人教版高中数学必修一第一章测试(含标准答案)
人教版高中数学必修一第一章测试(含答案)
第3题图2011-2012学年度第一学期佛冈中学高一级 高中数学《必修一》第一章教学质量检测卷时间:120分钟。
总分:150分。
命题者:XJL班别: 姓名: 座号:一、选择题(将选择题的答案填入下面的表格。
本大题共10小题,每小题5分,共50分。
) 题号 1 2 3 4 5 6 7 8 9 10 答案1、下列各组对象中不能构成集合的是( )A 、佛冈中学高一(20)班的全体男生B 、佛冈中学全校学生家长的全体C 、李明的所有家人D 、王明的所有好朋友 2、已知集合{}{}5,1,A x R x B x R x =∈≤=∈>那么AB 等于( )A.{1,2,3,4,5} B.{2,3,4,5} C.{2,3,4} D.{}15x R x ∈<≤ 3、设全集{}1,2,3,4,5,6,7,8U =,集合{1,2,3,5}A =,{2,4,6}B =,则图中的阴影部分表示的集合为( )A .{}2B .{}4,6C .{}1,3,5D .{}4,6,7,8 4、下列四组函数中表示同一函数的是( )A.x x f =)(,2())g x x =B.()221)(,)(+==x x g x x fC.2()f x x =()g x x = D.()0f x =,()11g x x x=--5、函数2()21f x x ,(0,3)x。
()7,f a 若则a 的值是 ( )A 、1B 、1-C 、2D 、2±6、2,0()[(1)]1 0x x f x f f x ()设,则 ,()+≥⎧=-=⎨<⎩( ) A 、3 B 、1 C. 0题号 一 二 15 16 17 18 19 20 总分 得分7、()3f x x 函数的值域为( )A 、[3,) B 、(,3] C 、[0),D 、R8、下列四个图像中,不可能是函数图像的是 ( )9、设f(x)是R 上的偶函数,且在[0,+∞)上单调递增,则f(-2),f(3),f(-π)的大小顺序是:( ) A 、 f(-π)>f(3)>f(-2) B 、f(-π) >f(-2)>f(3) C 、 f(-2)>f(3)> f(-π) D 、 f(3)>f(-2)> f(-π) 10、在集合{a ,b ,c ,d}上定义两种运算⊕和⊗如下:那么b ⊗ ()a c ⊕=( )A .aB .bC .cD .d 二、填空题(本大题共4小题,每小题5分,共20分) 11、函数0(3)2y x x =+--的定义域为12、函数2()610f x x x =-+-在区间[0,4]的最大值是13、若}4,3,2,2{-=A ,},|{2A t t x xB ∈==,用列举法表示B 是 . 14、下列命题:①集合{},,,a b c d 的子集个数有16个;②定义在R 上的奇函数()f x 必满足(0)0f =;③()()2()21221f x x x =+--既不是奇函数又不是偶函数;④偶函数的图像一定与y 轴相交;⑤1()f x x=在()(),00,-∞+∞上是减函数。
最新版人教a版高中数学必修一第一章测试题含答案资料
第一章 章末检测题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U ={0,1,2,3}且∁U A ={0,2},则集合A 的真子集共有( ) A.3个 B.4个 C.5个 D.6个答案 A2.设S ,T 是两个非空集合,且它们互不包含,那么S ∪(S ∩T)等于( ) A.S ∩T B.S C.∅ D.T答案 B解析 ∵S ∩T ⊆S ,∴S ∪(S ∩T)=S.3.已知全集U =Z ,A ={-1,0,1,2},B ={x|x 2=x},则A ∩(∁U B)为( ) A.{-1,2} B.{-1,0} C.{0,1} D.{1,2}答案 A4.已知A ={0,1},B ={-1,0,1},f 是从A 到B 的映射,则满足f(0)>f(1)的映射有( ) A.3个 B.4个 C.5个 D.2个答案 A5.已知f(x)=⎩⎪⎨⎪⎧x -5x 2(x ≤5),f (x -2) (x>5),则f(8)的函数值为( )A.-312B.-174C.174D.-76答案 D6.已知函数y =f(x)在区间[-5,5]上是增函数,那么下列不等式中成立的是( ) A.f(4)>f(-π)>f(3) B.f(π)>f(4)>f(3) C.f(4)>f(3)>f(π) D.f(-3)>f(-π)>f(-4)答案 D7.设f(x)是R 上的偶函数,且当x ∈(0,+∞)时,f(x)=x(1+3x),则当x ∈(-∞,0)时,f(x)等于( )A.x(1+3x) B.-x(1+3x) C.-x(1-3x) D.x(1-3x)答案 C8.当1≤x ≤3时,函数f(x)=2x 2-6x +c 的值域为( ) A.[f(1),f(3)] B.[f(1),f(32)]C.[f(32),f(3)]D.[c ,f(3)]答案 C9.已知集合M ⊆{4,7,8},且M 中至多有一个偶数,则这样的集合共有( ) A.5个 B.6个 C.7个 D.8个答案 B解析 M 可能为∅,{7},{4},{8},{7,4},{7,8}共6个.10.若函数f(x)的定义域是[0,2],则函数g(x)=f (2x )x -1的定义域是( )A.[0,2]B.(1,2]C.[0,1)D.以上都不对答案 C11.已知二次函数f(x)=x 2-2x +m ,对任意x ∈R 有( ) A.f(1-x)=f(1+x) B.f(-1-x)=f(-1+x) C.f(x -1)=f(x +1) D.f(-x)=f(x)答案 A12.已知f(x)=3-2|x|,g(x)=x 2-2x ,F(x)=⎩⎪⎨⎪⎧g (x ),若f (x )≥g (x ),f (x ),若f (x )<g (x ).则F(x)的最值是( )A.最大值为3,最小值-1B.最大值为7-27,无最小值C.最大值为3,无最小值D.既无最大值,又无最小值答案 B二、填空题(本大题共4小题,每小题5分,共20分)13.已知集合A ={x ∈N |82-x ∈N }用列举法表示A ,则A =________.答案 {0,1}解析 由82-x ∈N ,知2-x =1,2,4,8,又x ∈N ,∴x =1或0.14.已知集合A ={1,3,m},B ={3,4},A ∪B ={1,2,3,4},则m =________. 答案 215.国家规定个人稿费的纳税办法是:不超过800元的不纳税;超过800元而不超过4 000元的按超过800元的14%纳税;超过4 000元的按全部稿酬的11%纳税.某人出版了一本书,共纳税420元,则这个人的稿费为________元. 答案 3 80016.若直线y =1与曲线y =x 2-|x|+a 有四个交点,则a 的取值范围是________.答案 1<a<54解析 由图知a>1且抛物线顶点的纵坐标小于1.即⎩⎨⎧a>1,4a -14<1⇒1<a<54.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知全集U ={x|x -2≥0或x -1≤0},A ={x|x<1或x>3},B ={x|x ≤1或x>2},求A ∩B ,A ∪B ,(∁U A)∩(∁U B),(∁U A)∪(∁U B).解析 全集U ={x|x ≥2或x ≤1},∴A ∩B =A ={x|x<1或x>3}; A ∪B =B ={x|x ≤1或x>2};(∁U A)∩(∁U B)=∁U (A ∪B)={2}; (∁U A)∪(∁U B)=∁U (A ∩B)={x|2≤x ≤3或x =1}.18.(12分)设A ={-3,4},B ={x|x 2-2ax +b =0},B ≠∅,且A ∩B =B ,求a ,b 的值. 解析 ∵A ∩B =B ,∴B ⊆A ,∴B =∅或{-3}或{4}或{-3,4}. (1)若B =∅,不满足题意.∴舍去.(2)若B ={-3},则⎩⎪⎨⎪⎧Δ=(-2a )2-4b =0,9+6a +b =0,解得⎩⎪⎨⎪⎧a =-3,b =9.(3)若B ={4},则⎩⎪⎨⎪⎧Δ=(-2a )2-4b =0,16-8a +b =0,解得⎩⎪⎨⎪⎧a =4,b =16.(4)若B ={-3,4},则⎩⎪⎨⎪⎧Δ=(-2a )2-4b>0,9+6a +b =0,16-8a +b =0,解得⎩⎪⎨⎪⎧a =12,b =-12.19.(12分)已知函数f(x)=11+x 2.(1)判断函数f(x)在(-∞,0)上的单调性,并证明你的结论; (2)求出函数f(x)在[-3,-1]上的最大值与最小值.解析 (1)设任意x 1,x 2∈(-∞,0),且x 1<x 2,而f(x 1)-f(x 2)=11+x 12-11+x 22=(x 2+x 1)(x 2-x 1)(1+x 12)(1+x 22),由x 1+x 2<0,x 2-x 1>0,得f(x 1)-f(x 2)<0,得f(x 1)<f(x 2),故函数f(x)=11+x 2在(-∞,0)上为单调递增函数. (2)f(x)min =f(-3)=110,f(x)max =f(-1)=12, 故f(x)在[-3,-1]上的最大值为12,最小值为110.20.(12分)某厂生产某种零件,每个零件的成本为40元,出厂单价为60元,该厂为鼓励销售订购,决定当一次订量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.(1)当一次订购量为多少个时,零件的实际出厂单价恰好降为51元?(2)设一次订购量为x 个,零件的实际出厂单价为P 元,写出函数P =f(x)的表达式; (3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1 000个,利润又是多少元(工厂售出一个零件的利润=实际出厂单价-成本价)?解析 (1)设每个零件的实际出厂价恰好降为51元时,一次订购量为x 0个,则x 0=100+60-510.02=550. 因此,当一次订购量为550个时,每个零件的实际出厂价格为51元.(2)当0<x ≤100时,P =60.当100<x<550时,P =60-0.02(x -100)=62-x50.当x ≥550时,P =51.所以P =f(x)=⎩⎪⎨⎪⎧60,0<x ≤10062-x50,100<x<550,x ∈N 51,x ≥550.(3)设销售商的一次订购量为x 个时,工厂获得的利润为L 元,则 L =(P -40)x =⎩⎪⎨⎪⎧20x ,0<x ≤10022x -x250,100<x<550,(x ∈N )11x ,x ≥550.当x =500时,L =6 000; 当x =1 000时,L =11 000.因此,当销售商一次订购500个零件时,该厂获得的利润是6 000元;如果订购1 000个,利润是11 000元.21.(12分)求函数f(x)=x 2-2ax -1在区间[0,2]上的最值. 解析 f(x)=x 2-2ax -1=(x -a)2-a 2-1,(1)当a ≤0时,f(x)在[0,2]上为增函数,∴f(x)的最小值为f(0)=-1,最大值为f(2)=3-4a. (2)当0<a ≤1,f(x)在[0,a]上为减函数,在[a ,2]上为增函数,且f(2)>f(0).∴f(x)的最大值为f(2)=3-4a ,f(x)的最小值为-a 2-1.(3)当1<a<2时,f(x)在[0,a]上为减函数,在[a ,2]上为增函数,且f(0)>f(2),∴f(x)的最大值为f(0)=-1,f(x)的最小值为f(a)=-a 2-1.(4)当a ≥2时,f(x)在[0,2]上为减函数,f(x)的最大值为f(0)=-1,f(x)的最小值为3-4a. 22.(12分)已知函数f(x)的定义域是(0,+∞), 当x>1时,f(x)>0,且f(x·y)=f(x)+f(y). (1)求f(1);(2)证明f(x)在定义域上是增函数;(3)如果f(13)=-1,求满足不等式f(x)-f(x -2)≥2的x 的取值范围.解析 (1)令x =y =1,得f(1)=2f(1),故f(1)=0.(2)证明:令y =1x ,得f(1)=f(x)+f(1x )=0,故f(1x )=-f(x).任取x 1,x 2∈(0,+∞),且x 1<x 2,则f(x 2)-f(x 1)=f(x 2)+f(1x 1)=f(x 2x 1).由于x 2x 1>1,故f(x 2x 1)>0,从而f(x 2)>f(x 1).∴f(x)在(0,+∞)上是增函数.(3)由于f(13)=-1,而f(13)=-f(3),故f(3)=1.在f(x·y)=f(x)+f(y)中,令x =y =3,得f(9)=f(3)+f(3)=2.故所给不等式可化为f(x)-f(x -2)≥f(9),∴f(x)≥f[9(x -2)],∴x ≤94.又⎩⎪⎨⎪⎧x>0,x -2>0,∴2<x ≤94.∴x 的取值范围是(2,94].1.已知集合A ={x|x>1},B ={x|-1<x<2},则A ∩B 等于( )A.{x|-1<x<2}B.{x|x>-1}C.{x|-1<x<1}D.{x|1<x<2}答案 D2.已知函数f :A →B(A ,B 为非空数集),定义域为M ,值域为N ,则A ,B ,M ,N 的关系是( )A.M =A ,N =BB.M ⊆A ,N =BC.M =A ,N ⊆BD.M ⊆A ,N ⊆B 答案 C解析 值域N 应为集合B 的子集,即N ⊆B ,而不一定有N =B.3.根据市场调查,某种新产品投放市场的30天内,每件销售价格P(元)与时间t(天t ∈N *)的关系满足下图,日销售Q(件)与时间t(天)之间的关系是Q =-t +40(t ∈N *).(1)写出该产品每件销售价格P 与时间t 的函数关系;(2)在这30天内,哪一天的日销售金额最大?(日销售金额=每件产品销售价格×日销量)解析 (1)根据图像,每件销售价格P 与时间t 的函数关系为:P =⎩⎪⎨⎪⎧t +30 (0<t ≤20,t ∈N *),50 (20<t ≤30,t ∈N *).(2)设日销售金额为y 元,则y =⎩⎪⎨⎪⎧(t +30)(-t +40)(0<t ≤20,t ∈N *),-50t +2 000 (20<t ≤30,t ∈N *)=⎩⎪⎨⎪⎧-t 2+10t +1 200(0<t ≤20,t ∈N *),-50t +2 000 (20<t ≤30,t ∈N *).若0<t ≤20,t ∈N *时,y =-t 2+10t +1 200=-(t -5)2+1 225,∴当t =5时,y max =1 225;若20<t ≤30,t ∈N *时,y =-50t +2 000是减函数.∴y<-50×20+2 000=1 000,因此,这种产品在第5天的日销售金额最大,最大日销售金额是1 225元.4.若函数f(x)=12x 2-x +32的定义域和值域都是[1,b],求b 的值.解析 由条件知,f(b)=b ,且b>1,即12b 2-b +32=b.解得b =3.。
(新教材)部编人教版高中数学必修一第一章课后练习和习题汇总(附答案)
(新教材)部编人教版高中数学必修一第一章课后练习和习题汇总(附答案)目录第一章集合与常用逻辑用语.1.1 集合的概念1.2 集合间的基本关系1.3集合的基本运算1.4 充分条件与必要条件1.5全称量词与存在量小结复习参考题1第一章集合与常用逻辑用语1.1集合的概念练习1.判断下列元素的全体是否组成集合,并说明理由:(1)与定点A,B等距离的点;【答案解析】:是集合,因为这些点有确定性.(2)高中学生中的游泳能手.【答案解析】:不是,因为是否能手没有客观性,不好确定.2.用符号“∈”或“∉”填空:0___ N; -3___ N; 0.5__Z; √2__z; ⅓__Q; π__R.【答案解析】:根据自然数,整数,有理数,实数的定义即可判断.0是自然数,则0∈N ;-3不是自然数,则-3∉N ; 0.5,√2 不是整数,则0.5∉Z,√2∉Z;⅓是有理数,则⅓∈Q ;π 是无理数,则π∈R故答案为:(1)∈;(2)∉ ;(3)∉ ;(4)∉ ;(5)∈ ;(6)∈3.用适当的方法表示下列集合:(1)由方程x²-9=0的所有实数根组成的集合;【答案解析】:{-3, 3}.(2)一次函数y=x+3与y=-2x+6图象的交点组成的集合;【答案解析】: {(1, 4)}.(3)不等式4x- 5<3的解集.【答案解析】:{x | x<2}.习题1.1一、复习巩固1.用符号“∈”或“∉”填空:(1)设A为所有亚洲国家组成的集合,则中国____ A,美国____A,印度____A,英国____ A;【答案解析】:设A为所有亚洲国家组成的集合,则:中国∈A,美国∉A,印度∈A,英国∉A.(2)若A={x|x²=x},则-1____A;【答案解析】:A={x|x²=x}={0, 1},则-1∉A.(3)若B={x|x²+x-6=0},则3____B;【答案解析】:若B={x|x²+x-6=0}={x|(x+3)(x-2)=0}={-3,2},则3∉B; (4)若C={x∈N|1≤x≤10},则8____C, 9.1____C.【答案解析】:若C={x∈N|1≤x≤10}={1, 2, 3,4,5, 6,7, 8,9,10},则8∈C, 9.1∉C.2.用列举法表示下列集合:(1)大于1且小于6的整数;【答案解析】:大于1且小于6的整数有4个:2,3,4,5,所以集合为{2,3,4,5}.(2) A={x|(x-1)(x +2)=0};【答案解析】:(x- 1)(x+2)=0的解为x=1或x=-2,所以集合为{1, -2}.(3) B={x∈Z|-3<2x-1<3}.【答案解析】:由-3<2x-1<3,得-1<x<2.又因为x∈Z,所以x=0.或x=1,所以集合为{0,1}.二、综合运用3.把下列集合用另一种方法表示出来:(1) {2,4,6,8, 10};【答案解析】:{x |x=2k, k=1, 2, 3, 4, 5}.(2)由1,2,3这三个数字抽出一部分或全部数字(没有重复)所组成的一切自然数;【答案解析】:{1, 2, 3, 12, 21, 13, 31, 23, 32, 123, 132, 213, 231, 312, 321}.(3) {x∈N|3<x<7};【答案解析】:{4, 5, 6}.(4)中国古代四大发明.【答案解析】:{指南针,活字印刷,造纸术,火药}.4.用适当的方法表示下列集合:(1)二次函数y=x²-4的函数值组成的集合;【答案解析】: {y | y≥-4}.(2)反比例函数y=2/x的自变量组成的集合;【答案解析】:{x | x≠0}.(3)不等式3x≥4- 2x的解集.【答案解析】:{x |x≥4/5}.三、拓广探索5.集合论是德国数学家康托尔于19 世纪末创立的.当时,康托尔在解决涉及无限量研究的数学问题时,越过“数集”限制,提出了一般性的“集合”概念.关于集合论,希尔伯特赞誉其为“数学思想的惊人的产物,在纯粹理性的范畴中人类活动的最美的表现之一”,罗素描述其为“可能是这个时代所能夸耀的最伟大的工作”.请你查阅相关资料,用简短的报告阐述你对这些评价的认识.【答案解析】:略.1.2 集合间的基本关系练习1.写出集合{a, b,c}的所有子集.【答案解析】由0个元素构成的子集: ∅;由1个元素构成的子集: {a}, {b}, {c};由2个元素构成的子集: {a, b}, {a,c}, {b, c};由3个元素构成的子集: {a, b, c};综上,可得集合{a,b, c}的所有子集有: 0, {a}, {b}, {c}, {a, b}, {a,c}, {b, c}, {a, b, c}.2.用适当的符号填空:(1) a__ {a,b,c}; (2) 0__ {x|x²=0};(3) B___ {x∈R|x²+1=0}; (4) {0,1}___N(5) {0}___ {x|x²=x}; (6) {2, 1}___{x|x²-3x+2=0}.【答案解析】:(1)∈;(2)=;(3)=;(4)⊆;(5)⊆;(6)=.3.判断下列两个集合之间的关系:(1) A={x|x<0}, B={x|x<l};(2) A={x|x=3k,k∈N},B={x|x=6z,z∈N};(3) A={x∈N₋|x是4与10的公倍数},B={x|x=20m, m∈N₊}.【答案解析】:⫋A B B A A=B习题1.2一、复习巩固1.选用适当的符号填空:(1)若集合A={x|2x-3<3x}, B={x|x≥2},则-4___B,-3___ A, {2}___B,B___ A;【答案解析】:∵集合A= {x|2x-3< 3x}= {x|x>-3},B = {x|x≥2},则∴-4∉B,-3∉A,{2}B,B A.故答案为:∉,∉,,。
人教版A版高中数学必修第一册 第一章综合测试01试题试卷含答案 答案在前
