圆周角定理
圆周角定理 课件
与圆周角定理有关的线段的计算、角的计算,不仅可 以通过计算弧、圆心角、圆周角的度数来求相关的角、线 段,有时还可以通过三角形相似、解三角形等来计算.
1.如图,直径为 10 的⊙A 经过点 C(0,5)和点
O(0,0),B 是 y 轴右侧⊙A 弧上一点,则
cos∠OBC 的值为
()
A.12
B.
3 2
解:∵ AB= AC , ∴∠ADB=∠CDE. 又∵ BD= BD,∴∠BAD=∠ECD. ∴△ABD∽△CED. ∴ACDD=BEDD, 即63=E5D. ∴ED=2.5 (cm).
3.如图,△ABC 的角平分线 AD 的延长线交它 的外接圆于点 E. (1)证明:△A B E ∽△A DC; (2)若△ABC 的面积 S=1AD·AE, 2 求∠BAC 的大小. 解:(1)证明:由已知条件可得∠BAE=∠CAD. 因为∠AEB与∠ACB是同弧上的圆周角, 所以∠AEB=∠ACD. 故△ABE∽△ADC.
C.3
D.4
5
5
解析:法一:设⊙A与x轴另一个交点为D,
连接CD,如图所示.
因为∠COD=90°,
所以CD为⊙A的直径.
又因为∠CBO 与∠CDO 为圆弧 CO 所对 的圆周角, 所以∠CBO=∠CDO. 又因为 C(0,5), 所以 OC=5. 在 Rt△CDO 中,CD=10,CO=5, 根据勾股定理得 OD= CD2-OC2=5 3. 所以 cos∠OBC=cos∠CDO=OCDD=5103= 23,故选 B.
利用圆周角定理证明等量关系时,主要是分析圆周 角、圆心角、弧、弦之间的等量关系,有时需添加辅助线 构造等弧、等角、等弦的条件.
[例2] 如图,已知BC为半⊙O的直径, AD⊥BC,垂足为D,BF交AD于点E,且AE= BE.
圆周角定理推论
圆周角定理推论
中心角定理:如果一个三角形的三条边的长度都已知,则可以用这三条边到三角形的三个角的长度来求解出这个三角形的三个角的大小,这个定理又称为三角形钝角定理。
也可以称之为圆周角定理,它是圆周角的一种表示法,说明圆周角满足三角形的钝角定理。
即如果已知圆周角的三边长度,则可求出其三个内角。
例如,已知圆周角的三边长度分别为4,4,4,则可求出其三个内角分别为60°,60°,60°。
圆周角定理的公式是:若a、b、c分别为圆周角的三边长度,则有A = arccos((b2 + c2 - a2)/ 2bc),B = arccos((a2 + c2 - b2)/ 2bc),C = arccos((a2 + b2 - c2)/ 2bc)。
其中A,B,C分别为圆周角的三角形的三个内角。
圆周角定理及其证明
圆周角定理及其证明圆周角定理是几何中的一个重要定理,它描述了一个圆的圆周角与其对应的弧度之间的关系。
这个定理在解决与圆相关的问题时具有重要的应用价值。
下面将对圆周角定理及其证明进行详细介绍。
我们需要明确什么是圆周角。
圆周角是指以圆心为顶点的角,其两条边分别为相切于圆的两条弦。
在圆周角中,我们可以观察到一个有趣的现象:无论弦的长度如何变化,圆周角的大小始终保持不变。
这个现象被称为圆周角的度量唯一性。
为了形式化地描述圆周角定理,我们引入以下定义:当圆周角的两条弦分别与圆的直径相交时,这个圆周角被称为直径角。
根据圆周角的度量唯一性,我们可以得出结论:直径角恒等于180度或π弧度。
接下来,我们将证明圆周角定理。
证明:设圆的半径为r,圆周角对应的弧长为l,直径角对应的弧长为L。
根据圆的性质,我们知道圆的周长C等于2πr。
由于直径角等于半圆,所以L等于半圆的弧长,即L等于πr。
根据圆周角的度量唯一性,我们可以得出以下等式:l / C = L / 2πr将C和L的值代入上述等式,我们得到:l / 2πr = πr / 2πr经过简化后,我们得到:l / 2r = r / 2r进一步简化,我们得到:l = r由此可见,圆周角对应的弧长等于圆的半径。
这个结论可以推广到任意圆周角,无论弦的长度如何变化,圆周角的度量始终等于圆的半径。
通过上述证明,我们可以得出圆周角定理的结论:圆周角的度量等于圆的半径。
这个定理在解决与圆相关的问题时非常有用,可以帮助我们计算圆周角的度量,从而解决各种几何问题。
总结起来,圆周角定理描述了圆周角与其对应的弧度之间的关系。
通过证明,我们可以得出结论:圆周角的度量等于圆的半径。
这个定理在几何学中有重要的应用价值,可以帮助我们解决与圆相关的各种问题。
在实际应用中,我们可以根据圆周角定理来计算圆周角的度量,从而得到所需的几何信息。
圆周角定理和圆内四边形的性质典例精析
圆周角定理和圆内四边形的性质典例精析一圆周角定理1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。
即:∵AOB ∠和ACB ∠是弧AB 所对的圆心角和圆周角 ∴2AOB ACB ∠=∠2、圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;即:在⊙O 中,∵C ∠、D ∠都是所对的圆周角 ∴C D ∠=∠推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。
即:在⊙O 中,∵AB 是直径 或∵90C ∠=︒ ∴90C ∠=︒ ∴AB 是直径推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
即:在△ABC 中,∵OC OA OB ==∴△ABC 是直角三角形或90C ∠=︒注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。
二 圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。
