 的解,则 k 的值是(C .) B .﹣D .﹣48.将一些课外书分给某班学生阅读,若每分 2 本,则剩余 35 本,若每人分 4 本,则还差 25 本,设这个班共有 x 名学生,则可列方程( A .2x+35=4x+25B .2x+35=4x ﹣25)C .2x ﹣35=4x+25 9.如图是某超市中“飘柔”洗发水的价格标签,一售货员不小心将墨水滴在标签上,使得 原价看不清楚,请你帮忙算一算,该洗发水的原价是(D .35+2x =25﹣4x)A .15.36 元B .16 元C .24 元D .23.04 元10.定义一种新运算“a ☆b ”的含义为:当 a ≥b 时,a ☆b =a+b ;当 a <b 时 ,a ☆b =a ﹣b .例 如:3☆(﹣4)=3+(﹣4)=﹣1,(﹣6)☆ =(﹣6)﹣ =﹣6 ,则方程(3x ﹣7) ☆(3﹣2x )=2 的值为( A .1B .二.填空题(共 6 小题,满分 18 分,每小题 3 分) 11.如果 x ﹣2=5,那么 x =5+12.如果方程(m ﹣1)x+2=0 是关于 x 的一元一次方程,那么 m 的取值范围是 )C .6 或D .6..13.如图是方程 1 ﹣ =的求解过程,其中依据等式的基本性质的步骤有.(填序号)14.如果关于 x 的方程 = 与 =3m 的解相同,则 m 的值为 .15.一条地下管线由甲工程队单独铺设需要 12 天,由乙工程队单独铺设需要 24 天,如果由 这两个工程队从两端同时施工,要多少天可以铺好这条管线?设要用 x 天可以铺好这条 管线,则可列方程.16.2004 年中国足球甲级联赛规定每队胜一场得 3 分、平一场得 1 分、负一场得 0 分,武 汉黄鹤楼队前 14 场保持不败,共得 30 分,该队共平了 三.解答题(共 7 小题,满分 52 分)场.17.(6分)解下列方程:(1)3x﹣(x﹣5)=2(2x﹣1)(2)18.(6分)下面是小明解方程7(x﹣1)﹣3x=2(x+3)﹣3的过程,请你仔细阅读,并解答所提出的问题:解:去括号,得7x﹣7﹣3x=2x+3﹣3.(第一步)移项,得7x﹣3x﹣2x=7+3﹣3.(第二步)合并同类项,得2x=7.(第三步)系数化为1,得x=.(第四步)(1)该同学解答过程从第步开始出错,错误原因是;(2)写出正确的解答过程.19.(6分)某中学七O一班有40位学生,班主任想在元旦联欢会上给每位学生发纪念品,已知纪念品软面抄每20本60元,硬面抄每30本120元,用150元共买了40本,则班主任软面抄和硬面抄各买了多少本?20.(7分)请阅读下列材料:让我们来规定一种运算:=ad﹣bc,例如:=2×5﹣3×4=10﹣12=﹣2.按照这种运算的规定,请回答下列的问题:(1)求的值;(2)若=,试用方程的知识求x的值.21.(8分)海洋服装厂生产一种西装和领带,西装每套定价300元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带定价打9折付款.现有某客户要到该服装厂购买西装50套,领带x条(x>50).(1)若该客户分别按两种优惠方案购买,需付款各多少元(用含x的式子表示).(2)若该客户购买西装50套,领带60条,请通过计算说明按哪种方案购买较为合算.(3)请通过计算说明什么情况下客户分别选择方案①和②购买较为合算.22.(9分)【定义】若关于x的一元一次方程ax=b的解满足x=b+a,则称该方程为“友好方程”,例如:方程2x=﹣4的解为x=﹣2,而﹣2=﹣4+2,则方程2x=﹣4为“友好方程”.【运用】(1)①﹣2x=4,②3x=﹣4.5,③x=﹣1三个方程中,为“友好方程”的是(填写序号);(2)若关于x的一元一次方程3x=b是“友好方程”,求b的值;(3)若关于x的一元一次方程﹣2x=mn+n(n≠0)是“友好方程”,且它的解为x=n,求m与n的值.23.(10分)如图,点A,B,C在数轴上表示的数分别是﹣3,3和1.动点P,Q两同时出发,动点P从点A出发,以每秒6个单位的速度沿A→B→A往返运动,回到点A停止运动;动点Q从点C出发,以每秒1个单位的速度沿C→B向终点B匀速运动.设点P的运动时间为t(s).(1)当点P到达点B时,求点Q所表示的数是多少;(2)当t=0.5时,求线段P Q的长;(3)当点P从点A向点B运动时,线段P Q的长为(用含t的式子表示);(4)在整个运动过程中,当P,Q两点到点C的距离相等时,直接写出t的值.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:A.它是一元一次方程.故本选项符合题意.B.它为一元二次方程.故本选项不符合题意.C.它为二元一次方程.故本选项不符合题意.D.它为二元二次方程.故本选项不符合题意.故选:A.2.解:将x=2代入各个方程得:A.2x=2×2=4≠6,所以,A错误;B.(x﹣3)(x+2)=(2﹣3)(2+2)=﹣4≠0,所以,B错误;C.x2=22=4≠3,所以,C错误;D.3x﹣6=3×2﹣6=0,所以,D正确;故选:D.3.解:将方程x=1两边都乘2,得x=2,这是依据等式的性质2.故选:B.4.解:∵若a=b,则a+2=b+2,∴选项A不符合题意;∵若ax=bx,则x=0时,a可以不等于b,∴选项B符合题意;∵若=,则x=y,∴选项C不符合题意;∵若3a=3b,则a=b,∴选项D不符合题意.故选:B.5.解:解一元一次方程9﹣3y=5y+5,移项正确的是:﹣3y﹣5y=5﹣9故选:B.6.解:把方程+=16的分母化为整数,结果应为:+=16.故选:B.7.解:把x=1代入方程得:﹣k﹣=k,去分母得:﹣4k﹣3=8k,解得:k=﹣.故选:B.8.解:设这个班共有x名学生,根据题意,得:2x+35=4x﹣25.故选:B.9.解:设原价为x元,由题意得0.8x=19.2,解得:x=24.答:原价为24元.故选:C.10.解:当3x﹣7≥3﹣2x,即x≥2时,由题意得:(3x﹣7)+(3﹣2x)=2,解得x=6;当3x﹣7<3﹣2x,即x<2时,由题意得:(3x﹣7)﹣(3﹣2x)=2,解得x=(舍去),∴x的值为6.故选:D.二.填空题(共6小题,满分18分,每小题3分)11.解:x﹣2=5,x=5+2,故答案为:212.解:∵方程(m﹣1)x+2=0是关于x的一元一次方程,∴m﹣1≠0.解得:m≠1.故答案为:m≠1.13.解:①去分母时,在方程两边同时乘上4,依据为:等式的性质2;③移项时,在方程两边同时加上﹣2x﹣4﹣1,依据为:等式的性质1;⑤系数化为1时,在等式两边同时除以﹣5,依据为:等式的性质2;故答案为:①③⑤.14.解:化简方程,得5x﹣1=14①,9x﹣1=39m②,①×9﹣②×5得﹣4=126﹣195m解得m=.故答案为:.15.解:设要用x天可以铺好这条管线,则可列方程:(+)x=1.故答案为:(+)x=1.16.解:设该队共平了x场,则胜了(14﹣x)场,依题意,得:x+3(14﹣x)=30,解得:x=6.故答案为:6.三.解答题(共7小题,满分52分)17.解:(1)去括号得:3x﹣x+5=4x﹣2,移项合并得:﹣2x=﹣7,解得:x=;(2)去分母得:2(2y+1)﹣18=3(y﹣1),去括号得:4y+2﹣18=3y﹣3,移项合并得:y=13.18.解:(1)该同学解答过程从第一步开始出错,错误原因是去括号时,3没乘以2,故答案为:一;去括号时,3没乘以2;(2)正确的解答过程为:去括号得:7x﹣7﹣3x=2x+6﹣3,移项得:7x﹣3x﹣2x=6﹣3+7,合并得:2x=10,系数化为1,得x=5.19.解:设软面抄x本,硬面抄(40﹣x)本,根据题意可得:x+(40﹣x)=150,解得:x=10∴40﹣x=30本,答:软面抄10本,硬面抄30本.20.解:(1)根据题中的新定义得:原式=3﹣28=﹣25;(2)根据题中的新定义化简得:2x+x﹣=,移项合并得:3x=2,解得:x=.21.解:(1)第一种方案:40x+13000.第二种方案36x+13500;(2)当x=60时,方案一:40×60+13000=15400(元)方案二:36×60+13500=15660(元)因为15400<15660所以,按方案一购买较合算.(3)由题意得:40x+13000=36x+13500,解得:x=125当领带条数x<125时,选择方案一更合适;当领带条数x=125时,选择方案一和方案二一样;当领带条数x>125时,选择方案二更合适.22.解:(1)①﹣2x=4,解得:x=﹣2,而﹣2≠﹣2+4,不是“友好方程”;②3x=﹣4.5,解得:x=﹣,而﹣=﹣4.5+3,是“友好方程”;③x=﹣1,解得:x=﹣2,﹣2≠﹣1+,不是“友好方程”;故答案是:②;(2)方程3x=b的解为x=.所以=3+b.解得b=﹣;(3)∵关于x的一元一次方程﹣2x=mn+n是“友好方程”,并且它的解是x=n,∴﹣2n=mn+n,且mn+n﹣2=n,解得m=﹣3,n=﹣.23.解:(1)[3﹣(﹣3)]÷6×1+1=2.故点Q所表示的数是2;(2)(1×0.5+1)﹣(﹣3+6×0.5)=1.5.故线段P Q的长是1.5;(3)①点P在点Q的左边时,即t<0.8s时,P Q=1+t﹣(﹣3+6t)=4﹣5t;②点P在点Q的右边时,即0.8s≤t<1s时,P Q=﹣3+6t﹣(1+t)=5t﹣4;综上所述,线段P Q的长为4﹣5t或5t﹣4.(4)①第一次相遇前,依题意有1﹣(﹣3+6t)=t,解得t=;②第一次相遇,依题意有(6﹣1)t=3﹣(﹣1),解得t=;(6+1)t=3﹣(﹣3)+3﹣1,④第二次相遇后,依题意有6t﹣(3+3+3﹣1)=t,解得t=.综上所述,t的值为或或或s.故答案为:4﹣5t或5t﹣4.解得:x=﹣,而﹣=﹣4.5+3,是“友好方程”;③x=﹣1,解得:x=﹣2,﹣2≠﹣1+,不是“友好方程”;故答案是:②;(2)方程3x=b的解为x=.所以=3+b.解得b=﹣;(3)∵关于x的一元一次方程﹣2x=mn+n是“友好方程”,并且它的解是x=n,∴﹣2n=mn+n,且mn+n﹣2=n,解得m=﹣3,n=﹣.23.解:(1)[3﹣(﹣3)]÷6×1+1=2.故点Q所表示的数是2;(2)(1×0.5+1)﹣(﹣3+6×0.5)=1.5.故线段P Q的长是1.5;(3)①点P在点Q的左边时,即t<0.8s时,P Q=1+t﹣(﹣3+6t)=4﹣5t;②点P在点Q的右边时,即0.8s≤t<1s时,P Q=﹣3+6t﹣(1+t)=5t﹣4;综上所述,线段P Q的长为4﹣5t或5t﹣4.(4)①第一次相遇前,依题意有1﹣(﹣3+6t)=t,解得t=;②第一次相遇,依题意有(6﹣1)t=3﹣(﹣1),解得t=;(6+1)t=3﹣(﹣3)+3﹣1,解得t=;④第二次相遇后,依题意有6t﹣(3+3+3﹣1)=t,解得t=.综上所述,t的值为或或或s.故答案为:4﹣5t或5t﹣4.解得:x=﹣,而﹣=﹣4.5+3,是“友好方程”;③x=﹣1,解得:x=﹣2,﹣2≠﹣1+,不是“友好方程”;故答案是:②;(2)方程3x=b的解为x=.所以=3+b.解得b=﹣;(3)∵关于x的一元一次方程﹣2x=mn+n是“友好方程”,并且它的解是x=n,∴﹣2n=mn+n,且mn+n﹣2=n,解得m=﹣3,n=﹣.23.解:(1)[3﹣(﹣3)]÷6×1+1=2.故点Q所表示的数是2;(2)(1×0.5+1)﹣(﹣3+6×0.5)=1.5.故线段P Q的长是1.5;(3)①点P在点Q的左边时,即t<0.8s时,P Q=1+t﹣(﹣3+6t)=4﹣5t;②点P在点Q的右边时,即0.8s≤t<1s时,P Q=﹣3+6t﹣(1+t)=5t﹣4;综上所述,线段P Q的长为4﹣5t或5t﹣4.(4)①第一次相遇前,依题意有1﹣(﹣3+6t)=t,解得t=;②第一次相遇,依题意有(6﹣1)t=3﹣(﹣1),解得t=;(6+1)t=3﹣(﹣3)+3﹣1,解得t=;④第二次相遇后,依题意有6t﹣(3+3+3﹣1)=t,解得t=.综上所述,t的值为或或或s.故答案为:4﹣5t或5t﹣4.。