第一章综合测试答案解析一、 1.【答案】A【解析】A 显然正确;0不是集合,不能用符号“⊆”,B 错误;∅不是M 中的元素,C 错误;M 为无限集,D 错误. 2.【答案】D【解析】{}=0469B ,,,,B ∴的子集的个数为42=16. 3.【答案】D【解析】对于①,当=4a 为正整数;对于②,当=1x 时,为正整数;对于③,当=1y 时,为正整数,故选D .4.【答案】A【解析】由1231x --<<,得12x <<,即{}|12x x x ∈<<,由30x x -()<,得03x <<,即{}|03x x x ∈<<,{}|12x x <<是{}|03x x <<的真子集,{}|03x x <<不是{}|12x x <<的子集,故选A .5.【答案】D【解析】两个集合的交集其实就是曲线和直线的交点,注意结果是两对有序实数对. 6.【答案】B【解析】{=|=0A B x x 或}1x ≥,A 错误;{}=12A B ,,B 正确;{}{}R =|1=0A B x x B ()< ,C 错误;{}R =|0A B x x ()≠ ,D 错误.7.【答案】B【解析】方法一:11a a ⇒⇒>,1011a a ⇒-⇒)>>,∴甲是乙的充要条件,故选B .方法二:20a a a a ⎧⇔⎨⎩>,>,,1a ∴>,故选B .8.【答案】C【解析】由题意得N M ⊆,由Venn 图(图略)可知选C . 9.【答案】C【解析】由题意知,0=2bx a-为函数2=y ax bx c ++图象的对称轴方程,所以0y 为函数y 的最小值,即对所有的实数x ,都有0y y ≥,因此对任意x ∈R ,0y y ≤是错误的,故选C .10.【答案】D【解析】{}=|1U B x x - > ,{}=|0U A B x x ∴ > .{}=|0U A x x ≤ ,{}=|1U B A x x ∴- ≤ .{=|0U U A B B A x x ∴ ()()> 或}1x -≤.11.【答案】A【解析】一元二次方程2=0x x m ++有实数解1=1404m m ⇔∆-⇔≥≤.当14m <时,14m ≤成立,但14m ≤时,14m <不一定成立.故“14m <”是“一元二次方程2=0x x m ++有实数解”的充分不必要条件.12.【答案】C【解析】A C A B ⊇ ()(),U U A C A B∴⊆ ()() ,∴①为真命题.A C A B ⊆ ()(),U U A C A B∴⊇ ()() ,即U U U U A C A B ⊇ ()() ,∴②为真命题.由Venn 图(图略)可知,③为假命题.故选C . 二、13.【答案】x ∀∈R ,210x +≥【解析】存在量词命题的否定是全称量词命题. 14.【答案】0【解析】依题意得,23=3m m ,所以=0m 或=1m .当=1m 时,违反集合中元素的互异性(舍去). 15.【答案】充分不必要【解析】由=2a 能得到1)(2)0(=a a --,但由1)(2)0(=a a --得到=1a 或=2a ,而不是=2a ,所以=2a 是1)(2)0(=a a --的充分不必要条件. 16.【答案】12【解析】设全集U 为某班30人,集合A 为喜爱篮球运动的15人,集合B 为喜爱乒乓球运动的10人,如图.设所求人数为x ,则108=30x ++,解得=12x . 三、17.【答案】(1)命题的否定:有的正方形不是矩形,假命题(2.5分) (2)命题的否定:不存在实数x ,使31=0x +,假命题.(5分) (3)命题的否定:x ∀∈R ,2220x x ++>,真命题.(7.5分)(4)命题的否定:存在0x ,0y ∈R ,00110x y ++-<,假命题.(10分)18.【答案】(1){=|1U A x x - < 或1x ≥,{=|12U A B x x ∴()≤≤ .(6分) (2){}=|01A B x x <<,{=|0U A Bx x ∴ ()≤ 或}1x ≥.(12分) 19.【答案】①若=A ∅,则2=240p ∆+-()<,解得40p -<<.(4分)②若方程的两个根均为非正实数,则12120=200.10.=x x p p x x ∆⎧⎪+-+⎨⎪⎩≥,()≤,解得≥>(10分) 综上所述,p 的取值范围是{}|4p p ->.(12分) 20.【答案】证明:①充分性:若存在0x ∈R ,使00ay <,则2220004=4b ab b a y ax bx ----() 222000=444b abx a x ay ++-200=240b ax ay +-()>,∴方程=0y 有两个不等实数根.(6分)②必要性:若方程=0y 有两个不等实数根. 则240b ab ->,设0=2bx a-, 则20=22b b ay a a b c a a ⎡⎤-+-+⎢⎥⎣⎦()() 2224==0424b b ac b ac --+<(10分) 由①②知,“方程=0y 有两个不等实根”的充要条件是“存在0x ∈R ,使00ay <”.(12分) 21.【答案】(1)当=2a 时,{}=|17A x x ≤≤,{}=|27AUB x x -≤≤,(3分){R =|1A x x < 或}7x >,{}R =|21A B x x - ()≤< .(6分)(2)=A B A ,A B ∴⊆.①若=A ∅,则123a a -+>,解得4a -<;(8分)②若A ∅≠,则12311212234.a a a a a -+⎧⎪⎪---⎨⎪+⎪⎩≤,≥,解得≤≤≤,(10分)综上可知,a 的取值范围是1|412a a a ⎧⎫--⎨⎬⎩⎭<或≤≤.(12分)22.【答案】设选修甲、乙、丙三门课的同学分别组成集合A ,B ,C ,全班同学组成的集合为U ,则由已知可画出Venn 图如图所示.(2分)选甲、乙而不选丙的有2924=5-(人), 选甲、丙而不选乙的有2824=4-(人), 选乙、丙而不选甲的有2624=2-(人),(6分) 仅选甲的有382454=5---(人), 仅选乙的有352452=4---(人), 仅选丙的有312442=1---(人),(8分)所以至少选一门的人数为24542541=45++++++,(10分) 所以三门均未选的人数为5045=5-.(12分)第一章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}=|23M x x -<<,则下列结论正确的是( ) A .2.5M ∈ B .0M ⊆C .M ∅∈D .集合M 是有限集2.已知集合{}=023A ,,,{}=|=B x x ab a b A ∈,,,则集合B 的子集的个数是( ) A .4B .8C .15D .163.下列存在量词命题中,真命题的个数是( )①存在一个实数a 为正整数;②存在一个实数x ,使为正整数;③存在一个实数y 为正整数. A .0B .1C .2D .34.已知1231p x --:<<,30q x x -:()<,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.设集合{}2=|=+M x y y x x (,),{}N=|=+16x y y x (,),则M N 等于( ) A .416(,)或412-(,)B .{420,,}412-, C .{412(,),}420-(,)D .{420(,),}412-(,)6.若集合{}=|1A x x ≥,{}=012B ,,,则下列结论正确的是( ) A .{}=|0A B x x ≥B .{}=12A B ,C .{}R =01A B (),D .{}R =|1A B x x()≥7.甲:“1a >”是乙:“a ”的( ) A .既不充分也不必要条件 B .充要条件 C .充分不必要条件D .必要不充分条件8.已知全集*=U N ,集合{}*=|=2M x x n n ∈N ,,{}*=|=4N x x n n ∈N ,,则( )A .=U M NB .=U U M N ()C .=U U M N ()D .=U U M N ()9.已知0a >,函数2=++y ax bx c .若0x 满足关于x 的方程2+b=0ax ,则下列选项中的命题为假命题的是( )A .存在x ∈R ,y y 0≤B .存在x ∈R ,0y y ≥C .对任意x ∈R ,y y 0≤D .对任意x ∈R ,0y y ≥10.已知=U R ,{}=|0A x x >,{}=|1B x x -≤,则U U A B B A ()() 等于( )A .∅B .{}|0x x ≤C .{}|1x x ->D .{|0x x >或}1x -≤11.“14m <”是“一元二次方程2++=0x x m 有实数解”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件12.已知U 为全集,A ,B ,C 是U 的子集,A C A B ⊆ ()(),A C A B ⊇ ()(),则下列命题中,正确的个数是( )①U U A C A B ⊆ ()() ; ②U U U U A C A B ⊇ ()() ;③C B ⊆. A .0B .1C .2D .3二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.命题:“0x ∃∈R ,2+10x <”的否定是________.14.设集合{}2=33A m ,,{}=33B m ,,且=A B ,则实数m 的值是________. 15.若a ∈R ,则“=2a ”是“(1)(2)=0a a --”的________条件.16.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)写出下列命题的否定并判断其真假. (1)所有正方形都是矩形;(2)至少有一个实数0x 使3+1=0x ;(3)0x ∃∈R ,2+2+20x x ≤;(4)任意x ,y ∈R ,+1+10x y -≥.18.(本小题满分12分)设全集=U R ,集合{}=|11A x x -≤<,{}=|02B x x <≤.(1)求U A B () ;(2)求U A B() .19.(本小题满分12分)已知{}2=|+2++1=0A x x p x x ∈Z (),,若{}|0=A x x ∅ >,求p 的取值范围.20.(本小题满分12分)已知2=0y ax bx c a b c a ++∈R (,,,且≠).证明:“方程=0y 有两个不相等的实数根”的充要条件是“存在0x ∈R ,使00ay <”.21.(本小题满分12分)已知集合{}=|12+3A x a x a -≤≤,{}=|24B x x -≤≤,全集=.U R(1)当=2a 时,求A B 和R A B () ;(2)若=A B A ,求实数a 的取值范围.22.(本小题满分12分)某班有学生50人,学校开设了甲、乙、丙三门选修课,选修甲的有38人,选修乙的有35人,选修丙的有31人,兼选甲、乙两门的有29人,兼选甲、丙两门的有28人,兼选乙、丙两门的有26人,甲、乙、丙三门均选的有24人,那么这三门均未选的有多少人?。
人教版高中数学必修一第一章单元测试(含答案)
高中数学《必修一》第一章教学质量检测卷佛冈中学全校学生家长的全体 1、下列各组对象中不能构成集合的是()A 、佛冈中学高一(20)班的全体男生B 、C 、李明的所有家人D 王明的所有好朋友 选择 (将 题的 填入2、 已知集合A x R|x 5 ,B x R x 1 ,那么AI B 等于3、4、5、 A 、6、 7、 A. C. {2, 2,3,4,5 3,4} D.B.2, 3,4,12,3,4,5,6,7,8 ,集合 A {1,2,315}, 设全集U 则图中的阴影部分表示的集合为()A. 2B. 4,6C. 1,3,5D. 4,6,7,8 下列四组函数中表示同一函数的是 A. f(x) x , g(x) (Tx )2B. f (x) C. f (x)廉,g(x) |x|D. f(x) 函数 f(x)= 2x 2- 1 , x? (0,3) o1B 1C 、2D B {2,4,6} ()x 2,g(x) x 1 0 , g(x) < x 1 ■. 1 x若f (a )= 7,则a 的值是() x 2,(x 0)血 设f(x) !,(x 0),则f[f(1)]() A 3B 1C.0D.-1 函数f (x ) = . x + 3的值域为() A 、[3 , +x ) B 、(一x, 3]C 、[0 , +x )D R 8、下列四个图像中,不可能是函数图像的是 () 9、设f (x )是R上 的偶函数,且在 [0,+ x )上单调 递增,则f(-2),f(3),f(- )的大小顺序是:() A f(- )>f(3)>f(-2)B 、f(- )>f(-2)>f(3) C 、f(-2)>f(3)>f(- )D 、f(3)>f(-2)>f(- ) 10、在集合{a , b , c , d }上定义两种运算 和 如下:那么 b (a c)() A. aB. bC. cD. d二、填空题(本大题共4小题,每小题5分,共20分) 11、 函数y 1 (x 3)0的定义域为12、 函数f(x) x 2 6x 10在区间[0,4]的最大值是Q I /'13、 若 A { 2,2,3,4} , B {x|x t 2,t A},用列举法表示 B 是.14、 下列命题:①集合a,b,c,d 的子集个数有16个;②定义在R 上的奇函数f(x)必满足f (0) 0 ; ③f(x) 2x 1 2 2 2x 1既不是奇函数又不是偶函数;④偶函数的图像一定与y 轴相交;⑤f(x)」x在 ,0 U 0, 上是减函数。
人教版高一数学必修一-第一章练习测试题与参考答案
集合与函数基础测试一、选择题(共12小题,每题5分,四个选项中只有一个符合要求)1.函数y ==x 2-6x +10在区间(2,4)上是( )A .递减函数B .递增函数C .先递减再递增D .选递增再递减.2.方程组20{=+=-y x y x 的解构成的集合是 ()A .)}1,1{(B .}1,1{C .(1,1)D .}1{3.已知集合A ={a ,b ,c },下列可以作为集合A 的子集的是()14.函数y =1+x 的单调区间为___________. 15.含有三个实数的集合既可表示成}1,,{ab a ,又可表示成}0,,{2b a a +,则=+20042003b a . 16.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U 那么集合=N ,=⋂)(N C M U ,=⋃N M .三、解答题(共4小题,共44分)17.已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ⊆,求实数a 的取值集合.18.设f (x )是定义在R 上的增函数,f (xy )=f (x )+f (y ),f (3)=1,求解不等式f (x )+f (x -2)>1.19.已知函数f (x )是奇函数,且当x >0时,f (x )=x 3+2x 2—1,求f (x )在R 上的表达式.20.已知二次函数222)1(2)(m m x m x x f -+-+-=的图象关于y 轴对称,写出函数的解析表达式,并求出函数)(x f 的单调递增区间.必修1第一章集合测试集合测试参考答案:一、1~5CABCB6~10ABACC11~12cB二、13[0,43],(-∞,-43) 14(-∞,-1),(-1,+∞)15-11603|{≤≤-=x x N 或}32≤≤x ;}10|{)(<<=⋂x x N C M U ;三、17所以f x >3或x 19.. f (x 当x < ∴f (20. ∴1=m .。
高一数学必修1《第一章》单元测试题(含答案).doc
班级:_______ 姓名:____________ 成绩: ____________一.选择题(本大题共12小题,第小题5分,共60分.1.设集合A = {xeQ\x>-l\,贝U ()A. 0^ AB.近冬AC. yf2e AD. |V2j c A2.已知集合A到B的映射f:x->y=2x+l,那么集合A中元素2在B中対应的元素是:A、2B、5C、6D、83.设集合A = {x\\< x <2} .B = {x\x < a}.若Au 3,则Q 的范围是( )A. a >2B. « < 1C. a > 1D. a <24.函数),=卮口的定义域是()A G'Z)B・[gg C.(列) D.(列]5.全集U= {0丄3,5,6,8},集合A={ 1, 5, 8}, B={2},则集合(qTl)UB:二()A. {0,2,3,6}B. {0,3,6}C. {2,1,5,8}D. 06.已知集合A = [x\-l<x<3},B = {x\2<x<5],则AljB=()A. (2,3)B. [-1,5]C. (-1,5)D. (-1,5]7.下列函数是奇函数的是()A. y = xB. y = 2x2 -3C. y =D. y = x2[0,1]8.化简:yl(7r-4)2 + 7T =()A. 4B. 2兀 _ 4C. 2兀一4 或4D. 4 — 2龙9.设集合M={x|-2<x<2), N={y\0<y<2},给出卜-列四个图形,其屮能表示以集合M为定义域,N为值域的函数关系的是()10.________________________________________________________________ 已知f (x) =g (.x) +2, •且g(x)为奇函数,若f (2) =3,则f (・2) = _______________________A 0 B・・3 C・1 D. 3x2x>011.己知f (x)=<71 % = 0,则f[f(-3)]等于0兀vOA> 0 Bx 7i C、d D> 912.已知函数/&)是人上的增函数,・A(O,—1), B(3,l)是其图像上的两点,那么|/(%)|<1 的解集是()A. (-3,0)B. (0,3)C.(一汽―l]u[3,+g)D. (―oo,0]u[l,-H«)二.填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上・)[x + 5(x>l) ,13.已知f(x) = \ .,则/T f (1)1 = .[2X2+1(X<1) ---------------------------------14 .已知/(兀一1) = /,贝|J于(兀)= __________15・定义在R上的奇函数/(%),当x>0时,/(%) = 2 ;则奇函数/(%)的值域是.16.关于下列命题:①若函数y = 2”的定义域是{x|x<0},则它的值域是{y | y <1};②若函数y=l-的定义域是{兀|兀>2},贝怕的值域是{y|y<-};x 2③若函数y = x2的值域是{y | 0 < > < 4},则它的定义域一定是{x|-2<x<2};④若函数=2r的定义域是{y | y < 4},则它的值域是{x|0<x<8}.其中不止确的命题的序号是___________ (注:把你认为不正确的命题的序号都填上).班级:_______ 姓名:____________ 成绩:____________一、选择题答案表:木人题共12题,每小题5分,共60分二、填空题答案:本人题共有4小题,每小题5分,满分20分13> __________ 14. _____________________________15> ____________ 16> ________________________三、解答题:本大题共5小题,共70分.题解答应写出文字说明,证明过程或演算步骤.17.设A = {% | x2 + 4% = 0} , A = {x\x2 +2(a + l)x + / -1 = 0},其中xe R ,如果 =求实数Q的取值范围.18.己知全集[/= {1,2,3,4,5,6,7,8}, A = {x | x2-3x4-2 = 0}, B = {x\\< x<5,xe Z} fC = {x\2<x<9,xeZ}. (1)求/lU(fiAC);(2)求(Q,B)U(Q,C).19.已知函数y=x2~2x+9分别求下列条件下的值域,(1)定义域是{x|3<x<8} (2)定义域是{% | -3 < x < 2}20.已知函数/(x) = x + -.兀(1)判断函数的奇偶性,并加以证明;⑵用定义证明f(x)在(0,1)上是减函数;(3)函数/(x)在(-1,0)上是单调增函数还是单调减函数?(直接写岀答案,不要求写证明过程).21.已知函数/(x)是定义在R上的偶函数,且当xWO吋,/⑴=F+2兀. ⑴现已应出函数/⑴在y轴左侧的图像,如图所示,请补出完整函数/*(兀)的图像,并根据图像写出函数/(%)的增区间;(2)写出函数/(%)的解析式和值域.1、B2、B3、A 4. B.提示:2x-l>0. 5. A.6. B.提示:运用数轴.7. A.提示:B为偶函数,C、D为非奇非偶函数.8. A.提示:+龙二”一4| + 兀=龙一4 + 龙二2龙一4 .9. B.捉刀P:10. c 11 B 12. B .提zjx: *•* —1 v /(兀)v 1,而y*(o)=—1,y*(3) = ], /(0)</(x)</(3), .\0<x<3.13.8.提示:/⑴=3, f(3) =8.14./(x) = (x + 1)2.提示:V/(x-l) = x2 =[(x —1) + 1 2, /. f(x) = (x + l)215.{-2, 0, 2 }.提示:因为/(0) = 0;x <0 时,f(x) = -2 ,所以f(x)的值域是{-2, 0, 2 }.16 .①②④.提示:若函数y = 2r的定义域是{ x | x < 0},则它的值域是{y\O<y<\};若函数v = 1的定义域是01 x > 2},则它的值域是{y\O<y<-}.x 2三.17、解A={0, —4} ........................................................A O B=B ・\BeA .........................................................由x2 + 2(a+ l)x + a2—1=0 得A =4 (a+1) 2—4 (a2—1) =8 (a+1) .....................................................................(1)当a<-l 时△<() B=4)CA ...........................................................(2)当a=・l 吋△=() B={O}cA ......................................................(3)当a>-l 时△>()要使BoA,则A=BVO, -4是方程x2+2(a+l)x+『・l=0的两根.J_2(d + 1) = -41 = 0解Z得a=l综上可得aW・l或a=l .....................................................1&解:(1)依题意有:A = {1,2},B = {1,2,3,4,5},C = {3,4,5,6,7,8}・・・MC = {3,4,5},故有AU(BAC) = {1,2}U{3,4,5} = {1,2,3,4,5}.由C"3二{6,7,8},C〃C二{1,2}(籾)U ( 〃C) = {6,7,8} u (1,2) = {1,2,6,7,8}.仃T)设x^x2 G(0」)冃・兀1 <x2••/ 0 < Xj < x2 < 1,/-兀]兀2 V 1,兀1尤2 一1 V 0T x2 > x A x2 -Xj > 0 .・• J&2)- / (“) V 0,/(x2) < /(xj因此函数/(兀)在(0,1)上是减函数(111) .f(x)在(-1,0)上是减函数.21. (1)函数图像如右图所示:/(兀)的递增区间是(-1,0) , (l,+oo).(2)解析式为:f(x) = [X +2x,x_0 值域为:[x-2x,x>0{y|y»-1}.20.解:y = 2x+2 -3-4' =-3-(2x)2 +4-2S令t = 2\则y = -3t2+4t= -3(t一 -)2 + -1 12 1V -1 < X < 0 , /.-<2X <lBPre[-,l],又・.•对称轴r = -e[-?l],32 2 4・••当t = -f即x = log2-时人ax=j ;当21 即x=o 时,y min =1.20•证明:仃)函数为奇函数f(-x)1=-x ——= =-/w一兀1 =(x2-Xj) 1-(兀2 —舛)(兀]兀2—1)第一章《集合与函数概念》单元测试题姓名:_______ 班别: _________ 成绩: _____________一、选择题:每小题4分,共40分1、在“①高一数学课本中的难题;②所有的正三角形;③方程午+2 = 0的实数解”中,能够表示成集合的是( )(A)②(B)③(C)②③(D)①②③2、若A=|x|0<x< V2 ={x11 < x < 2},则A^J B =( )(A) {x|x<0} (B) [x\x>2](C) {0<x<V2)(D) {x\0<x<2}3、若A={0丄2,3},B ={兀|兀=3a,dw 4},则Ar>B =( )(A) {1,2} (B) {0,1}(C) {0,3} (D) {3}4、在映射f : A T B中,A = B = {(x, y) \ x, ye R}, K / : (x, y) (x- >\x+ y),则与A中的元素(-1,2)对应的B屮的元素为( )(A) (—3,1) (B) (1,3) (C) (-1-3) (D) (3,1)5、下列各组函数.f⑴与g(x)的图象相同的是( )(A) /(x) = x,g(x) = (Vx)2(B) /(x) = x2)4g(x) = (x + l)2[x(X > 0)(C) f(x) = l,g(x) =兀(D) /(x)=|x|,g(x) = 2 / °、6、/⑴是定义在㈣上的增函数,则不等式的解集是()(A) (0 , +8) (B) (0 , 2) (C) (2 ,+8) (D) (2 ,—)77、若奇函数/(兀)在[1,3]上为增函数,且有最小值0,贝陀在[-3,-1]上()(C) (D)9、 若{1,4,牛{0,"+»,则严+严的值为()(A) 0 (B) 1 (C) -1(D) 1 或一 110、 奇函数f(x)在区间[・b,上单调递减,且f (x)>0,(0<a<b),那么I f (x)l 在区间[a, b ]上是 ( )A 单调递增B 单调递减C 不增也不减D 无法判断 二、填空题:每小题4分,共20分11、 ________________________________________________________________ 若A={0^2,},B = {1,2,3},C = {2,3,4},贝iJ(AnB)u(BnC) = ________________________12、 已知y = /(x)为奇函数,当%>0时/(x) = x(l — x),则当兀S0时,A.是减函数,有最小值0B.是增函数,有最小值0C.是减函数,有最大值0D.是增函数,有最大值0 (A)(B)则/(兀)= _______________________________________13、已知(兀)都是定义域内的非奇非偶函数,而f(x)-g(x)是偶函数,写出满足条件的一组隊I 数,/(%) = ____________ : g (x) = _________________ ;14、/(X)= X2+2X +1, XG[-2,2]的最大值是__________________15、奇函数/(兀)满足:①/⑴在(0,+oo)内单调递增;®/(1) = 0 ;则不等式(x-l)/(x)> 0 的解集为:________________________________ ;三、解答题:每小题12分,共60分16、设A = {xeZ\\x\< 6}, 3 二{1,2,3},C 二{3,4,5,6},求:(1) Au(BnC): (2) AnQ(fiuC)17、已知函数几兀) xe{x\x = 2nU9neZ}画出它的图象,并求心(_3))的值11,{x\x = 2n,ne Z}18、已知函数f (x)=兀+ —.x(1)判断f(X)在(0, +8)上的单调性并加以证明;(2)求f (x)的定义域、值域;19、中山市的一家报刊摊点,从报社买进《南方都市报》的价格是每份0.90元,卖出的价格是每份1.0元,卖不掉的报纸可以以每份0.10元的价格退冋报社。