即:在⊙O 中,∵四边形ABCD 是内接四边形∴180C BAD ∠+∠=︒ 180B D ∠+∠=︒ DAE C ∠=∠利用圆周角定理的推论求角的度数BABA O例1 (2016·四川眉山)如图,A、D是⊙O上的两个点,BC是直径.若∠D=32°,则∠OAC=()A.64° B.58° C.72° D.55°【分析】先根据圆周角定理求出∠B及∠BAC的度数,再由等腰三角形的性质求出∠OAB的度数,进而可得出结论.例2 (2016海南)如图,AB是⊙O的直径,AC、BC是⊙O的弦,直径DE⊥AC于点P.若点D在优弧上,AB=8,BC=3,则DP=.【考点】圆周角定理;垂径定理.【分析】解:由AB和DE是⊙O的直径,可推出OA=OB=OD=4,∠C=90°,又有DE⊥AC,得到OP∥BC,于是有△AOP∽△ABC,根据相似三角形的性质即可得到结论.例3(2016·山东省滨州市)如图,AB是⊙O的直径,C,D是⊙O上的点,且OC∥BD,AD 分别与BC,OC相交于点E,F,则下列结论:①AD⊥BD;②∠AOC=∠AEC;③CB平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的是()A.②④⑤⑥B.①③⑤⑥C.②③④⑥D.①③④⑤【考点】圆的综合题.【分析】①由直径所对圆周角是直角,②由于∠AOC是⊙O的圆心角,∠AEC是⊙O的圆内部的角角,③由平行线得到∠OCB=∠DBC,再由圆的性质得到结论判断出∠OBC=∠DBC;④用半径垂直于不是直径的弦,必平分弦;⑤用三角形的中位线得到结论;⑥得不到△CEF和△BED中对应相等的边,所以不一定全等.利用圆周角定理的推论进行推理论证例4 (2015•烟台)如图,以△ABC的一边AB为直径的半圆与其它两边AC,BC的交点分别为D、E,且=.(1)试判断△ABC的形状,并说明理由.(2)已知半圆的半径为5,BC=12,求sin∠ABD的值.例5 如图所示,BC是⊙O的直径,AD⊥BC,垂足为D,AB=AF,BF和AD相交于点E;求证:BE=AE.分析:由BC是⊙O的直径,根据直径所对的圆周角是直角,可得∠BAC=90°,又由AD⊥BC,即可得∠BAD=∠C,又由AB=AF,根据圆周角定理,易得∠ABF=∠F=∠C,则可证得∠ABF=∠BAD,继而证得结论.利用圆内接四边形的性质求度数例6(2015湖南邵阳第7题3分)如图,四边形ABCD内接于⊙O,已知∠ADC=140°,则∠AOC 的大小是()利用圆内接四边形的性质进行推理证明 例 7 (2015南京)(8分)如图,四边形ABCD 是⊙O 的内接四边形,BC 的延长线与AD 的延长线交于点E ,且DC=DE . (1) 求证:∠A=∠AEB .(2) 连接OE ,交CD 于点F ,OE ⊥ CD .求证:△ABE 是等边三角形.圆周角定理与相似三角形的综合例 8 (2016·天津市南开区·一模)如图,AB 是⊙O 的直径,C ,P 是上两点,AB=13,AC=5.(1)如图(1),若点P 是的中点,求PA 的长; (2)如图(2),若点P 是的中点,求PA 的长.(第26题)例 9 (肇庆市2012)如图7,在△ABC 中,AB =AC ,以AB 为直径的⊙O 交AC 于点E ,交BC 于点D ,连结BE 、AD 交于点P . 求证: (1)D 是BC 的中点; (2)△BEC ∽△ADC ; (3)AB ⋅ CE=2DP ⋅AD .圆内接四边形性质的综合应用例10 (2009•内江)如图,四边形ABCD 内接于圆,对角线AC 与BD 相交于点E ,F 在AC 上,AB =AD ,∠BFC =∠BAD =2∠DFC =β.求证:(1)∠ABD =90°-β (2)CD ⊥DF ; (3)BC=2CD .圆周角定理与函数的综合例 1 1 如图,AB 是圆O 的直径,CD 是弦,CD ⊥AB 于点E ,(1)求证:△ACE ∽△CBE ;(2)若AB=4,设OE=x (0<x <2),CE=y ,请求出y 关于x 的函数解析式图7。
圆周角定理的三种证明方法
圆周角定理的三种证明方法
圆周角定理是几何中著名的定理,亦即“每个三角形的外接圆的内切圆与它的最大外接圆所成的圆周角相等”。
此定理由古希腊数学家艾西法 (Euclid) 于其《几何原本》第六章首次提出数千年前,随着数学的发展,有许多其他的证明方法也被提出:
1、几何距离证明法:两个圆的圆心距离为2R的话,就可以让它们的相切线同时证明最大外接圆的圆周角和最小内切圆的圆周角相等。
可以用两等腰直角三角形向根据勾股定理来演算出,两个圆周角的圆心角度都是相等的。
2、数学归纳法:也就是艾西法于其《几何原本》所作的证明,即归纳法可以证明不论外接圆的半径有什么样的大小它们所成的圆周角都是相等的。
3、几何投影证明法:几何投影证明法通过找到三角形它的内切圆和最大外接圆,把两个圆投影到平面上,将圆心连线作为投影线,使投影线在它们之间形成一条射线,然后可以推出它们所成的圆周角相等。
圆周角定理
∵∠1=∠2,∴ = ,
∴BF=CG, = ,
∴∠FBD=∠GCE.
又 ∵BD=CE,∴△BFD≌△CGE,
∴∠F=∠G,∴ = ,
∴AB=AC.
题型一
题型二
题型三
题型三
易错辨析
易错点:误认为同弦或等弦所对圆周角相等而致错
【例3】 如图,若∠BAD=75°,则∠BCD=
分成两条弧:优弧和劣弧,若圆周角的顶点同在优弧上或同在劣弧
上,同弦或等弦所对的圆周角相等;若一个圆周角的顶点在优弧上,
另一个圆周角的顶点在劣弧上,则同弦或等弦所对的圆周角不相等,
它们互补(如本题).
(2)在圆周角定理的证明中,运用了数学中分类讨论和化归的思想
以及归纳的证明方法.这个定理是从特殊情况入手研究的,首先研
究当角的一边过圆心时,得到圆周角与同弧所对的圆心角的关系,
然后研究当角的一边不经过圆心时,圆周角与同弧所对的圆心角之
间的关系.当角的一边不经过圆心时,又有两种情况:一是圆心在圆
周角内部;二是圆心在圆周角外部.经过这样不同情况的讨论,最后
第二讲
直线与圆的位置关系
一
圆周角定理
1.了解圆心角定理,并能应用定理解决问题.
2.理解圆周角定理及其两个推论,并能应用定理解决有关问题.