第5章 一元一次方程数学七年级上册-单元测试卷-浙教版(含答案)

第5章 一元一次方程数学七年级上册-单元测试卷-浙教版(含答案)

第5章一元一次方程数学七年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、关于x的方程2(x-1)-a=0的根是3,则a的值是()A.4B.-4C.5D.-52、下面的等式中,是一元一次方程的为()A.3x+2y=0B.3+x=10C.2+=xD.x 2=163、甲、乙两班共有98人,若从甲班调3人到乙班,那么两班人数正好相等.设甲班原有人数是x人,可列出方程()A.98+x=x﹣3B.98﹣x=x﹣3C.(98﹣x)+3=x D.(98﹣x)+3=x﹣34、下列方程中解为x=2的是()A.3x+(10﹣x)=20B.4(x+0.5)+x=7C.x=﹣x+3D. (x+14)= (x+20)5、若关于x的方程mx m﹣2﹣m+3=0是一元一次方程,则这个方程的解是()A.x=0B.x=3C. x=-3D. x=26、甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是()A.1℃~3℃B.5℃~8℃C.3℃~5℃D.1℃~8℃7、某品牌服装折扣店将某件衣服按进价提高50%后标价,再打8折(标价的80%)销售,售价为240元.设这件衣服的进价为x元,根据题意,下面所列的方程正确的是()A. B. C.D.8、某商场为换季大清仓,以每件120元的价格出售两件衬衫,其中一件盈利,另一件亏损,那么在这次买卖中商场()A.不亏不赚B.亏了10元C.赚了10元D.赚了20元9、某商品的价格标签已丢失,售货员只知道”它的进价为80元,打七折出售后,仍可获利5%”你认为售货员应标在标签上的价格为()A.110元B.120元C.130元D.140元10、关于的方程的解为x=-1,则a的值为()A.5B.-1C.-5D.11、一列长为150米的火车,以每秒15米的速度通过600米的隧道,从火车进入隧道口算起,这列火车完全通过隧道所需要的时间是()A.30秒B.40秒C.50秒D.60秒12、下列说法正确的是()A.在等式ax=bx两边都除以x,可得a=bB.在等式两边都乘以x,可得a=bC.在等式3a=9b两边都除以3,可得a=3D.在等式两边都乘以2,可得x=y﹣113、下列方程是一元一次方程的是()A. B. C. D.14、下列等式变形错误的是()A.若,则;B.若,则C.若,则;D.若,则15、把方程的分母化为整数,以下变形正确的是()A. B. C.D.二、填空题(共10题,共计30分)16、线段,点从点开始向点以每秒1个单位长度的速度运动,点从点开始向点以每秒2个单位长度的速度运动,当其中一个点到达终点时另一个点也随之停止运动,当时,的值为________.17、如图,l1表示某个公司一种产品一天的销售收入与销售量的关系,l2表示该公司这种产品一天的销售成本与销售量的关系.当销售量=________时,利润为6万元.18、某商品的价格为a元,降价10%后,又降10%后,销售量猛增,这时商家决定提价20%,则最后这个商品的价格为________元.19、已知代数式6x﹣12与4+2x的值互为相反数,那么x的值等于________.20、已知二元一次方程3x-y=12,用含x的代数式表示y,则y=________。

浙教版初中数学七年级上册第五单元《一元一次方程》单元测试卷(标准难度)(含答案解析)

浙教版初中数学七年级上册第五单元《一元一次方程》单元测试卷(标准难度)(含答案解析)

浙教版初中数学七年级上册第五单元《一元一次方程》单元测试卷考试范围:第五章;考试时间:120分钟;总分:120分第I卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1.下列各式是一元一次方程的是( )A. −3x−y=0B. x=0C. 2+1x=3 D. 3x2+x=82.已知(m−3)x|m−2|+6=0是关于x的一元一次方程,则m的值为( )A. 1B. 2C. 3D. 1或33.下列方程中,是一元一次方程的是( )A. x2−4x=3B. x=0C. x+2y=1D. x−1=1x4.下列图中所示的球、圆柱、正方体的重量分别都相等,三个天平分别都保持平衡,那么第三个天平中,右侧秤盘上所放正方体的个数应为( )A. 5B. 4C. 3D. 25.下列说法正确的是( )A. 在等式ab=ac中,两边都除以a,可得b=cB. 在等式a=b两边都除以c2+1可得ac2+1=bc2+1C. 在等式ba =ca两边都除以a,可得b=cD. 在等式2x=2a−b两边都除以2,可得x=a−b6.下列等式变形中,错误的是( )A. 由a=b,得a+5=b+5B. 由−3x=−3y,得x=yC. 由x+m=y+m,得x=yD. 由a=b,得am =bm7.下列运用等式的性质变形不一定成立的是( )A. 若a=b,则a+6=b+6B. 若−3x=−3y,则x=yC. 若n+3=m+3,则n=mD. 若a=b,则ac =bc8.若代数式4x−5与2x−12的值相等,则x的值是 ( )A. 1B. 32C. 23D. 29.方程310a+2x+42=4(x−1)的解为x=3,则a的值为( )A. 2B. 22C. 10D. −210.若对任意有理数a,b,定义运算“∗”:a∗b=−2a+b3,则方程(2∗3)⋅(4∗x)=49的解为( )A. x=−3B. x=−55C. x=−56D. x=5511.已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x人,则( )A. 2x+3(72−x)=30B. 3x+2(72−x)=30C. 2x+3(30−x)=72D. 3x+2(30−x)=7212.某校社团活动课中,手工制作社的同学用一种彩色硬纸板制作某种长方体小礼品的包装盒,每张硬纸板可制作盒身12个,或制作盒底18个,1个盒身与2个盒底配成一套,现有42张这种彩色硬纸板,要使盒身和盒底刚好配套,若设需用x张做盒身,则下面所列方程正确的是( )A. 18(42−x)=12xB. 2×18(42−x)=12xC. 18(42−x)=2×12xD. 18(21−x)=12x第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13.如图所示为一块在电脑屏幕上出现的色块图,是由6个颜色不同的正方形拼成的长方形.如果中间最小的正方形的边长为1,那么所拼成的长方形的面积为.14.方程(a−2)x |a|−1+3=0是关于x的一元一次方程,则a=____.15.已知关于x的一元一次方程(a+3)x|a|−2+6=0,则a的值为______.16. 当x = 时,代数式8−x 4与4x+32的值互为相反数. 三、解答题(本大题共9小题,共72.0分。

2022-2023学年浙教版七年级数学上册《第5章一元一次方程》单元综合测试题(附答案)

2022-2023学年浙教版七年级数学上册《第5章一元一次方程》单元综合测试题(附答案)