高中数学必修一第一章单元测试及答案
数学必修一第一单元测试及答案一:单项选择题: (共10题,每小题5分,共50分)1. 下列各项中,不可以组成集合的是( )A.所有的正数B. 等于2的数C.接近于0的数D. 不等于0的偶数2. 下列四个集合中,是空集的是( )A.}33|{=+x xB.},,|),{(22R y x x y y x ∈-=C.}0|{2≤x xD.},01|{2R x x x x ∈=+-3. 若集合{},,M a b c =中的元素是△ABC 的三边长,则△ABC 一定不是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形4. 为了得到函数(2)y f x =-的图象,可以把函数(12)y f x =-的图象适当平移,这个平移是( )A 沿x 轴向右平移1个单位B 沿x 轴向右平移12个单位C 沿x 轴向左平移1个单位D 沿x 轴向左平移12个单位5. 下列函数中,在区间()0,1上是增函数的是( ) A.x y = B.x y -=3 C.x y 1= D.42+-=x y6. 已知全集U =Z ,{}1012A =-,,,,{}2B x x x ==,则)(B C A U 为( ) A.{}12-, B.{}10-, C.{}01, D.{}12,7. 设全集{1,2,3,4,5,6,7,8}U =,集合{1,3,5}S =,{3,6}T =,则=)(T S C U () A .∅ B .{2,4,7,8} C .{1,3,5,6} D .{2,4,6,8}8. 集合{1,2,3}的真子集共有( )A .5个B .6个C .7个D .8个 9. 设A={x 0152=+-∈px x Z },B={x 052=+-∈q x x Z },若A ⋃B={2,3,5},A 、B 分别为( ) A .{3,5}、{2,3} B .{2,3}、{3,5}C .{2,5}、{3,5}D .{3,5}、{2,5} 10.反函数是( ) A. B. C. D. 二:填空题: (共2题,每小题10分,共20分)1.函数0y =的定义域是_____________________2. 设全集U =R ,集合Q ={x |0<x <5},则C U Q=____三:解答题: (共2题,每小题10分,共20分)1. 已知函数2()23(0)f x ax ax b a =-+->在[1,3]有最大值5和最小值2,求a 、b 的值.2. 设U R =,集合{}2|320A x x x =++=,{}2|(1)0B x x m x m =+++=;若φ=B A C U )(,求m 的值。
人教版高一数学必修一各章节同步练习(含答案)
第一章 1.1 1.1.1集合的含义与表示基础巩固一、选择题1.在“①高一数学中的难题;②所有的正三角形;③方程x 2-2=0的实数解”中,能够构成集合的是( )A .②B .③C .②③D .①②③[答案] C[解析] 高一数学中的难题的标准不确定,因而构不成集合,而正三角形标准明确,能构成集合,方程x 2-2=0的解也是确定的,能构成集合,故选C.2.已知集合A ={x |x ≤10},a =2+3,则a 与集合A 的关系是( ) A .a ∈A B .a ∉A C .a =A D .{a }∈A[答案] A[解析] 由于2+3<10,所以a ∈A .3.(2015·山东临沂检测)集合{x ∈N *|x -2<3}的另一种表示形式是( ) A .{0,1,2,3,4} B .{1,2,3,4} C .{0,1,2,3,4,5} D .{1,2,3,4,5}[答案] B[解析] 由x -2<3,得x <5,又x ∈N *,所以x =1,2,3,4,即集合的另一种表示形式是{1,2,3,4}.4.方程组⎩⎪⎨⎪⎧3x +y =22x -3y =27的解集是( )A.⎩⎪⎨⎪⎧x =3y =-7B .{x ,y |x =3且y =-7}C .{3,-7}D .{(x ,y )|x =3且y =-7} [答案] D[解析] 解方程组⎩⎪⎨⎪⎧3x +y =22x -3y =27得⎩⎪⎨⎪⎧x =3y =-7,用描述法表示为{(x ,y )|x =3且y =-7},用列举法表示为{(3,-7)},故选D. 5.已知集合S ={a ,b ,c }中的三个元素是△ABC 的三边长,那么△ABC 一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形[答案] D[解析] 由集合中元素的互异性知a ,b ,c 互不相等,故选D.6.已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,则实数m 的值为( )A .2B .3C .0或3D .0或2或3[答案] B[解析] 因为2∈A ,所以m =2或m 2-3m +2=2,解得m =0或m =2或m =3.又集合中的元素要满足互异性,对m 的所有取值进行一一检验可得m =3,故选B.二、填空题7.用符号∈与∉填空:(1)0________N *;3________Z ; 0________N ;(-1)0________N *; 3+2________Q ;43________Q .(2)3________{2,3};3________{(2,3)}; (2,3)________{(2,3)};(3,2)________{(2,3)}. (3)若a 2=3,则a ________R ,若a 2=-1,则a ________R . [答案] (1)∉ ∉ ∈ ∈ ∉ ∈ (2)∈ ∉ ∈ ∉ (3)∈ ∉[解析] (1)只要熟记常用数集的记号所对应的含义就很容易辨别.(2)中3是集合{2,3}的元素;但整数3不是点集{(2,3)}的元素;同样(2,3)是集合{(2,3)}的元素;因为坐标顺序不同,(3,2)不是集合{(2,3)}的元素.(3)平方等于3的数是±3,当然是实数,而平方等于-1的实数是不存在的.8.设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,ba,b ,则b -a =________.[答案] 2[解析] 显然a ≠0,则a +b =0,a =-b ,b a=-1,所以a =-1,b =1,b -a =2. 三、解答题9.已知集合A 含有a -2,2a 2+5a,12三个元素,且-3∈A ,求a 的值. [解析] ∵-3∈A ,则-3=a -2或-3=2a 2+5a , ∴a =-1或a =-32.当a =-1时,a -2=-3,2a 2+5a =-3,不满足集合中元素的互异性,∴a =-1舍去. 当a =-32时,经检验,符合题意.故a =-32.[注意] (1)分类讨论意识的建立.解答含有字母的元素与集合之间关系的问题时,要有分类讨论的意识,如本例按照元素-3与a -2,2a 2+5a,12的关系分类 ,即可做到不重不漏.(2)注意集合中元素的互异性.求解与集合有关的字母参数时,需利用集合元素的互异性来检验所求参数是否符合要求,如本例在求出a 的值后,需代入验证是否满足集合中元素的互异性.10.已知集合A ={x |ax 2-3x +2=0}. (1)若A 是单元素集合,求集合A ;(2)若A 中至少有一个元素,求a 的取值范围.[分析] 将求集合中元素问题转化为方程根问题.(1)集合A 为单元素集合,说明方程有唯一根或两个相等的实数根.要注意方程ax 2-3x +2=0可能不是一元二次方程.(2)至少有一个元素,说明方程有一根或两根.[解析] (1)因为集合A 是方程ax 2-3x +2=0的解集,则当a =0时,A ={23},符合题意;当a ≠0时,方程ax 2-3x +2=0应有两个相等的实数根, 则Δ=9-8a =0,解得a =98,此时A ={43},符合题意.综上所述,当a =0时,A ={23},当a =98时,A ={43}.(2)由(1)可知,当a =0时,A ={23}符合题意;当a ≠0时,要使方程ax 2-3x +2=0有实数根, 则Δ=9-8a ≥0,解得a ≤98且a ≠0.综上所述,若集合A 中至少有一个元素,则a ≤98.[点评] “a =0”这种情况容易被忽视,如“方程ax 2+2x +1=0”有两种情况:一是“a =0”,即它是一元一次方程;二是“a ≠0”,即它是一元二次方程,只有在这种情况下,才能用判别式“Δ”来解决.能力提升一、选择题1.(2015·河北衡水中学期末)下列集合中,不同于另外三个集合的是( )A .{x |x =1}B .{x |x 2=1} C .{1} D .{y |(y -1)2=0}[答案] B[解析] {x |x 2=1}={-1,1},另外三个集合都是{1},选B.2.下列六种表示法:①{x =-1,y =2};②{(x ,y )|x =-1,y =2};③{-1,2};④(-1,2);⑤{(-1,2)};⑥{(x ,y )|x =-1或y =2}.能表示方程组⎩⎪⎨⎪⎧2x +y =0,x -y +3=0的解集的是( )A .①②③④⑤⑥B .②③④⑤C .②⑤D .②⑤⑥[答案] C [解析] 方程组⎩⎪⎨⎪⎧2x +y =0,x -y +3=0的解是⎩⎪⎨⎪⎧x =-1,y =2.故选C.3.已知x ,y ,z 为非零实数,代数式x |x |+y |y |+z |z |+|xyz |xyz的值所组成的集合是M ,则下列判断正确的是( )A .0∉MB .2∈MC .-4∉MD .4∈M[答案] D[解析] 当x >0,y >0,z >0时,代数式的值为4,所以4∈M ,故选D.4.设A ,B 为两个实数集,定义集合A +B ={x |x 1+x 2,x 1∈A ,x 2∈B },若A ={1,2,3},B ={2,3},则集合A +B 中元素的个数为( )A .3B .4C .5D .6[答案] B[解析] 当x 1=1时,x 1+x 2=1+2=3或x 1+x 2=1+3=4;当x 1=2时,x 1+x 2=2+2=4或x 1+x 2=2+3=5;当x 1=3时,x 1+x 2=3+2=5或x 1+x 2=3+3=6.∴A +B ={3,4,5,6},共4个元素.二、填空题5.已知P ={x |2<x <k ,x ∈N ,k ∈R },若集合P 中恰有3个元素,则实数k 的取值范围是________.[答案] {k |5<k ≤6}[解析] x 只能取3,4,5,故5<k ≤6.6.(2015·湖南郴州模拟)用列举法写出集合{33-x ∈Z |x ∈Z }=________.[答案] {-3,-1,1,3} [解析] ∵33-x∈Z ,x ∈Z , ∴3-x 为3的因数. ∴3-x =±1,或3-x =±3. ∴33-x =±3,或33-x=±1. ∴-3,-1,1,3满足题意. 三、解答题7.数集A 满足条件:若a ∈A ,则1+a 1-a ∈A (a ≠1).若13∈A ,求集合中的其他元素.[分析] 已知a ∈A ,1+a 1-a ∈A ,将a =13代入1+a1-a 即可求得集合中的另一个元素,依次,可得集合中的其他元素.[解析] ∵13∈A ,∴1+131-13=2∈A ,∴1+21-2=-3∈A ,∴1-31+3=-12∈A ,∴1-121+12=13∈A . 故当13∈A 时,集合中的其他元素为2,-3,-12.8.若一数集的任一元素的倒数仍在该集合中,则称该数集为“可倒数集”. (1)判断集合A ={-1,1,2}是否为可倒数集; (2)试写出一个含3个元素的可倒数集.[解析] (1)由于2的倒数为12不在集合A 中,故集合A 不是可倒数集.(2)若a ∈A ,则必有1a ∈A ,现已知集合A 中含有3个元素,故必有一个元素有a =1a,即a =±1,故可以取集合A ={1,2,12}或{-1,2,12}或{1,3,13}等.第一章 1.1 1.1.2集合间的基本关系基础巩固一、选择题1.对于集合A,B,“A⊆B”不成立的含义是( )A.B是A的子集B.A中的元素都不是B的元素C.A中至少有一个元素不属于BD.B中至少有一个元素不属于A[答案] C[解析] “A⊆B”成立的含义是集合A中的任何一个元素都是B的元素.不成立的含义是A中至少有一个元素不属于B,故选C.2.下列命题中,正确的有( )①空集是任何集合的真子集;②若A B,B C,则A C;③任何一个集合必有两个或两个以上的真子集;④如果不属于B的元素也不属于A,则A⊆B.A.①②B.②③C.②④D.③④[答案] C[解析] ①空集只是空集的子集而非真子集,故①错;②真子集具有传递性;故②正确;③若一个集合是空集,则没有真子集,故③错;④由韦恩(Venn)图易知④正确,故选C.3.已知集合A={x|x是三角形},B={x|x是等腰三角形},C={x|x是等腰直角三角形},D={x|x是等边三角形},则( )A.A⊆B B.C⊆BC.D⊆C D.A⊆D[答案] B[解析] ∵正方形必为矩形,∴C⊆B.4.下列四个集合中,是空集的是( )A.{0} B.{x|x>8,且x<5}C.{x∈N|x2-1=0} D.{x|x>4}[答案] B[解析] 选项A、C、D都含有元素.而选项B无元素,故选B.5.若集合A⊆{1,2,3},且A中至少含有一个奇数,则这样的集合A有( )A.3个B.4个C.5个D.6个[答案] D[解析] 集合{1,2,3}的子集共有8个,其中至少含有一个奇数的有{1},{3},{1,2},{1,3},{2,3},{1,2,3},共6个.6.设集合A ={x |1<x <2},B ={x |x <a },若A B ,则实数a 的取值范围为( ) A .a ≥2 B .a ≤1 C .a ≥1 D .a ≤2[答案] A[解析] 在数轴上表示出两个集合(图略),因为A B ,所以a ≥2. 二、填空题7.用适当的符号填空:(1){x |x 是菱形}________{x |x 是平行四边形}; {x |x 是三角形}________{x |x 是斜三角形}. (2)Z ________{x ∈R |x 2+2=0}; 0________{0};Ø________{0};N ________{0}. [答案] (1)(2) ∈[解析] (1)判断两个集合之间的关系,可以根据子集的定义来加以判断,特别要注意判断出包含关系后,还要进一步判断是否具有真包含关系.(2)集合{x ∈R |x 2+2=0}中,由于实数范围内该方程无解,因此{x ∈R |x 2+2=0}=Ø;0是集合{0}中的元素,它们之间是属于关系;{0}是含有一个元素0的集合;Ø是不含任何元素的集合,故Ø{0};自然数集N 中含有元素0,但不止0这一个元素.8.(2012·大纲全国改编)已知集合A ={1,2,m 3},B ={1,m },B ⊆A ,则m =________. [答案] 0或2或-1[解析] 由B ⊆A 得m ∈A ,所以m =m 3或m =2,所以m =2或m =-1或m =1或m =0,又由集合中元素的互异性知m ≠1.所以m =0或2或-1.三、解答题9.判断下列集合间的关系:(1)A ={x |x -3>2},B ={x |2x -5≥0}; (2)A ={x ∈Z |-1≤x <3},B ={x |x =|y |,y ∈A }. [解析] (1)∵A ={x |x -3>2}={x |x >5},B ={x |2x -5≥0}={x |x ≥52},∴利用数轴判断A 、B 的关系. 如图所示,AB .(2)∵A ={x ∈Z |-1≤x <3}={-1,0,1,2},B ={x |x =|y |,y ∈A ,∴B ={0,1,2},∴B A .10.已知集合M ={x |x =m +16,m ∈Z },N ={x |x =n 2-13,n ∈Z },P ={x |x =p 2+16,p ∈Z },试确定M ,N ,P 之间的关系.[解析] 解法一:集合M ={x |x =m +16,m ∈Z },对于集合N ,当n 是偶数时,设n =2t (t ∈Z ), 则N ={x |x =t -13,t ∈Z };当n 是奇数时,设n =2t +1(t ∈Z ),则N ={x |x =2t +12-13,t ∈Z }={x |x =t +16,t ∈Z }.观察集合M ,N 可知M N .对于集合P ,当p 是偶数时,设p =2s (s ∈Z ),则P ={x |x =s +16,s ∈Z },当p 是奇数时,设p =2s -1(s ∈Z ),则P ={x |x =2s -12+16,s ∈Z } ={x |x =s -13,s ∈Z }.观察集合N ,P 知N =P . 综上可得:MN =P .解法二:∵M ={x |x =m +16,m ∈Z }={x |x =6m +16,m ∈Z }={x |x =3×2m +16,m ∈Z },N ={x |x =n 2-13,n ∈Z }={x |x =3n -26,n ∈Z }={x |x =3n -1+16,n -1∈Z },P ={x |x =p 2+16,p ∈Z }={x |x =3p +16,p ∈Z },比较3×2m +1,3(n -1)+1与3p +1可知,3(n -1)+1与3p +1表示的数完全相同, ∴N =P,3×2m +1只相当于3p +1中当p 为偶数时的情形, ∴MP =N .综上可知M P =N .能力提升一、选择题1.(2015·瓮安一中高一期末试题)设集合M ={x |x =k 2+14,k ∈Z },N ={x |x =k 4+12,k∈Z },则( )A .M =NB .M NC .M ND .M 与N 的关系不确定[答案] B[解析] 解法1:用列举法,令k =-2,-1,0,1,2…可得M ={…-34,-14,14,34,54…}, N ={…0,14,12,34,1…},∴MN ,故选B.解法2:集合M 的元素为:x =k 2+14=2k +14(k ∈Z ),集合N 的元素为:x =k 4+12=k +24(k ∈Z ),而2k +1为奇数,k +2为整数,∴M N ,故选B.[点评] 本题解法从分式的结构出发,运用整数的性质方便地获解.注意若k 是任意整数,则k +m (m 是一个整数)也是任意整数,而2k +1,2k -1均为任意奇数,2k 为任意偶数.2.(2015·湖北孝感期中)集合A ={(x ,y )|y =x }和B =⎩⎨⎧⎭⎬⎫x ,y |⎩⎪⎨⎪⎧2x -y =1x +4y =5,则下列结论中正确的是( )A .1∈AB .B ⊆AC .(1,1)⊆BD .Ø∈A[答案] B[解析] B =⎩⎨⎧⎭⎬⎫x ,y |⎩⎪⎨⎪⎧2x -y =1x +4y =5={(1,1)},故选B. 3.已知集合A ={1,2},B ={x |ax -2=0},若B ⊆A ,则a 的值不可能是( ) A .0 B .1 C .2 D .3[答案] D[解析] 由题意知,a =0时,B =Ø,满足题意;a ≠0时,由2a∈A ⇒a =1,2,所以a 的值不可能是3.4.集合P ={3,4,5},Q ={6,7},定义P *Q ={(a ,b )|a ∈P ,b ∈Q },则P *Q 的子集个数为( )A .7B .12C .32D .64[答案] D[解析] 集合P *Q 的元素为(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),共6个,故P *Q 的子集个数为26=64.二、填空题5.已知集合M ={x |2m <x <m +1},且M =Ø,则实数m 的取值范围是________. [答案] m ≥1[解析] ∵M =Ø,∴2m ≥m +1,∴m ≥1.6.