圆周角定理的理解
剖析:(1)应用圆周角定理时,要注意的问题如下:
圆周角定理推论1中,同圆或等圆中,相等的圆周角所对的弧相等.
这一定理成立的前提是同圆或等圆,否则不成立.
角形,从而得到成比例线段,再列方程求得线段长.
题型一
题型二
题型三
【变式训练 1】 如图,已知△ABC 内接于☉O, = , 点是
圆周角定理 课件
要点三 直径上的圆周角 例 3 如图所示,已知 AB 为⊙O 的直径,AC
为弦,OD∥BC,交 AC 于 D,BC=4 cm. (1)试判断 OD 与 AC 的位置关系; (2)求 OD 的长; (3)若 2sin A-1=0,求⊙O 的直径.
解 (1)OD⊥AC.理由如下: ∵AB 为⊙O 的直径,∴∠ACB=90°. ∵OD∥BC,∴∠ADO=∠ACB=90°,∴OD⊥AC. (2)∵△AOD∽△ABC,∴OBCD=AAOB=12, ∴OD=12BC=2(cm). (3)∵2sin A-1=0,∴sin A=12.又∵sin A=BACB, ∴AB=2BC=8 cm,即⊙O 的直径为 8 cm.
圆周角定理
1.圆周角定理
文字语言
圆上一条弧所对的圆周角等于它所对的圆心
角的_一__半___
图形语言
符号语言 作用
在⊙O 中,B︵C所对的圆周角和圆心角分别是
∠BAC,∠BOC,则有∠BAC=_12_∠__B_O_C__
确定பைடு நூலகம்中两个角的大小关系
2.圆心角定理
文字语言
圆心角的度数等于它_所__对_弧___ 的度数
规律方法 此题充分利用了“直径所对的圆 周角是直角”这一特征,并在此基础上对前 面所学知识进行适当的综合.
1.圆周角定理揭示了圆周角与圆心角的关系,把角和 弧两种不同类型的图形联系起来.在几何证明的过程 中,圆周角定理为我们解决角和弧之间的问题提供 了一种新方法.
2.圆心角的度数等于它所对的弧的度数,它与圆的半 径无关,也就是说在大小不等的两个圆中,相同度 数的圆心角,它们所对的弧的度数相等;反过来, 弧的度数相等,它们所对的圆心角的度数也相等.
要点一 圆周角定理及其推论 例 1 在半径为 5 cm 的圆内有长为 5 3cm 的弦 AB,求此
圆周角定理 课件
3.关于圆周角定理推论的理解
(1)在推论1中,注意:“同弧或等弧”改为“同弦或等弦” 的话结论就不成立了,因为一条弦所对的圆周角有两种可 能,在一般情况下是不相等的.
(2)圆心角的度数和它所对的弧的度数相等,但并不是 “圆心角等于它所对的弧”.
(3)“相等的圆周角所对的弧也相等”的前提条件是“在 同圆或等圆中”.
【示例2】 如图,D,E分别为△ABC边AB,AC 的中点,直 线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明: (1)CD=BC; (2)△BCD∽△GBD.
证明 (1)因为D,E分别为AB,AC的中点,所以DE∥BC.又 已知CF∥AB,故四边形BCFD是平行四边形,所以CF=BD = AD. 而 CF∥AD , 连 接 AF , 所 以 ADCF 是 平 行 四 边 形 , 故 CD=AF.
证明 连结 CE、CF、EF,∵BC 为⊙O 的直径,∴∠BFC =90°,∠BEC=90°.又∵∠ACB=90°,∴∠BCE=∠A. 又∵∠BFE=∠BCE,∴∠BFE=∠A.又∵∠EBF=∠DBA, ∴△BEF∽△BDA.∴EBFE=ABDD. ∵∠BFC=∠BCA,∠CBD=∠CBD, ∴△CBF∽△DBC.∴CBCF=CBDD. 又∵AD=CD,∴EBFE=CBCF,∴BBCE=CEFF.
(4)在同圆或等圆中,由弦相等⇒弧相等时,这里的弧要求 同是优弧或同是劣弧,一般选劣弧.
题型一 圆中相关角度数的求解
【例 1】 在半径为 5 cm 的圆内有长为 5 3 cm 的弦 AB,求此弦
所对的圆周角.
[思维启迪] 对于弦所对的圆周角要考虑全面.
解 如图所示,过 O 点作 OD⊥AB 于点 D.因为 OD⊥AB,OD
反思感悟 弦所对的圆周角有两个,易丢掉120°导致错误,另外求圆周角时易应用到解三角形的知识.