2022-2023学年浙教版七年级数学上册《第5章一元一次方程》单元综合测试题(附答案)一.选择题(共10小题,满分30分)1.下列方程中是一元一次方程的是()A.x+3=0B.x2﹣3x=2C.x+2y=7D.2.方程4﹣3y=5y的解为y=()A.B.﹣2C.2D.3.下列方程的解为x=﹣3的是()A.5(x﹣1)=﹣4x+8B.C.4x+12=0D.﹣3x﹣1=04.运用等式性质进行的变形,正确的是()A.如果a=b,那么a+c=b﹣c B.如果ac=bc,那么a=bC.如果a=b,那么ac=bc D.如果a2=3a,那么a=35.解方程,去分母正确的是()A.2(2x+1)=1﹣3(x﹣1)B.2(2x+1)=6﹣3x﹣3C.2(2x+1)=6﹣3(x﹣1)D.3(2x+1)=6﹣2(x﹣1)6.某次篮球比赛计分规则为:胜一场积2分,负一场积1分,没有平场,八一队在篮球联赛共14场比赛中积23分,那么八一队胜了()场.A.6B.7C.8D.97.小明解方程﹣1=的步骤如下:解:方程两边同乘6,得3(x+1)﹣1=2(x﹣2)①去括号,得3x+3﹣1=2x﹣2②移项,得3x﹣2x=﹣2﹣3+1③合并同类项,得x=﹣4④以上解题步骤中,开始出错的一步是()A.①B.②C.③D.④8.一只钢笔优惠后现价120元,比原定价便宜了20%,则原定价为()元.A.100B.135C.160D.1509.小南在解关于x的一元一次方程时,由于粗心大意在去分母时出现漏乘错误,把原方程化为4x﹣m=3,并解得为x=1,请根据以上已知条件求出原方程正确的解为()A.B.x=1C.D.10.如图,甲、乙两人沿着长为90m的正方形按A→B→C→D→A的路线行走,甲从点A 出发,以50m/分钟的速度行走,同时,乙从点B出发,以70m/分钟的速度行走,当乙第一次追上甲时,将在正方形ABCD的()A.AB边B.BC边C.CD边D.DA边二.填空题(共5小题,满分15分)11.若关于x的方程(m﹣1)x|m|+5=6是一元一次方程,则m的值为.12.当x=时,式子与的值相等.13.甲、乙两人分别驾车从A、B两地同时相向而行,甲的速度为100千米/时,乙的速度是甲的速度,若经过3小时两人相距60千米,则A、B两地相距千米.14.已知关于x的一元一次方程x+2﹣x=m的解是x=71,那么关于y的一元一次方程y+3﹣(y+1)=m的解是.15.对于有理数x、y定义了一种新运算“*”,规定:x*y=xy﹣x﹣y.例如:1*2=1×2﹣1﹣2=﹣1,2*(﹣3)=2×(﹣3)﹣2﹣(﹣3)=﹣5,若x*=1*2x,那么x=.三.解答题(共7小题,满分55分)16.解方程:(1)5x+3=3x﹣15;(2)0.5x﹣0.7=6.5﹣1.3x.17.解方程:(1);(2).18.《孙子算经》里有题,请你解答:今有人盗库绢,不知所失几何.但闻草中分绢,人得六匹,盈六匹;人得七匹,不足七匹.问人、绢各几何?题意为:有盗贼窃去库存的绸缎,不知究竟窃去多少.有人在草丛中听到这帮盗贼分赃的情况,如果每个盗贼分6匹,就多出6匹;如果每个盗贼分得7匹,就缺少7匹.盗贼有几人?失窃的绸缎有几匹?19.我市某工厂有A、B两个车间,B车间每天生产560个零件,B车间每天比A车间多生产.(1)求A、B两个车间每天共生产多少个零件?(2)若工厂每天把生产出来的全部零件,按照5:3的比配送给甲、乙两个商店进行销售,求配送给甲、乙每个商店的零件各是多少个?20.某品牌扫地机数据如表(开始工作时,已完成充电).剩余电量扫地速度(平方米/分钟)工作时间(分钟)≥55%一档6055%﹣5%二档≤5%回充30小铭记录了该品牌扫地机的工作情况,如表.工作时间(分钟)51628505257扫地面积(平方米)8.75284978.7580.584.875(1)设一档,二档扫地速度分别为a平方米/分钟,b平方米/分钟,求a,b的值.(2)设扫地速度为一档时的最长连续工作时间为t分钟,求t的值.(3)若扫地机工作100分钟,求它完成的扫地面积.21.已知a、b为有理数,且a≠0,若关于x的一元一次方程ax=b的解为x=a+b,则此方程为“合并式方程”.例如:,∵,∴此方程为“合并式方程”,请根据上述定义解答下列问题:(1)一元一次方程是否是“合并式方程”?并说明理由;(2)若关于x的一元一次方程5x=m+1是“合并式方程”,求m的值;(3)若关于x的一元一次方程4x=3a+2b是“合并式方程”,且它的解为x=b,求a、b 的值.22.我们把数轴上两点之间的距离用表示两点的大写字母一起标记.比如,点A与点B之间的距离记作AB.如图,A、B两点在数轴上对应的数分别为﹣20、24,(1)直接写出:AB=;(2)若有M、N两个小球分别从A、B两处同时出发,两小球的运动速度分别为2个单位/秒、5个单位/秒,设运动时间为t秒钟.①若N小球从点B向右运动,则此时点N表示的数为,NA=;(请用含t的代数式表示)②若M、N两小球同时向左运动,MN=4,求t的值?③若M小球向右运动,N小球向左运动,同时D小球从原点出发,以6个单位/秒的速度向左运动,在M小球和D小球相遇前的运动过程中,是否存在数m,使得DM+mDN为定值?若存在,请求出m的值;若不存在,请说明理由.参考答案一.选择题(共10小题,满分30分)1.解:A.x+3=0,是一元一次方程,故本选项符合题意;B.x2﹣3x=2中最高次是2次,不是一元一次方程,故本选项不符合题意;C.x+2y=7中有两个未知数,不是一元一次方程,故本选项不符合题意;D.中不是整式,不是一元一次方程,故本选项不符合题意.故选:A.2.解:4﹣3y=5y,移项,得4=5y+3y,合并同类项,得4=8y,系数化为1,得y=.故选:D.3.解:把x=﹣3代入,选项A中的方程左边=5×(﹣4)=﹣20,右边=﹣4×(﹣3)+8=20,因此x=﹣3不是方程5(x﹣1)=﹣4x+8的解,所以选项A不符合题意;选项B中的方程左边=×(﹣3)+5=4,右边=5,因此x=﹣3不是方程x+5=5的解,所以选项B不符合题意;选项C中的方程左边=4×(﹣3)+12=0,右边=0,因此x=﹣3是方程4x+12=0的解,所以选项C符合题意;选项D中的方程左边=﹣3×(﹣3)﹣1=﹣8,右边=0,因此x=﹣3不是方程﹣3x﹣1=0的解,所以选项D不符合题意;故选:C.4.解:A.根据等式的性质,由a=b,则a+c=b+c,那么A错误,故A不符合题意.B.根据等式的性质,由ac=bc(c≠0),则a=b,那么B错误,故B不符合题意.C.根据等式的性质,由a=b,则ac=bc,那么C正确,故C符合题意.D.根据等式的性质,由a2=3a,则a=0或3,那么D错误,故D不符合题意.故选:C.5.解:,去分母得2(2x+1)=6﹣3(x﹣1).故选:C.6.解:设八一队胜了x场,根据题意得:2x+(14﹣x)=23,解得:x=9,答:八一队胜了9场;故选:D.7.解:方程两边同乘6应为:3(x+1)﹣6=2(x﹣2),∴出错的步骤为:①,故选:A.8.解:设原定价为x元,根据题意,得(1﹣20%)x=120.解得x=150.即原定价为150元.故选:D.9.解:把x=1代入得:4﹣m=3,解得:m=1,把m=1代入方程得:﹣1=,解得:x=.故选:A.10.解:设乙行走t分钟后第一次追上甲,根据题意得:甲的行走路程为50tm,乙的行走路程70tm,当乙第一次追上甲时,90×3+50t=70t,解得t=13.5,此时乙所在位置为:70×13.5=945(m),945÷(90×4)=2……225(m),∴当乙第一次追上甲时,在正方形的AD边处.故选:D.二.填空题(共5小题,满分15分)11.解:∵方程(m﹣1)x|m|﹣5=0是关于x的一元一次方程,∴m﹣1≠0且|m|=1,解得:m=﹣1,故答案为:﹣1.12.解:由题意,得=,去分母,得2(x﹣1)=3(x﹣2),去括号,得2x﹣2=3x﹣6,移项,得2x﹣3x=2﹣6,合并同类项,得﹣x=﹣4,系数化为1,得x=4.故答案为:4.13.解:∵甲的速度为100千米/时,乙的速度是甲的速度,∴乙的速度为:100×=80(千米/时),设A、B两地相距x千米,由题意可得,3×(100+80)=x﹣60或3×(100+80)=x+60,解得,x=600或x=480,即、B两地相距600千米或480千米,故答案为:600千米或480.14.解:∵方程x+2﹣x=m的解是x=71,∴y+3﹣(y+1)=m的解是y=71﹣1=70,∴y=70,故答案为:70.15.解:x*=1*2x,x﹣x﹣=1•2x﹣1﹣2x,﹣x=﹣,x=1,故答案为:1.三.解答题(共7小题,满分55分)16.解:(1)移项得,5x﹣3x=﹣15﹣3,合并同类项得,2x=﹣18,两边都除以2得,x=﹣9;(2)移项得,0.5x+1.3x=6.5+0.7,合并同类项得,1.8x=7.2,两边都除以1.8得,x=4.17.解:(1),去分母,得7(x+5)=2(x﹣1),去括号,得7x+35=2x﹣2,移项,得7x﹣2x=﹣2﹣35,合并同类项,得5x=﹣37,系数化成1,得x=﹣;(2),去分母,得2(3y﹣1)﹣8=5y﹣7,去括号,得6y﹣2﹣8=5y﹣7,移项,得6y﹣5y=﹣7+2+8,合并同类项,得y=3.18.解:设盗贼有x人,则失窃的绸缎有(6x+6)匹,根据题意得:6x+6=7x﹣7,解得x=13,∴6x+6=6×13+8=84,答:盗贼有13人,失窃的绸缎有84匹.19.解:(1)设A车间每天生产x个零件,根据题意得:(1+)x=560,解得x=400,∴A车间每天生产400个零件,∵400+560=960(个),∴A、B两个车间每天共生产960个零件;(2)∵960×=600(个),960×=360(个),答:配送给甲商店的零件是600个,配送给乙商店的零件是360个.20.解:(1)∵8.75÷5=1.75(平方米/分钟),28÷16=1.75(平方米/分钟),49÷28=1.75(平方米/分钟),78.75÷50=1.575(平方米/分钟),∴一档和二档切换时间在第28分钟和第50分钟之间,∴a=1.75,(57﹣52)b=84.875﹣80.5,∴b=0.875.答:a的值为1.75,b的值为0.875.(2)依题意得:1.75t+0.875(50﹣t)=78.75,解得:t=40.答:t的值为40.(3)依题意可知:在前40分钟时,扫地机的速度为第一档;在40分钟到60分钟时,扫地机的速度为第二档;在60分钟到90分钟时,扫地机回充;在90分钟到100分钟时,扫地机的速度为第一档,∴1.75×(40+10)+0.875×(60﹣40)=1.75×50+0.875×20=105(平方米).答:它完成的扫地面积为105平方米.21.解:(1)一元一次方程的解为x=2,而+1=≠2,所以一元一次方程不是“合并式方程”;(2)由“合并式方程”的定义可得x==5+m+1,解得m=﹣,答:m=﹣;(3)∵关于x的一元一次方程4x=3a+2b是“合并式方程”,∴=4+3a+2b=b,解得,答:.22.解:(1)24﹣(﹣20)=44,故答案为:44;(2)①∵N小球从点B向右运动,运动速度为5个单位/秒,运动时间为t秒钟,∴此时点N表示的数为24+5t,∴NA=24+5t﹣(﹣20)=44+5t,故答案为:24+5t,44+5t;②∵M、N两小球同时向左运动,M小球从A处出发,运动速度为2个单位/秒,运动时间为t秒钟,N小球从B处出发,运动速度为5个单位/秒,运动时间为t秒钟,∴点M表示的数为﹣(20+2t),点N表示的数为24﹣5t,∴MN=|44﹣3t|,当44﹣3t=4时,解得t=,当44﹣3t=﹣4时,解得t=16,∴当MN=4时,t=或16;③∵D小球从原点出发,以6个单位/秒的速度向左运动,∴点D表示的数为﹣6t,当M和N小球相遇时,有2t+6t=20,解得t=,在M小球和D小球相遇前的运动过程中,有DM=﹣6t﹣(﹣20+2t)=20﹣8t,DN=24﹣5t﹣(﹣6t)=24+t,则DM+mDN=20﹣8t+m(24+t)=20+24m+(m﹣8)t,∵DM+mDN为定值,∴m﹣8=0,m=8,∴当m=8时,DM+mDN为定值.。