集合⎩⎨⎧x ,y ⎪⎪⎪⎪ ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y =-x +2,y =12x +2⊆{(x ,y )|y =3x +b },则b =________.[答案] 2[解析] 解方程组⎩⎪⎨⎪⎧y =-x +2y =12x +2得⎩⎪⎨⎪⎧x =0y =2,代入y =3x +b 得b =2. 三、解答题7.设集合A ={-1,1},集合B ={x |x 2-2ax +b =0},若B ≠Ø且B ⊆A ,求实数a 、b 的值.[解析] ∵B 中元素是关于x 的方程x 2-2ax +b =0的根,且B ⊆{-1,1},∴关于x 的方程x 2-2ax +b =0的根只能是-1或1,但要注意方程有两个相等根的条件是Δ=0.∵B ={x |x 2-2ax +b =0}⊆A ={-1,1},且B ≠Ø, ∴B ={-1}或B ={1}或B ={-1,1}. 当B ={-1}时,Δ=4a 2-4b =0且1+2a +b =0,解得a =-1,b =1. 当B ={1}时,Δ=4a 2-4b =0且1-2a +b =0,解得a =b =1. 当B ={-1,1}时,有(-1)+1=2a ,(-1)×1=b ,解得a =0,b =-1.8.设集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}.(1)若B ⊆A ,求实数m 的取值范围;(2)当x ∈Z 时,求A 的非空真子集个数;(3)当x ∈R 时,不存在元素x 使x ∈A 与x ∈B 同时成立,求实数m 的取值范围.[解析] (1)当m +1>2m -1,即m <2时,B =Ø,满足B ⊆A .当m +1≤2m -1,即m ≥2时,要使B ⊆A 成立,只需⎩⎪⎨⎪⎧ m +1≥-2,2m -1≤5,即2≤m ≤3.综上,当B ⊆A 时,m 的取值范围是{m |m ≤3}.(2)当x ∈Z 时,A ={-2,-1,0,1,2,3,4,5},∴集合A 的非空真子集个数为28-2=254.(3)∵x ∈R ,且A ={x |-2≤x ≤5}, B ={x |m +1≤x ≤2m -1},又不存在元素x 使x ∈A 与x ∈B 同时成立,∴当B =Ø,即m +1>2m -1,得m <2时,符合题意;当B ≠Q ,即m +1≤2m -1,得m ≥2时,⎩⎪⎨⎪⎧ m ≥2,m +1>5,或⎩⎪⎨⎪⎧ m ≥2,2m -1<-2,解得m >4.综上,所求m 的取值范围是{m |m <2或m >4}.第一章 1.1 1.1.3 第一课时并集和交集基础巩固一、选择题1.下面四个结论:①若a ∈(A ∪B ),则a ∈A ;②若a ∈(A ∩B ),则a ∈(A ∪B );③若a ∈A ,且a ∈B ,则a ∈(A ∩B );④若A ∪B =A ,则A ∩B =B .其中正确的个数为( )A .1B .2C .3D .4[答案] C[解析] ①不正确,②③④正确,故选C.2.已知集合M ={x |-3<x ≤5},N ={x |x >3},则M ∪N =( )A .{x |x >-3}B .{x |-3<x ≤5}C .{x |3<x ≤5}D .{x |x ≤5}[答案] A[解析] 在数轴上表示集合M,N,如图所示,则M∪N={x|x>-3}.3.(2015·全国高考卷Ⅰ文科,1题)已知集合A={x|x=3n+2,n∈N},B={6,8,12,14},则集合A∩B中元素的个数为( )A.5 B.4C.3 D.2[答案] D[解析] A∩B={8,14},故选D.4.(2015·浙江省期中试题)集合A={1,2},B={1,2,3},C={2,3,4},则(A∩B)∪C=( )A.{1,2,3} B.{1,2,4}C.{2,3,4} D.{1,2,3,4}[答案] D[解析] A∩B={1,2},(A∩B)∪C={1,2,3,4},故选D.5.若A∪B=Ø,则( )A.A=Ø,B≠ØB.A≠Ø,B=ØC.A=Ø,B=ØD.A≠Ø,B≠Ø[答案] C6.设集合A={x|-1≤x≤2},集合B={x|x≤a},若A∩B=Ø,则实数a的取值集合为( )A.{a|a<2} B.{a|a≥-1}C.{a|a<-1} D.{a|-1≤a≤2}[答案] C[解析] 如图.要使A∩B=Ø,应有a<-1.二、填空题7.若集合A={2,4,x},B={2,x2},且A∪B={2,4,x},则x=________.[答案] 0,1或-2[解析] 由已知得B⊆A,∴x2=4或x2=x,∴x=0,1,±2,由元素的互异性知x≠2,∴x =0,1或-2.8.已知集合A ={x |x ≥5},集合B ={x |x ≤m },且A ∩B ={x |5≤x ≤6},则实数m =________.[答案] 6[解析] 用数轴表示集合A 、B 如图所示.由于A ∩B ={x |5≤x ≤6},得m =6.三、解答题9.设集合A ={a 2,a +1,-3},B ={a -3,2a -1,a 2+1},A ∩B ={-3},求实数a 的值.[解析] ∵A ∩B ={-3},∴-3∈B .∵a 2+1≠-3,∴①若a -3=-3,则a =0,此时A ={0,1,-3},B ={-3,-1,1},但由于A ∩B ={1,-3}与已知A ∩B ={-3}矛盾,∴a ≠0.②若2a -1=-3,则a =-1,此时A ={1,0,-3},B ={-4,-3,2},A ∩B ={-3}.综上可知a =-1.10.已知集合A ={x |-1≤x <3},B ={x |2x -4≥x -2}.(1)求A ∩B ;(2)若集合C ={x |2x +a >0},满足B ∪C =C ,求实数a 的取值范围.[解析] (1)∵B ={x |x ≥2},A ={x |-1≤x <3},∴A ∩B ={x |2≤x <3}.(2)∵C ={x |x >-a 2},B ∪C =C ⇔B ⊆C , ∴-a 2<2,∴a >-4. 能力提升一、选择题1.已知集合M ={-1,0,1},N ={x |x =ab ,a ,b ∈M 且a ≠b },则M ∪N =( )A .{0,1}B .{-1,0}C .{-1,0,1}D .{-1,1} [答案] C[解析] 由题意可知,集合N ={-1,0},所以M ∪N =M .2.若集合M ={(x ,y )|x +y =0},P ={(x ,y )|x -y =2},则M ∩P 等于( )A .(1,-1)B .{x =1或y =-1}C .{1,-1}D .{(1,-1)} [答案] D[解析] M ∩P 的元素是方程组⎩⎪⎨⎪⎧ x +y =0x -y =2的解∴M ∩P ={(1,-1)}.3.(2015·衡水高一检测)若集合A ,B ,C 满足A ∩B =A ,B ∪C =C ,则A 与C 之间的关系为( )A .C AB .AC C .C ⊆AD .A ⊆C [答案] D[解析] ∵A ∩B =A ,∴A ⊆B ,又B ∪C =C ,∴B ⊆C ,∴A ⊆C ,故选D.4.当x ∈A 时,若x -1∉A ,且x +1∉A ,则称x 为A 的一个“孤立元素”,由A 的所有孤立元素组成的集合称为A 的“孤星集”,若集合M ={0,1,3}的孤星集为M ′,集合N ={0,3,4}的孤星集为N ′,则M ′∪N ′=( )A .{0,1,3,4}B .{1,4}C .{1,3}D .{0,3} [答案] D[解析] 由条件及孤星集的定义知,M ′={3},N ′={0},则M ′∪N ′={0,3}.二、填空题5.以下四个推理:①a ∈(A ∪B )⇒a ∈A ;②a ∈(A ∩B )⇒a ∈(A ∪B );③A ⊆A ⇒A ∪B =B ;④A ∪B =A ⇒A ∩B =B .其中正确的为________.[答案] ②③④[解析] ①是错误的,a ∈(A ∪B )时可推出a ∈A 或a ∈B ,不一定推出a ∈A .6.已知集合A ={x |x 2+px +q =0},B ={x |x 2-px -2q =0},且A ∩B ={-1},则A ∪B =________.[答案] {-2,-1,4}[解析] 因为A ∩B ={-1},所以-1∈A ,-1∈B ,即-1是方程x 2+px +q =0和x 2-px -2q =0的解,所以⎩⎪⎨⎪⎧ -12-p +q =0,-12+p -2q =0,解得⎩⎪⎨⎪⎧p =3,q =2, 所以A ={-1,-2},B ={-1,4},所以A ∪B ={-2,-1,4}.三、解答题7.已知A ={x |2a <x ≤a +8},B ={x |x <-1或x >5},A ∪B =R ,求a 的取值范围.[解析] ∵B ={x |x <-1或x >5},A ∪B =R ,∴⎩⎪⎨⎪⎧2a <-1,a +8≥5,解得-3≤a <-12. 8.设A ={x |x 2+8x =0},B ={x |x 2+2(a +2)x +a 2-4=0},其中a ∈R .如果A ∩B =B ,求实数a 的取值范围.[解析] ∵A ={x }x 2+8x =0}={0,-8},A ∩B =B ,∴B ⊆A .当B =Ø时,方程x 2+2(a +2)x +a 2-4=0无解,即Δ=4(a +2)2-4(a 2-4)<0,得a <-2.当B ={0}或{-8}时,这时方程的判别式 Δ=4(a +2)2-4(a 2-4)=0,得a =-2.将a =-2代入方程,解得x =0,∴B ={0}满足.当B ={0,-8}时,⎩⎪⎨⎪⎧ Δ>0,-2a +2=-8,a 2-4=0,可得a =2.综上可得a =2或a ≤-2. [点评] (1)当集合B ⊆A 时,如果集合A 是一个确定的集合,而集合B 不确定,运算时,要考虑B =Ø的情形,切不可漏掉.(2)利用集合运算性质化简集合,有利于准确了解集合之间的关系.第一章 1.1 1.1.3 第二课时补集基础巩固一、选择题1.(2015·重庆三峡名校联盟)设全集I ={1,2,3,4,5},集合A ={2,3,5},集合B ={1,2},则(∁I B )∩A 为( )A .{2}B .{3,5}C .{1,3,4,5}D .{3,4,5}[答案] B[解析] 因为全集I ={1,2,3,4,5},集合B ={1,2},则∁I B ={3,4,5}.所以(∁I B )∩A 为{3,5}.故选B.[易错警示] 本小题的关键是先求出集合B的补集,再求交集.集合的运算是集合关系的基础知识,要理解清楚,可能渗透在一个大题中,不熟练会导致整体看不懂或理解错误.2.设全集U={1,2,3,4,5},A={1,3,5},则∁U A的所有非空子集的个数为( )A.4 B.3C.2 D.1[答案] B[解析] ∵∁U A={2,4},∴非空子集有22-1=3个,故选B.3.若P={x|x<1},Q={x|x>-1},则( )A.P⊆Q B.Q⊆PC.(∁R P)⊆Q D.Q⊆∁R P[答案] C[解析] ∵P={x|x<1},∴∁R P={x|x≥1}.又Q={x|x>-1},∴(∁R P)⊆Q,故选C.4.若全集U={1,2,3,4,5,6},M={2,3},N={1,4},则集合{5,6}等于( )A.M∪N B.M∩NC.(∁U M)∪(∁U M) D.(∁U M)∩(∁U N)[答案] D[解析] ∵M∪N={1,2,3,4},∴(∁U M)∩(∁U N)=∁U(M∪N)={5,6},故选D.5.已知全集U=R,集合A={x|-2≤x≤3},B={x|x<-1或x>4},那么集合A∪(∁U B)等于( )A.{x|-2≤x≤4}B.{x|x≤3,或x≥4}C.{x|-2≤x<-1}D.{x|-1≤x≤3}[答案] A[解析] 由题意可得∁U B={x|-1≤x≤4},A={x|-2≤x≤3},所以A∪(∁U B)={x|-2≤x≤4},故选A.6.已知集合A={x|x<a},B={x|x<2},且A∪(∁R B)=R,则a满足( )A.a≥2B.a>2C.a<2 D.a≤2[答案] A[解析] ∁R B={x|x≥2},则由A∪(∁R B)=R得a≥2,故选A.二、填空题7.已知集合A={3,4,m},集合B={3,4},若∁A B={5},则实数m=________.[答案] 58.U =R ,A ={x |-2<x ≤1或x >3},B ={x |x ≥4},则∁U A =________,∁A B =________.[答案] {x |x ≤-2或1<x ≤3} {x |-2<x ≤1或3<x <4}三、解答题9.已知全集U ={2,3,a 2-2a -3},A ={2,|a -7|},∁U A ={5},求a 的值.[解析] 解法1:由|a -7|=3,得a =4或a =10.当a =4时,a 2-2a -3=5,当a =10时,a 2-2a -3=77∉U ,∴a =4.解法2:由A ∪∁U A =U 知⎩⎪⎨⎪⎧ |a -7|=3a 2-2a -3=5,∴a =4.10.(2015·唐山一中月考试题)已知全集U ={x |x ≤4},集合A ={x |-2<x <3},B ={x |-3≤x ≤2},求A ∩B ,(∁U A )∪B ,A ∩(∁U B ).[分析] 利用数轴,分别表示出全集U 及集合A ,B ,先求出∁U A 及∁U B ,然后求解.[解析] 如图所示,∵A ={x |-2<x <3},B ={x |-3≤x ≤2},∴∁U A ={x |x ≤-2或3≤x ≤4},∁U B ={x |x <-3或2<x ≤4}.∴A ∩B ={x |-2<x ≤2},(∁U A )∪B ={x |x ≤2或3≤x ≤4},A ∩(∁UB )={x |2<x <3}.[点评] (1)数轴与Venn 图有同样的直观功效,在数轴上可以直观地表示数集,所以进行数集的交、并、补运算时,经常借助数轴求解.(2)不等式中的等号在补集中能否取到要引起重视,还要注意补集是全集的子集.能力提升一、选择题1.如图,阴影部分用集合A 、B 、U 表示为( )A .(∁U A )∩BB .(∁U A )∪(∁U B )C .A ∩(∁U B )D .A ∪(∁U B )[答案] C[解析] 阴影部分在A中,不在B中,故既在A中也在∁U B中,因此是A与∁U B的公共部分.2.设S为全集,则下列说法中,错误的个数是( )①若A∩B=Ø,则(∁S A)∪(∁S B)=S;②若A∪B=S,则(∁S A)∩(∁S B)=Ø;③若A∪B=Ø,则A=B.A.0 B.1C.2 D.3[答案] A[解析] 借助文氏图可知,①②正确,对于③于由A∪B=Ø,∴A=Ø,B=Ø,∴A=B,故选A.3.设全集U={1,2,3,4,5},集合S与T都是U的子集,满足S∩T={2},(∁U S)∩T={4},(∁U S)∩(∁U T)={1,5}则有( )A.3∈S,3∈T B.3∈S,3∈∁U TC.3∈∁U S,3∈T D.3∈∁U S,3∈∁U T[答案] B[解析] 若3∈S,3∈T,则3∈S∩T,排除A;若3∈∁U S,3∈T,则3∈(∁U S)∩T,排除C;若3∈∁U S,3∈∁U T,则3∈(∁U S)∩(∁U T),排除D,∴选B,也可画图表示.4.(2008·北京)已知全集U=R,集合A={x|-2≤x≤3},B={x|x<-1或x>4},那么集合A∩(∁U B)等于( )A.{x|-2≤x<4} B.{x|x≤3或x≥4}C.{x|-2≤x<-1} D.{x|-1≤x≤3}[答案] D[解析] ∁U B={x|-1≤x≤4},A∩∁U B={x|-1≤x≤3},故选D.二、填空题5.已知全集为R,集合M={x∈R|-2<x<2},P={x|x≥a},并且M⊆∁R P,则a的取值范围是________.[答案] a≥2[解析] M={x|-2<x<2},∁R P={x|x<a}.∵M⊆∁R P,∴由数轴知a≥2.6.已知U =R ,A ={x |a ≤x ≤b },∁U A ={x |x <3或x >4},则ab =________.[答案] 12[解析] ∵A ∪(∁U A )=R ,∴a =3,b =4,∴ab =12.三、解答题7.已知集合A ={x |x 2+ax +12b =0}和B ={x |x 2-ax +b =0},满足(∁U A )∩B ={2},A ∩(∁U B )={4},U =R ,求实数a ,b 的值.[提示] 由2∈B,4∈A ,列方程组求解.[解析] ∵(∁U A )∩B ={2},∴2∈B ,∴4-2a +b =0.①又∵A ∩(∁U B )={4},∴4∈A ,∴16+4a +12b =0.②联立①②,得⎩⎪⎨⎪⎧ 4-2a +b =0,16+4a +12b =0,解得⎩⎪⎨⎪⎧ a =87,b =-127.经检验,符合题意:∴a =87,b =-127. [点评] 由题目中所给的集合之间的关系,通过分析得出元素与集合之间的关系,是解决此类问题的关键.8.已知全集U =R ,集合A ={x |x <-1},B ={x |2a <x <a +3},且B ⊆∁R A ,求a 的取值范围.[分析] 本题从条件B ⊆∁R A 分析可先求出∁R A ,再结合B ⊆∁R A 列出关于a 的不等式组求a 的取值范围.[解析] 由题意得∁R A ={x |x ≥-1}.(1)若B =Ø,则a +3≤2a ,即a ≥3,满足B ⊆∁R A .(2)若B ≠Ø,则由B ⊆∁R A ,得2a ≥-1且2a <a +3,即-12≤a <3. 综上可得a ≥-12.第一章 1.1 1.1.3 第三课时习题课基础巩固一、选择题1.(2015·全国高考卷Ⅱ文科,1题)已知集合A ={x |-1<x <2},B ={x |0<x <3},则A ∩B =( )A .{x |-1<x <3}B .{x |-1<x <0}C.{x|0<x<2} D.{x|2<x<3}[答案] A[解析] A∪B={x|-1<x<3},故选A.2.设U=R,A={x|x>0},B={x|x>1},则A∩(∁U B)等于( )A.{x|0≤x<1} B.{x|0<x≤1}C.{x|x<0} D.{x|x>1}[答案] B[解析] 画出数轴,如图所示,∁U B={x|x≤1},则A∩∁U B={x|0<x≤1},故选B.3.图中阴影部分所表示的集合是( )A.B∩(∁U(A∪C))B.(A∪B)∪(B∪C)C.(A∪C)∩(∁U B)D.[∁U(A∩C)]∪B[答案] A[解析] 阴影部分位于集合B内,且位于集合A、C的外部,故可表示为B∩(∁U(A∪C)),故选A.4.已知全集U=R,集合A={x|-2≤x≤3},B={x|x<-2或x>4},那么集合(∁U A)∩(∁U B)等于( )A.{x|3<x≤4}B.{x|x≤3或x≥4}C.{x|3≤x<4} D.{x|-1≤x≤3}[答案] A[解析] 方法1:∁U A={x|x<-2或x>3},∁U B={x|-2≤x≤4}∴(∁U A)∩(∁U B)={x|3<x≤4},故选C.方法2:A∪B={x|x≤3或x>4},(∁U A)∩(∁U B)=∁U(A∪B)={x|3<x≤4}.故选A.5.已知集合A={x|-1≤x≤1},B={x|-1≤x≤a},且(A∪B)⊆(A∩B),则实数a=( )A.0 B.1C.2 D.3[答案] B[解析] ∵(A ∪B )⊆(A ∩B ),∴(A ∪B )=(A ∩B ), ∴A =B ,∴a =1.6.设U 为全集,对集合X ,Y 定义运算“*”,X *Y =∁U (X ∩Y ),对于任意集合X ,Y ,Z ,则(X *Y )*Z =( )A .(X ∪Y )∩∁U ZB .(X ∩Y )∪∁U ZC .(∁U X ∪∁U Y )∩ZD .(∁U X ∩∁U Y )∪Z [答案] B[解析] X *Y =∁U (X ∩Y )(X *Y )*Z =∁U [∁U (X ∩Y )∩Z ]=∁U (∁U (X ∩Y ))∪∁U Z =(X ∩Y )∪∁U Z ,故选B. 二、填空题7.(河北孟村回民中学2014~2015学年高一九月份月考试题)U ={1,2},A ={x |x 2+px +q =0},∁U A ={1},则p +q =________.[答案] 0[解析] 由∁U A ={1},知A ={2}即方程x 2+px +q =0有两个相等根2,∴p =-4,q =4,∴p +q =0.8.已知集合A ={(x ,y )|y =2x -1},B ={(x ,y )|y =x +3},若m ∈A ,m ∈B ,则m 为________.[答案] (4,7)[解析] 由m ∈A ,m ∈B 知m ∈(A ∩B ), 由⎩⎪⎨⎪⎧y =2x -1y =x +3,得⎩⎪⎨⎪⎧x =4y =7,∴A ∩B ={(4,7)}.三、解答题9.已知全集U =R ,A ={x |2≤x <5},B ={x |3≤x <7},求: (1)(∁R A )∩(∁R B ) (2)∁R (A ∪B ) (3)(∁R A )∪(∁R B ) (4)∁R (A ∩B )[分析] 在进行集合运算时,充分利用数轴工具是十分有效的手段,此例题可先在数轴上画出集合A 、B ,然后求出A ∩B ,A ∪B ,∁R A ,∁R B ,最后可逐一写出各小题的结果.[解析] 如图所示,可得A ∩B ={x |3≤x <5},A ∪B ={x |2≤x <7}.∁R A ={x |x <2或x ≥5}, ∁R B ={x |x <3或x ≥7}. 由此求得(1)(∁R A )∩(∁R B )={x |x <2或x ≥7}. (2)∁R (A ∪B )={x |x <2或x ≥7}.(3)(∁R A )∪(∁R B )={x |x <2或x ≥5}∪{x <3或x ≥7}={x |x <3或x ≥5}. (4)∁R (A ∩B )={x |x <3或x ≥5}.[点评] 求解集合的运算,利用数轴是有效的方法,也是数形结合思想的体现. 10.已知U =R ,A ={x |x 2+px +12=0},B ={x |x 2-5x +q =0},若(∁U A )∩B ={2},(∁UB )∩A ={4},求A ∪B .[分析] 先确定p 和q 的值,再明确A 与B 中的元素,最后求得A ∪B . [解析] ∵(∁U A )∩B ={2},∴2∈B 且2∉A . ∵A ∩(∁U B )={4},∴4∈A 且4∉B .∴⎩⎪⎨⎪⎧42+4p +12=0,22-5×2+q =0.解得p =-7,q =6,∴A ={3,4},B ={2,3},∴A ∪B ={2,3,4}.能力提升一、选择题1.设A 、B 、C 为三个集合,(A ∪B )=(B ∩C ),则一定有( ) A .A ⊆C B .C ⊆A C .A ≠C D .A =Ø[答案] A[解析] ∵A ∪B =(B ∩C )⊆B , 又B ⊆(A ∪B ),∴A ∪B =B ,∴A ⊆B , 又B ⊆(A ∪B )=B ∩C ,且(B ∩C )⊆B , ∴(B ∩C )=B ,∴B ⊆C ,∴A ⊆C .2.设P ={3,4},Q ={5,6,7},集合S ={(a ,b )|a ∈P ,b ∈Q },则S 中元素的个数为( )A .3B .4C .5D .6[答案] D[解析] S ={(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)}共6个元素,故选D. 3.(2015·陕西模拟)已知全集U ={1,2,3,4,5},集合A ={x |x 2-3x +2=0},B ={x |x =2a ,a ∈A },则集合∁U (A ∪B )中元素的个数为( )A.1 B.2C.3 D.4[答案] B[解析] 因为集合A={1,2},B={2,4},所以A∪B={1,2,4},所以∁U(A∪B)={3,5}.4.设全集U=R,集合A={x|x≤1或x≥3},集合B={x|k<x<k+1,k<2},且B∩(∁U A)≠Ø,则( )A.k<0 B.k<2C.0<k<2 D.-1<k<2[答案] C[解析] ∵U=R,A={x|x≤1或x≥3},∴∁U A={x|1<x<3}.∵B={x|k<x<k+1,k<2},∴当B∩(∁U A)=Ø时,有k+1≤1或k≥3(不合题意,舍去),如图所示,∴k≤0,∴当B∩(∁U A)≠Ø时,0<k<2,故选C.二、填空题5.(2014·福建,理)若集合{a,b,c,d}={1,2,3,4},且下列四个关系:①a=1;②b≠1;③c=2,④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是________.[答案] 6[解析] 根据题意可分四种情况:(1)若①正确,则a=1,b=1,c≠2,d=4,符合条件的有序数组有0个;(2)若②正确,则a≠1,b≠1,c≠2,d=4,符合条件的有序数组为(2,3,1,4)和(3,2,1,4);(3)若③正确,则a≠1,b=1,c=2,d=4,符合条件的有序数组为(3,1,2,4);(4)若④正确,则a≠1,b=1,c≠2,d≠4,符合条件的有序数组为(2,1,4,3),(4,1,3,2),(3,1,4,2).所以共有6个.故答案为6.6.设数集M={x|m≤x≤m+34},N={x|n-13≤x≤n},且M,N都是集合{x|0≤x≤1}的子集,如果把b-a叫做集合{x|a≤x≤b}的“长度”,那么集合M∩N的“长度”的最小值是________.[答案]1 12[解析] 如图,设AB 是一长度为1的线段,a 是长度为34的线段,b 是长度为13的线段,a ,b 可在线段AB 上自由滑动,a ,b 重叠部分的长度即为M ∩N 的“长度”,显然,当a ,b各自靠近线段AB 两端时,重叠部分最短,其值为34+13-1=112.三、解答题7.已知集合A ={x |x 2-ax +a 2-19=0},B ={x |x 2-5x +6=0},C ={x |x 2+2x -8=0},试探求a 取何实数时,(A ∩B )Ø与A ∩C =Ø同时成立.[解析] B ={x |x 2-5x +6=0}={2,3},C ={x |x 2+2x -8=0}={2,-4},由A ∩BØ与A ∩C =Ø同时成立可知,3是方程x 2-ax +a 2-19=0的解,将3代入方程得a 2-3a -10=0,解得a =5或a =-2.当a =5时,A ={x |x 2-5x +6=0}={2,3},此时A ∩C ={2},与此题设A ∩C =Ø矛盾,故不适合.当a =-2时,A ={x |x 2+2x -15=0}={3,-5},此时(A ∩B )Ø与A ∩C =Ø同时成立,则满足条件的实数a =-2.8.设A ,B 是两个非空集合,定义A 与B 的差集A -B ={x |x ∈A ,且x ∉B }. (1)试举出两个数集,求它们的差集;(2)差集A -B 与B -A 是否一定相等?说明理由;(3)已知A ={x |x >4},B ={x |-6<x <6},求A -(A -B )和B -(B -A ). [解析] (1)如A ={1,2,3},B ={2,3,4}, 则A -B ={1}. (2)不一定相等,由(1)B -A ={4},而A -B ={1}, 故A -B ≠B -A .又如,A =B ={1,2,3}时,A -B =Ø,B -A =Ø,此时A -B =B -A ,故A -B 与B -A 不一定相等. (3)因为A -B ={x |x ≥6},B -A ={x |-6<x ≤4}, A -(A -B )={x |4<x <6}, B -(B -A )={x |4<x <6}.第一章 1.2 1.2.1函数的概念基础巩固一、选择题1.下列四种说法中,不正确的是( )A .在函数值域中的每一个数,在定义域中都至少有一个数与之对应B .函数的定义域和值域一定是无限集合C .定义域和对应关系确定后,函数的值域也就确定了D .若函数的定义域中只含有一个元素,则值域也只含有一个元素 [答案] B2.f (x )=1+x +x1-x 的定义域是( )A .[-1,+∞)B .(-∞,-1]C .RD .[-1,1)∪(1,+∞)[答案] D[解析] ⎩⎪⎨⎪⎧1+x ≥01-x ≠0,解得⎩⎪⎨⎪⎧x ≥-1,x ≠1,故定义域为[-1,1)∪(1,+∞),选D.3.各个图形中,不可能是函数y =f (x )的图象的是( )[答案] A[解析] 因为垂直x 轴的直线与函数y =f (x )的图象至多有一个交点,故选A. 4.(2015·曲阜二中月考试题)集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数是( )A .f x →y =12xB .f x →y =13xC .f x →y =23xD .f x →y =x[答案] C[解析] 对于选项C ,当x =4时,y =83>2不合题意.故选C.5.下列各组函数相同的是( )A .f (x )=x 2-1x -1与g (x )=x +1B .f (x )=-2x 3与g (x )=x ·-2x C .f (x )=2x +1与g (x )=2x 2+xxD .f (x )=|x 2-1|与g (t )=t 2-12[答案] D[解析] 对于A.f (x )的定义域是(-∞,1)∪(1,+∞),g (x )的定义域是R ,定义域不同,故不是相同函数;对于B.f (x )=|x |·-2x ,g (x )=x ·-2x 的对应法则不同;对于C ,f (x )的定义域为R 与g (x )的定义域是{x |x ≠0},定义域不同,故不是相同函数;对于D.f (x )=|x 2-1|,g (t )=|t 2-1|,定义域与对应关系都相同,故是相同函数,故选D.6.函数y =f (x )的图象与直线x =a 的交点个数有( ) A .必有一个 B .一个或两个 C .至多一个 D .可能两个以上[答案] C[解析] 当a 在f (x )定义域内时,有一个交点,否则无交点. 二、填空题 7.已知函数f (x )=11+x,又知f (t )=6,则t =________. [答案] -56[解析] f (t )=1t +1=6.∴t =-568.用区间表示下列数集: (1){x |x ≥1}=________; (2){x |2<x ≤4}=________; (3){x |x >-1且x ≠2}=________.[答案] (1)[1,+∞) (2)(2,4] (3)(-1,2)∪(2,+∞) 三、解答题9.求下列函数的定义域,并用区间表示:(1)y =x +12x +1-1-x ;(2)y =5-x|x |-3.[分析] 列出满足条件的不等式组⇒解不等式组⇒求得定义域[解析] (1)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧x +1≠01-x ≥0,解得x ≤1且x ≠-1,即函数定义域为{x |x ≤1且x ≠-1}=(-∞,-1)∪(-1,1].(2)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧5-x ≥0|x |-3≠0,解得x ≤5,且x ≠±3,即函数定义域为{x |x ≤5,且x ≠±3}=(-∞,-3)∪(-3,3)∪(3,5]. [规律总结] 定义域的求法:(1)如果f (x )是整式,那么函数的定义域是实数集R ;(2)如果f (x )是分式,那么函数的定义域是使分母不为0的实数的集合;(3)如果f (x )为偶次根式,那么函数的定义域是使根号内的式子大于或等于0的实数的集合;(4)如果f (x )是由几个部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的实数的集合.(5)如果函数有实际背景,那么除符合上述要求外,还要符合实际情况. 函数定义域要用集合或区间形式表示,这一点初学者易忽视. 10.已知函数f (x )=x +3+1x +2. (1)求函数的定义域; (2)求f (-3),f (23)的值;(3)当a >0时,求f (a ),f (a -1)的值.[解析] (1)使根式x +3有意义的实数x 的集合是{x |x ≥-3},使分式1x +2有意义的实数x 的集合是{x |x ≠-2},所以这个函数的定义域是{x |x ≥-3}∩{x |x ≠-2}={x |x ≥-3,且x ≠-2}. (2)f (-3)=-3+3+1-3+2=-1; f (23)=23+3+123+2=113+38=38+333. (3)因为a >0,故f (a ),f (a -1)有意义.f (a )=a +3+1a +2;f (a -1)=a -1+3+1a -1+2=a +2+1a +1.能力提升一、选择题1.给出下列从A 到B 的对应:①A =N ,B ={0,1},对应关系是:A 中的元素除以2所得的余数 ②A ={0,1,2},B ={4,1,0},对应关系是f :x →y =x 2③A ={0,1,2},B ={0,1,12},对应关系是f :x →y =1x其中表示从集合A 到集合B 的函数有( )个.( ) A .1 B .2 C .3 D .0[答案] B[解析] 由于③中,0这个元素在B 中无对应元素,故不是函数,因此选B. 2.(2012·高考安徽卷)下列函数中,不满足:f (2x )=2f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +1 D .f (x )=-x [答案] C[解析] f (x )=kx 与f (x )=k |x |均满足:f (2x )=2f (x )得:A ,B ,D 满足条件. 3.(2014~2015惠安中学月考试题)A ={x |0≤x ≤2},B ={y |1≤y ≤2},下列图形中能表示以A 为定义域,B 为值域的函数的是( )[答案] B[解析] A 、C 、D 的值域都不是[1,2],故选B. 4.(2015·盘锦高一检测)函数f (x )=11-2x 的定义域为M ,g (x )=x +1的定义域为N ,则M ∩N =( )A .[-1,+∞)B .[-1,12)C .(-1,12)D .(-∞,12)[答案] B 二、填空题5.若函数f (x )的定义域为[2a -1,a +1],值域为[a +3,4a ],则a 的取值范围是________. [答案] (1,2)[解析] 由区间的定义知⎩⎪⎨⎪⎧2a -1<a +1,a +3<4a⇒1<a <2.6.函数y =f (x )的图象如图所示,那么f (x )的定义域是________;其中只与x 的一个值对应的y 值的范围是________.[答案] [-3,0]∪[2,3] [1,2)∪(4,5] [解析] 观察函数图象可知f (x )的定义域是[-3,0]∪[2,3];只与x 的一个值对应的y 值的范围是[1,2)∪(4,5]. 三、解答题7.求下列函数的定义域: (1)y =31-1-x;(2)y =x +10|x |-x;(3)y =2x +3-12-x +1x.[解析] (1)要使函数有意义,需⎩⎨⎧1-x ≥0,1-1-x ≠0⇔⎩⎪⎨⎪⎧x ≤1,x ≠0⇔x ≤1且x ≠0,所以函数y =31-1-x的定义域为(-∞,0)∪(0,1].(2)由⎩⎪⎨⎪⎧x +1≠0,|x |-x ≠0得⎩⎪⎨⎪⎧x ≠-1,|x |≠x ,∴x <0且x ≠-1,∴原函数的定义域为{x |x <0且x ≠-1}. (3)要使函数有意义,需⎩⎪⎨⎪⎧2x +3≥0,2-x >0,x ≠0.解得-32≤x <2且x ≠0,所以函数y =2x +3-12-x +1x 的定义域为[-32,0)∪(0,2).[点评] 求给出解析式的函数的定义域的步骤为:(1)列出使函数有意义的x 所适合的式子(往往是一个不等式组);(2)解这个不等式组;(3)把不等式组的解表示成集合(或者区间)作为函数的定义域.8.已知函数f (x )=1+x 21-x 2,(1)求f (x )的定义域. (2)若f (a )=2,求a 的值.(3)求证:f ⎝ ⎛⎭⎪⎫1x=-f (x ). [解析] (1)要使函数f (x )=1+x 21-x 2有意义,只需1-x 2≠0,解得x ≠±1,所以函数的定义域为{x |x ≠±1}. (2)因为f (x )=1+x21-x2,且f (a )=2,所以f (a )=1+a 21-a 2=2,即a 2=13,解得a =±33. (3)由已知得f ⎝ ⎛⎭⎪⎫1x =1+⎝ ⎛⎭⎪⎫1x 21-⎝ ⎛⎭⎪⎫1x 2=x 2+1x 2-1,-f (x )=-1+x 21-x 2=x 2+1x 2-1, ∴f ⎝ ⎛⎭⎪⎫1x =-f (x ).第一章 1.2 1.2.2 第一课时函数的表示方法基础巩固一、选择题1.已知y 与x 成反比,且当x =2时,y =1,则y 关于x 的函数关系式为( ) A .y =1xB .y =-1xC .y =2xD .y =-2x[答案] C[解析] 设y =k x ,由1=k 2得,k =2,因此,y 关于x 的函数关系式为y =2x.2.一等腰三角形的周长是20,底边长y 是关于腰长x 的函数,则它的解析式为( ) A .y =20-2xB .y =20-2x (0<x <10)C .y =20-2x (5≤x ≤10)D .y =20-2x (5<x <10)[答案] D[解析] 由题意得y +2x =20,∴y =20-2x .又∵2x >y ,∴2x >20-2x ,即x >5.由y >0,即20-2x >0得x <10,∴5<x <10.故选D.3.设函数f (x )=2x +3,g (x +2)=f (x ),则g (x )的解析式是( ) A .g (x )=2x +1 B .g (x )=2x -1 C .g (x )=2x -3 D .g (x )=2x +7[答案] B[解析] ∵g (x +2)=f (x )=2x +3,∴令x +2=t ,则x =t -2,g (t )=2(t -2)+3=2t -1.∴g (x )=2x -1.4.(2015·安丘一中月考)某同学在一学期的5次大型考试中的数学成绩(总分120分)如下表所示:A .成绩y 不是考试次数x 的函数B .成绩y 是考试次数x 的函数C .考试次数x 是成绩y 的函数D .成绩y 不一定是考试次数x 的函数 [答案] B5.如果二次函数的二次项系数为1,图象开口向上,且关于直线x =1对称,并过点(0,0),则此二次函数的解析式为( )A .f (x )=x 2-1 B .f (x )=-(x -1)2+1 C .f (x )=(x -1)2+1 D .f (x )=(x -1)2-1[答案] D6.(2015·武安中学周测题)若f (x )满足关系式f (x )+2f (1x)=3x ,则f (2)的值为( )。
人教版高一数学必修一第一章测试题含答案
人教版高一数学必修一第一章测试题含答案一、选择题1.下列数中,是正数且有理数的是____。
A.根号2B.根号3C.-0.8D.- 3/4答案:D2.在数轴上,数-3,-2,0,2所在的点的次序是____。
A.-2 < -3 < 0 < 2B.-3 < -2 < 2 < 0C.-3 < -2 < 0 < 2D.-2 < -3 < 2 < 0答案:C3.下列各数中,最小的是____。
A.-0.8B.-1/2C.-1D.-0.9999答案:C4.已知-3<x<5,则-2x的取值范围是____。
A.6<x<30B.15<x<30C.-30<x<-6D.-30<x<15答案:D二、填空题1.将-0.25用分数表示为________。
答案:-1/42.-13的绝对值是________。
答案:133.已知-5<x<4,那么|x+7|的取值范围是________。
答案:2<|x+7|<124.如果a>b>0,那么a²和b²的大小关系是________。
答案:a²>b²三、解答题1.已知x<2y,2y≤4z,z≤5,求满足以上条件的x的取值范围。
解:由条件可得:x<2y≤4z≤20故x<20。
2.已知-2<x<3,求满足0<2x-1<5的x的取值范围。
解:0<2x-1<51<2x<6由x的取值范围-2<x<3得1/2<x<3,故满足条件的x的取值范围为1/2<x<3。
3.小明的体重是58kg,如果减轻了1/8,减轻后的体重是多少?解:减轻了1/8,体重减轻的量为1/8×58=7.25kg。
减轻后的体重为58-7.25=50.75kg。
高一数学必修1第一章测试题及答案
高一数学必修1第一章测试题及答案高一第一章测试题(一)一.选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项符合题目要求。
)1.设集合 $A=\{x\in Q|x>-1\}$,则()A。
$\varnothing \in A$ B。
$2\in A$ C。
$2\in A$ D。
$\{2\}\subseteq A$2.已知集合 $A$ 到 $B$ 的映射 $f:x\rightarrow y=2x+1$,那么集合 $A$ 中元素 $2$ 在 $B$ 中对应的元素是:A。
$2$ B。
$5$ C。
$6$ D。
$8$3.设集合 $A=\{x|1<x<2\},B=\{x|x<a\}$。
若 $A\subseteq B$,则 $a$ 的范围是()A。
$a\geq 2$ B。
$a\leq 1$ C。
$a\geq 1$ D。
$a\leq 2$4.函数 $y=2x-1$ 的定义域是()A。
$(,\infty)$ B。
$[。
\infty)$ C。
$(-\infty,)$ D。
$(-\infty,]$5.全集 $U=\{0,1,3,5,6,8\}$,集合 $A=\{1,5,8\},B=\{2\}$,则集合 $B$ 为()A。
$\{0,2,3,6\}$ B。
$\{0,3,6\}$ C。
$\{2,1,5,8\}$ D。
$\varnothing$6.已知集合 $A=\{x-1\leq x<3\},B=\{x^2<x\leq 5\}$,则$A\cap B$ 为()A。
$(2,3)$ B。
$[-1,5]$ C。
$(-1,5)$ D。
$(-1,5]$7.下列函数是奇函数的是()A。
$y=x$ B。
$y=2x-3$ C。
$y=x^2$ D。
$y=|x|$8.化简:$(\pi-4)+\pi=$()A。
$4$ B。
$2\pi-4$ C。
$2\pi-4$ 或 $4$ D。
$4-2\pi$9.设集合 $M=\{-2\leq x\leq 2\},N=\{y\leq y\leq 2\}$,给出下列四个图形,其中能表示以集合 $M$ 为定义域,$N$ 为值域的函数关系的是()无法呈现图片,无法回答)10.已知$f(x)=g(x)+2$,且$g(x)$ 为奇函数,若$f(2)=3$,则 $f(-2)=$A。
新教材人教版高一数学上册单元测试题含答案全套
新教材人教版高一数学上册单元测试题含答案全套人教版高中数学必修第一册第一章测试题集合与常用逻辑用语注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合,,则等于( )A .B .C .D .【答案】B【解析】集合,,.2.是的( )条件 A .充分不必要 B .必要不充分 C .充要 D .既不充分也不必要 【答案】B【解析】由不能推得,反之由可推得, 所以是的必要不充分条件. 3.已知集合,,若,则实数的值为( )A .B .C .D .【答案】B【解析】∵集合,,且,∴,因此. 4.下列命题中正确的是( ){}1,2,3,4,5A ={}21,B y y x x A ==-∈A B {2,4}{1,3,5}{2,4,7,9}{1,2,3,4,5,7,9}{}1,2,3,4,5A ={}{}21,1,3,5,7,9B y y x x A ==-∈={}1,3,5A B =1x >4x >1x >4x >4x >1x >1x >4x >{1,3}A =-2{2,}B a ={1,2,3,9}A B =-a 1±3±1-3{1,3}A =-2{2,}B a ={1,2,3,9}A B =-29a =3a =±A .任何一个集合必有两个以上的子集B .空集是任何集合的子集C .空集没有子集D .空集是任何集合的真子集 【答案】B【解析】空集只有一个子集,故A 错;B 正确; 空集是本身的子集,故C 错;空集不能是空集的真子集,故D 错. 5.已知集合,则中元素的个数为( )A .B .C .D .【答案】A【解析】因为集合,所以满足且,的点有,,,,,,,,共个.6.已知,则( )A .B .C .D .【答案】B 【解析】,故A 错,B 对,显然,所以C 不对,而,所以D 也不对,故本题选B .7.命题“存在实数,使”的否定是( ) A .对任意实数,都有 B .对任意实数,都有 C .不存在实数,使 D .存在实数, 【答案】B【解析】命题“存在实数,使”的否定是“对任意实数,都有”. 8.集合中的不能取的值的个数是( ) A .B .C .D .【答案】B【解析】由题意可知,且且, 故集合中的不能取的值的个数是个. 9.下列集合中,是空集的是( ) A . B .C .D .【答案】B(){}22,3,,A x y xy x y =+≤∈∈Z Z A 9854(){}22,3,,A x y xy x y =+≤∈∈Z Z 223x y +≤x ∈Z y ∈Z (1,1)--(1,0)-(1,1)-(0,1)-(0,0)(0,1)(1,1)-(1,0)(1,1)9a ={A x x =≥a A ∉a A ∈{}a A ={}a a ∉>a A ∈{}a A ≠{}a a ∈x 1x >x 1x >x 1x ≤x 1x ≤x 1x ≤x 1x >x 1x ≤{}22,4,0x x --x 2345222040224x x x x x -≠-≠⇒≠-≠⎧⎪⎨⎪⎩-2x ≠-1x ≠-{}22,4,0x x --x 3{}0|2x x +={}210,x x x +=∈R {}1|x x <(){}22,,,x y yx x y =-∈R【解析】对于A 选项,,不是空集, 对于B 选项,没有实数根,故为空集, 对于C 选项,显然不是空集,对于D 选项,集合为,故不是空集. 10.下列各组集合中表示同一集合的是( ) A ., B ., C ., D .,【答案】B【解析】对于A ,,表示点集,,表示数集,故不是同一集合; 对于B ,,,根据集合的无序性,集合表示同一集合; 对于C ,集合的元素是数,集合的元素是等式;对于D ,,集合的元素是点,, 集合的元素是点,集合不表示同一集合.11.学校先举办了一次田径运动会,某班共有名同学参赛,又举办了一次球类运动会,这个班有名同学参赛,两次运动会都参赛的有人.两次运动会中,这个班总共的参赛人数为( ) A . B . C . D . 【答案】B【解析】因为参加田径运动会的有名同学,参加球类运动会的有名同学,两次运动会都参加的有人,所以两次运动会中,这个班总共的参赛人数为.12.已知集合,.若, 则实数的取值范围为( ) A . B .C .D .【答案】D【解析】, 当为空集时,;当不为空集时,,综上所述得.第Ⅱ卷二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.集合,则集合的子集的个数为 个.2x =-210x +={(0,0)}{(3,2)}M ={3,2}N ={2,3}M ={3,2}N ={2,3}M ={2,3}N x y ==={(2,3)}M ={(5,4)}N ={(3,2)}M =M {3,2}N =N {2,3}M ={3,2}N =,M N M N {(2,3)}M =M (2,3){(5,4)}N =N (5,4),M N 8123201714238123812317+-={}|25A x x =-≤≤{}|121B x m x m =+≤≤-B A ⊆m 3m ≥23m ≤≤2m ≥3m ≤{}|121B x m x m =+≤≤-B 2112m m m -<+⇒<B 22152312m m m m ≥⎧⎪-≤⇒≤≤⎨⎪+≥-⎩3m ≤2{}1,A =A【答案】【解析】由已知,集合的子集个数为.14.命题“”是命题“”的 (“充分不必要,必要不充分,充要,既不充分也不必要”)条件. 【答案】必要不充分【解析】的解为或,所以当“”成立时,则“”未必成立; 若“”,则“”成立,故命题“”是命题“”的必要不充分条件.15.命题“,”的否定是 .【答案】,【解析】由全称量词命题的否定是存在量词命题可知,命题“,”的否定是“,”.16.设全集是实数集,,, 则图中阴影部分所表示的集合是 .【答案】【解析】由图可知,阴影部分为,∵,∴,∴.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知集合,且,求的取值集合. 【答案】.【解析】∵,∴或,即或.4A 224=220x x --=1x =-220x x --=1x =-2x =220x x --=1x =-1x =-220x x --=220x x --=1x =-x ∀∈R 23210x x -+>0x ∃∈R 2003210x x -+≤x ∀∈R 23210x x -+>0x ∃∈R 2003210x x -+≤U R {}22M x x x =<->或{}13N x x =<<{}12x x <≤Venn ()UN M {}22M x x x =<->或{}22UM x x -=≤≤(){}12UNM x x =<≤{}21,2,4M m m =++5M ∈m {}1,3{}251,2,4m m ∈++25m +=245m +=3m =1m =±当时,;当时,; 当时,不满足互异性, ∴的取值集合为{}1,3.18.(12分)已知集合,,若,求实数,的值.【答案】或.【解析】由已知,得①,解得或, 当时,集合不满足互异性, 当时,集合,集合,符合题意; ②,解得(舍)或,当时,集合,集合符合题意,综上所述,可得或.19.(12分)设集合,. (1)若,试判定集合与的关系; (2)若,求实数的取值集合.【答案】(1)是的真子集;(2).3m ={}1,5,13M =1m ={}1,3,5M =1m =-{}1,1,5M =m {,,2}A a b =2{2,,2}B b a =A B =a b 01a b =⎧⎨=⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩A B =22a a b b =⎧⎨=⎩00a b =⎧⎨=⎩01a b =⎧⎨=⎩00a b =⎧⎨=⎩{0,0,2}A =01a b =⎧⎨=⎩{0,1,2}A ={2,1,0}B =22a b b a ⎧=⎨=⎩00a b =⎧⎨=⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩11{,,2}42A =11{2,,}42B =01a b =⎧⎨=⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩{}28150A x x x =-+={}10B x ax =-=15a =A B B A ⊆a B A 110,,35⎧⎫⎨⎬⎩⎭【解析】(1),,∴是的真子集. (2)当时,满足,此时;当时,,集合,又,得或,解得或. 综上,实数的取值集合为.20.(12分)已知全集,集合,.求: (1),,;(2),;(3)设集合且,求的取值范围.【答案】(1)见解析;(2)见解析;(3). 【解析】(1),∵,,.(2),∴.(3)由(2)可知,∵,∴,解得.21.(12分)已知集合为全体实数集,,. (1)若,求;(2)若,求实数的取值范围. 【答案】(1);(2).【解析】(1)当时,,所以,所以.(2)①,即时,,此时满足.②当,即时,,由得,或, 所以.{3,5}A ={5}B =B A B =∅B A ⊆0a =B ≠∅0a ≠1B a ⎧⎫=⎨⎬⎩⎭B A ⊆13a =15a=13a =15a 110,,35⎧⎫⎨⎬⎩⎭{}6U x x =∈<N {}1,2,3A ={}2,4B =A B UA UB AB ()UA B {|21}C x a x a =-<≤-()UA CB ⊆a 3a ≥2A B ={0,1,2,3,4,5}U ={0,4,5}UA ={0,1,3,5}UB ={1,2,3,4}AB =(){0,5}UA B =(){0,5}UA B =()U A C B ⊆021521a a a a -<⎧⎪-≥⎨⎪->-⎩3a ≥U {}25M x x x =≤-≥或{}121N x a x a =+≤≤-3a =UMN N M ⊆a {}45Ux x x MN =<≥或{}24a a a <≥或3a ={}45|N x x =≤≤{}45UN x x x =<>或{}45Ux x x MN =<≥或211a a -<+2a <N =∅N M ⊆211a a -≥+2a ≥N ≠∅N M ⊆15a +≥212a -≤-4a ≥综上,实数的取值范围为.22.(12分)已知二次函数,非空集合.(1)当时,二次函数的最小值为,求实数的取值范围;(2)是否存在整数的值,使得“”是“二次函数的大值为”的充分条件, 如果存在,求出一个整数的值,如果不存在,请说明理由. 【答案】(1);(2)见解析.【解析】(1),当且仅当时,二次函数有最小值为,由已知时,二次函数的最小值为,则,所以. (2)二次函数,开口向上,对称轴为,作出二次函数图象如图所示,由“”是“二次函数的大值为”的充分条件, 即时,二次函数的最大值为,,即为,令,解得或,由图像可知,当或时,二次函数的最大值不等于,不符合充分条件, 则,即可取的整数值为,,,,任意一个.第一册第二章测试题一元二次函数、方程和不等式注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
高中数学必修一 第一章测试题(含答案)
必修一 第一章 集合与简易逻辑单元测试学校:___________姓名:___________班级:___________考号:___________一、单选题 1.已知全集U ={1,2,3,4,5,6,7},A ={2,3,5,7},B ={1,3,6,7},则∁U (A ∩B )=( ) A .{4}B .∅C .{1,2,4,5,6}D .{1,2,3,5,6}2.A ={2,3},B ={x ∈N|x 2−3x <0},则A ∪B =( ) A .{1,2,3}B .{0,1,2,}C .{0,2,3}D .{0,1,2,3}3.下列各组集合表示同一集合的是( ) A .M ={(3,2)},N ={(2,3)} B .M ={(x,y)|x +y =1},N ={y |x +y =1} C .M ={4,5},N ={5,4}D .M ={1,2},N ={(1,2)}4.已知全集U =Z ,集合M ={x|−1<x <2,x ∈Z},N ={−1,0,1,2},则()C U M N ⋂=( ) A .{−1,2}B .{−1,0}C .{0,1}D .{1,2}5.设集合U ={1,2,3,4},M ={1,2,3},N ={2,3},则∁U (M ∩N )=( ) A .{4}B .{1,2}C .{}2,3D .{1,4}6.下列各式中:①{0}∈{0,1,2};②{0,1,2}⊆{2,1,0};③∅⊆{0,1,2};④∅={0};⑤{0,1}={(0,1)};⑥0={0}.正确的个数是( ) A .1B .2C .3D .47.命题“∃x ∈R ,x 2−2x +2≤0”的否定是( ) A .∃x ∈R ,x 2−2x +2≥0 B .∃x ∈R ,2220x x -+> C .∀x ∈R ,2220x x -+>D .∀x ∈R ,x 2−2x +2≤08.王昌龄《从军行》中两句诗为“黄沙百战穿金甲,不破楼兰终不还”,其中后一句中“攻破楼兰”是“返回家乡”的( ) A .充分条件 B .必要条件C .充要条件D .既不充分也不必要条件9.若命题:“∃x ∈R ,使x 2−x −m =0”是真命题,则实数m 的取值范围是( ) A .[−14,0]B .10,4⎡⎤⎢⎥⎣⎦C .1,4⎡⎫-+∞⎪⎢⎣⎭D .1,4⎛⎤-∞ ⎥⎝⎦10.命题“∀x ∈[1,2],x 2-a ≤0”为真命题的一个充分不必要条件是( ) A .a ≥4B .a ≤4C .a ≥5D .a ≤511.已知集合A ={x|ax =x 2},B ={0,1,2},若A ⊆B ,则实数a 的值为( ) A .1或2B .0或1C .0或2D .0或1或212.已知集合A ={x|−2≤x ≤5},B ={x|m +1≤x ≤2m −1}.若B ⊆A ,则实数m 的取值范围为( ) A .m ≥3B .2≤m ≤3C .3m ≤D .m ≥2二、填空题 13.已知集合A ={−1,0,1},B ={0,a,a 2},若A =B ,则a =______.14.已知集合M ={(x,y)|x +y =2}、N ={(x,y)|x −y =4},那么集合M ∩N= 15.“方程220x x a --=没有实数根”的充要条件是________.16.已知A ,B 是两个集合,定义A −B ={x|x ∈A,x ∉B},若A ={x|−1<x <4},B ={x|x >2},则A −B =_______________.三、解答题 17.已知A ={a −1,2a 2+5a +1,a 2+1}, −2∈A ,求实数a 的值.18.已知集合A ={x |−4<x <2},B ={x |x <−5或x >1}.求A ∪B ,A ∩(∁R B ); 19.已知集合U ={1,2,3,4,5,6,7,8,9},A ={x|3≤x ≤7且x ∈U},B ={x|x =3n,n ∈Z 且x ∈U}.(1)写出集合B 的所有子集; (2)求A ∩B ,A ∪∁U B .20.已知全集U =R ,集合A ={x|−1≤x ≤3}. (1)求C U A ;(2)若集合B ={x |2x −a >0},且B ⊆(C U A ),求实数a 的取值范围.21.已知集合{}|123A x a x a =-≤≤+,{}|14B x x =-≤≤,全集U =R .(1)当a=1时,求(C U A)∩B;(2)若“x∈B”是“x∈A”的必要条件,求实数a的取值范围.22.命题p:“∀x∈[1,2],x2+x−a≥0”,命题q:“∃x∈R,x2+3x+2−a=0”.(1)写出命题p的否定命题¬p,并求当命题¬p为真时,实数a的取值范围;(2)若p和q中有且只有一个是真命题,求实数a的取值范围.参考答案:1.C【分析】先求交集,再求补集,即得答案.【详解】因为A={2,3,5,7},B={1,3,6,7},所以A∩B={3,7},A B={1,2,4,5,6}.又全集U={1,2,3,4,5,6,7},所以()U故选:C2.A【分析】根据一元二次不等式的运算求出集合B,再根据并集运算即可求出结果.【详解】因为B={x∈N|x2−3x<0},所以B={1,2},所以A∪B={1,2,3}.故选:A.【点睛】本题主要考查了集合的并集运算,属于基础题.3.C【分析】根据集合的表示法一一判断即可;【详解】解:对于A:集合M={(3,2)}表示含有点(3,2)的集合,N={(2,3)}表示含有点(2,3)的集合,显然不是同一集合,故A错误;对于B:集合M表示的是直线x+y=1上的点组成的集合,集合N=R为数集,故B错误;对于C:集合M、N均表示含有4,5两个元素组成的集合,故是同一集合,故C正确;对于D:集合M表示的是数集,集合N为点集,故D错误;故选:C4.A【解析】根据集合M,求出C U M,然后再根据交集运算即可求出结果.【详解】M={x|−1<x<2,x∈Z}={0,1}∴()C {1,2}U M N ⋂=-. 故选:A.【点睛】本题主要考查集合的交集和补集运算,属于基础题. 5.D【分析】根据交集、补集的定义计算可得;【详解】解:∵集合U ={1,2,3,4},M ={1,2,3},N ={2,3} ∴M ∩N ={2,3}, 则∁U (M ∩N)={1,4}. 故选:D . 6.B【分析】根据相等集合的概念,元素与集合、集合与集合之间的关系,空集的性质判断各项的正误.【详解】∈集合之间只有包含、被包含关系,故错误;②两集合中元素完全相同,它们为同一集合,则{0,1,2}⊆{2,1,0},正确; ③空集是任意集合的子集,故∅⊆{0,1,2},正确; ④空集没有任何元素,故∅≠{0},错误;⑤两个集合所研究的对象不同,故{0,1},{(0,1)}为不同集合,错误; ⑥元素与集合之间只有属于、不属于关系,故错误; ∈∈∈正确. 故选:B. 7.C【分析】根据存在量词命题的否定为全称量词命题判断即可;【详解】解:命题“∃x ∈R ,2220x x -+”为存在量词命题,其否定为:∀x ∈R ,2220x x -+>;故选:C 8.B【分析】“返回家乡”的前提条件是“攻破楼兰”,即可判断出结论. 【详解】“返回家乡”的前提条件是“攻破楼兰”, 故“攻破楼兰”是“返回家乡”的必要不充分条件 故选:B9.C【分析】利用判别式即可得到结果.【详解】∵“∃x∈R,使x2−x−m=0”是真命题,∴Δ=(−1)2+4m≥0,解得m≥−14.故选:C10.C【分析】先要找出命题为真命题的充要条件{a|a≥4},从集合的角度充分不必要条件应为{a|a≥4}的真子集,由选择项不难得出答案【详解】命题“∀x∈[1,2],x2-a≤0”为真命题,可化为∀x∈[1,2],a≥x2恒成立即只需a ≥(x2)max,即命题“∀x∈[1,2],x2-a≤0”为真命题的的充要条件为a≥4,而要找的一个充分不必要条件即为集合{a|a≥4}的真子集,由选择项可知C 符合题意.故选:C11.D【解析】先求出集合A,再根据A⊆B,即可求解.【详解】解:当a=0时,A={0},满足A⊆B,当a≠0时,A{0,a},若A⊆B,∴a=1或a=2,综上所述:a=0,1或a=2.故选:D.12.C【分析】讨论B=∅,B≠∅两种情况,分别计算得到答案.【详解】当B=∅时:m+1>2m−1∴m<2成立;当B≠∅时:{m+1≤2m−1m+1≥−22m−1≤5解得:2≤m≤3.综上所述:3m 故选C【点睛】本题考查了集合的关系,忽略掉空集的情况是容易发生的错误. 13.1-【分析】根据集合相等,元素相同,即可求得a 的值. 【详解】∵集合A ={−1,0,1},B ={0,a,a 2},A =B ,1a ∴=-,a 2=1.故答案是:1-. 14.{(3,1)}-【分析】确定集合中的元素,得出求交集就是由求得方程组的解所得. 【详解】因为M ={(x,y)|x +y =2}、N ={(x,y)|x −y =4}, 所以M ∩N ={(x,y)|{x +y =2x −y =4}={(3,−1)}.故答案为:{(3,1)}-. 15.a <−1【解析】利用判别式求出条件,再由充要条件的定义说明.【详解】解析因为方程220x x a --=没有实数根,所以有440a ∆=+<,解得a <−1,因此“方程220x x a --=没有实数根”的必要条件是a <−1.反之,若a <−1,则Δ<0,方程220x x a --=无实根,从而充分性成立.故“方程220x x a --=没有实数根”的充要条件是“a <−1”. 故答案为:a <−1【点睛】本题考查充要条件,掌握充要条件的定义是解题关键. 16.{x|−1<x ≤2}【分析】根据集合的新定义,结合集合A 、B 求A −B 即可.【详解】由题设,A −B ={x|x ∈A,x ∉B},又A ={x|−1<x <4},B ={x|x >2}, ∴A −B ={x|−1<x ≤2}. 故答案为:{x|−1<x ≤2} 17.−32【分析】由−2∈A ,有a −1=−2,或2a 2+5a +1=−2,显然a 2+1≠−2,解方程求出实数a 的值,但要注意集合元素的互异性.【详解】因为−2∈A ,所以有a −1=−2,或2a 2+5a +1=−2,显然a 2+1≠−2, 当a −1=−2时,a =−1,此时a −1=2a 2+5a +1=−2不符合集合元素的互异性,故舍去;当2a2+5a+1=−2时,解得a=−32,a=−1由上可知不符合集合元素的互异性,舍去,故a=−32.【点睛】本题考查了元素与集合之间的关系,考查了集合元素的互异性,考查了解方程、分类讨论思想.18.A∪B={x|x<−5或x>−4};A∩(∁R B)={x|−4<x≤1}【分析】由并集、补集和交集定义直接求解即可.【详解】由并集定义知:A∪B={x|x<−5或x>−4};∵∁R B={x|−5≤x≤1},∴A∩(∁R B)={x|−4<x≤1}.19.(1)∅,{3},{6},{9},{3,6},{3,9},{}6,9,{3,6,9};(2)A∩B={3,6},A∪∁U B={1,2,3,4,5,6,7,8}.【分析】(1)根据题意写出集合B,然后根据子集的定义写出集合B的子集;(2)求出集合A,利用交集的定义求出集合A∩B,利用补集和并集的定义求出集合A∪∁U B.【详解】(1)∵B={x|x=3n,n∈Z且x∈U},∴B={3,6,9},因此,B的子集有:∅,{3},{6},{9},{3,6},{3,9},{}6,9,{3,6,9};(2)由(1)知B={3,6,9},则∁U B={1,2,4,5,7,8},∵A={x|3≤x≤7且x∈U}={3,4,5,6,7},因此,A∩B={3,6},A∪∁U B={1,2,3,4,5,6,7,8}.【点睛】本题考查有限集合的子集,以及补集、交集和并集的运算,考查计算能力,属于基础题.20.(1) {x|x>3或x<−1};(2) a≥6.【分析】(1)利用数轴,根据补集的定义直接求出C U A;(2)解不等式化简集合B的表示,利用数轴根据B⊆(C U A),可得到不等式,解这个不等式即可求出实数a的取值范围.【详解】(1)因为集合A={x|−1≤x≤3}.所以C U A={x|x>3或x<−1};(2) B={x|2x−a>0}={x|x>a2}.因为B⊆(C U A),所以有362aa≤⇒≥.【点睛】本题考查了补集的定义,考查了已知集合的关系求参数问题,运用数轴是解题的关键. 21.(1)(C U A)∩B={x|−1≤x<0}(2)a <−4或0≤a ≤12【分析】(1)根据补集与交集的运算性质运算即可得出答案.(2)若“x ∈B ”是“x ∈A ”的必要条件等价于A ⊆B .讨论A 是否为空集,即可求出实数a 的取值范围.(1)当a =1时,集合{}|05A x x =≤≤,C U A ={x|x <0或x >5}, (C U A)∩B ={x|−1≤x <0}.(2)若“x ∈B ”是“x ∈A ”的必要条件,则A ⊆B , ①当A =∅时,a −1>2a +3,∴a <−4;②A ≠∅,则a ≥−4且a −1≥−1,2a +3≤4,∴0≤a ≤12. 综上所述,a <−4或0≤a ≤12. 22.(1)a >2 (2)a >2或a <−14【分析】(1)根据全称命题的否定形式写出¬p ,当命题¬p 为真时,可转化为(x 2+x −a)min ,当x ∈[1,2],利用二次函数的性质求解即可;(2)由(1)可得p 为真命题时a 的取值范围,再求解q 为真命题时a 的取值范围,分p 真和q 假,p 假和q 真两种情况讨论,求解即可 (1)由题意,命题p :“∀x ∈[1,2],x 2+x −a ≥0”,根据全称命题的否定形式,¬p :“∃x ∈[1,2],x 2+x −a <0” 当命题¬p 为真时,(x 2+x −a)min ,当x ∈[1,2]二次函数y =x 2+x −a 为开口向上的二次函数,对称轴为x =−12 故当x =1时,函数取得最小值,即(x 2+x −a)min 故实数a 的取值范围是a >2 (2)由(1)若p 为真命题a ≤2,若p 为假命题a >2 若命题q :“∃x ∈R ,x 2+3x +2−a =0” 为真命题 则Δ=9−4(2−a)≥0,解得14a ≥-故若q 为假命题a <−14由题意,p 和q 中有且只有一个是真命题, 当p 真和q 假时,a ≤2且a <−14,故a <−14; 当p 假和q 真时,a >2且14a ≥-,故a >2;综上:实数a 的取值范围是a >2或a <−14。
人教版高中数学必修一第一章《集合与函数》检测习题(含答案解析)
人教版高中数学必修一第一章《集合与函数》单元检测精选(含答案解析)(时间:120分钟 满分:150分)第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U 是实数集R ,M ={x |x 2>4},N ={x |x -12≥1},则上图中阴影部分所表示的集合是( )A .{x |-2≤x <1}B .{x |-2≤x ≤2}C .{x |1<x ≤2}D .{x |x <2}2.设2a =5b =m ,且a 1+b 1=2,则m 等于( )A. B .10C .20D .1003.设函数f (x )满足:①y =f (x +1)是偶函数;②在[1,+∞)上为增函数,则f (-1)与f (2)的大小关系是( )A .f (-1)>f (2)B .f (-1)<f (2)C .f (-1)=f (2)D .无法确定4.若集合A ={y |y =2x ,x ∈R },B ={y |y =x 2,x ∈R },则( )A .A ⊆B B .A BC .A =BD .A ∩B =∅5.某企业去年销售收入1000万元,年成本为生产成本500万元与年广告成本200万元两部分.若年利润必须按p %纳税,且年广告费超出年销售收入2%的部分也按p %纳税,其他不纳税.已知该企业去年共纳税120万元,则税率p %为( )A .10%B .12%C .25%D .40% 6.设则f (f (2))的值为( ) A .0B .1C .2D .37.定义运算:a *b =如1*2=1,则函数f(x)的值域为( ) A .RB .(0,+∞)C .(0,1]D .[1,+∞)8.若2lg(x -2y )=lg x +lg y ,则log 2y x 等于( )A .2B .2或0C .0D .-2或09.设函数,g (x )=log 2x ,则函数h (x )=f (x )-g (x )的零点个数是( ) A .4B .3C .2D .110.在下列四图中,二次函数y =ax 2+bx 与指数函数y =(a b )x 的图象只可为( )11.已知f (x )=a x -2,g (x )=log a |x |(a >0且a ≠1),若f (4)g (-4)<0,则y =f (x ),y =g (x )在同一坐标系内的大致图象是( )12.设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则有( )A .f (31)<f (2)<f (21)B .f (21)<f (2)<f (31)C .f (21)<f (31)<f (2)D .f (2)<f (21)<f (31)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.如图,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f (f (3))的值等于________.14.已知集合A ={x |x ≥2},B ={x |x ≥m },且A ∪B =A ,则实数m 的取值范围是________.15.若函数f (x )=x x2+(a +1x +a 为奇函数,则实数a =________.16.老师给出一个函数,请三位同学各说出了这个函数的一条性质:①此函数为偶函数;②定义域为{x ∈R |x ≠0};③在(0,+∞)上为增函数.老师评价说其中有一个同学的结论错误,另两位同学的结论正确.请你写出一个(或几个)这样的函数________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)设集合A 为方程-x 2-2x +8=0的解集,集合B 为不等式ax -1≤0的解集.(1)当a =1时,求A ∩B ;(2)若A ⊆B ,求实数a 的取值范围.18.(本小题满分12分)设全集为R ,A ={x |3<x <7},B ={x |4<x <10},(1)求∁R (A ∪B )及(∁R A )∩B ;(2)C ={x |a -4≤x ≤a +4},且A ∩C =A ,求a 的取值范围.19.(本小题满分12分)函数f (x )=x +12x -1,x ∈3,5].(1)判断单调性并证明;(2)求最大值和最小值.20.(本小题满分12分)已知二次函数f(x)=-x2+2ax-a在区间0,1]上有最大值2,求实数a的值.21.(本小题满分12分)已知函数f(x)的值满足f(x)>0(当x≠0时),对任意实数x,y都有f(xy)=f(x)·f(y),且f(-1)=1,f(27)=9,当0<x<1时,f(x)∈(0,1).(1)求f(1)的值,判断f(x)的奇偶性并证明;(2)判断f (x )在(0,+∞)上的单调性,并给出证明;(3)若a ≥0且f (a +1)≤93,求a 的取值范围.22.(本小题满分12分)已知函数f (x )=x 2+x a(x ≠0).(1)判断f (x )的奇偶性,并说明理由;(2)若f (1)=2,试判断f (x )在2,+∞)上的单调性.参考答案与解析1.C [题图中阴影部分可表示为(∁U M )∩N ,集合M ={x |x >2或x <-2},集合N ={x |1<x ≤3},由集合的运算,知(∁U M )∩N ={x |1<x ≤2}.]2.A [由2a =5b =m 得a =log 2m ,b =log 5m ,∴a 1+b 1=log m 2+log m 5=log m 10.∵a 1+b 1=2,∴log m 10=2,∴m 2=10,m =.]3.A [由y =f (x +1)是偶函数,得到y =f (x )的图象关于直线x =1对称,∴f (-1)=f (3). 又f (x )在[1,+∞)上为单调增函数,∴f (3)>f (2),即f (-1)>f (2).]4.A [∵x ∈R ,∴y =2x >0,即A ={y |y >0}.又B ={y |y =x 2,x ∈R }={y |y ≥0},∴A ⊆B .]5.C [利润300万元,纳税300·p %万元,年广告费超出年销售收入2%的部分为200-1000×2%=180(万元),纳税180·p %万元,共纳税300·p %+180·p %=120(万元),∴p %=25%.]6.C [∵f (2)=log 3(22-1)=log 33=1,∴f (f (2))=f (1)=2e 1-1=2.]7.C[由题意可知f (x )=2-x ,x>0.2x x ≤0,作出f (x )的图象(实线部分)如右图所示;由图可知f (x )的值域为(0,1].]8.A [方法一 排除法.由题意可知x >0,y >0,x -2y >0,∴x >2y ,y x >2,∴log 2y x >1.方法二 直接法.依题意,(x -2y )2=xy ,∴x 2-5xy +4y 2=0,∴(x -y )(x -4y )=0,∴x =y 或x =4y ,∵x -2y >0,x >0,y >0,∴x >2y ,∴x =y (舍去),∴y x =4,∴log 2y x =2.]9.B [当x ≤1时,函数f (x )=4x -4与g (x )=log 2x 的图象有两个交点,可得h (x )有两个零点,当x >1时,函数f (x )=x 2-4x +3与g (x )=log 2x 的图象有1个交点,可得函数h (x )有1个零点,∴函数h (x )共有3个零点.]10.C [∵a b >0,∴a ,b 同号.若a ,b 为正,则从A 、B 中选.又由y =ax 2+bx 知对称轴x =-2a b <0,∴B 错,但又∵y =ax 2+bx 过原点,∴A 、D 错.若a ,b 为负,则C 正确.]11.B [据题意由f (4)g (-4)=a 2×log a 4<0,得0<a <1,因此指数函数y =a x (0<a <1)是减函数,函数f (x )=a x -2的图象是把y =a x 的图象向右平移2个单位得到的,而y =log a |x |(0<a <1)是偶函数,当x >0时,y =log a |x |=log a x 是减函数.]12.C [由f (2-x )=f (x )知f (x )的图象关于直线x =22-x +x =1对称,又当x ≥1时,f (x )=ln x ,所以离对称轴x =1距离大的x 的函数值大,∵|2-1|>|31-1|>|21-1|,∴f (21)<f (31)<f (2).]13.2 解析:由图可知f (3)=1,∴f (f (3))=f (1)=2.14.2,+∞) 解析:∵A ∪B =A ,即B ⊆A ,∴实数m 的取值范围为2,+∞).15.-1 解析:由题意知,f (-x )=-f (x ),即-x x2-(a +1x +a =-x x2+(a +1x +a ,∴(a +1)x =0对x ≠0恒成立,∴a +1=0,a =-1.16.y =x 2或y =1+x ,x<01-x ,x>0,或y =-x 2(答案不唯一)解析:可结合条件来列举,如:y =x 2或y =1+x ,x<01-x ,x>0或y =-x 2.解题技巧:本题为开放型题目,答案不唯一,可结合条件来列举,如从基本初等函数中或分段函数中来找.17.解:(1)由-x 2-2x +8=0,解得A ={-4,2}.当a =1时,B =(-∞,1].∴A ∩B =.(2)∵A ⊆B ,∴2a -1≤0,-4a -1≤0,∴-41≤a ≤21,即实数a 的取值范围是21.18.解:(1)∁R (A ∪B )={x |x ≤3或x ≥10},(∁R A )∩B ={x |7≤x <10}.(2)由题意知,∵A ⊆C ,∴a -4≤3,a +4≥7,解得3≤a ≤7,即a 的取值范围是3,7].19.解:(1)f (x )在3,5]上为增函数.证明如下:任取x 1,x 2∈3,5]且x 1<x 2.∵ f (x )=x +12x -1=x +12(x +1-3=2-x +13,∴ f (x 1)-f (x 2)=x1+13-x2+13=x2+13-x1+13=(x1+1(x2+13(x1-x2,∵ 3≤x 1<x 2≤5,∴ x 1-x 2<0,(x 2+1)(x 1+1)>0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴ f (x )在3,5]上为增函数.(2)根据f (x )在3,5]上单调递增知,f (x )]最大值=f (5)=23,f (x )]最小值=f (3)=45.解题技巧:(1)若函数在闭区间a ,b ]上是增函数,则f (x )在a ,b ]上的最大值为f (b ),最小值为f (a ).(2)若函数在闭区间a ,b ]上是减函数,则f (x )在a ,b ]上的最大值为f (a ),最小值为f (b ).20.解:由f (x )=-(x -a )2+a 2-a ,得函数f (x )的对称轴为x =a .①当a <0时,f (x )在0,1]上单调递减,∴f (0)=2,即-a =2,∴a =-2.②当a >1时,f (x )在0,1]上单调递增,∴f (1)=2,即a =3.③当0≤a ≤1时,f (x )在0,a ]上单调递增,在a,1]上单调递减,∴f (a )=2,即a 2-a =2,解得a =2或-1与0≤a ≤1矛盾.综上,a =-2或a =3.21.解:(1)令x =y =-1,f (1)=1.f (x )为偶函数.证明如下:令y =-1,则f (-x )=f (x )·f (-1),∵f (-1)=1,∴f (-x )=f (x ),f (x )为偶函数.(2)f (x )在(0,+∞)上是增函数.设0<x 1<x 2,∴0<x2x1<1,f (x 1)=f ·x2x1=f x2x1·f (x 2),Δy =f (x 2)-f (x 1)=f (x 2)-f x2x1f (x 2)=f (x 2)x2x1.∵0<f x2x1<1,f (x 2)>0,∴Δy >0,∴f (x 1)<f (x 2),故f (x )在(0,+∞)上是增函数.(3)∵f (27)=9,又f (3×9)=f (3)×f (9)=f (3)·f (3)·f (3)=f (3)]3,∴9=f (3)]3,∴f (3)=93,∵f (a +1)≤93,∴f (a +1)≤f (3),∵a ≥0,∴a +1≤3,即a ≤2,综上知,a 的取值范围是0,2].22.解:(1)当a =0时,f (x )=x 2,f (-x )=f (x ).∴函数f (x )是偶函数.当a ≠0时,f (x )=x 2+x a (x ≠0),而f (-1)+f (1)=2≠0,f (-1)-f (1)=-2a ≠0,∴ f (-1)≠-f (1),f (-1)≠f (1).∴ 函数f (x )既不是奇函数也不是偶函数.(2)f (1)=2,即1+a =2,解得a =1,这时f (x )=x 2+x 1.任取x 1,x 2∈2,+∞),且x 1<x 2,则f (x 1)-f (x 2)=x11-x21=(x 1+x 2)(x 1-x 2)+x1x2x2-x1=(x 1-x 2)x1x21, 由于x 1≥2,x 2≥2,且x 1<x 2,∴ x 1-x 2<0,x 1+x 2>x1x21,f (x 1)<f (x 2),故f (x )在2,+∞)上单调递增.。
高一数学必修1第一章试题及答案
高一数学必修1第一章试题及答案高一年级数学(必修1)第一章质量检测试题参赛试卷一、选择题:(本大题共10小题,每小题5分,共50分)1.已知集合M={a,b,c}中的三个元素可构成某个三角形的三条边长,那么此三角形一定不是()A。
直角三角形 B。
锐角三角形 C。
钝角三角形 D。
等腰三角形2.全集U=N,集合A={x|x=2n,n∈N},B={x|x=4n,n∈N},则()A。
U=A∪B B。
(C∪A)⊆B C。
U=A∪(C∪B) D。
(C∪A)∩(C∪B)3.下列六个关系式:① {a,b}⊆{b,a}② {a,b}={b,a}③ {0}={}④∅∈{}⑤∅∈{0}⑥∅⊆{0}其中正确的个数为()A。
6个 B。
5个 C。
4个 D。
少于4个4.若M⊆(P∩Q),P={1,2},Q={2,4},则满足条件的集合M的个数是()A。
4 B。
3 C。
2 D。
15.已知M={y|x^2-4,x∈R},P={x|x^2≤x≤4},则M与P 的关系是()A。
M=P B。
M∈P C。
M∩P=∅ D。
M⊊P6.集合A含有10个元素,集合B含有8个元素,集合A∩B含有3个元素,则集合A∪B的元素个数为()A。
10个 B。
8个 C。
18个 D。
15个7.下列命题中:1) 如果集合A是集合B的真子集,则集合B中至少有一个元素。
2) 如果集合A是集合B的子集,则集合A的元素少于集合B的元素。
3) 如果集合A是集合B的子集,则集合A的元素不多于集合B的元素。
4) 如果集合A是集合B的子集,则集合A和B不可能相等。
错误的命题的个数是()A。
0 B。
1 C。
2 D。
38.已知集合A={1,3,x},B={(x^2,1)},由集合A与B的所有元素组成集合{1,3,x},这样的实数x共有()A。
1个 B。
2个 C。
3个 D。
4个9.设x=1,y=3+2π,集合M={x|0<x<2},B={y|y∈R},则()A。
x∈M,y∈B B。
人教版高中数学必修一第一章测试(含标准答案)
第3题图高中数学《必修一》第一章教学质量检测卷时间:120分钟。
总分:150分。
班别: 姓名: 座号:一、选择题(将选择题的答案填入下面的表格。
本大题共10小题,每小题5分,共50分。
) 题号 1 2 3 4 5 6 7 8 9 10 答案1、下列各组对象中不能构成集合的是( )A 、佛冈中学高一(20)班的全体男生B 、佛冈中学全校学生家长的全体C 、李明的所有家人D 、王明的所有好朋友 2、已知集合{}{}5,1,A x R x B x R x =∈≤=∈>那么A B I 等于( )A.{1,2,3,4,5} B.{2,3,4,5} C.{2,3,4} D.{}15x R x ∈<≤ 3、设全集{}1,2,3,4,5,6,7,8U =,集合{1,2,3,5}A =,{2,4,6}B =,则图中的阴影部分表示的集合为( )A .{}2B .{}4,6C .{}1,3,5D .{}4,6,7,8 4、下列四组函数中表示同一函数的是( )A.x x f =)(,2())g x x =B.()221)(,)(+==x x g x x fC.2()f x x =()g x x = D.()0f x =,()11g x x x=--5、函数2()21f x x =-,(0,3)x Î。
()7,f a =若则a 的值是 ( ) A 、1 B 、1- C 、2 D 、2±6、2,0()[(1)]1 0x x f x f f x ()设,则 ,()+≥⎧=-=⎨<⎩( ) A 、3 B 、1 C. 0 D.-17、()3f x x =函数的值域为( )题号 一 二 15 16 17 18 19 20 总分 得分A 、[3,)+?B 、(,3]-?C 、[0)+?,D 、R8、下列四个图像中,不可能是函数图像的是 ( )9、设f(x)是R 上的偶函数,且在[0,+∞)上单调递增,则f(-2),f(3),f(-π)的大小顺序是:( ) A 、 f(-π)>f(3)>f(-2) B 、f(-π) >f(-2)>f(3) C 、 f(-2)>f(3)> f(-π) D 、 f(3)>f(-2)> f(-π) 10、在集合{a ,b ,c ,d}上定义两种运算⊕和⊗如下:那么b ⊗ ()a c ⊕=( )A .aB .bC .cD .d 二、填空题(本大题共4小题,每小题5分,共20分) 11、函数0(3)2y x x =+--的定义域为12、函数2()610f x x x =-+-在区间[0,4]的最大值是13、若}4,3,2,2{-=A ,},|{2A t t x xB ∈==,用列举法表示B 是 . 14、下列命题:①集合{},,,a b c d 的子集个数有16个;②定义在R 上的奇函数()f x 必满足(0)0f =;③()()2()21221f x x x =+--既不是奇函数又不是偶函数;④偶函数的图像一定与y 轴相交;⑤1()f x x=在()(),00,-∞+∞U 上是减函数。
高中数学人教版必修1第一章集合与函数概念单元测试卷(A)(含答案)
第一章 集合与函数概念 单元测试卷(A )时间:120分钟 分值:150分第Ⅰ卷(选择题,共60分)1.已知集合A ={1,2},B ={2,4},则A ∪B =( ) A .{2} B .{1,2,2,4} C .{1,2,4}D .∅2.设全集U =R ,集合M ={y |y =x 2+2,x ∈U },集合N ={y |y =3x ,x ∈U },则M ∩N 等于( ) A .{1,3,2,6} B .{(1,3),(2,6)} C .MD .{3,6}3.如图1所示,阴影部分表示的集合是( ) A .(∁U B )∩A B .(∁U A )∩B C .∁U (A ∩B )D .∁U (A ∪B )图14.设全集U ={x |0<x <10,x ∈Z },A ,B 是U 的两个真子集,(∁U A )∩(∁U B )={1,9},A ∩B ={2},(∁U A )∩B ={4,6,8},则( )A .5∈A ,且5∉B B .5∉A ,且5∉B C .5∈A ,且5∈BD .5∉A ,且5∈B5.下列各图中,可表示函数y =f (x )的图象的只可能是( )6.下表表示y 是x 的函数,则函数的值域是( )A .[2,5] C .(0,20)D .N7.图中给出的对应是从A 到B 的映射的是( )8.已知函数f (x )=⎩⎪⎨⎪⎧x ,x ≥0,x 2,x <0,则f [f (-2)]的值是( )A .2B .-2C .4D .-49.函数y =x 2-2x +3,-1≤x ≤2的值域是( )A .RB .[3,6]C .[2,6]D .[2,+∞)10.已知函数f (x )是(-∞,0)∪(0,+∞)上的奇函数,且当x <0时,函数的部分图象如图4所示,则不等式xf (x )<0的解集是( )图4A .(-2,-1)∪(1,2)B .(-2,-1)∪(0,1)∪(2,+∞)C .(-∞,-2)∪(-1,0)∪(1,2)D .(-∞,-2)∪(-1,0)∪(0,1)∪(2,+∞)11.定义在R 上的偶函数f (x )在[0,7]上是增函数,在[7,+∞)上是减函数,f (7)=6,则f (x )( )A .在[-7,0]上是增函数,且最大值是6B .在[-7,0]上是减函数,且最大值是6C .在[-7,0]上是增函数,且最小值是6D .在[-7,0]上是减函数,且最小值是612.定义在R 上的偶函数f (x )满足:对任意x 1,x 2∈(-∞,0](x 1≠x 2),都有x 2-x 1f (x 2)-f (x 1)>0,则( )A .f (-5)<f (4)<f (6)B .f (4)<f (-5)<f (6)C .f (6)<f (-5)<f (4)D .f (6)<f (4)<f (-5)第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.设P 和Q 是两个集合,定义集合P -Q ={x |x ∈P ,且x ∉Q },若P ={1,2,3,4},Q ={x |x +12<2,x ∈R },则P -Q =________.14.函数y =x 2+2x -3的单调递减区间是________.15.若函数f (x )=kx 2+(k -1)x +2是偶函数,则f (x )的递减区间是________.16.设函数f (x )=⎩⎪⎨⎪⎧|x -1|(0<x <2),2-|x -1|(x ≤0,或x ≥2),则函数y =f (x )与y =12的图象的交点个数是________.三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知集合A ={x |2≤x ≤8},B ={x |1<x <6},C ={x |x >a },U =R . (1)求A ∪B ,(∁U A )∩B ;(2)若A ∩C ≠∅,求a 的取值范围.18.(12分)设A ={x |x 2+2(a +1)x +a 2-1=0},B ={x |x (x +4)(x -12)=0,x ∈Z }.若A ∩B =A ,求a 的取值范围.19.(12分)已知函数f (x )=-2x +m ,其中m 为常数. (1)求证:函数f (x )在R 上是减函数; (2)当函数f (x )是奇函数时,求实数m 的值.20.(12分)某公司生产的水笔上年度销售单价为0.8元,年销售量为1亿支.本年度计划将销售单价调至0.55~0.75元(含端点值),经调查,若销售单价调至x元,则本年度新增销售量y(亿支)与x-0.4成反比,且当x=0.65时,y=0.8.(1)求y与x的函数关系式;(2)若每支水笔的成本价为0.3元,则水笔销售单价调至多少时,本年度该公司的收益比上年度增加20%?21.(12分)已知函数f(x)是正比例函数,函数g(x)是反比例函数,且f(1)=1,g(1)=2,(1)求函数f(x)和g(x);(2)判断函数f(x)+g(x)的奇偶性.(3)求函数f(x)+g(x)在(0,2]上的最小值.22.(12分)函数f(x)=ax+b1+x2是定义在(-1,1)上的奇函数,且f(12)=25.(1)求f(x)的解析式;(2)证明f(x)在(-1,1)上为增函数;(3)解不等式f(t-1)+f(t)<0.第一章集合与函数概念单元综合测试一答案第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分)1.答案:C2.解析:M=[2,+∞),N=R.答案:C3.解析:因为阴影部分既在集合∁U B中又在集合A中,所以阴影部分为(∁B)∩A.U答案:A4.解析:可借助V enn图(如图2)解决,数形结合.图2答案:A5.解析:根据函数的概念知,只有“一对一”或“多对一”对应才能构成函数关系.答案:A6.答案:B7.解析:根据映射定义,A中每一个元素在B中仅有1个元素与之对应,仅D适合.答案:D8.解析:∵x =-2,而-2<0, ∴f (-2)=(-2)2=4. 又4>0,∴f [f (-2)]=f (4)=4. 答案:C9.解析:画出函数y =x 2-2x +3,-1≤x ≤2的图象,如图3所示,观察函数的图象可得图象上所有点的纵坐标的取值范围是[2,6],所以值域是[2,6].图3答案:C10.解析:xf (x )<0⇔x 与f (x )异号,由函数图象及奇偶性易得结论. 答案:D11.解析:∵f (x )是偶函数,∴f (x )的图象关于y 轴对称.∴f (x )在[-7,0]上是减函数,且最大值为6. 答案:B12.解析:∵对任意x 1,x 2∈(-∞,0](x 1≠x 2),都有x 2-x 1f (x 2)-f (x 1)>0,∴对任意x 1,x 2∈(-∞,0],若x 1<x 2,总有f (x 1)<f (x 2),∴f (x )在(-∞,0]上是增函数.∴f (-4)>f (-5)>f (-6).又∵函数f (x )是偶函数,∴f (-6)=f (6), f (-4)=f (4),∴f (6)<f (-5)<f (4). 答案:C第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.解析:因为x ∉Q ,所以x ∈∁R Q ,又Q ={x |-12≤x <72}, 故∁R Q ={x |x <-12,或x ≥72},故P -Q ={4}. 答案:{4}14.解析:由x 2+2x -3≥0,得x ≥1或x ≤-3, ∴函数减区间为(-∞,-3]. 答案:(-∞,-3]15.解析:∵f (x )是偶函数,∴f (-x )=kx 2-(k -1)x +2=kx 2+(k -1)x +2=f (x ). ∴k =1.∴f (x )=x 2+2,其递减区间为(-∞,0]. 答案:(-∞,0]16.解析:函数y =f (x )的图象如图5所示,则函数y =f (x )与y =12的图象的交点个数是4.图5答案:4三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分) 17.解:(1)A ∪B ={x |2≤x ≤8}∪{x |1<x <6}={x |1<x ≤8}. ∁U A ={x |x <2或x >8}. ∴(∁U A )∩B ={x |1<x <2}. (2)∵A ∩C ≠∅,∴a <8.18.解:由B ={x |x (x +4)(x -12)=0,x ∈Z },得B ={-4,0}.由A ∩B =A ,得A ⊆B .于是,A 有四种可能,即A =∅,A ={-4},A ={0},A ={-4,0}.以下对A 分类讨论:(1)若A =∅,则Δ=4(a +1)2-4a 2+4=8a +8<0,解得a <-1; (2)若A ={-4},则Δ=8a +8=0,解得a =-1.此时x 2+2(a +1)x +a 2-1=0可化为x 2=0,所以x =0,这与x =-4是矛盾的;(3)若A ={0},则由(2)可知,a =-1; (4)若A ={-4,0},则⎩⎪⎨⎪⎧Δ=8a +8>0,-2(a +1)=-4,a 2-1=0,解得a =1.综上可知,a 的取值范围是{a |a ≤-1,或a =1}.19.解:(1)证明:设x 1,x 2是R 上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=(-2x 1+m )-(-2x 2+m )=2(x 2-x 1),∵x 1<x 2,∴x 2-x 1>0. ∴f (x 1)>f (x 2).∴函数f (x )在R 上是减函数. (2)∵函数f (x )是奇函数,∴对任意x ∈R ,有f (-x )=-f (x ). ∴2x +m =-(-2x +m ).∴m =0.20.解:(1)设y =kx -0.4,由x =0.65,y =0.8,得k =0.2,所以y =15x -2(0.55≤x ≤0.75).(2)依题意,(1+15x -2)·(x -0.3)=1×(0.8-0.3)×(1+20%),解得x =0.6或x =0.5(舍去),所以水笔销售单价应调至0.6元. 21.解:(1)设f (x )=k 1x ,g (x )=k 2x ,其中k 1k 2≠0. ∵f (1)=1,g (1)=2,∴k 1×1=1,k 21=2. ∴k 1=1,k 2=2.∴f (x )=x ,g (x )=2x . (2)设h (x )=f (x )+g (x ),则h (x )=x +2x , ∴函数h (x )的定义域是(-∞,0)∪(0,+∞). ∵h (-x )=-x +2-x=-(x +2x )=-h (x ),∴函数h (x )是奇函数,即函数f (x )+g (x )是奇函数.(3)由(2)知h (x )=x +2x ,设x 1,x 2是(0,2]上的任意两个实数,且x 1<x 2, 则h (x 1)-h (x 2)=(x 1+2x 1)-(x 2+2x 2)=(x 1-x 2)+(2x 1-2x 2)=(x 1-x 2)(1-2x 1x 2)=(x 1-x 2)(x 1x 2-2)x 1x 2,∵x 1,x 2∈(0,2],且x 1<x 2,∴x 1-x 2<0,0<x 1x 2<2. ∴x 1x 2-2<0,(x 1-x 2)(x 1x 2-2)>0. ∴h (x 1)>h (x 2).∴函数h (x )在(0,2]上是减函数,函数h (x )在(0,2]上的最小值是h (2)=2 2.即函数f (x )+g (x )在(0,2]上的最小值是2 2.22.解:(1)由题意得⎩⎨⎧f (0)=0,f (12)=25,解得⎩⎪⎨⎪⎧a =1,b =0.所以f (x )=x 1+x 2. (2)证明:任取两数x 1,x 2,且-1<x 1<x 2<1,则f (x 1)-f (x 2)=x 11+x 21-x 21+x 22=(x 1-x 2)(1-x 1x 2)(1+x 21)(1+x 22).因为-1<x 1<x 2<1,所以x 1-x 2<0,x 1x 2<1,故1-x 1x 2>0,所以f (x 1)-f (x 2)<0,故f (x )在(-1,1)上是增函数.(3)因为f (x )是奇函数,所以由f (t -1)+f (t )<0,得f (t -1)<-f (t )=f (-t ).由(2)知, f (x )在(-1,1)上是增函数,所以-1<t -1<-t <1,解得0<t <12,所以原不等式的解集为{t |0<t <12}.。
高一数学必修一第一章测试题(含答案)
高一数学必修一第一章测试题(含答案)满分150分,考试时间120分钟第I 卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集,集合{1,2,3}A =,{2,4}B =,则()U C A B ⋃为 ( )A .{1,2,4}B .{2,3,4}C .{0,2,4}D .{0,2,3,4}2. 集合},{b a 的子集有 ( ) A .2个B .3个C .4个D .5个3. 设集合{}|43A x x =-<<,{}|2B x x =≤,则A ∩B=( ) A .(4,3)- B .(4,2]-C .(,2]-∞D .(,3)-∞4. 已知函数xx f -=21)(的定义域为M ,2)(+=x x g 的定义域为N ,则=⋂N M () A.{}2-≥x xB.{}2<x xC.{}22<<-x xD. {}22<≤-x x 5. 下列函数中,既是奇函数又是增函数的为 ( )A .1y x =+B .2y x =-C .1y x=D .||y x x =6. 若函数1)12(2+-+=x a x y 在(]2-,∞上是减函数,则实数a 的取值范围是 ( )A. ),23[+∞-B. ]23,(--∞C. ),23[+∞ D .]23,(-∞7. 设函数211()21x x f x x x ⎧+≤⎪=⎨>⎪⎩,则((3))f f =( )A .15B .3C .23D .1398.下列各组函数中,与x x f =)(是同一个函数的是( )A .=)(x g x2x B .2)()(x x g = C .2)(x x g =D .33)(x x g =9.设)(x f 是定义在R 上的任意一个增函数,)()()(x f x f x G --=,则)(x G 必定为( )A .增函数且为奇函数B .增函数且为偶函数C .减函数且为奇函数D .减函数且为偶函数10.设)(x f 是定义在R 上的奇函数,当0≤x 时,x x x f -=22)(,则=)1(f ( ) A .-3B .-1C .1D .311.定义)}(),(min{x g x f 为)(x f 与)(x g 中值的较小者,则函数},2m in{)(2x x x f -=的最大值是 ( )A .2-B .1C .1-D .212.若函数()f x 为定义在R 上的偶函数,且在(0,)+∞内是增函数,又(2)f 0=,则不等式0)(<x xf 的解集为 ( )A. (2,0)(2,)-+∞B .(,2)(0,2)-∞-C .(,2)(2,)-∞-+∞D .)2,0()0,2( -第II 卷二、填空题(本大题共4个小题,每小题5分,共20分,将正确答案填在题中横线上)13.已知函数212x y x ⎧+=⎨-⎩(0)(0)x x ≤>,使函数值为5的x 的值是14. 已知()5412-+=-x x x f ,则()x f 的表达式是15. 已知A ,B 均为集合U ={1,3,5,7,9}的子集,且A ∩B ={3},(∁U B )∩A ={9},则A =________16. 若函数5)12(+-=x a y 是减函数,则a 的取值范围是三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知函数q px x x f ++=2)(且满足0)2()1(==-f f ,求函数)(x f 的解析式.18. (本小题满分12分)已知全集U =R ,集合M ={x |x ≤3},N ={x |x <1},求M ∪N ,(∁U M )∩N ,(∁U M )∪(∁U N ).19. (本小题满分12分)函数)(x f 是R 上的偶函数,且当0>x 时,函数解析式为12)(-=xx f (1) 求)1(-f 的值;(2) 求当0<x 时,函数的解析式.20.(本小题满分12分)已知全集U =R ,集合A ={y |y =3-x 2,x ∈R ,且x ≠0},集合B 是函数xx y -+-=522的定义域,集合C ={x |5-a <x <a }. (1)求集合A ∪(∁U B )(结果用区间表示); (2)若C ⊆(A ∩B ),求实数a 的取值范围.21.(本小题满分12分)已知函数f(x)=2x+1 x+1(1)判断函数在区间[)∞+,1上的单调性,并用定义证明你的结论;(2)求该函数在区间[]4,1上的最大值与最小值.22.(本小题满分12分)已知函数f(x)=1+x-|x| 4.(1)用分段函数的形式表示函数f(x);(2)在平面直角坐标系中画出函数f(x)的图象;(3)在同一平面直角坐标系中,再画出函数g(x)=1x(x>0)的图象(不用列表),观察图象直接写出当x>0时,不等式f(x)>1x的解集.答案一、选择题 CCBDD BDDAA BD二、填空题13.已知函数212x y x⎧+=⎨-⎩ (0)(0)x x ≤>,使函数值为5的x 的值是 -214. 已知()5412-+=-x x x f ,则()x f 的表达式是 x x 62+ 15. 已知A ,B 均为集合U ={1,3,5,7,9}的子集,且A ∩B ={3},(∁U B )∩A ={9},则A =________..{3,9}16. 若函数5)12(+-=x a y 是减函数,则a 的取值范围是 .⎪⎭⎫ ⎝⎛∞-21,三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知函数q px x x f ++=2)(且满足0)2()1(==-f f ,求函数)(x f 的解析式. 解:因0)2()1(==-f f所以024,01=++=+-q p q p 得2.1-=-=q p所以2)(2--=x x x f 20. (本小题满分12分)已知全集U =R ,集合M ={x |x ≤3},N ={x |x <1},求M ∪N , (∁U M )∩N ,(∁U M )∪(∁U N ).解:由题意得M ∪N ={x |x ≤3}, ∁U M ={x |x >3},∁U N ={x |x ≥1}, 则(∁U M )∩N ={x |x >3}∩{x |x <1}=Ø,(∁U M )∪(∁U N )={x |x >3}∪{x |x ≥1}={x |x ≥1}21. (本小题满分12分)函数)(x f 是R 上的偶函数,且当0>x 时,函数解析式为12)(-=xx f (1) 求)1(-f 的值;(2) 求当0<x 时,函数的解析式. 解:(1)1)1()1(==-f f(2)设0,0>-<x x 则,因)(x f 是R 上的偶函数,12)()(--=-=xx f x f20.(本小题满分12分)已知全集U =R ,集合A ={y |y =3-x 2,x ∈R ,且x ≠0},集合B 是函数y =x -2+25-x的定义域,集合C ={x |5-a <x <a }. (1)求集合A ∪(∁U B )(结果用区间表示); (2)若C ⊆(A ∩B ),求实数a 的取值范围.解:(1)由已知得A ={x |x <3},B ={x |2≤x <5}, ∴∁U B ={x |x <2,或x ≥5},∴A ∪(∁U B )={x |x <3,或x ≥5}=(-∞,3)∪5,+∞). (2)由(1)知A ∩B ={x |2≤x <3},当C =∅时,满足C ⊆(A ∩B ),此时5-a ≥a ,解得a ≤52; 当C ≠∅时,要满足C ⊆(A ∩B ), 则⎩⎪⎨⎪⎧5-a <a ,5-a ≥2,a ≤3,解得52<a ≤3.综上可得a ≤3.21.(本小题满分12分)已知函数f (x )=2x +1x +1,(1)判断函数在区间[)∞+,1上的单调性,并用定义证明你的结论; (2)求该函数在区间[]4,1上的最大值与最小值.解:(1)函数f (x )在[)∞+,1上是增函数. 任取x 1,x 2∈[)∞+,1,且x 1<x 2,f (x 1)-f (x 2)=2x 1+1x 1+1-2x 2+1x 2+1=x 1-x 2(x 1+1)(x 2+1),∵x 1-x 2<0,(x 1+1)(x 2+1)>0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),所以函数f (x )在[)∞+,1上是增函数. (2)由(1)知函数f (x )在[]4,1上是增函数,最大值f (4)=95,最小值f (1)=32.22.(本小题满分12分)已知函数f (x )=1+x -|x |4. (1)用分段函数的形式表示函数f (x );(2)在平面直角坐标系中画出函数f (x )的图象;(3)在同一平面直角坐标系中,再画出函数g (x )=1x (x >0)的图象(不用列表),观察图象直接写出当x >0时,不等式f (x )>1x 的解集.解:(1)当x ≥0时,f (x )=1+x -x4=1;当x <0时,f (x )=1+x +x 4=12x +1.所以f (x )=⎩⎨⎧1,x ≥0,12x +1,x <0.(2)函数f (x )的图象如图所示.(3)函数g (x )=1x (x >0)的图象如图所示,由图象知f (x )>1x 的解集是{x |x >1}.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3题图
高中数学《必修一》第一章教学质量检测卷
班别: 姓名: 座号:
题号 1 2 3 4 5 6 7 8 9 10 答案
1、下列各组对象中不能构成集合的是( )
A 、佛冈中学高一(20)班的全体男生
B 、佛冈中学全校学生家长的全体
C 、李明的所有家人
D 、王明的所有好朋友 2、已知集合{}{}
5,1,A x R x B x R x =∈≤=∈>那么A
B 等于
( )
A.{1,2,3,4,5} B.{2,3,4,5} C.{2,3,4} D.{}
15x R x ∈<≤ 3、设全集{}1,2,3,4,5,6,7,8U =,集合{1,2,3,5}A =,{2,4,6}B =,
则图中的阴影部分表示的集合为( )
A .{}2
B .{}4,6
C .{}1,3,5
D .{}4,6,7,8 4、下列四组函数中表示同一函数的是( )
A.x x f =)(,2())g x x =
B.()2
2
1)(,)(+==x x g x x f
C.2()f x x =
()g x x = D.()0f x =,()11g x x x
=--
5、函数2
()21f x x ,(0,3)x。
()
7,f a 若则a 的值是 ( )
A 、1
B 、1-
C 、2
D 、2±
6、2,
0()[(1)]1 0x x f x f f x ()设,则 ,(
)+≥⎧=-=⎨
<⎩( ) A 、3 B 、1 C. 0 D.-1 7、()
3f x x 函数的值域为( )
A 、[3,
) B 、(
,3] C 、[0),
D 、R
8、下列四个图像中,不可能是函数图像的是 ( )
题号 一 二 15 16 17 18 19 20 总分 得分
y
x
y
y
y
O
O
9、设f(x)是R 上的偶函数,且在[0,+∞)上单调递增,则f(-2),f(3),f(-π)的大小顺序是:( ) A 、 f(-π)>f(3)>f(-2) B 、f(-π) >f(-2)>f(3) C 、 f(-2)>f(3)> f(-π) D 、 f(3)>f(-2)> f(-π) 10、在集合{a ,b ,c ,d}上定义两种运算⊕和⊗如下:
那么b ⊗ ()a c ⊕=( )
A .a
B .b
C .c
D .d 二、填空题(本大题共4小题,每小题5分,共20分) 11、函数0(3)2
y x x =
+--的定义域为
12、函数2()610f x x x =-+-在区间[0,4]的最大值是
13、若}4,3,2,2{-=A ,},|{2
A t t x x
B ∈==,用列举法表示B 是 . 14、下列命题:①集合{},,,a b c d 的子集个数有16个;②定义在R 上的奇函数()f x 必满足(0)0f =;
③()()2
()21221f x x x =+--既不是奇函数又不是偶函数;④偶函数的图像一定与y 轴相交;⑤1()f x x
=在()(),00,-∞+∞上是减函数。
其中真命题的序号是
(把你认为正确的命题的序号都填上).
三、解答题(本大题6小题,共80分.解答时应写出文字说明、证明过程或演算步骤). 15、(本题满分12分)已知集合A ={x| 73<≤x }, B={x| 2<x<10}, C={x|x<a} (1)求;B A ⋃ (2)求()R C A B ; (3)若A C ⊆,求a 的取值范围.
16、(本题满分12分)已知函数3
1
()f x x x
,判断()f x 的奇偶性并且证明。
17、(本题满分14分)已知函数3()1
x
f x x ,求()f x 在区间[2,5]上的最大值和最小值 18、 (本题满分14分)已知函()
11f x x
(1)用分段函数的形式表示该函数; (2)画出该函数的图象; (3)写出该函数的值域。
19、(本题满分14分)已知定义在[]3,2-的一次函数()f x 为单调增函数,且值域为[]2,7,
(I )求()f x 的解析式;
(II )求函数[]()f f x 的解析式并确定其定义域。
20、 (本题满分14分)已知二次函数()f x 的最小值为1,且(0)(2)3f f ==。
(1)求()f x 的解析式;
(2)若()f x 在区间[2,1]a a +上不单调...
,求实数a 的取值范围; (3)在区间[1,1]-上,()y f x =的图象恒在221y x m =++的图象上方,试确定实数m 的取值范围。
高中数学《必修一》第一章教学质量检测卷
参考答案
11、|2,3x R x
x
且 12、-1 13、4,9,16 14、 ① ②
三、解答题
15、解:(1)A ∪B={x ∣2<x<10}……………..4分 (2)|37R C A
x x
x
或
(C R A)∩B={ x ∣2<x<3或7≤x<10}.........................8分
(3)a≥7........................12分 16.解: ()f x 是奇函数…………….2分
证明: ()f x 的定义域是(-,0)(0,+)
,定义域关于原点对称…………….4分 在()f x 的定义域内任取一个x,则有 3
3
3
3
1
1()
()()()()f x x x f x x x …………….10分
所以, ()f x 是奇函数…………….12分
17.解:在[2,5]上任取两个数12x x ,则有…………….2分
1212121212333()()()
011(1)(1)
x x x x f x f x x x x x …………….8分
所以,()f x 在[2,5]上是增函数。
…………….10分 所以,当2x 时,min ()(2)2f x f …………….12分
当5x
时,max
5
()(5)
2
f x f …………….14分 18、
解: (1)
…………….6分 (2)画图(略)…………….10分 (3)值域[]1,+∞ ……………14分
19、解:(1)设()(0)f x kx b k =+>…………….2分
由题意有:3227k b k b -+=⎧⎨+=⎩ …………….6分
1
5
k b =⎧∴⎨=⎩ …………….8分 ()5f x x ∴=+,[]3,2x ∈-………….10分
(2)(())(5)10f f x f x x =+=+ {}3x ∈-…………….14分 20、.解:(1)由已知,设2()(1)1f x a x =-+,…………….2分
由(0)3f =,得2a =,故2
()243f x x x =-+。
…………………4分 (2)要使函数不单调,则211a a <<+,则1
02
a <<。
……………8分 (3)由已知,即2
243221x x x m -+>++,化简得2
310x x m -+->…………10分 设2
()31g x x x m =-+-,则只要min ()0g x >,……………12分 而min ()(1)1g x g m ==--,得1m <-。
……………14分
,(1)2,(1)
x x y
x x。