初三数学圆周角知识点
初三数学圆周角知识点初三数学圆周角知识点初三数学圆周角知识点11、定义:顶点在圆上,角的两边都与圆相交的角。
(两条件缺一不可)2、定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
3、推论:1)在同圆或等圆中,相等的圆周角所对的弧相等。
2)直径(半圆)所对的圆周角是直角;900的圆周角所对的弦为直径。
(①常见辅助线:有直径可构成直角,有900圆周角可构成直径;②找圆心的方法:作两个900圆周角所对两弦交点)4、圆内接四边形的性质定理:圆内接四边形的对角互补。
(任意一个外角等于它的内对角)补充:1、两条平行弦所夹的弧相等。
2、圆的两条弦1)在圆外相交时,所夹角等于它所对的两条弧度数差的一半。
2)在圆内相交时,所夹的角等于它所夹两条弧度数和的一半。
3、同弧所对的(在弧的同侧)圆内部角最大其次是圆周角,最小的是圆外角。
初三数学圆周角知识点2一、圆周角定理在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
①定理有三方面的意义:a.圆心角和圆周角在同一个圆或等圆中;(相关知识点如何证明四点共圆 )b.它们对着同一条弧或者对的两条弧是等弧c.具备a、b两个条件的圆周角都是相等的,且等于圆心角的一半.②因为圆心角的度数与它所对的弧的度数相等,所以圆周角的度数等于它所对的弧的度数的一半.二、圆周角定理的推论推论1:同弧或等弧所对的圆周角相等,同圆或等圆中,相等的圆周角所对的弧也相等推论2:半圆(或直径)所对的`圆周角等于90°;90°的圆周角所对的弦是直径推论3:如果三角形一边的中线等于这边的一半,那么这个三角形是直角三角形三、推论解释说明圆周角定理在九年级数学知识点中属于几何部分的重要内容。
①推论1是圆中证明角相等最常用的方法,若将推论1中的“同弧或等弧”改为“同弦或等弦”结论就不成立.因为一条弦所对的圆周角有两个.②推论2中“相等的圆周角所对的弧也相等”的前提条件是“在同圆或等圆中”③圆周角定理的推论2的应用非常广泛,要把直径与90°圆周角联系起来,一般来说,当条件中有直径时,通常会作出直径所对的圆周角,从而得到直角三角形,为进一步解题创造条件④推论3实质是直角三角形的斜边上的中线等于斜边的一半的逆定理.。
圆周角定理及其推论
1 圆周角定理及其推论一、知识点总结1.圆心角:顶点在圆心的角.注意:圆心角的底数等于它所对弧的度数.2.在同圆或等圆中,圆心角、弧、弦、弦心距中,只要有一组量相等,那么另外三组量也分别相等.3.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对圆心角的一半.4.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.注:有直径时,常添加辅助线,构造直径所对的圆周角,由此转化为直角三角形的问题.二、弧、弦、圆心角、弦心距间的关系举例例1 如图,AB 为⊙O 的弦,点C 、D 为弦AB 上两点,且OC=OD ,延长OC 、OD 分别交⊙O 于点E 、F ,试证明弧AE=弧BF .例2 如图,点O 是∠EPF 的平分线上的一点,以O 为圆心的圆和角的两边分别交于点A 、B 和C 、D .求证:AB=CD .例3如图所示,已知AB 为⊙O 的直径,CD 是弦,且AB ⊥CD 于点E ,连接AC 、 OC 、BC .(1)求证:∠ACO=∠BCD .(2)若EB=8cm ,CD=24cm ,求⊙O 的直径.例4 已知,如图,在⊿ABC 中,AD ,BD 分别平分∠BAC 和∠ABC ,延长AD 交⊿ABC 的外接圆于E ,连接BE .求证:BE=DE .2 三、苏州市中考例举1、如图,已知A 、B 两点的坐标分别为(2,0)、(0,2),⊙C 的圆心坐标为(-1,0),半径为1.若D 是⊙C 上的一个动点线段DA 与y 轴交于点E ,则△ABE 面积的最小值是2、如图,已知A 、B两点的坐标分别为()、(0,2),P 是△AOB 外接圆上的一点,且∠AOP=45°,则点P 的坐标为3、如图.AB 为⊙O 的直径,AC 交⊙O 于E 点,BC 交⊙O 于D 点,CD=BD ,∠C=70°.现给出以下四个结论:①∠A=45° ②AC=AB ③AE BE = ④CE ·AB=2BD 2.4、如图,在△ABC 中,∠BAC=90°,BM 平分∠ABC 交AC 于M ,以A 为圆心,AM 为半径作OA 交BM 于N ,AN 的延长线交BC 于D ,直线AB 交OA 于P 、K 两点.作MT ⊥BC 于T(1)求证AK=MT ;(2)求证:AD ⊥BC ;(3)当AK=BD 时,求证:BN AC BP BM=.。
圆周角定理课件
总结和回顾
圆周角定理是几何学中重要的概念,它帮助我们理解和解决与圆相关的各种问题。
2 计算问题
通过圆周角的公式,我 们可以解决各种与圆相 关的数学计算问题。
3 工程应用
圆周角的概念在建筑、 设计和工程领域有广泛 应用,帮助解决实际问 题。
圆周角定理的证明
1
步骤一
通过绘制辅助线和应用几何定理,建立圆周角定理的几何模型。
2
步骤二
利用圆周角的定义和性质,推导出圆周角定理的数学表达式。
圆周角的弦长
圆周角对应的弦长等于圆半径乘以2sin(圆周角的度数/2)。
圆周角的性质
相等的圆周角
当两个圆周角的圆心角度数相 等时,其圆周角相等。
互补的圆周角
两个互补的圆周角的度数和为 360度。
切线与圆周角
切线与相交弦所对的圆周角相 等。
圆周角的应用
1 几何证明
圆周角的性质在几何证 明中经常被本节课的演示文稿,让我们一起探索圆周角的定理以及其应用。
圆周角定义
圆周角指的是以圆心为顶点的角,其两条边分别是与圆相交的弧,通常用字 母表示,如∠ABC。
圆周角的公式
圆周角的度数
圆周角的度数等于其对应的弧所对的圆心角的度数。
圆周角的弧长
圆周角对应的弧长等于圆周长乘以圆周角的度数除以360。
3
步骤三
进行严格的逻辑推理和证明,验证圆周角定理的准确性。
圆周角定理的例题
例题一
在半径为5cm的圆中,∠ABC 对应的弧长为15cm,求∠ABC 的度数。
例题二
已知∠ABC的度数为60度,圆 半径为8cm,求∠ABC对应的 弦长。
例题三
若两个圆周角的圆心角相等, 一个圆周角的度数为110度, 求另一个圆周角的度数。
数学知识点:圆周角定理_知识点总结
数学知识点:圆周角定理_知识点总结
顶点在圆上,它们的两边在圆内的部分分别是圆的弦.
圆周角定理:
一条弧所对的圆周角等于它所对的圆心角的一半。
圆心角定理:
圆心角的度数等于它所对弧的度数。
推论1:
同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
推论2:
半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径,高考物理。
圆周角的特点:
(1)角的顶点在圆上;
(2)角的两边在圆内的部分是圆的弦.