第5章 一元一次方程数学七年级上册-单元测试卷-浙教版(含答案)

第5章 一元一次方程数学七年级上册-单元测试卷-浙教版(含答案)

第5章一元一次方程数学七年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、方程2x+a+1=0的解是x=﹣1,则a等于()A.﹣1B.0C.1D.22、如果x=﹣1是关于x的方程x+2k﹣3=0的解,则k的值是()A.﹣1B.1C.﹣2D.23、若x=2是关于x的方程2x+3m-1=0的解,则m的值为()A.-1B.0C.1D.4、若方程:2(x-1)-6=0与的解互为相反数,则a的值为()A. B. C. D.-15、下列各式中,是方程的是()A. B. C. D.6、已知1-(3m-5)2有最大值,则方程5m-4=3x+2的解是()A. B. C. D.7、若是关于x的一元一次方程的解,则的值是A.2B.1C.0D.8、下列方程是一元一次方程的是()A.x-y=6B.x–2=xC.x 2+3x=1D.1+x=39、在下列方程中,解是2的方程是()A.3x=x+3B.﹣x+3=0C.2x=6D.5x﹣2=810、下列方程中,解为x=﹣2的方程是()A.2x+5=1﹣xB.3﹣2(x﹣1)=7﹣xC.x﹣5=5﹣xD.1﹣x= x11、下列各式不是方程的是()A.x 2+x=0B.x+y=0C. +xD.x=012、下列命题:①圆周角等于圆心角的一半;②是方程的解;③平行四边形既是中心对称图形又是轴对称图形;④的算术平方根是4。

其中真命题的个数有()A.1B.2C.3D.413、已知有大、小两种纸杯与甲、乙两桶果汁,其中小纸杯与大纸杯的容量比为2:3,甲桶果汁与乙桶果汁的体积比为4:5,若甲桶内的果汁刚好装满小纸杯120个,则乙桶内的果汁最多可装满几个大纸杯?A.64B.100C.144D.22514、已知x=1是方程x+2a=-1的解,那么a的值是()A.-1B.0C.1D.215、一家商店将某种服装按照成本价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?设这种服装每件的成本是x元,则根据题意列出方程正确的是( )A.0.8×(1+40%) x=15B.0.8×(1+40%) x﹣x=15C.0.8×40%x=15 D.0.8×40% x﹣x=15二、填空题(共10题,共计30分)16、方程和方程的解相同,则a=________.17、如图,CA⊥AB,垂足为点A,AB=24,AC=12,射线BM⊥AB,垂足为点B,一动点E 从A点出发以3厘米/秒沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E经过________秒时,△DEB与△BCA全等.18、把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则缺25本,若设这个班有x名学生,则依题意所列方程是________。

第5章 一元一次方程数学七年级上册-单元测试卷-浙教版(含答案)

第5章 一元一次方程数学七年级上册-单元测试卷-浙教版(含答案)

第5章一元一次方程数学七年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、若关于x的方程2x-a=1的解是x=3,则a的值等于( )A.-5B.5C.7D.22、设“●、▲、■”分别表示三种不同的物体,如图(1),(2)所示,天平保持平衡,如果要使得图(3)中的天平也保持平衡,那么在右盘中应该放“■”的个数为()A.6个B.5个C.4个D.3个3、下列各式变形正确的是()A.如果那么B.如果那么C.如果,那么D.如果,那么4、已知等式ax+c=ay+c,则下列等式不一定成立的是( )A.ax=ayB.x=yC.m-ax=m-ayD.2ax=2ay5、因受季节影响,某种商品打九折后,又降a元/件,现在的售价为b元/件,那么该商品的原售价为()A.90%(b﹣a)元/件B.90%(a+b)元/件C. 元/件D.元/件6、方程x﹣3=2x﹣4的解为()A.1B.﹣1C.7D.﹣77、下列方程中解是的方程是()A. B. C. D.8、已知今年甲的年龄比乙的年龄多12岁,4年后甲的年龄恰好是乙的年龄的2倍,则甲今年的年龄是()A.20岁B.16岁C.15岁D.12岁9、下列方程中是一元一次方程的是()A.4x﹣5=0B.3x﹣2y=3C.3x 2﹣14=2D.10、小悦买书需用48元钱,付款时恰好用了1元和5元的纸币共12张.设所用的1元纸币为x张,根据题意,下面所列方程正确的是()A.x+5(12-x)=48B.x+5(x-12)=48C.x+12(x-5)=48 D.5x+(12-x)=4811、为配合荆州市“我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠.小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元.若此次小慧同学不买卡直接购书,则她需付款多少元?()A.140元B.150元C.160元D.200元12、已知关于x的方程7-kx=x+2k的解是x=2,则k的值为()A. B. C.1 D.-313、下列四个式子中,是方程的是()A.3+2=5B.x=1C.2x﹣3<0D.a 2+2ab+b 214、方程2x-1=3x+2的解为()A.x=1B.x=-1C.x=-3D.x=315、将连续的奇数1,3,5,7,9,…排成如图所示的数表,则十字形框中的五数之和能等于2012吗?能等于2015吗?( )A.能,能B.能,不能C.不能,能D.不能,不能二、填空题(共10题,共计30分)16、进价2000元的某品牌电视,标价2600元,商场打折销售后仍可获利17%,那么商场在销售时打了________折.17、有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车;若每辆客车乘43人,则最后一辆车有2个空位.给出下面五个等式:①40m+10=43m﹣2;②40m﹣10=43m+2;③= ;④= ;⑤43m=n+2.其中正确的是________(只填序号).18、如图,在梯形ABCD中,AD∥BC,AD=6,BC=16,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒2个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动.当运动时间________秒时,以点P,Q,E,D为顶点的四边形是平行四边形.19、小明解方程时,由于粗心大意,在去分母时,方程左边的1没有乘以10,由此得方程的解为x=4,则a=________.20、小林在做解方程作业时,不小心将方程中的一个常数污染看不清楚,被污染的方程是2y- = y-※,小林翻看了书后的答案是y=- ,则这个常数是________ .21、A、B两地相距108千米,甲、乙两人分别从A、B两地同时出发,相向而行,甲的速度为14千米/小时,乙的速度为22千米/小时,经过________小时后两人相距36千米.22、元旦期间某商店进行促销活动,活动方式有如下两种:方式一:每满200元减50元;方式二:若标价不超过400元时,打8折;若标价超过400元,则不超过400元的部打8折,超出400元的部分打6折.某一商品的标价为x元,当时,x取值为________时,两种方式的售价相同.23、如图是在电脑屏幕上出现的长方形色块图,由6个颜色不同的正方形组成,设中间最小的一个正方形的边长为1,则正方形A的面积是________.24、如果某一年的7月份中,有4个星期六,它们的日期之和为70,那么这个月的18日是星期 ________ .25、甲、乙两点在边长为100m的正方形ABCD上按顺时针方向运动,甲的速度为5m/秒,乙的速度为10m/秒,甲从A点出发,乙从CD边的中点出发,则经过________秒,甲乙两点第一次在同一边上.三、解答题(共5题,共计25分)26、解方程:.27、某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间房.求该店有客房多少间?房客多少人?28、用 A4 纸在某誉印社复印文件,复印页数不超过 20 时,每页收费 0.12 元;复印页数超过20 时,超过部分每页收费降为 0.09 元.在某图书馆复印同样的文件,不论复印多少页,每页收费0.1 元,复印张数为多少时,两处的收费相同?29、如果关于x的方程和的解相同,求的值.30、张阿姨去超市买了4kg香蕉和3.5kg苹果,共花去24.2元。

2022-2023学年浙教版七年级数学上册《第5章一元一次方程》单元综合测试题(附答案)

2022-2023学年浙教版七年级数学上册《第5章一元一次方程》单元综合测试题(附答案)

2022-2023学年浙教版七年级数学上册《第5章一元一次方程》单元综合测试题(附答案)一.选择题(共10小题,满分40分)1.下列各式中不是方程的是()A.2x+3y=1B.3π+4≠5C.﹣x+y=4D.x=82.如果关于x的方程2x+k﹣4=0的解x=﹣3,那么k的值是()A.﹣10B.10C.2D.﹣23.已知等式3a=2b+5,则下列等式中不一定成立的是()A.3a﹣5=2b B.3a+1=2b+6C.a=b+D.=+4.若关于x的方程mx m﹣2﹣m+3=0是一元一次方程,则这个方程的解是()A.x=0B.x=3C.x=﹣3D.x=25.若关于x的方程3x+5=m与x﹣2m=5有相同的解,则x的值是()A.3B.﹣3C.﹣4D.46.在解方程+x=时,在方程的两边同时乘以6,去分母正确的是()A.2x﹣1+6x=3(3x+1)B.2(x﹣1)+6x=3(3x+1)C.2(x﹣1)+x=3(3x+1)D.(x﹣1)+6x=3(3x+1)7.某市为节约用水,制定了如下标准:用水不超过20吨,按每吨1.2元收费,超过20吨则超出部分按每吨1.5元收费.小明家六月份的水费是平均每吨1.25元,那么小明家六月份应交水费()A.20元B.24元C.30元D.36元8.超市正在热销某种商品,其标价为每件125元.若这种商品打8折销售,则每件可获利15元,设该商品每件的进价为x元,根据题意可列出的一元一次方程为()A.125×0.8﹣x=15B.125﹣x×0.8=15C.(125﹣x)×0.8=15D.125﹣x=15×0.89.如图,在周长为10m的长方形窗户上钉一块宽为1m的长方形遮阳布,使透光部分正好是一正方形,则钉好后透光面积为()A.9 m2B.25 m2C.16 m2D.4 m210.如图表示3×3的数表,数表每个位置所对应的数都是1,2或3.定义a*b为数表中第a行第b列的数,例如,数表第3行第1列所对应的数是2,所以3*1=2.若2*3=(2x+1)*2,则x的值为()A.0,2B.1,2C.1,0D.1,3二.填空题(共5小题,满分20分)11.﹣2x与3x﹣1互为相反数,则x=.12.已知5a+8b=3b+10,利用等式性质可求得a+b的值是.13.小明在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是:x﹣3=2(x+1)﹣,怎么办呢?小明想了想,便翻看书后答案,此方程的解是x =﹣5,于是很快就补好了这个常数,他补出的这个常数是.14.为有效保护日益减少的水资源,某市提倡居民节约用水,并对该市居民用水采取分段收费:每户每月若用水不超过20m3,每立方米收费3元;若用水超过20m3,超过部分每立方米收费5元.该市某居民家8月份交水费84元,则该居民家8月份的用水量为m3.15.如图,在数轴上点O是原点,点A、B、C表示的数分别是﹣12、8、14.若点P从点A 出发以2个单位/秒的速度向右运动,其中由点O运动到点B期间速度变为原来的2倍,之后立刻恢复原速,点Q从点C出发,以1个单位/秒的速度向左运动,若点P、Q同时出发,则经过秒后,P、Q两点到点B的距离相等.三.解答题(共8小题,满分60分)16.解下列方程:(1)2y+3=11﹣6y;(2)﹣=1.17.今年开学,由于疫情防控的需要,某学校统一购置口罩为全体教师配备了一定数量的口罩,若每位教师发3个口罩,则多56个口罩,若给每位教师发5个口罩,则少80个口罩,请问该校有多少名教师?18.【我阅读】解方程:|x+5|=2.解:当x+5≥0时,原方程可化为:x+5=2,解得x=﹣3;当x+5<0时,原方程可化为:x+5=﹣2,解得x=﹣7.所以原方程的解是x=﹣3或x=﹣7.【我会解】解方程:|3x﹣2|﹣5=0.19.在数学实践课上,小丽解方程时,因为粗心,去分母时方程左边的1没有乘以10,从而求得的方程的解为x=4,试求a的值,并解出原方程正确的解.20.对于任意有理数a和b,我们规定:a*b=a2﹣2ab,如1*2=12﹣2×1×2=﹣3.(1)求6*7的值;(2)若(﹣3)*(2x)=21,求x的值.21.小明在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是2x﹣=x+1.(1)小明猜想“”部分是2.请你算一算x的值;(2)小明翻看了书后的答案,发现此方程的解与方程1﹣=的解相同,请你算一算被污染的常数应是多少?22.方程思想,解决问题【阅读理解】你知道如何将无限循环小数写成分数形式吗?下面的解答过程会告诉你方法.例题:利用一元一次方程将0.化成分数,设x=0.,那么10x=6.,而6.=6+,所以10x=6+x,化简得9x=6,解得x=.所以,0.=.【问题探究】(1)请仿照上述方法把0.化成分数为;(直接写出结果)(2)请类比上述方法,把循环小数0.化为分数,写出解题过程.23.乐乐同学在A,B两家超市发现他看中的学习机和书包的单价都相同,学习机和书包的单价之和为452元,且学习机的单价比书包单价的4倍少8元.(1)学习机和书包的单价分别是多少元?(2)该同学上街,恰好赶上该商品促销,超市A所有商品打八折销售,超市B全场购满100元返购物券30元销售,满200元返购物券60元,依此类推,(不足100元不返券,购物券全场通用),但他只带了390元钱,如果他只在一家超市购买他看中的这两样物品,你能说明他可以选择哪家购买更省钱吗?参考答案一.选择题(共10小题,满分40分)1.解:3π+4≠5中不含未知数,所以错误.故选:B.2.解:把x=﹣3代入方程2x+k﹣4=0,得:﹣6+k﹣4=0解得:k=10.故选:B.3.解:由等式3a=2b+5,可得:3a﹣5=2b,3a+1=2b+6,a=,当c=0时,无意义,不能成立,故选:D.4.解:由一元一次方程的特点得m﹣2=1,即m=3,则这个方程是3x=0,解得:x=0.故选:A.5.解:3x+5=m,∴m=3x+5①;又x﹣2m=5,∴m=②;令①=②,∴3x+5=,6x+10﹣x+5=0,∴x=﹣3,故选:B.6.解:在解方程+x=时,在方程的两边同时乘以6,去分母正确的是:2(x﹣1)+6x=3(3x+1).故选:B.7.解:设小明家六月用水x吨,由题意得:1.2×20+1.5×(x﹣20)=1.25x,解得:x=24,∴1.25x=30.故选:C.8.解:设该商品每件的进价为x元,依题意,得:125×0.8﹣x=15.故选:A.9.解:若设正方形的边长为am,则有2a+2(a+1)=10,解得a=2,故正方形的面积为4m2,即透光面积为4m2.故选:D.10.解:∵2*3=(2x+1)*2,∴(2x+1)*2=3,根据数表,可得:2x+1=3或2x+1=1,解得:x=1或x=0.故选:C.二.填空题(共5小题,满分20分)11.解:根据题意,﹣2x+3x﹣1=0,解之得x=1.故答案为:1.12.解:5a+8b=3b+10,5a+8b﹣3b=3b﹣3b+10,5a+5b=10,5(a+b)=10,a+b=2.给答案为:2.13.解:设被污染的常数为a,把x=﹣5代入x﹣3=2(x+1)﹣a,得﹣﹣3=2(﹣5+1)﹣a,解得a=﹣.故答案为:﹣.14.解:设该居民家8月份用水量为xm3,由题意可得:20×3+(x﹣20)×5=84.解得x=24.8.故答案是:24.8.15.解:设经过t秒后,P、Q两点到点B的距离相等,由题意,AO=12,OB=8,BC=14﹣8=6,点P到达O点的时间为12÷2=6秒,此时点C到达B点,故t>6,即Q在B的左边,①当P在点B的左边时,P表示的数为4(t﹣6)=4t﹣24,C表示的数为14﹣t,由PB=CB得:4t﹣24=14﹣t,解得:t=7.6;②当P在B的右边时,∵点P到达点B的时间为6+8÷4=8秒,∴点P表示的数为8+2(t﹣8)=2t﹣8,C表示的数为14﹣t,由PB=CB得:(2t﹣8)﹣8=8﹣(14﹣t),解得:t=10,综上,经过7.6或10秒后,P、Q两点到点B的距离相等,故答案为:7.6或10.三.解答题(共8小题,满分60分)16.解:(1)移项,可得:2y+6y=11﹣3,合并同类项,可得:8y=8,系数化为1,可得:y=1.(2)去分母,可得:5(x+1)﹣3(2x﹣1)=15,去括号,可得:5x+5﹣6x+3=15,移项,可得:5x﹣6x=15﹣5﹣3,合并同类项,可得:﹣x=7,系数化为1,可得:x=﹣7.17.解:设该校有x名教师,可列方程:3x+56=5x﹣80.解得x=68.答:该校有68名教师.18.解:当3x﹣2≥0时,原方程可化为:3x﹣2﹣5=0,解得x=;当3x﹣2<0时,原方程可化为:﹣3x+2﹣5=0,解得x=﹣1.所以原方程的解是x=或x=1.19.解:∵去分母时,只有方程左边的1没有乘以10,∴2(2x﹣1)+1=5(x+a),把x=4代入上式,解得a=﹣1.原方程可化为:,去分母,得2(2x﹣1)+10=5(x﹣1),去括号,得4x﹣2+10=5x﹣5,移项、合并同类项,得﹣x=﹣13,系数化为1,得x=13,故a=﹣1,x=13.20.解:(1)∵a*b=a2﹣2ab,∴6*7=62﹣2×6×7=36﹣84=﹣48;(2)∵(﹣3)*(2x)=21,∴(﹣3)2﹣2×(﹣3)×2x=21,∴9+12x=21,12x=12,x=1.21.解:(1)∵2x﹣2=x+1,∴2x﹣x=1+2,∴x=3,∴x=2;(2)∵1﹣=,∴10﹣2(2x+1)=x+3,∴10﹣4x﹣2=x+3,∴﹣4x﹣x=3﹣10+2,∴﹣5x=﹣5,∴x=1,设污染的常数为a,把x=1代入方程得:2﹣a=+1,解得:a=,答:污染的常数应是.22.解:(1)设x=0.①,则10x=7.②,②﹣①,得9x=7,解得:x=,即0.=,故答案为:;(2)设y=0.①,则100y=16.②,②﹣①,得99y=16,解得:y=,即0.=.23.解:(1)设书包的单价为x元,则学习机的单价为(4x﹣8)元,由题意可得:x+(4x﹣8)=452,解得x=92,∴4x﹣8=360,答:学习机的单价为360元,书包的单价为92元;(2)由题意可得,超市A需要付费:452×0.8=361.6(元),超市B需要付费:360+(92﹣×30)=360+(92﹣3×30)=360+(92﹣90)=360+2=362(元),∵361.6<362,∴选择超市A.。

浙教版七年级上册第五章一元一次方程单元测试卷

浙教版七年级上册第五章一元一次方程单元测试卷

浙教版七年级上册第五章一元一次方程单元测试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.按如图所示的运算程序,能使输出的结果为12的是( )A .3,3x y ==B .4,2x y =-=-C .2,4x y ==D .4,2x y ==2.已知下列方程,属于一元一次方程的有( ) ①x ﹣2=2x;②0.5x =1;③3x =8x ﹣1;④x 2﹣4x =8;⑤x =0;⑥x+2y =0.A .5个B .4个C .3个D .2个3.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( ) A .180元B .200元C .225元D .259.2元4.甲、乙两运动员在长为100m 的直道AB (A ,B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点…若甲跑步的速度为5m/s ,乙跑步的速度为4m/s ,则起跑后100s 内,两人相遇的次数为( ) A .5B .4C .3D .25.一个商店把某件商品按进价加20%作为定价,后来老板按定价8折192元卖出这件商品,那么老板在销售这件商品的过程中的盈亏情况为( ) A .盈利16元 B .亏损24元C .亏损8元D .不盈不亏6.下列变形中: ①由方程125x -=2去分母,得x ﹣12=10; ②由方程29x =92两边同除以29,得x =1; ③由方程6x ﹣4=x +4移项,得7x =0;④由方程2﹣5362x x -+=两边同乘以6,得12﹣x ﹣5=3(x +3). 错误变形的个数是( )个. A .4B .3C .2D .17.某商店购进甲、乙两种商品共160件,甲每件进价为15元,售价20元;乙每件进价为35元,售价45元;售完这批商品利润为l100元,设甲为x 件,则购进甲商品的件数满足方程( ) A .30x+15(160-x)=1100 B .5(160-x)+10x=1100 C .20x+25(160-x)=1100D .5x+10(160-x)=l1008.下列方程中,解为x =4的方程是( ) A .x ﹣1=4B .4x =1C .4x ﹣1=3x +3D .1(1)5x -=19.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.若设这个班有x 名学生,则依题意所列方程正确的是( ) A .3x -20=4x -25 B .3x +20=4x +25 C .3x -20=4x +25 D .3x +20=4x -25 10.已知下列方程:①x ﹣2=1x ;②x=0;③3x=x ﹣3;④x 2﹣4=3x ;⑤x ﹣1;⑥x ﹣y=6,其中一元一次方程有( ) A .2个 B .3个 C .4个 D .5个二、填空题11.一艘船从甲码头到乙码头顺流行驶,用了2个小时,从乙码头返回甲码头逆流行驶,用了2.5小时,已知水流的速度是3千米/时,则船在静水中的速度是_____千米/时. 12.文具店销售某种笔袋,每个18元,小华去购买这种笔袋,结账时店员说:“如果你再多买一个就可以打九折,价钱比现在便宜36元”,小华说:“那就多买一个吧,谢谢,”根据两人的对话可知,小华结账时实际付款_____元.13.古代名著《算学启蒙》中有一题:良马日行二百四十里.驽马日行一百五十里.驽马先行一十二日,问良马几何追及之.意思是:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可追上慢马?若设快马x 天可追上慢马,则由题意,可列方程为__.14.已知1(3)21a a x x --+=是关于x 的一元一次方程,则a=_____.15.甲、乙两班共有98人,若从甲班调3人到乙班,那么两班人数正好相等.设甲班原有x 人,可列出方程____________________.三、解答题16.小明用的练习本可以到甲、乙两家商店购买,已知两商店的标价都是每本2元,甲商店的优惠条件是购买10本以上,从第11本开始按标价的70%出售;乙商店的优惠条件是,从第一本起按标价的80%出售.(1)设小明要购买x (x >10)本练习本,则当小明到甲商店购买时,须付款 元,当到乙商店购买时,须付款 元; (2)买多少本练习本时,两家商店付款相同?(3)小明准备买50本练习本,为了节约开支,应怎样选择哪家更划算?17.数轴上有A 、B 、C 三点,分别表示有理数26-、10-、20,动点P 从A 出发,以每秒1个单位的速度向右移动,当P 点运动到C 点时运动停止,设点P 移动时间为t 秒.(1)用含t 的代数式表示P 点对应的数:_________;(2)当P 点运动到B 点时,点Q 从A 点出发,以每秒2个单位的速度向C 点运动, Q 点到达C 点后,再立即以同样的速度返回A 点.①用含t 的代数式表示Q 点在由A 到C 过程中对应的数:_________; ②当t =______时,动点P 、Q 到达同一位置(即相遇); ③当3PQ =时,求t 的值.18.某地区居民生活用电,规定按以下标准收取电费:(1)某户7月份用电123千瓦时,共交电费57.2元,求a ;(2)若该用户8月份的平均电费为0.45元,则8月份共用多少千瓦时?应交电费多少元?19.华联超市购进一批四阶魔方,按进价提高40%后标价,为了让利于民,增加销量,超市决定打八折出售,这时每个魔方的售价为28元.(1)求魔方的进价?(2)超市卖出一半后,正好赶上双十一促销,商店决定将剩下的魔方以每3个80元的价格出售,很快销售一空,这批魔方超市共获利2800元,求该超市共购进魔方多少个?参考答案1.C 【解析】【分析】由题可知,代入x 、y 值前需先判断y 的正负,再进行运算方式选择,据此逐项进行计算即可得.【详解】A 选项0y ≥,故将x 、y 代入22x y +,输出结果为15,不符合题意;B 选项0y ≤,故将x 、y 代入22x y -,输出结果为20,不符合题意;C 选项0y ≥,故将x 、y 代入22x y +,输出结果为12,符合题意;D 选项0y ≥,故将x 、y 代入22x y +,输出结果为20,不符合题意,故选C.【点睛】本题主要考查程序型代数式求值,解题的关键是根据运算程序,先进行y 的正负判断,选择对应运算方式,然后再进行计算.2.C 【解析】 【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a ,b 是常数且a≠0). 【详解】 ①是分式方程;②符合一元一次方程的定义;③经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程;④未知项的最高次数为2,故不是一元一次方程; ⑤符合一元一次方程的定义;⑥含有两个未知数,故不是一元一次方程;因此②、③、⑤是一元一次方程,所以一共有三个一元一次方程. 故答案选C. 【点睛】本题考查了一元一次方程的定义,解题的关键是熟练的掌握一元一次方程的定义.3.A 【解析】 【分析】设这种商品每件进价为x 元,根据题中的等量关系列方程求解. 【详解】设这种商品每件进价为x 元,则根据题意可列方程270×0.8-x =0.2x ,解得x =180.故选A. 【点睛】本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出正确的方程. 4.B 【解析】分析:可设两人相遇的次数为x ,根据每次相遇的时间100254⨯+,总共时间为100s ,列出方程求解即可.详解:设两人相遇的次数为x ,依题意有100254⨯+x=100, 解得x=4.5, ∵x 为整数, ∴x 取4. 故选:B .点睛:考查了一元一次方程的应用,利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x ,然后用含x 的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答. 5.C 【解析】 【分析】设进价为x ,根据按进价加20%作为定价,可得:定价=1.2x , 后来老板按定价8折出售,可得售价=1.2x ×0.8=0.96x ,根据售价是192元,可得0.96x =192,算出进价,从而得到盈亏情况. 【详解】设进价为x 元,由题意可得:()120%0.8192x +⨯=,0.96x =192, 解得: x =200, 200-192=8(元) 故选C. 【点睛】本题主要考查一元一次方程解决商品销售问题,解决本题的关键是要熟练掌握商品销售问题中进价,标价,售价,利润之间的关系. 6.B 【解析】分析:根据方程的不同特点,从计算过程是否正确、方法应用是否得当等方面加以分析.详解:①方程125x -=2去分母,两边同时乘以5,得x ﹣12=10,故①正确. ②方程29x =92,两边同除以29,得x =814;要注意除以一个数等于乘以这个数的倒数,故②错误.③方程6x ﹣4=x +4移项,得5x =8;要注意移项要变号,故③错误. ④方程2﹣5362x x -+=两边同乘以6,得12﹣(x ﹣5)=3(x +3);要注意去分母后,要把是多项式的分子作为一个整体加上括号,故④错误. 故②③④变形错误. 故选B .点睛:在解方程时,要注意以下问题:(1)去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号;(2)移项时要变号. 7.D 【解析】由题意可知,当设甲商品的件数为x 时,可得方程为:(2015)(4535)(160)1100x x -+--=,即510(160)1100x x +-=. 故选D. 8.C【解析】【分析】把x=4代入方程的左右两边,判断左边和右边是否相等即可判断.【详解】解:A、当x=4时,左边=4-1=3≠右边,故选项不符合题意;B、当x=4时,左边=16≠右边,故选项不符合题意;C、当x=4时,左边=16-1=15,右边=13+3=15,则左边=右边,则x=4是方程的解,选项符合题意;D、当x=4时,左边=2(4-1)=6≠右边,故选项不符合题意.故选:C.【点睛】本题考查了方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值,理解定义是关键.9.D【解析】【分析】设这个班有学生x人,若每人分3本,剩余20本,则图书的数量为3x+20;同理再由每人分4本,则还缺25本可得图书的数量还可表示为4x-25,根据图书的总数量是定值即可得到方程.【详解】设这个班有学生x人,由题意得,3x+20=4x-25.故选D.【点睛】本题主要考查了一元一次方程的应用,找到题中的等量关系是解答本题的关键.10.A【解析】分析:根据一元一次方程的定义对各小题进行逐一分析即可.详解:①x﹣2=1x是分式方程,故本小题错误;②x=0是一元一次方程,故本小题正确; ③3x=x ﹣3是一元一次方程,故本小题正确; ④x 2﹣4=3x 是一元二次方程,故本小题错误; ⑤x ﹣1是代数式,故本小题错误;⑥x ﹣y=6是二元一次方程,故本小题错误.故选A.点睛:本题考查的是一元一次方程的定义,熟知只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程是解答此题的关键. 11.27 【解析】 【分析】设船在静水中的速度是x ,则顺流时的速度为(x+3)km/h ,逆流时的速度为(x-3)km/h ,根据往返的路程相等,可得出方程,解出即可. 【详解】解:设船在静水中的速度是x ,则顺流时的速度为(x+3)km/h ,逆流时的速度为(x-3)km/h , 由题意得,2(x+3)=2.5(x-3), 解得:x=27,即船在静水中的速度是27千米/时. 故答案为:27. 【点睛】本题考查了一元一次方程的应用,解答本题的关键是仔细审题,设出未知数,根据等量关系建立方程. 12.486 【解析】【分析】设小华购买了x 个笔袋,根据原单价×购买数量(x ﹣1)﹣打九折后的单价×购买数量(x )=节省的钱数,即可得出关于x 的一元一次方程,解之即可求出小华购买的数量,再根据总价=单价×0.9×购买数量,即可求出结论. 【详解】设小华购买了x 个笔袋,根据题意得:18(x ﹣1)﹣18×0.9x=36, 解得:x=30,∴18×0.9x=18×0.9×30=486, 即小华结账时实际付款486元, 故答案为:486.【点睛】本题考查了一元一次方程的应用,弄清题意,找准等量关系,正确列出一元一次方程是解题的关键.13.240x=150x+12×150 【解析】 【分析】设良马x 天能够追上驽马,根据路程=速度×时间结合二者总路程相等,即可得出关于x 的一元一次方程. 【详解】解:设良马x 天能够追上驽马.根据题意得:240x=150×(12+x )=150x+12×150. 【点睛】本题考查的知识点是一元一次方程的应用,解题关键是根据路程=速度×时间结合二者总路程相等,列出关于x 的一元一次方程. 14.±2 【解析】分析:由一元一次方程的定义得到|a|-1=1且a-3≠0,由此求得a 的值. 详解:∵方程(a-3)x |a|-1=1是关于x 的一元一次方程, ∴|a|-1=1且a-3≠0, 解得a=±2. 故答案是:±2. 点睛:本题考查了一元一次方程的概念和解法.一元一次方程的未知数的指数为1. 15.3983x x -=-+ 【解析】设甲班原有人数是x 人,则乙班人数为(98-x )人,根据题中等量关系:甲班人数+乙班人数=98;甲班人数-3=乙班人数+3,列方程得:x-3=(98-x)+3. 故答案是:x-3=(98-x)+3.16.(1)10×2+(x -10)×2×0.7 ;2x×0.8(2)买30本时两家商店付款相同(3)甲商店更划算【解析】试题分析:(1)根据题中的收费标准表示出到甲乙两商店的费用即可; (2)根据甲乙两商店费用相等,列方程求出x 的值即可; (3)根据小明所购买的练习本的本数求出钱数比较即可.(1)10×2+(x -10)×2×0.7 , 2x×0.8 (2)10×2+(x -10)×2×0.7= 2x×0.8 . 20+1.4x -14=1.6xx=30答:买30本时两家商店付款相同.(3)买50本时,甲家商店付款:10×2+(50-10)×2×0.7=76元. 乙商店付款:50×2×0.8=80元 . ∵76<80 ∴甲商店更划算.17.(1)26t -+;(2)①258t -;②32或1243;③3t =, 29, 35, 1213, 1273. 【解析】【分析】(1)根据题意可得P 点对应的数;(2)①P 因为点从A 运动到B 点所花的时间为16秒,Q 点从A 运动到C 点所花的时间为23秒所以Q 点在由A 到C 过程中对应的数()26216258t t -+-=-为;②分为返回前相遇和返回后相遇两种情况:返回前相遇,P 的路程等于Q 的路程等于Q 的路程减去16;而返回后相遇,则是二者走的总路程是Q 到C 的路程的2倍,分别列式子求解.【详解】(1)P 点所对应的数为:26t -+(2)①258t -②P 点从A 运动到B 点所花的时间为16秒,Q 点从A 运动到C 点所花的时间为23秒 当1639t ≤≤时,P :26t -+,Q :()26216258t t -+-=-26258t t -+=-,解之得32t =当3946t ≤≤时,P :26t -+,Q :()20239982t t --=-26982t t -+=-,解之得1243t =③3t =,29,35,1213,1273 【点睛】考核知识点:一元一次方程应用.理解定义,列出方程是关键.18.(1)a=80;(2)八月份共用电160千瓦时,应交电费72元.【解析】【分析】(1)根据表格可得:123×0.5=61.5(元)>57.2元,再根据表格中的数量关系可得得:0.5a +0.5×80%×(123﹣a )=57.2,解得:a =80.(2)先设八月份共用电x 千瓦时,根据题意得:0.5×80+(x ﹣80)×0.5×80%=0.45x , 解得:x =160,进而求出0.45x =0.45×160=72. 【详解】(1)∵123×0.5=61.5(元)>57.2元, ∴该户七月份用电超出基本用电量,根据题意得:0.5a +0.5×80%×(123﹣a )=57.2,解得:a =80.(2)设八月份共用电x 千瓦时,根据题意得:0.5×80+(x ﹣80)×0.5×80%=0.45x , 解得:x =160,∴0.45x =0.45×160=72.答:八月份共用电160千瓦时,应交电费72元.【点睛】本题主要考查一元一次方程解决阶梯收费问题,解决本题的关键是要能够根据表格分析出等量关系继而列出方程求解.19.25元 超市一共购进1200个魔方【解析】试题分析:(1)首先设魔方的进价是每个x 元,根据条件“按进价提高40%后标价,打八折出售的售价为28元”列出关于x 的一元一次方程,求解即可;(2)设该超市共进四阶魔方2y 个,由这些魔方获利2800元列出方程,求解即可. 解:设魔方的售价为每个x 元。

浙教版初中数学七年级上册第五单元《一元一次方程》单元测试卷(较易)(含答案解析)

浙教版初中数学七年级上册第五单元《一元一次方程》单元测试卷(较易)(含答案解析)

浙教版初中数学七年级上册第五单元《一元一次方程》单元测试卷考试范围:第五章;考试时间:120分钟;总分:120分第I 卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1. 方程2x −1=3的解是( )A. x =−1B. x =−2C. x =1D. x =22. 下列各式中,不属于方程的是( )A. 2x +3y =1B. 3+4=7C. −x +x 2=4D. x =83. 根据下列条件,能列出方程−13x =6的是( )A. x 的相反数的13是6 B. x 与13的差等于6 C. x 与6的和等于−13D. 3的2倍等于x 与13的和4. 设“●”“●”“■”表示三种不同的物体,现用天平称了两次,称得情况如图所示,则下列选项的天平图中,正确的是( )A.B.C.D.5. 把方程13x =−1变形为x =−3的依据是( )A. 等式的性质1B. 等式的性质2C. 分数的基本性质D. 倒数的定义6. 设x ,y ,c 为实数,下列说法中,成立的是( )A. 若x =y ,则x +c =y −cB. 若x =y ,则xc =ycC. 若x =y ,则xc =ycD. 若x2c =y3c ,则2x =3y7. 下列变形正确的是( )A. 方程5x =−4的解是x =−54B. 把方程5−3x =2−x 移项,得3x +x =5−2C. 由2=−5x +1,得5x =1+2D. 由1−2x =−3x ,得3x −2x =−18. 解方程45(54x −30)=7,较简便的是( )A. 先去分母B. 先去括号C. 先两边都除以45D. 先两边都乘459. 已知关于x 的方程3x +2a =2的解是x =a −1,则a 的值是( )A. 1B. 35C. 15D. −110. 一项工程甲单独做要40天完成,乙单独做需要50天完成,甲先单独做4天,然后两人合作x 天完成这项工程,则可列的方程是( )A. x 40+x40+50=1 B. 440+x40×50=1 C. x40+x50=1D. 440+x40+x50=111. 如图,将甲量筒中的液体全部倒入乙量筒,液体的高度比原来增加了5cm.根据图中的信息,可列方程为( )A. π×(82)2x =π×(62)2×(x +5) B. π×(82)2x =π×(62)2×(x −5) C. π×82x =π×62×(x −5)D. π×82x =π×62×512. 若将底面边长为10cm 、高为80cm 的“瘦长”形长方体锻造成底面边长为40cm 的“矮胖”形长方体(锻造前后长方体底面均为正方形),则“矮胖”形长方体的高为( )A. 4cmB. 5cmC. 6cmD. 7cm第II 卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 已知下列各式: ①−3x +2y =1; ②x =5; ③2x+1=3; ④4−3=1; ⑤x 2−x −2=0; ⑥3x −2; ⑦2x −2=x .其中方程有 ,一元一次方程有 .14. 如果y −x −2=0,那么用含有y 的代数式表示3x 应该是3x = .15. 已知关于x 的一元一次方程x2020+32021=3x +m 的解为x =−2,那么关于y 的一元一次方程y+12020+32021=3(y +1)+m 的解为 .16. 将一根20 cm 长的铁丝围成一个长比宽多2 cm 的长方形,则此长方形的长是______cm .三、解答题(本大题共9小题,共72.0分。

浙教版数学七年级上册第五单元《一元一次方程单元测试》

浙教版数学七年级上册第五单元《一元一次方程单元测试》

岱山实验学校七年级上册第五单元《一元一次方程单元测试》 班级_________ 姓名__________一、选择题(每小题3分,共36分)1.下列等式中是一元一次方程的是 ( )A .S=21ab B. x -y=0 C.x=0 D .321+x =1 2.已知方程(m+1)x ∣m ∣+3=0是关于x 的一元一次方程,则m 的值是 ( )A.±1B.1C.-1D.0或13.下列解方程过程中,变形正确的是 ( ) A.由2x-1=3得2x=3-1 B.由4x +1=1.013.0+x +1.2得4x +1=1103+x +12 C.由-75x=76得x=-7675 D.由3x -2x =1得2x-3x=6 4.已知x=-3是方程k(x+4)-2k -x=5的解,则k 的值是 ( )A.-2 B.2 C.3 D.55.若代数式x -31x +的值是2,则x 的值是 ( ) (A)0.75 (B)1.75 (C)1.5 (D) 3.56.方程∣2x -6∣=0的解是 ( ) A.3 B.-3 C.±3D.31 7.若代数式3a 4bx 2与0.2b 13-x a 4能合并成一项,则x 的值是 ( ) A.21 B.1 C.31 D.0 8. X=-2是下列方程中哪一个方程的解? ( )A.-2X+5=3X+10 B.X 2-4=4X C.X(X-2)=-4X D.5X-3=6X-29.初一(一)班举行了一次集邮展览,展出的邮票比平均每人3张多24张,比平均每人4张少26张,这个班共展出邮票的张数是 ( )A.164B.178C.168D.17410.设P=2y-2,Q=2y+3,且3P-Q=1,则y 的值是 ( )(A)0.4 (B)2.5 (C)-0.4 (D)-2.511.用同样长的三根铁丝分别围成长方形、正方形、圆,其中面积最大的图形是 ( )A.长方形B.正方形C.圆D.由于不知道铁丝的长度而无法确定12.一件商品提价25%后发现销路不是很好,欲恢复原价,则应降价 ( )A.40%B.20% C25% D.15%二、填空题(每小题3分,共24分)13.一个数的3倍比它的2倍多10,若设这个数为x ,可得到方程________________。

浙教版七年级上《第5章一元一次方程》单元测试含答案

浙教版七年级上《第5章一元一次方程》单元测试含答案

第5章 一元一次方程一、选择题(每小题3分,共24分)1.下列方程中,不是一元一次方程的是( ) A .4x =2-2x B .0.1y =2 C .x +3=y -5 D .5x -2x =6x 2.下列等式的变形,不正确的是( ) A .若x =y ,则x +a =y +a B .若x =y ,则a x =a yC .若x =y ,则x -a =y -aD .若x =y ,则ax =ay3.下列方程中,解为x =-2的方程是( ) A .2x +5=1-x B .3-2(x -1)=7-x C .x -2=-2-x D .1-14x =14x4.在解方程x -12-2x +33=1时,去分母正确的是( )A .3(x -1)-2(2x +3)=6B .3(x -1)-2(2x +3)=1C .2(x -1)-2(2x +3)=6D .3(x -1)-2(2x +3)=35.若关于x 的方程3x -5=x -2m 的解是x =12,则m 的值为( )A .2 B.12C .-12D .16.若代数式x -1+x3的值是2,则x 的值是( )A .0.75B .1.75C .1.5 D. 3.57.某市为节约用水,制定了如下标准:用水不超过20吨,按每吨1.2元收费;超过20吨,则超出部分按每吨1.5元收费.小明家六月份的水费是平均每吨1.25元,那么小明家六月份应交水费( )A .20元B .24元C .30元D .36元8.如图5-Z -1,用黑白两种颜色的纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n 个图案中有2020个白色纸片,则n 的值为( )图5-Z -1A .671B .672C .673D .674 二、填空题(每小题3分,共21分) 9.若3x2k -3=5是一元一次方程,则k =________.10.请构造一个一元一次方程,使得方程的解为x =3:__________________. 11.若-3a 5b 3y与4a4x +1b 6是同类项,则x =________,y =________.12.如果2x +3的值与1-x 的值互为相反数,那么x =________.13.某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为________.14.一个两位数,个位上的数字是x ,十位上的数字比个位上的数字大2,且这个两位数与个位上的数字的差为50,由此列出方程为______________.15.用“☆”定义一种新运算:对于任意实数a ,b ,都有a ☆b =2a -3b +1.例如:2☆1=2×2-3×1+1.若x ☆(-3)=2,则x =________.三、解答题(共55分) 16.(12分)解下列方程: (1)-2x +8=8x -2;(2)5x +3(2-x )=8;(3)x 2-5x +116=1+2x -43.17.(9分)m 为何值时,代数式2m -5m -13的值与代数式7-m 2的值的和等于5?18.(10分)戴口罩是抵御雾霾的无奈之举,某公司打算采购一批防雾霾口罩和滤片,已知口罩的价格为20元/只,公司预算可以购买半箱滤片和180只口罩;或者也可以购买3箱滤片和100只口罩,求每箱滤片的价格.19.(12分)甲、乙两站相距240千米,从甲站开出一列慢车,速度为每小时80千米,从乙站开出一列快车,速度为每小时120千米.(1)若两车同时开出,背向而行,则经过多长时间两车相距540千米?(2)若两车同时开出,同向而行(快车在后),则经过多长时间快车可追上慢车?(3)若两车同时开出,同向而行(慢车在后),则经过多长时间两车相距300千米?20.(12分)某市水果批发部门欲将A市的一批水果运往本市销售,有火车和汽车两种运输方式,运输过程中的损耗均为200元/时,其他主要参考数据如下:(1)如果选择汽车的总费用比选择火车的总费用多1100元,那么你知道本市与A市之间的路程是多少千米吗?请你列方程解答;(2)若A市与某市之间的路程为s千米,且知道火车与汽车在路上耽误的时间分别为2小时和3.1小时,要想将这批水果运往该市进行销售,则当s为多少时,选择火车和汽车运输所需费用相同?1.C 2.B 3.B 4.A 5.A6.D [解析] 由题意可得x -1+x3=2,整理得3x -1-x =6,解得x =3.5.7.C [解析] 设小明家六月份用水x 吨,由题意得1.2×20+1.5×(x -20)=1.25x ,解得x =24,∴1.25x =30,所以小明家六月份应交水费30元.故选C.8.C [解析] 第1个图案中白色纸片有4张,从第2个图案起,每一个图案都比前一个图案多3张白色纸片,所以第n 个图案中白色纸片的张数=4+3(n -1)=(3n +1)张.根据题意,得3n +1=2020,解得n =673.故选C.9.210.答案不唯一,如x -3=0 11.1 212.-4 [解析] 根据题意,得2x +3+1-x =0,解得x =-4.13.28元 [解析] 本题考查一元一次方程的应用,根据公式:售价-进价进价×100%=利润率,可设标价为x 元,则0.9x -2121×100%=20%,解得x =28. 14.10(x +2)=5015.-4 [解析]∵x ☆(-3)=2,∴2x -3×(-3)+1=2,解得x =-4.16.[解析]解方程时,有分母的先去分母,有括号的要去括号,再通过移项、合并同类项、两边同除以未知数的系数这几个步骤,求出未知数的值.解:(1)x =1.(2)去括号,得5x +6-3x =8, 移项、合并同类项,得2x =2, 两边同除以2,得x =1. (3)x =-32.17.解:根据题意,得2m -5m -13+7-m2=5, 去分母,得12m -2(5m -1)+3(7-m )=30,去括号,得12m -10m +2+21-3m =30, 移项、合并同类项,得-m =7, 两边同除以-1,得m =-7.18.解:设每箱滤片的价格为x 元,则 180×20+12x =3x +100×20,解得x =640.答:每箱滤片的价格为640元.19.解:(1)设经过x 小时两车相距540千米, 由题意得80x +120x =540-240, 解得x =32.答:经过32小时两车相距540千米.(2)设经过y 小时快车可追上慢车. 由题意得120y -80y =240,解得y =6. 答:经过6小时快车可追上慢车. (3)设经过z 小时两车相距300千米. 由题意得120z -80z =300-240. 解得z =32.答:经过32小时两车相距300千米.20.解:(1)设本市与A 市之间的路程是x 千米,由题意得200·x 80+20·x +900-(200·x100+15·x +2000)=1100,解得x =400.答:本市与A 市之间的路程是400千米.(2)选择汽车的总费用=200⎝ ⎛⎭⎪⎫s80+3.1+20s +900=(22.5s +1520)元,选择火车的总费用=200⎝⎛⎭⎪⎫s 100+2+15s +2000=(17s +2400)元,令22.5s +1520=17s +2400, 解得s =160.故当s =160时,选择火车和汽车运输所需总费用相同.。

浙教版初中数学七年级上册第五单元《一元一次方程》单元测试卷(困难)(含答案解析)

浙教版初中数学七年级上册第五单元《一元一次方程》单元测试卷(困难)(含答案解析)

浙教版初中数学七年级上册第五单元《一元一次方程》单元测试卷考试范围:第五章;考试时间:120分钟;总分:120分第I卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1.在方程①3x+y=4,②2x−1x=5,③3y+2=2−y,④2x2−5x+6=2(x2+3x)中,是一元一次方程的个数为( )A. 1个B. 2个C. 3个D. 4个2.下列说法正确的个数是( )①1π是一个整式②方程2x−x2=3−x2是关于x的一元一次方程③x2+3−4x是按x的降幂排列的④单项式−23a2b3的系数是−2,次数是7⑤一个有理数不是整数就是分数A. 2B. 3C. 4D. 53.已知(m2−9)x2−(m−3)x+6=0是以x为未知数的一元一次方程,如果|a|≤|m|,那么|a+m|+|a−m|的值为( )A. 2B. 4C. 6D. 84.下列等式变形:①若a=b,则ax=bx;②若ax=bx,则a=b;③若4a=7b,则ab=74;④若ab=74,则7a=4b.其中一定正确的个数是( )A. 1个B. 2个C. 3个D. 4个5.下列根据等式的性质变形不正确的是( )A. 由x+2=y+2,得到x=yB. 由2a−3=b−3,得到2a=bC. 由cx=cy,得到x=yD. 由x=y,得到xc2+1=yc2+16.下列说法正确的是( )A. 单项式−π2x3yz23的次数是8 B. 最小的非负数是0C. 0的绝对值、相反数、倒数都等于它本身D. 如果a=b,那么ac =bc7.下列根据等式的性质变形不正确的是( )A. 由x+2=y+2,得到x=yB. 由2a−3=b−3,得到2a=bC. 由cx=cy,得到x=yD. 由x=y,得到xc2+1=yc2+18.若关于x的方程23x−3k=5(x−k)+1的解为负数,则k的值为( )A. k>12B. k<12C. k=12D. k>12且k≠29.已知:|a−1|与|ab−2|互为相反数,则关于x的方程xa(b+1)+x(a+2)(b+3)+x(a+4)(b+5)+x(a+6)(b+7)+⋯+x(a+2018)(b+2019)=1010的解为( )A. 2019B. 2020C. 2021D. 202210.下列结论:①若a+b+c=0,且abc≠0,则方程a+bx+c=0的解是x=1;②若a(x−1)=b(x−1)有唯一的解,则a≠b;③若b=2a,则关于x的方程ax+b=0(a≠0)的解为x=-12;④若a+b+c=1,且a≠0,则x=1一定是方程ax+b+c=1的解;其中结论正确个数有( )A. 4个B. 3个C. 2个D. 1个11.佳佳超市推出如下优惠方案:(1)一次性购物不超过100元不享受优惠;(2)一次性购物超过100元但不超过300元一律九折;(3)一次性购物超过300元一律八折.吴明两次购物分别付款80元、252元,如果吴明一次性购买与上两次相同的商品,则应付款( )A. 288元B. 322元C. 288元或316元D. 332元或是321元12.在如图所示的2020年元月份的月历表中,任意框出表中四个数,这四个数的和可能是( )A. 68B. 82C. 60D. 101第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13.若(a−2)x|a|−1−2=0是关于x的一元一次方程,则a=______.14.方程x0.3−x0.5=1可变形为10x3−10x5= ______ .15.已知5x+7与2−3x互为相反数,则x=____________16.某人乘船由A地顺流而下到B地,然后又逆流而上到C地,共乘船3小时,已知船在静水中的速度是每小时8千米,水流速度是每小时2千米,已知A,B,C三地在一条直线上,若A,C两地的距离为2千米,则A,B两地之间的距离是_____千米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

岱山实验学校七年级上册第五单元《一元一次方程单元测试》 班级_________ 姓名__________
一、选择题(每小题3分,共36分)
1.下列等式中是一元一次方程的是 ( )
A .S=21ab B. x -y=0 C.x=0 D .3
21+x =1 2.已知方程(m+1)x ∣m ∣+3=0是关于x 的一元一次方程,则m 的值是 ( )
A.±1
B.1
C.-1
D.0或1
3.下列解方程过程中,变形正确的是 ( ) A.由2x-1=3得2x=3-1 B.由4x +1=1.013.0+x +1.2得4x +1=1
103+x +12 C.由-75x=76得x=-7675 D.由3x -2
x =1得2x-3x=6 4.已知x=-3是方程k(x+4)-2k -x=5的解,则k 的值是 ( )
A.-2 B.2 C.3 D.5
5.若代数式x -3
1x +的值是2,则x 的值是 ( ) (A)0.75 (B)1.75 (C)1.5 (D) 3.5
6.方程∣2x-6∣=0的解是 ( ) A.3 B.-3 C.±3
D.31 7.若代数式3a 4b
x 2与0.2b 13-x a 4能合并成一项,则x 的值是 ( ) A.21 B.1 C.3
1 D.0 8. X=-2是下列方程中哪一个方程的解? ( ) A.-2X+5=3X+10 B.X 2-4=4X C.X(X-2)=-4X D.5X-3=6X-
2 9.初一(一)班举行了一次集邮展览,展出的邮票比平均每人3张多24张,比平均每人4张少26张,这个班共展出邮票的张数是
()
A.164
B.178
C.168
D.174
10.设P=2y-2,Q=2y+3,且3P-Q=1,则y的值是()
(A)0.4 (B)2.5 (C)-0.4 (D)-2.5
11.用同样长的三根铁丝分别围成长方形、正方形、圆,其中面积最大的图形是()
A.长方形
B.正方形
C.圆
D.由于不知道铁丝的长度而无法确定12.一件商品提价25%后发现销路不是很好,欲恢复原价,则应降价()
A.40%
B.20% C25% D.15%
二、填空题(每小题3分,共24分)
13.一个数的3倍比它的2倍多10,若设这个数为x,可得到方程________________。

14.在公式中v=v0+at,已知v=15,v0=5,t=4,则a=_____。

15.关于x的两个方程5x-3=4x与ax-12=0的解相同,则a=_______。

16.若a、b互为相反数,c、d互为倒数,p的绝对值等于2,则关于x的方程(a+b)x2+3cd •x-p2=0的解为________。

17.已知轮船逆水前进的速度为m千米/时,水流速度为2千米/时,则轮船在静水中的速度是__________。

18.三个连续奇数的和是75,这三个数分别是__________________。

19.在某月的日历上,用一个2 2的长方形圈出4个数,使它们的和是68,这4天中最大的数是。

20.在高速公路上,一辆长4米,速度为110千米/时的轿车准备超越一辆长12米,速度为90千米/时的货车,则轿车从开始追及到超越货车所需的时间是。

三、解答题(共60分)
21.解下列方程(5分⨯4=20分)
①7x +6=8-3x (写出检验过程) ②4x -3(20-x)=6x -7(9-x)

5
y -21-y =1-52+y ④2.188.1x --233.1x -=3.04.05-x
22(6分).已知x=-2是方程2x -(k -1)2=-20的解,求k 的值。

23(8分).初一年级王马虎同学在做作业时,不慎将墨水瓶打翻,使一道作业只看到:“甲、乙两地相距160千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/时,__________________________________________?请将这道作业题补充完整并列方程解答。

24(8分).前年小张到银行存了一笔年利率为2.25%的普通储蓄,,今年到期后,扣除20%的利息所得税后的本息正好够买一台随身听,已知随身听每台518元,问前年小张存入了多少元的钱?
25(8分)两支蜡烛长、短相同,粗、细不相同,长的能点7时,短的能点10时。

同时点燃4时后,两支蜡烛长度正好相等,问长蜡烛长度是短蜡烛的多少倍?
26(4分+6分).国家规定个人发表文章、出版图书所得稿费的纳税计算方法是:
(1)稿费不高于800元的不纳税;
(2)稿费高于800元,而低于4000元的应缴纳超过800元那部分稿费的14%的税;(3)稿费为4000元或高于4000元的应缴纳全部稿费的11%的税,
试根据上述纳税的计算方法作答:
①若王老师获得的稿费为2400元,则应纳税________元,若王老师获得的稿费为4000元,则应纳税________元。

②若王老师获稿费后纳税420元,求这笔稿费是多少元?
初中数学试卷。

相关文档
最新文档