圆周角和圆心角相对于圆心与直径的位置关系有三种:
解题规律:
解决圆周角和圆心角的计算和证明问题,要准确找出同弧所对的圆周角和圆心角,然后再灵活运用圆周角定理.。
圆周角的定理及推论的应用
圆周角的定理及推论的应用圆周角是数学中的一个重要概念,掌握圆周角的定理及其推论,对于解决许多几何问题非常有帮助。
本文将围绕圆周角的定理及推论的应用展开阐述。
一、圆周角的定义圆周角是指落在圆周上的两条弧所对的角,即两个弧之间的角度量。
一般用大写字母表示圆周角,如∠ABC。
二、圆周角的定理1、相等圆周角定理:在同一个圆周上,所对的圆周角相等。
证明:作弦AB、CD相交于点E,则∠AEB=∠CED。
由于AE、BE、CE、DE均是从一个圆心O引出的弦,故∠AEB=∠CEB,∠CED=∠BED,又因为OE=OE,故OEB≌OED,由此可得∠OEB=∠OED,即∠AEB=∠CED。
2、圆心角的定理:在同一个圆中,所对的圆心角相等。
证明:连接圆心O到AB的中垂线OH,H为AB的中点。
则OH垂直于AB,因此∠AOH、∠BOH均为直角,所以∠AOB=2∠AOH=2∠BOH。
3、正弦定理:在任意三角形ABC中,设a、b、c分别为三角形BC、AC、AB 的边长,R为外接圆半径,则有:sinA=a/2R,sinB=b/2R,sinC=c/2R证明:如下图所示,以AB、BC、CA为边作三角形ABC的外接圆,设圆心为O。
连接AO、BO、CO,过O点作弦AD、BE、CF,则OD=OE=OF=R,所以AOD、BOE、COF都是等边三角形。
因此,∠OAB=∠CFO、∠OBA=∠CEO、∠OBC=∠AEO、∠OCB=∠AFO。
设∠BAC=x,∠ABC=y,∠ACB=z,由三角形内角和公式得:x+y+z=180又由圆周角定理得:∠BOC=2y,∠AOC=2z,∠AOB=2x于是:∠AOB+∠BOC+∠AOC=3602x+2y+2z=360,即x+y+z=180。
将sinA、sinB、sinC带入上述公式中,可得:sinA/BC=sinB/CA=sinC/AB=1/2R即sinA=a/2R,sinB=b/2R,sinC=c/2R。
4、余弦定理:在任意三角形ABC中,设a、b、c分别为三角形BC、AC、AB 的边长,R为外接圆半径,则有:cosA=(b²+c²-a²)/2bc,cosB=(a²+c²-b²)/2ac,cosC=(a²+b²-c²)/2ab证明:将ABC的外接圆的半径延长到BC、AC和AB上分别交于点D、E、F。
圆周角定理及推论
圆周角定理及推论圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角。
圆周角的性质:圆周角等于它所对的弧所对的圆心角的一半。
圆周角的推论:①同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等。
②900的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角。
③如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
④圆内接四边形的对角互补;外角等于它的内对角例1:如图,点A、B 、C都在圆O上,如果∠AOB+∠ACB=840,那么∠ACB的大小是例2:如图,平行四边形ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,连接AE,∠E=360,则∠ADC的度数是()A.44°B.54°C.72°D.53°例3:如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,∠1=∠BCD,(1)证明:C B∥P D;(2)若B C=3,,求⊙O的直径.1、(北京四中模拟)如图,弧BC与弧AD的度数相等,弦AB与弦CD交于点E,︒=∠80CEB,则CAB∠等于()A.︒30B.︒40C.︒45D.︒602.(2011年北京四中中考全真模拟16)已知一弧长为L的弧所对的圆心角为120°那么它所对的弦长为( )A、3 34ΠL B、3 24ΠL C、3 32ΠL D、3 22ΠL(第3题图)3.(2011浙江杭州模拟7)如图,已知⊙O 的两条弦AC ,BD 相交于点E ,∠A=75o ,∠C=45o ,那么∠AEB 度数为( )A. 30o B . 45o C. 60o D. 75o4.(2011浙江省杭州市10模) 如图,△ABC 内接于⊙O ,∠C=45°,AB=2,则⊙O 的半径为( )A .1B .22C .2D .25.(浙江省杭州市党山镇中2011年中考数学模拟试卷)如图,两圆相交于A ,B 两点,小圆经过大圆的圆心O ,点C ,D 分别在两圆上,若100ADB ∠=︒,则ACB ∠的度数为 ( )A .35︒B .40︒C .50︒D .80︒C ABD (第5题) O(第4题图)。
数学知识点:圆周角定理_知识点总结
数学知识点:圆周角定理_知识点总结在数学的奇妙世界中,圆周角定理是一个非常重要的知识点。
它就像是一把神奇的钥匙,能够帮助我们打开解决许多与圆相关问题的大门。
接下来,让我们一起深入探究圆周角定理的奥秘。
圆周角的定义是顶点在圆上,并且两边都和圆相交的角。
想象一下,一个角的顶点在圆的边缘上,它的两条边与圆相交,这就是圆周角。
圆周角定理指出:一条弧所对的圆周角等于它所对圆心角的一半。
这是一个非常关键且实用的定理。
为了更好地理解这个定理,我们来看几个例子。
假设在一个圆中,有一条弧 AB ,它所对的圆心角是∠AOB ,所对的圆周角是∠ACB 。
根据圆周角定理,∠ACB 的度数就等于∠AOB 度数的一半。
那这个定理有什么用呢?它的应用可广泛了!比如在求解圆中的角度问题时,如果我们知道了圆心角的度数,就能轻松算出圆周角的度数;反之,如果知道了圆周角的度数,也能算出圆心角的度数。
再比如说,当我们要证明两个角相等时,如果这两个角是同弧所对的圆周角,那么根据圆周角定理,它们必然相等。
这在几何证明题中经常能派上用场。
而且,圆周角定理还有几个重要的推论。
推论一:同弧或等弧所对的圆周角相等。
这意味着,只要是同一条弧或者长度相等的弧所对应的圆周角,它们的大小都是一样的。
比如说,在同一个圆中,弧 AB 所对的圆周角∠ACB 和∠ADB 就是相等的。
推论二:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
这个推论在解决实际问题中也非常有用。
想象一下,一个圆的直径与圆上的一点相连,所形成的角就是直角。
反过来,如果一个圆周角是直角,那么它所对的弦就是直径。
在实际解题中,我们要善于运用圆周角定理及其推论。
比如,在一个复杂的几何图形中,如果有圆的存在,我们首先要观察有没有圆周角,然后思考能否运用圆周角定理来找到角度之间的关系,从而解决问题。
为了更好地掌握圆周角定理,我们还需要通过大量的练习题来巩固。
在做练习题的过程中,要注意仔细分析题目中的条件,找出与圆周角相关的信息,然后灵活运用定理和推论来求解。
圆周角定理
判断AB与AC的大小有什么关系?为什么?
例4. 如图,AB与CD相交于圆内一点P.求证:
∠BAC= ∠BOC
∠BAC= ∠BOC
B D C 例1:如图:AB,AC是⊙O的两条弦,延长CA到D,
3.方法上主要学习了圆周角定理的证明渗透了“特殊到一般”的思想方法和分类讨论的思想方法. (2)等弦所对的圆周角相等或互补;
一.圆周角定理
A
A
O●
●
C
O
B
C
B
A
C O●
B
一. 圆周角定理
圆周角定理:圆上一条弧所对的圆周角等于它所对 的圆心角的一半.
已知:如图,在⊙O中,B C
A
A
所对的圆周角和圆心角分别
是∠BAC, ∠BOC .
O ●
●
求证:∠ BAC=
1
∠
BOC
B
O
C
C
2
B
分析2: 以直径为分界线,可以得到另外两类圆周角及 相应的圆心角,如下图(2),(3)所示.只要能将它们 化归为(1)的特殊情形,问题就能解决.
延长BD到点C,使CD=BD,连接AC. 的度数与 的度数和的一半等于∠APD的度数.
判断AB与AC的大小有什么关系?为什么? 已知:如图,在⊙O中, 所对的圆周角和圆心角分别是∠BAC, ∠BOC .
判断AB与AC的大小有什么关系?为什么? 的度数与 的度数和的一半等于∠APD的度数.
(2)半圆(直径)所对的圆心角是多少度?圆周角是多少度?
小结: 圆周角/圆心角定理
• 1.圆心角(central angle):顶点在圆心上的角叫做圆 心角.(1)在同圆或等圆中,两圆心角相等⇔其所对的弦 (或弧)也相等;(2)圆心角的度数等于它所对的弧的度 数.
第一章 §2 2.1 圆周角定理
2.1 圆周角定理对应学生用书P12]1.圆周角定理(1)文字语言:一条弧所对的圆周角等于它所对的圆心角的一半;圆周角的度数等于它所对的弧的度数的一半.(2)符号语言:在⊙O BAC,∠BOC,则有∠BAC=∠BOC=(3)图形语言:如图所示.2.圆周角定理的推论(1)推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等.(2)推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弧是半圆.1.圆周角定理中圆周角与圆心角所对的弧是同一段弧吗?提示:一定对着同一条弧才能有定理中的数量关系.2.推论1中若把“同弧或等弧”改为“同弦或等弦”结论还成立吗?提示:不成立.因为一条弦所对的圆周角有两种可能,在一般情况下是不相等的.对应学生用书P13]利用圆周角定理解决计算问题[例1][思路点拨] 本题主要考查圆周角定理.顶点A的位置不确定,所以点A和圆心O可能在BC的同侧,也可能在BC的异侧.[精解详析] (1)当点A和圆心O在BC的同侧时,如图①所示.∵OB=OC,∴∠OBC=∠OCB.∵∠OBC=35°,∴∠BOC=180°-2∠OBC=110°.∴∠BAC=∠BOC=55°.(2)当点A和圆心O在BC的异侧时,如图②所示.设P为圆上与圆心O在BC的同侧一点,连接PB,PC.∵OB=OC,∴∠OBC=∠OCB.∵∠OBC=35°,∴∠BOC=180°-2∠OBC=110°.∴∠BPC=∠BOC=55°.∴∠BAC=180°-∠BPC=180°-55°=125°.综上所得,∠A的度数是55°或125°.使用圆周角定理时,一定要注意“同一条弧”所对的圆周角与圆心角这一条件.1.如图,△ABC内接于⊙O,OD⊥BC于D,∠A=50°,则∠OCD的度数是( )A.40° B.25°C.50° D.60°解析:选A 连接OB.因为∠A=50°,所以BC弦所对的圆心角∠BOC=100°,∠COD=∠BOC=50°,∠OCD=90°-∠COD=90°-50°=40°.所以∠OCD=40°.[例2] 如图,已知AB为⊙O的直径,AC为弦,OD∥BC,交AC于D,BC=4 cm.(1)试判断OD与AC的关系;(2)求OD的长;(3)若2sin A-1=0,求⊙O的直径.[思路点拨] 本题主要考查圆周角定理推论2的应用.解题时,可判断∠ACB=90°.利用OD∥BC可得OD⊥AC.用相似可得OD的长,由边角关系可求⊙O的直径.[精解详析] (1)∵AB为⊙O的直径,∴∠ACB=90°.∵OD∥BC,∴∠ADO=∠ACB=90°,∴OD⊥AC.(2)∵△AOD∽△ABC,∴==,∴OD=BC=×4=2(cm).(3)∵2sin A-1=0,∴sin A=.∵sin A=,∴=,∴AB=2BC=2×4=8(cm).“半圆(直径)所对的圆周角是直角,和直径能构成直角三角形”这一性质应用广泛,解题时注意直角三角形中有关定理的应用.本例的条件变为:“弦AC=4,BC=3,CD⊥AB于D”,求CD.解:由勾股定理知AB=5,∵S△ACB=AC·BC=AB·CD,∴3×4=5×CD,∴CD=.利用圆周角定理解决证明问题[例3]E,求证:AE =BE.[思路点拨] 本题主要考查利用圆周角定理证明问题.解题时只需在△ABE中证明∠ABE=∠EAB.而要证这两个角相等,只需借助∠ACB即可.[精解详析] ∵BC是⊙O的直径,∴∠BAC为直角,又AD⊥BC,∴Rt△BDA∽Rt△BAC.∴∠BAD=∠BCA.FBA=∠ACB.∴∠BAD=∠FBA.∴△ABE为等腰三角形.∴AE=BE.有关圆的题目中,圆周角与它所对的弧及弦可以相互转化.即欲证圆周角相等,可转化为证明它们所对的弧相等.要证线段相等可以转化为证明它们所对的弧相等.这是证明圆中线段相等的常用方法.2.如图,AB是⊙O的直径,C为圆周上一点,∠ABC=30°,⊙O过点B的切线与CO的延长线交于点D.求证:(1)∠CAB=∠BOD.(2)△ABC≌△ODB.证明:(1)因为AB是⊙O的直径,所以∠ACB=90°,由∠ABC=30°,所以∠CAB=60°.又OB=OC,所以∠OCB=∠OBC=30°,所以∠BOD=60°,所以∠CAB=∠BOD.(2)在Rt△ABC中,∠ABC=30°,得AC=AB,又OB=AB,所以AC=OB.由BD切⊙O于点B,得∠OBD=90°.在△ABC和△ODB中,所以△ABC≌△ODB.本课时主要考查圆周角定理及推论的计算与证明问题,难度中档.[考题印证]如图,AB是圆O的直径,D,E为圆O上位于AB异侧的两点,连接BD并延长至点C,使BD=DC,连接AC,AE,DE.求证:∠E=∠C.[命题立意]本题主要考查圆周角定理的推论及平行线的性质.[自主尝试] 连接OD,因为BD=DC,O为AB的中点,所以OD∥AC,于是∠ODB=∠C.因为OB=OD,所以∠ODB=∠B.于是∠B=∠C.因为点A,E,B,D都在圆O上,且D,E为圆O上位于AB异侧的两点,所以∠E和∠B为同弧所对的圆周角,故∠E=∠B.所以∠E=∠C.对应学生用书P14]一、选择题1.如图,CD是⊙O的直径,弦AB⊥CD于E,∠BCD=25°,则下列结论错误的是( )A.AE=BE B.OE=DEC.∠AOD=50° D.D解析:选B 因为CD是⊙O的直径,弦AB⊥CD,AE=BE,因为∠BCD=25°,所以∠AOD=2∠BCD=50°,故A,C,D正确,B不能得证.2.如图所示,AB是⊙O的直径,C AC=8,BC=6,则⊙O的半径r等于( )A. B.5C.10 D.不确定解析:选B 由已知得∠ACB=90°,∴AB==10,即2r=10,r=5.3.如图,直径为10的⊙C经过点A(0,5)和点O(0,0),B是y轴右侧⊙C弧上一点,则cos∠ABO的值为( )A. B.C. D.解析:选B 法一:设⊙C与x轴另一个交点为D,连接AD,如图所示:因为∠AOD=90°,所以AD为⊙C的直径,又因为∠ABO与∠ADO为圆弧AO所对的圆周角,所以∠ABO=∠ADO,又因为A(0,5),所以OA=5,在Rt△ADO中,AD=10,AO=5,根据勾股定理得:OD==5.所以cos∠ABO=cos∠ADO===,故选B.法二:连接CO,因为OA=5,AC=CO=5,所以△ACO为等边三角形,∠ACO=60°,∠ABO=∠ACO=30°,所以cos∠ABO=cos 30°=.4.已知P R都在弦AB的同侧,且点P Q的圆内,点R(如图),则( )A.∠AQB<∠APB<∠ARBB.∠AQB<∠ARB<∠APBC.∠APB<∠AQB<∠ARBD.∠ARB<∠APB<∠AQB解析:选D 如图所示,延长AQ交圆O于点C,设AR与圆O相交于点D,连接BC,BD,则有∠AQB>∠ACB,∠ADB>∠ARB.因为∠ACB=∠APB=∠ADB,所以∠AQB>∠APB>∠ARB.二、填空题5.如图,点A,B,C在⊙O上,∠AOC=60°,则∠ABC的度数是.解析:因为∠AOC=60°,所以弧ABC的度数为60°,AC对的优弧的度数为360°-60°=300°,所以∠ABC=150°.答案:150°6.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为.解析:因为∠BOD=100°,所以∠A=∠BOD=50°.因为∠B=60°,所以∠C=180°-∠A-∠B=70°.答案:70°7.如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,点D在⊙O 上,∠ADC=68°,则∠BAC= .解析:因为AB是圆O的直径,所以弧ACB的度数为180°,它所对的圆周角为90°,所以∠BAC=90°-∠ABC=90°-∠ADC=90°-68°=22°.答案:22°8.如图,在半径为2 cm的⊙O内有长为2 cm的弦AB,则此弦所对的圆心角∠AOB为.解析:作OC⊥AB于C,则BC=,在Rt△BOC中,∵OC===1(cm),∴=,∴sin∠B=,∠B=30°,∴∠BOC=60°,∴∠AOB=120°.答案:120°三、解答题9.如图,在⊙O中,弦AB=16,点C在⊙O上,且sin C=.求⊙O的半径长.解:作直径AD,连接BD,则∠ABD=90°,∠D=∠C.因为sin C=,所以sin D=.在Rt△ABD中,sin D==,又因为AB=16,所以AD=16×=20,所以OA=AD=10,即⊙O的半径长为10.10.如图,已知在⊙O中,直径AB为10 cm,弦AC为6 cm,∠ACB的平分线交⊙O于D,求BC,AD和BD的长.解:因为AB为直径,所以∠ACB=∠ADB=90°.在Rt△ABC中,BC===8(cm).因为CD平分∠ACB,所以△ADB为等腰三角形.所以AD=BD=AB=×10=5(cm).11.如图,AB是⊙O的直径,弦CD⊥AB于点N,点M在⊙O上,∠1=∠C.(1)求证:CB∥MD.(2)若BC=4,sin M=,求⊙O的直径.解:(1)证明:因为∠C与∠M是同一弧所对的圆周角,所以∠C=∠M.又∠1=∠C,所以∠1=∠M,所以CB∥MD(内错角相等,两直线平行).(2)由sin M=知,sin C=,所以=,BN=×4=.由射影定理得:BC2=BN·AB,则AB=6.所以⊙O的直径为6.。
圆周角定理及其推论的证明
圆周角定理及其推论的证明1. 引言说到数学,大家的第一反应可能就是那些看起来复杂的公式,脑袋一团浆糊。
但其实,数学有时候就像一杯清爽的柠檬水,喝下去后让你清新无比!今天我们来聊聊一个非常经典而又简单易懂的知识点——圆周角定理。
想象一下,如果把数学比作一场派对,那么圆周角定理就是那位人人都想要和他搭讪的明星!那么,什么是圆周角定理呢?简单来说,就是在一个圆里,任何一个圆周角的度数等于它所对的弦所夹的中心角的一半。
这个定理可谓是数学界的小明星,闪耀着自己的光芒,吸引着无数人的目光。
2. 圆周角定理的证明2.1 先来个简单的图示好了,咱们先准备好纸和笔,来画个图。
想象一个圆,圆心叫 O,任意选两个点 A 和 B,连接起来形成一条弦。
然后,随便找个点 C,在圆的边上,形成一个圆周角∠ACB。
接下来,我们再从圆心O 向A 和B 连线,这样就形成了两个中心角:∠AOB。
接下来,我们就要通过一些小技巧来证明这个定理。
这里面可有趣了!2.2 把复杂变简单首先,我们知道,中心角∠AOB 的度数是与弦 AB 所对应的圆周角∠ACB 的两倍。
那为什么会这样呢?我们来试试从几何的角度分析一下。
当我们把 OA 和 OB 这两条线延长,就能把圆周角的顶点 C 和中心 O 连接起来。
这样,我们就能看到,∠ACB 是一个小角,而∠AOB 是个大角。
简单来说,∠AOB 就像是∠ACB 的“老大”,他可得分配个更大的份额,毕竟他是两条线夹起来的嘛!于是,大家就明白了:∠ACB = 1/2 ×∠AOB,这就是我们所说的圆周角定理啦!3. 推论与应用3.1 推论一:相等的圆周角现在我们说说这个定理的一个有趣推论。
你们知道吗?如果在同一个圆内,任意两条弦所对的圆周角相等,那么这两条弦必定相等。
这就像是“只要你有我有,大家都是好朋友”的道理!试想一下,假如你和朋友都穿着同样的衣服出门,别人会不会觉得你们很像?其实,圆周角也有这样的“搭档”,它们总是能通过弦的长度互相呼应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
2
练习
求证:如果三角形一边上的中线等于这边的一半,那么这个三 角形是直角三角形。(提示:作出以这条边为直径的圆。)
已知:△ABC 中,CO为AB边上的中线,且CO= 1 AB
2 求证: △ABC 为直角三角形。
C
证明: 以AB为直径作⊙O
∵AO=BO,
CO=
1 2
AB
∴AO=BO=CO
A
·
B
O
∴点C在⊙O上
圆周角定理
足球场上有句顺口溜:”冲向球门跑,越近就越好;
歪着球门跑,射点要选好。”可见踢足球是有“学问”的, 以下我们将来学些几何知识来分析类似足球射门的问题。
请说说我们是如何给圆心角下定义的,试回答?
顶点在圆心,并且两边都和圆相交
的角叫圆心角。
考考你:你能仿照圆心角的定义, 给下图中象∠ACB 这样的角下个定义吗?
分线交⊙O于D,求BC、AD、BD的长。
解:∵AB是直径
∴ ∠ACB= ∠ADB=90°
C
在Rt△ABC中
BC AB 2 AC 2 102 62 8 A
O
பைடு நூலகம்
B
∵CD平分∠ACB
∴ ∠ACD= ∠BCD
D
∴AD=BD
又在Rt△ABD中,AD2+BD2=AB2
AD BD 2 AB 2 10 5 2(cm)
C2
推论
C1
半圆(或直径)所对的圆周
C3
角是直角; A 90°的圆周角所对的弦是直径。
·O
B
如图,已知△ABC内接于⊙O, , 的度数分别为80°和110°,则△ABC的三 个内角度数分别是多少度?
答: △ABC的三内角分别是 ∠A=55 °,∠B=85 ° ,∠C=40 °
例1 在绿茵场上,足球队员带球进攻,总是尽 力向球门AB冲近(如图1),你说为什么
(1)在圆周角的一条边上;
∵OA=OC,
A
O·
B
C
∴∠A=∠C. 又∠BOC=∠A+∠C
∴∠BOC=2∠A 即 A 1 BOC
2
(2)在圆周角的内部, 圆心O在∠BAC的内部,作直径AD,
利用(1)的结果,有
BAD 1 BOD 2
DAC 1 DOC 2
BAD DAC 1 (BOD DOC) 2
顶点在圆周上,并且两边都和圆相交的角
叫做圆周角。
探索:判断下列各图中,哪些是圆周角,为什么?
图1
图2
图3
图4
图5
图7
图8
图6 图9
重点观察下面三个图形中,圆心与圆周角的位置关系?
图1
图2
图3
在以上三个图形中,哪 个图形是特殊的,其它 图形可以转化为特殊
图形吗?
圆心角和圆周角都是和圆有关的角,圆心角的度数等于它所对弧的 度数。
解 :设球员在位于C处接到球,
他带球尽力向球门冲近到D, 此时不仅距离球门近了,射 门更为有力,而且对球门AB 的张角也扩大了,球更容易射 中.可以证明如下:
延长CD到E,则∠ADE>∠ACE,∠BDE>∠BCE 所以∠ADE+∠BDE>∠ACE+∠BCE 即∠ADB>∠ACB 这样,更容易射门得分
练习
如图,你能设法确定一个圆形纸片的圆心吗?你有多少
种方法?与同学交流一下。
方法三
方法一
O
A
B
C
O
方法二
A D
·
B
方法四
O
在同圆或等圆中,如果两个圆周角相等, 它们所对弧一定相等吗?为什么?
在同圆或等圆中,如果两个圆周角相等,它 们所对的弧一定相等。
例题
例2 如图,⊙O直径AB为10cm,弦AC为6cm,∠ACB的平
BAC 1 BOC
2
B
A
O·
C D
(3)在圆周角的外部,
圆心O在∠BAC的外部,作直径AD,
利用(1)的结果,有
BAD 1 BOD
2
DAC 1 DOC
2
DAC DAB 1 (DOC DOB)
A
2
BAC 1 BOC 2
O·
D
C B
定理
定理
在同圆或等圆中,同弧或等弧所对的圆周角 相等,都等于这条弧所对的圆心角的一半。
又∵AB为直径
∴∠ACB=
1 2
×180°=
90°
∴ △ABC 为直角三角形。
小结与作业 1、本节课我们学习了哪些知识? 2、圆周角定理及其推论的用途你 都知道了吗?
如果圆心角和圆周角所对的弧相同,那么 1、圆周角的度数与它所对弧的度数有什么关系呢? 2、圆周角与圆心角之间又有什么关系呢?
同学们可以大胆地说出你的猜想?
同弧所对圆周角与圆心角的关系
为了进一步探究上面的发现,如图在⊙O任取一个圆周角
∠BAC,将圆对折,使折痕经过圆心O和∠BAC的顶点A。由
于点A的位置的取法可能不同,这时折痕可能会: