分式单元测试3
八年级上册数学单元测试卷-第3章 分式-青岛版(含答案)
八年级上册数学单元测试卷-第3章分式-青岛版(含答案)一、单选题(共15题,共计45分)1、如图,在△ABC中,DE∥BC,若,那么=()A. B. C. D.2、如图,,直线、与这三条平行线分别交于点、、和点、、.已知,,,则的长为()A.4B.5C.6D.73、已知,下列变形正确的是()A. B. C. D.4、若,则=()A. B. C. D.5、下列约分正确的是( )A. B. C. D.6、如果把分式中x和y都扩大10倍,那么分式的值()A.扩大10倍B.缩小10倍C.扩大2倍D.不变7、若分式有意义,则x的取值范围是()A.x<1B.x≠1C.x>1D.全体实数8、下列函数中,自变量x的取值范围是x>2的函数是( )A. B. C. D.9、已知,则满足为整数的所有整数的和是( ).A.-1B.0C.1D.210、如图,点D,E分别在△ABC的边AB,AC上,DE的延长线交BC的延长线于点F,DG∥BC交AC于点G,则下列式子一定正确的是()A. B. C. D.11、下列各式从左至右的变形错误的是()A. B. C. D.12、分式方程=1的解为( )A.x=1B.x=C.-1D.x=213、若关于m的二次根式有意义,则m的取值范围是()A.m<1B.m<1且m≠0C.m≤1D.m≤1且m≠014、教材中“整式的加减”一章的知识结构如图所示,则A和B分别代表的是()A.分式,因式分解B.二次根式,合并同类项C.多项式,因式分解 D.多项式,合并同类项15、关于x的方程- =2有增根,则m的值是()A.-5B.5C.-7D.2二、填空题(共10题,共计30分)16、当x=________时,分式的值为零.17、若关于x的分式方程的解为,则m的值为________ .18、若,则=________.19、已知反比例函数y= 在第二象限内的图象如图,经过图象上两点A、E分别引y轴与x轴的垂线,交于点C,且与y轴与x轴分别交于点M、B.连接OC交反比例函数图象于点D,且= ,连接OA,OE,如果△AOC的面积是15,则△ADC与△BOE的面积和为________.20、在比例尺为1:5000的地图上,量得甲、乙两地的距离为25cm,则甲、乙两地间的实际距离是________km.21、已知关于x的分式方程-2= 有一个正数解,则k的取值范围为________.22、若= ,则=________.23、若,,,…;则a2011的值为________.(用含m 的代数式表示)24、计算:=________25、在函数y=中,自变量x的取值范围是________.三、解答题(共5题,共计25分)26、先化简,再求代数式的值,其中.27、先化简,再求值:•,其中a=5.28、先化简,再求值:,其中.29、有这样一道题“求的值,其中a=2018.“小马虎”不小心把a=2018错抄成a=2017,但他的计算结果却是正确的,请说明原因.30、第5代移动通信技术简称5G,某地已开通5G业务,经测试5G下载速度是4G下载速度的15倍,明明和芳芳分别用5G与4G下载一部600兆的公益片,明明比芳芳所用的时间快分钟,求该地4G与5G下载速度分别是每秒多少兆?参考答案一、单选题(共15题,共计45分)1、C2、C3、C4、D5、D6、D7、B8、C9、D10、C11、B12、C13、B14、D15、A二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、。
数学八年级上册《分式》单元测试题含答案
八年级上册数学《分式》单元测试卷考试时间:90分钟满分:100分第Ⅰ卷(选择题)一.选择题(共10小题,满分30分,每小题3分)1.(2018秋•松桃县期末)若分式有意义,则实数x的取值范围是()A .x=2B .x=﹣2C .x≠2D .x≠﹣22.(2018秋•鸡东县期末)在,,﹣3xy+y2,,,分式的个数为()A .2B .3C .4D .53.(2018秋•永川区期末)如果把分式中的x和y都同时扩大2倍,那么分式的值()A .不变B .扩大4倍C .缩小2倍D .扩大2倍4.(2018春•利津县期末)若A =﹣22,B =2﹣2,C =()﹣2,D =()0.则()A .A <B <D <C B .A <B <C <D C .B <A <D <C D .A <C <B <D5.(2018春•开江县期末)若x为整数,使分式值为整数,则满足条件的整数有()A .5个B .6个C .8个D .7个6.(2018秋•江北区期末)从﹣3,﹣2,﹣1,,1,3这六个数中,随机抽取一个数,记为A .关于x的方程1的解是正数,那么这6个数中所有满足条件的A 的值有()个.A .3B .2C .1D .47.(2018秋•香坊区期末)某次列车平均提速vkm/h,用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km,提速前列车的平均速度是()A .km/hB .km/hC .km/hD .km/h8.(2018秋•怀柔区期末)定义:如果一个关于x的分式方程 B 的解等于,我们就说这个方程叫和解方程.比如:4就是个和解方程.如果关于x的分式方程3﹣n是一个和解方程,那么n的值是()A .B .C .D .9.(2019春•包河区期末)计算的结果是()A .﹣3xB .3xC .﹣12xD .12x10.(2018秋•海淀区期末)学完分式运算后,老师出了一道题:化简.小明的做法是:原式;小亮的做法是:原式=(x+3)(x﹣2)+(2﹣x)=x2+x﹣6+2﹣x=x2﹣4;小芳的做法是:原式1.对于这三名同学的做法,你的判断是()A .小明的做法正确B .小亮的做法正确C .小芳的做法正确D .三名同学的做法都不正确第Ⅱ卷(非选择题)二.填空题(共6小题,满分24分,每小题4分)11.(2018秋•吕梁期末)据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=0.000000001m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm,将28nm用科学记数法可表示为.12.(2018春•惠山区期末)在分式,,,中,最简分式有个.13.(2019春•泰州期末)已知关于x的方程1的解是负值,则A 的取值范围是.14.(2018秋•芝罘区期末)若分式的值为0,则x的值为.15.(2019春•丹东期末)如果解关于x的分式方程时,出现增根,那么m的值为.16.(2018秋•阳东区期末)小明家离学校2000米,小明平时从家到学校需要用x分钟,今天起床晚,怕迟到,走路速度比平时快5米/分钟,结果比平时少用了2分钟到达学校,则根据题意可列方程.评卷人得分三.解答题(共6小题,满分46分)17.(6分)(2019春•顺义区期末)计算:(﹣1)﹣2018+()2﹣(π﹣4)0﹣3﹣2;18.(6分)(2018秋•孝义市期末)先化简,再从,﹣1,0,1中选一个合适的数作为m的值代入求值.19.(8分)(2019秋•娄底期中)解分式方程:(1)(2)20.(8分)(2018秋•宜都市期末)如图,“复兴一号“水稻的实验田是边长为m米的正方形去掉一个边长为n米(m>n)正方形蓄水池后余下的部分,“复兴二号“水稻的试验田是边长为(m﹣n)米的正方形,两块试验田的水稻都收获了A 千克.(1)哪种水稻的单位面积产量高?为什么?(2)高的单位面积产量比低的单位面积产量高多少?21.(8分)(2018秋•凉州区期末)如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这个分式为“和谐分式”.(1)下列分式:①;②;③;④.其中是“和谐分式”是(填写序号即可);(2)若A 为正整数,且为“和谐分式”,请写出A 的值;(3)在化简时,小东和小强分别进行了如下三步变形:小东:小强:显然,小强利用了其中的和谐分式,第三步所得结果比小东的结果简单,原因是:,请你接着小强的方法完成化简.22.(10分)(2018秋•鞍山期末)近年来,随着我国的科学技术的迅猛发展,很多行业已经由“中国制造”升级为“中国创造”,高铁事业是“中国创造”的典范,一般的高铁包括G字头的高速动车组以及D 字头的动车组.由大连到北京的G377的平均速度是D 31的平均速度的1.2倍,行驶相同的路程1500千米,G377少用1个小时.(1)求D 31的平均速度.(2)若以“速度与票价的比值”定义这两种列车的性价比,人们出行都喜欢选择性价比高的方式.现阶段D 31票价为266元/张,G377票价为400元/张,如果你有机会给有关部门提一个合理化建议,使G377的性价比达到D 31的性价比,你如何建议,为什么?参考答案一.选择题(共10小题,满分30分,每小题3分)1.(2018秋•松桃县期末)若分式有意义,则实数x的取值范围是()A .x=2B .x=﹣2C .x≠2D .x≠﹣2[解析]解:由题意得,x﹣2≠0,解得:x≠﹣2;故选:D .[点睛]此题考查了分式有意义的条件,属于基础题,掌握分式有意义分母不为零是关键.2.(2018秋•鸡东县期末)在,,﹣3xy+y2,,,分式的个数为()A .2B .3C .4D .5[解析]解:分式有:,,共2个.故选:A .[点睛]本题主要考查分式的定义,注意判断分式的条件是:含有分母,且分母中含有未知数.3.(2018秋•永川区期末)如果把分式中的x和y都同时扩大2倍,那么分式的值()A .不变B .扩大4倍C .缩小2倍D .扩大2倍[解析]解:分式中的x和y都同时扩大2倍,可得2,所以分式的值扩大为原来的2倍,故选:D .[点睛]本题主要考查了分式的基本性质,在解题时要根据分式的基本性质进行解答是本题的关键.4.(2018春•利津县期末)若A =﹣22,B =2﹣2,C =()﹣2,D =()0.则()A .A <B <D <C B .A <B <C <D C .B <A <D <C D .A <C <B <D[解析]解:∵A =﹣22=﹣4,B =2﹣2,C =()﹣2=4,D =()0=1,∴﹣41<4,∴A <B <D <C .故选:A .[点睛]此题主要考查了负指数幂的性质以及零指数幂的性质,正确化简各数是解题关键.5.(2018春•开江县期末)若x为整数,使分式值为整数,则满足条件的整数有()A .5个B .6个C .8个D .7个[解析]解:∵2,∴x+3=±1、±2、±3、±6,则x=﹣4、﹣2、﹣1、﹣5、0、﹣6、3、﹣9时分式的值为整数,故选:C .[点睛]此题考查了分式的值,将原式计算适当的变形是解本题的关键.6.(2018秋•江北区期末)从﹣3,﹣2,﹣1,,1,3这六个数中,随机抽取一个数,记为A .关于x的方程1的解是正数,那么这6个数中所有满足条件的A 的值有()个.A .3B .2C .1D .4[解析]解:由1得:2x+A =x﹣1∴x=﹣1﹣A∵解是正数,且x﹣1为原方程的分母,∴﹣1﹣A >0,且﹣1﹣A ≠1∴A <﹣1,且A ≠﹣2故在﹣3,﹣2,﹣1,,1,3这六个数中,符合题意得数有:﹣3,,故选:B .[点睛]本题考查了分式方程的解及一元一次不等式的应用,本题难度不大,属于基础题.7.(2018秋•香坊区期末)某次列车平均提速vkm/h,用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km,提速前列车的平均速度是()A .km/hB .km/hC .km/hD .km/h[解析]解:设提速前这次列车的平均速度xkm/h.由题意得,,方程两边乘x(x+v),得s(x+v)=x(s+50)解得:x,经检验:由v,s都是正数,得x是原方程的解.∴提速前这次列车的平均速度km/h,故选:D .[点睛]本题考查了列代数式(分式),解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程解答.8.(2018秋•怀柔区期末)定义:如果一个关于x的分式方程 B 的解等于,我们就说这个方程叫和解方程.比如:4就是个和解方程.如果关于x的分式方程3﹣n是一个和解方程,那么n的值是()A .B .C .D .[解析]解:关于x的分式方程3﹣n是一个和解方程,根据题中的新定义得:x,把x代入得:3n=3﹣n,解得:n,故选:D .[点睛]此题考查了解分式方程,弄清题中的新定义是解本题的关键.9.(2019春•包河区期末)计算的结果是()A .﹣3xB .3xC .﹣12xD .12x[解析]解:原式12x;故选:D .[点睛]分式的乘除混合运算一般是统一为乘法运算,如果有乘方,还应根据分式乘方法则先乘方,即把分子、分母分别乘方,然后再进行乘除运算.同样要注意的地方有:一是要确定好结果的符号;二是运算顺序不能颠倒.10.(2018秋•海淀区期末)学完分式运算后,老师出了一道题:化简.小明的做法是:原式;小亮的做法是:原式=(x+3)(x﹣2)+(2﹣x)=x2+x﹣6+2﹣x=x2﹣4;小芳的做法是:原式1.对于这三名同学的做法,你的判断是()A .小明的做法正确B .小亮的做法正确C .小芳的做法正确D .三名同学的做法都不正确[解析]解:小明的作法是错误的,错误在于第二个等号后面的分子书写错误,忘记加括号了,分子部分正确书写是(x+3)(x﹣2)﹣(x﹣2);小亮的作法是错误的,错误在于第一个等号后面的部分,此处应该是通分,而小亮直接把分母漏掉了;小芳的作法是正确的;故选:C .[点睛]本题考查分式的混合运算、合并同类项,解答本题的关键是明确分式加减的计算方法,同分母分式相加减,分母不变,分子相加减;异分母分式相加减,先通分,再根据同分母分式相加减的方法计算.二.填空题(共6小题,满分24分,每小题4分)11.(2018秋•吕梁期末)据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=0.000000001m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm,将28nm用科学记数法可表示为 2.8×10﹣8.[解析]解:将28nm用科学记数法可表示为28×10﹣9=2.8×10﹣8.故答案为:2.8×10﹣8.[点睛]本题考查用科学记数法表示较小的数,一般形式为A ×10﹣n,其中1≤|A |<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(2018春•惠山区期末)在分式,,,中,最简分式有3个.[解析]解:是最简分式,是最简分式,,不是最简分式,是最简分式,故答案为:3.[点睛]本题考查了最简分式,分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题.在解题中一定要引起注意.13.(2019春•泰州期末)已知关于x的方程1的解是负值,则A 的取值范围是 A <﹣2且A ≠﹣4.[解析]解:方程1,去分母得:2x﹣A =x+2,解得:x=A +2,由分式方程的解为负值,得到A +2<0,且A +2≠﹣2,解得:A <﹣2且A ≠﹣4,故答案为:A <﹣2且A ≠﹣4[点睛]此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.14.(2018秋•芝罘区期末)若分式的值为0,则x的值为﹣1.[解析]解:∵分式的值为0,∴1﹣|x|=0且(x﹣1)(x﹣2)≠0,解得:x=﹣1.故答案为:﹣1.[点睛]此题主要考查了分式的值为零的条件,正确把握分式有意义的条件是解题关键.15.(2019春•丹东期末)如果解关于x的分式方程时,出现增根,那么m的值为﹣4.[解析]解:去分母得:m+2x=x﹣2,由分式方程有增根,得到x﹣2=0,即x=2,把x=2代入整式方程得:m+4=0,解得:m=﹣4,故答案为:﹣4[点睛]此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.16.(2018秋•阳东区期末)小明家离学校2000米,小明平时从家到学校需要用x分钟,今天起床晚,怕迟到,走路速度比平时快5米/分钟,结果比平时少用了2分钟到达学校,则根据题意可列方程.[解析]解:设小明平时从家到学校需要用x分钟,则实际从家到学校用(x﹣2)分钟,根据题意,得.故答案为:.[点睛]本题考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.三.解答题(共6小题,满分46分)17.(6分)(2019春•顺义区期末)计算:(﹣1)﹣2018+()2﹣(π﹣4)0﹣3﹣2;[解析]解:原式=11.[点睛]此题主要考查了实数运算,正确化简各数是解题关键.18.(6分)(2018秋•孝义市期末)先化简,再从,﹣1,0,1中选一个合适的数作为m的值代入求值.[解析]解:原式•,当m时(m≠﹣1,0,1),原式=﹣2.[点睛]此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(8分)(2019秋•娄底期中)解分式方程:(1)(2)[解析]解:(1)去分母得:x2+x﹣x2+1=2,解得:x=1,经检验x=1是增根,分式方程无解;(2)去分母得:2x2﹣2x﹣4﹣x2﹣2x=x2﹣2,解得:x,经检验x是分式方程的解.[点睛]此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.(8分)(2018秋•宜都市期末)如图,“复兴一号“水稻的实验田是边长为m米的正方形去掉一个边长为n米(m>n)正方形蓄水池后余下的部分,“复兴二号“水稻的试验田是边长为(m﹣n)米的正方形,两块试验田的水稻都收获了A 千克.(1)哪种水稻的单位面积产量高?为什么?(2)高的单位面积产量比低的单位面积产量高多少?[解析]解:(1)根据题意知,“复兴一号“水稻的实验田的单位面积为(千克/米2),“复兴二号“水稻的实验田的单位面积为(千克/米2),则,∵m、n均为正数且m>n,∴0,∴“复兴二号”水稻的单位面积产量高;(2)由(1)知,∴高的单位面积产量比低的单位面积产量高(kg).[点睛]此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.21.(8分)(2018秋•凉州区期末)如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这个分式为“和谐分式”.(1)下列分式:①;②;③;④.其中是“和谐分式”是②(填写序号即可);(2)若A 为正整数,且为“和谐分式”,请写出A 的值;(3)在化简时,小东和小强分别进行了如下三步变形:小东:小强:显然,小强利用了其中的和谐分式,第三步所得结果比小东的结果简单,原因是:小强通分时,利用和谐分式找到了最简公分母,请你接着小强的方法完成化简.[解析]解:(1)②分式,不可约分,∴分式是和谐分式,故答案为:②;(2)∵分式为和谐分式,且A 为正整数,∴A =4,A =5;(3)小强利用了其中的和谐分式,第三步所得结果比小东的结果简单,原因是:小强通分时,利用和谐分式找到了最简公分母,原式故答案为:小强通分时,利用和谐分式找到了最简公分母.[点睛]本题考查约分,解答本题的关键是明确题意,找出所求问题需要的条件,利用和谐分式的定义解答.22.(10分)(2018秋•鞍山期末)近年来,随着我国的科学技术的迅猛发展,很多行业已经由“中国制造”升级为“中国创造”,高铁事业是“中国创造”的典范,一般的高铁包括G字头的高速动车组以及D 字头的动车组.由大连到北京的G377的平均速度是D 31的平均速度的1.2倍,行驶相同的路程1500千米,G377少用1个小时.(1)求D 31的平均速度.(2)若以“速度与票价的比值”定义这两种列车的性价比,人们出行都喜欢选择性价比高的方式.现阶段D 31票价为266元/张,G377票价为400元/张,如果你有机会给有关部门提一个合理化建议,使G377的性价比达到D 31的性价比,你如何建议,为什么?[解析]解:(1)设D 31的平均速度为x千米/时,则G377的平均速度为1.2x千米/时.由题意:1,解得x=250.经检验:x=250,是分式方程的解.答:D 31的平均速度250千米/时.(2)G377的性价比0.75D 31的性价比0.94,∵0.94>0.75∴为了G377的性价比达到D 31的性价比,建议降低G377票价.[点睛]本题考查分式方程的应用,解题的关键是正确寻找等量关系,构建方程解决问题,属于中考常考题型.。
八年级数学上册《分式》单元测试卷(含答案解析)
八年级数学上册《分式》单元测试卷(含答案解析)一.选择题1.下列各式﹣3x,,,,,,中,分式的个数为()A.1 B.2 C.3 D.42.下列各式中:①;②;③;④;⑤;⑥分式有()A.1个B.2个C.3个D.4个3.代数式中,,, +b,,分式有()A.1个B.2个C.3个D.4个4.下列约分中,正确的是()A.= B.=0 C.=x3 D.=5.把分式﹣约分结果是()A.﹣B.﹣C.﹣D.﹣6.已知=7,则的值是()A.B.2 C.D.7.下列运算中正确的是()A.= B.C.•=﹣ D.÷=8.当x=﹣2时,下列分式有意义的是()A. B.C. D.9.若分式的值为0,则x的值为()A.﹣5 B.5 C.﹣5和5 D.无法确定10.下列各式,从左到右变形正确的是()A.B. C. D.二.填空题11.当x时,分式有意义.12.约分=.13.写出一个含有字母m,且m≠2的分式,这个分式可以是.14.若分式的值为负数,则x的取值范围是.15.计算=.16.一组按规律排列的式子:,,,,,…,其中第7个式子是,第n个式子是(用含的n式子表示,n 为正整数).17.若式子的值为零,则x的值为.18.不改变分式的值,使分式的分子、分母中各项系数都为整数,=.19.化简:=.20.下列各式中中分式有个.三.解答题21.(1)=(2)=22.当x为何值时,分式的值为0?23.给定下面一列分式:,…,(其中x≠0)(1)把任意一个分式除以前面一个分式,你发现了什么规律?(2)根据你发现的规律,试写出给定的那列分式中的第7个分式.24.下列分式,当x取何值时有意义.(1);(2).25.已知实数a,b满足,6a=2010,335b=2010,求+的值.26.定义:如果一个分式能化成一个整式与一个分子为常数的分式的和的形式,则称这个分式为“和谐分式”.如==+=1+,==a﹣1+,则和都是“和谐分式”.(1)下列分式中,属于“和谐分式”的是:(填序号);①;②;③;④(2)将“和谐分式化成一个整式与一个分子为常数的分式的和的形为:=.(3)应用:已知方程组有正整数解,求整数m的值.参考答案与解析一.选择题1.解:﹣3x,,的分母中均不含有字母,因此它们是整式,而不是分式.﹣,,,分母中含有字母,因此是分式.故选:D.2.解:①分母中含有π,是具体的数,不是字母,所以不是分式;②分母中含有字母a,是分式;③是等式,不是分式;④分母中没有字母,不是分式;⑤分母中含有字母x,是分式;⑥分母中没有字母,不是分式;分式有②⑤2个,故选:B.3.解;代数式, +b的分母中含有字母,是分式,故选:B.4.解:A、=,故此选项错误;B、,无法化简,故此选项错误;C、=x4,故此选项错误;D、=,正确.故选:D.5.解:﹣=﹣=﹣.故选:C.6.解:∵=7,∴=,∴x﹣4﹣=,∴x﹣=,∵的倒数为x﹣1﹣=﹣1=,∴=,故选:C.7.解:A、=≠,不正确;B、=﹣1,正确;C、=,不正确;D、==,不正确;故选:B.8.解:A、当x=﹣2时,x+2=0,无意义;B、当x=﹣2时,有意义;C、当x=﹣2时,x2﹣4=0,无意义;D、当x=﹣2时,x2+3x+2=4﹣6+2=0,无意义.故选:B.9.解:由题意得,|x|﹣5=0,解得x=±5,当x=5时,x2﹣4x﹣5=0,分式无意义;当x=﹣5时,x2﹣4x﹣5=40≠0,分式有意义;∴x的值为﹣5.故选:A.10.解:A、2前面是加号不是乘号,不可以约分,原变形错误,故本选项不符合题意;B、原式=﹣,原变形错误,故本选项不符合题意;C、原式==,原变形正确,故本选项符合题意;D、从左边到右边不正确,原变形错误,故本选项不符合题意;故选:C.二.填空题11.解:由题意得:2x+3≠0,解得:x≠﹣,故答案为:≠﹣.12.解:=.故答案为:.13.解:含有字母m,且m≠2的分式可以是,故答案为:(答案不唯一).14.解:∵分式的值为负数,∴﹣2x+3<0,解得:x>.故答案为:x>.15.解:原式=x=.故答案为:.16.解:∵=(﹣1)2•,=(﹣1)3•,=(﹣1)4•,…∴第7个式子是,第n个式子为:.故答案是:,.17.解:∵式子的值为零,∴x2﹣1=0,(x﹣1)(x+2)≠0,解得:x=﹣1.故答案为:﹣1.18.解:分式的分子,分母同时乘以500就可得到.故答案为:.19.解:原式==,故答案为:.20.解:中分式为:、+1,﹣共3个.故答案为:3.三.解答题21.解:(1)由分式的基本性质,可得故答案为:5y.(2)分式的分子分母同时乘以﹣1,得=,故答案为2﹣x.22.解:∵分式的值为0,∴,解得x=0且x≠3,∴x=0.∴当x=0时,分式的值为0.23.解:(1)﹣÷=﹣;÷(﹣)=﹣…规律是任意一个分式除以前面一个分式恒等于;(2)∵由式子:,…,发现分母上是y1,y2,y3,…故第7个式子分母上是y7,分子上是x3,x5,x7,故第7个式子是x15,再观察符号发现第偶数个为负,第奇数个为正,∴第7个分式应该是.24.解:(1)要使分式有意义,则分母3x+2≠0,解得:x≠﹣;(2)要使分式有意义,则分母2x﹣3≠0,x≠.25.解:∵6a=2010,335b=2010,∴6ab=2010b,335ab=2010a,∴6ab×335ab═2010b+a,(6×335)ab=2010 a+b,∴ab=a+b,∴+==1.26.解:(1)①=,故是和谐分式;②=,故不是和谐分式;③=,故是和谐分式;④=,故是和谐分式;故答案为①③④;(2)===,故答案为;(3)解方程组得,∵方程组有正整数解,∴m=﹣1或﹣7.。
青岛版八年级数学上册第三单元测试题(含答案)
第3章 分式 一、选择题(每小题3分,共30分) 1.在x 1、21、212+x 、πxy 3、y x +3、ma 1+中分式的个数有( ) A .2个 B .3个 C .4个 D .5个2.如果把分式yx xy +中的x 和y 都扩大2倍,则分式的值( ) A .扩大4倍 B .扩大2倍 C .不变 D .缩小2倍3.下列约分正确的是( )A .326x x x =;B .0=++y x y x ;C .x xy x y x 12=++;D .214222=y x xy 4.计算xx ----21442的结果是( ) A .21+-x B .21--x C .21+x D .462---x x 5.计算)2()2()2(232x y x y yx -÷⋅-的结果是( ) A .638yx - B .638y x C .5216y x - D .5216y x 6.计算的结果为( )A .1B .x+1C .D . 7.式方程3211x x =+-的解是( ) A .5x = B .1x =- C .1x = D .5x =-8.若关于x 的方程1011--=--m x x x 有增根,则m 的值是( ) A .3B .2C .1D .-1 9.已知114a b -=,则2227a ab b a b ab---+的值等于( ) A .6 B .-6C .215D .27- 10.A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程( )A .9448448=-++x x B . 9496496=-++x x C . 9448=+x D . 9448448=-++x x二、填空题(每小题2分,共20分)11.当x =_______________时,分式11x x +-无意义. 12.①() 3,(0)510a a xy axy =≠ ②()1422=-+a a . 13.约分:①=ba ab 2205__________,②=+--96922x x x __________. 14.计算1122a a a-+=-- . 15.计算()2xy xy x x y-⋅=- . 16.已知5a b +=, 3ab =,则=+ba 11_______. 17.如果方程3)1(2=-x a 的解是5x =,则a = . 18.当x = 时,分式232x x --的值为1. 19.一根蜡烛在凸透镜下成一实像,物距u ,像距v 和凸透镜的焦距f 满足关系式:1u +1v =1f . 若f =6厘米,v =8厘米,则物距u = 厘米.20.某项工程由甲、乙两人合作需6天完成,若甲单独做需15天完成,乙甲单独做需x 天完成,则可得方程为 .三、解答题(共50分)21.计算(每小题4分,共12分):(1)2221211a a a a a a --÷+++; (2)133(3)x x x ---; (3)⎪⎭⎫ ⎝⎛--+⋅+-y x x y x y x x 2121. 22.(5分)先化简,再求值:232(1)39x x x x -+÷+-,其中4x =.23.解方程(每小题4分,共8分)(1)13132=-+--xx x ;(2)22322=--+x x x .24.(6分)对于试题:“先化简,再求值:231, 2.11x x x x--=--其中”某同学写出了如下解答: 解:2313111(1)(1)1x x x x x x x---=---+-- ()()()()=-+--++-x x x x x x 311111()=--+=-++=-x x x x x 313122当时,原式x ==⨯-=22222她的解答正确吗?如不正确,请你写出正确解答.25.(5分)一个分数的分子比分母小6,如果分子分母都加1,则这个分数等于41,求这个分数.26.(7分)某商场销售某种商品,第一个月将此商品的进价提高25%作为销售价,共获利6000元.第二个月商场搞促销活动,将商品的进价提高10%作为销售价,第二个月的销售量比第一个月增加了80件,并且商场第二个月比第一个月多获利400元.问此商品的进价是多少元?商场第二个月共销售多少件?27.(7分)如图,小明家、王老师家、学校在同一条路上,小明家到王老师家的路程为3千米,王老师家到学校的路程为0.5千米.由于小明的父母战斗在抗击某种传染病的第一线,为了使小明能按时到校,王老师每天骑自行车接小明上学.已知王老师骑自行车的速度是步行速度的3倍,这样,王老师每天比平时步行上班多用了20分钟.问王老师的步行速度及骑自行车的速度各是多少?参考答案一、选择题1.B 2.B 3.C 4.C 5.D 6.C 7.A 8.B 9.A 10.D二、填空题11.1 12.①26a ②2a - 13.①14a ②33x x +- 14.1 15.2x y - 16.53 17.16 18. 1 19.24 20.66115x += 三、解答题21.(1)1a (2)1x(3)1 22.原式3x =-,当4x =时,原式1=23.(1)2x = (2)72=x 24.不正确.2313111(1)(1)(1)(1)x x x x x x x x x --+-=+--+-+- ()()=-+-=+221121x x x x 当时,原式x ==223 25.这个分数是1726.设此商品进价为x 元,根据题意,得:600064008025%10%x x=-, 解之,500x =.经检验之500x =是原方程的根.6400640012810%50010%x ==⨯(件). 答:此商品进价是500元,第二个月共销售128件.27.设王老师步行的速度为x (千米/时),由题意得230.50.520360x x ⨯+=+,解得5x =.经检验之5x =是原方程的根.这时315x =.答:王老师步行的速度为5千米/时,骑自行车的速度为15千米/时.。
湖北省麻城市集美学校八年级数学下册《第十六章 分式》单元综合测试题(3)(无答案) 新人教版
湖北省麻城市集美学校八年级数学下册《第十六章 分式》单元综合测试题(3)(无答案) 新人教版一、选择题(共30分)1、使分式2x x +有意义的x 的取值范围是( ) A .2x ≠B .2x ≠-C .2x >-D .2x < 2、如果分式2x x-的值为0,那么x 为( ). A 、-2B 、0C 、1D 、2 3、化简分式2b ab b +的结果为( ) A.1a b + B.11a b + C.21a b + D.1ab b+ 4、如果2a b =,则2222a ab b a b-++= ( ) A . 45B . 1C . 35D . 2 5、计算a b a b b a a +⎛⎫-÷⎪⎝⎭的结果为( ) A .a b b - B .a b b + C .a b a - D .a b a+ 6. 若分式34922+--x x x 的值为零,则x 的值为( ) A.0 B. -3 C.3 D.3或-37. 李刚同学在黑板上做了四个简单的分式题:①()130=-;②a a a =÷22;③()()235a a a =-÷-;④22414m m =-.其中做对的题的个数有( ) A.1个 B.2个 C.3个 D.4个8. 如果方程333-=-x m x x 有增根,那么m 的值为( ) A.0 B.-1 C.3 D.19. 若023=-y x ,则1+yx 等于( )A.32B.23C.35D.-35 10. 甲班与乙班同学到离校15千米的公园秋游,两班同时出发,甲班的速度是乙班同学速度的1.2倍,结果比乙班同学早到半小时,求两个班同学的速度各是多少?若设乙班同学的速度是x 千米/时,则根据题意列方程,得( ) A.21152.115-=x x B. 21152.115+=x x C. 30152.115-=x x D. 30152.115+=x x 二、填空题(共30分)11、要使分式231x x +-有意义,则x 需满足的条件为 .12、当x = 时,分式x x11-无意义.13、若分式242--x x 的值为0,则x 的值为 . 14.分式xx -+212中,当____=x 时,分式没有意义,当____=x 时,分式的值为零。
练习-分式方程 单元测试3
分式方程 单元测试人教版八下一、填一填,要相信自己的能力!(每小题3分,共24分)1.要使分式15x x++的值为13,则x 的值为____________.2.分式方程13122x x x --=--的解为 . 3. 已知公式1221P P V V =,用P 1、P 2、V 2表示V 1=________. 4. 已知方程531)1()(2-=-+x a a x 的解为51-=x ,则a =_________.5. 若使23--x x 与232+-x x 互为倒数,则x 的值是________. 6. 若方程kx x +=+233有负数根,则k 的取值范围是__________. 7. 有一个分式,三位同学分别说出了它的一些特点,甲:分式的值不可能为0;乙:分式有意义时x 的取值范围是x≠±1;丙:当x=-2时,分式的值为1,•请你写出满足上述全部特点的一个分式___________.8. 为改善环境,张村拟在荒山上种植960棵树,由于共青团员的支持,每日比原计划多种20棵,结果提前4天完成任务,原计算每天种植多少棵?设原计划每天种植x 棵,根据题意得方程________.二、选一选,看完四个选项再做决定!(每小题3分,共24分) 1. 下列方程中①35x -=1,②3x =2,③15x x ++=12,④2x +2x =5中是分式方程的有( )A .①② B.②③ C.③④ D.②③④ 2. (2006年南宁)以下是方程1112x x x--=去分母后的结果,其中正确的是( ) A.211x --= B.211x -+= C.212x x -+=D.212x x --=3. (2006年定西)方程2312x x=-的解是( ) A.1B.2 C.3 D.3-4. (2006年泸州)如果分式12-x 与33+x 的值相等,则x 的值是( ). (A)9 (B)7 (C)5 (D)35.若关于x 的方程35ax x =-有正数解,则a 的取值范围是( ). (A )3a < (B )3a > (C )3a ≥ (D )3a ≤6. 若分式方程2axx +=2的解是2,则a 的值是( ) A .1 B .2 C .3 D .47. 若分式方程xx k x x x k +-=----2225111有增根1-=x ,那么k 的值为( ) A.1 B. 3 C.6 D. 98. 某校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?设原价每瓶x 元,则可列出方程为( )A .205.0420420=--x x B .204205.0420=--x x C .5.020420420=--x x D .5.042020420=--xx 三、做一做,要注意认真审题!(每小题8分,共32分)1.解分式方程:(1)解分式方程:23222x x x -=+-. (2)解方程:12x -+ 3 =12xx--.2.在社会主义新农村建设中,某乡镇决定对一段公路进行改造.已知这项工程由甲工程队单独做需要40天完成;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成.(1)求乙工程队单独完成这项工程所需的天数; (2)求两队合做完成这项工程所需的天数. 3. 阅读下列材料: 解方程11322x x x -=---. 解:方程的两边都乘以2x -,约去分母,得113(2)x x =---.解这个整式方程,得2x =.检验:当2x =时,20x -=,所以2是增根,原方程无解. 请你根据这个方程的特点,用另一种方法解这个方程.4.近年来,由于受国际石油市场的影响,汽油价格不断上涨,请你根据下面的信息,帮小明计算今年5月份每升汽油的价格.今年5月份每升汽油的价格是去年5月份的1.6倍,用150元给汽今年5月份每升汽油的价格是多少(备选题):小明和小芳同时从张庄出发,步行15千米到李庄,小芳步行的速度是小明步行速度的1.2倍,结果比小明早到半小时.((2)根据题意及表中所得到的信息列方程,求二人每小时各走几千米?四、推广探索(共20分)1. (探究题)先阅读下列一段文字,然后解答问题: 已知:方程x-1x =112的解是x 1=2,x 2=-12. 方程x-1x =223的解是x 1=3,x 2=-13. 方程x-1x =334的解是x 1=4,x 2=-14. 方程x-1x=445的解是x 1=5,x 2=-15. 问题:观察上述方程及其解,再猜想出方程x-1x =101011的解. 把你解题得到的收获用语言表述出来,和你的同伴互相交流.2. 编一道可化为一元一次方程的分式方程的应用题,并解答.编题要求:(1)要联系实际生活,其解符合实际;(2)根据题意列出的分式方程只含有两个分式,不含常数项,分式的分母均含有未知数,并且可化为一元一次方程;(3)题目完整,题意清楚.参考答案 一、1.1; 2. 0x =; 3. V 1=221PV P ; 4. 5=a ; 5. 41; 6. 32≠>k k 且;7. 答案不唯一,如231x -,2||11x x +-,1||1x -等; 8. 960x -96020x +=4; 二、三、1.(1)27x =;(2)2x =是增根,原方程无解; 2. 解:(1)设乙工程队单独完成这项工程需要x 天,根据题意得:101120140x x ⎛⎫++⨯= ⎪⎝⎭解之得:60x = 经检验:60x =是原方程的解. 答:乙工程队单独完成这项工程所需的天数为60天. ······· 5分 (2)解:设两队合做完成这项工程所需的天数为y 天,根据题意得: 1114060y ⎛⎫+=⎪⎝⎭解之得:24y = 答:两队合做完成这项工程所需的天数为24天. ········· 8分 3. 解法一:∵11322x x x -=---, ∴11322x x x --=---,∴232x x -+=--, ∴-1=-3. ∴原方程无解.解法二:∵11322x x x -=---, ∴121322x x x -+=---, ∴111322x x =+---, ∴11222x x =---, ∴0=-2.∴原方程无解.4. 解:设去年5月份汽油价格为x 元/升,则今年5月份的汽油价格为1.6x 元/升, ·· 1分 根据题意,得15015018.751.6x x-=. ····················· 4分 整理,得15093.7518.75x -=.解这个方程,得3x =. ·························· 6分 经检验,3x =是原方程的解.························ 7分所以1.6 4.8x =.答:今年5月份的汽油价格为4.8元/升. ··················· 8分(备选题);(1)(2)根据题意,得151511.22x x -=, 解得5x =,经检验5x =是原方程的解,所以小明的速度是5千米/小时,小芳的速度是6千米/小时. 四、1. x 1=11,x 2=-111; 2. 析解:编题:甲、乙二人做某种机器零件,已知甲每小时比乙多做2个,甲做10个所用时间与乙做6个所用的时间相等,求甲、乙每小时各做多少个?设甲每小时做x 个,则乙每小时做2x -()个,根据题意,得1062x x =-,解得5x =.经检验,5x =是原方程的根,∴5x =.答略.提示:本题考查列分式方程解应用题和逆向思维能力.解题时应着重从以下三个方面入手:第一:根据题意,确定一个有实际意义的是数字,当作所列方程的一个根,建立一个符合题设要求的等式;第二:把上述等式中确定好的数字用未知数x 代替,变等式为分式方程;第三:根据列出的分式方程编出应用题.B 组(竞赛提高版,共20分)1.(6分)方程18272938x x x x x x x x +++++=+++++的解是 . 2.(6分)当m =______时,关于x 的方程223242mx x x x +=--+会产生增根. 3. (8分)某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队共8700元;乙、丙两队合做10天完成,厂家需付乙、丙两队共9500元;甲、丙两队合做5天完成全部工程的23,厂家需付甲、丙两队共5500元. (1)求甲、乙、丙各队单独完成全部工程各需多少天?(2)若工期要求不超过15天完成全部工程,问可由哪队单独完成此项工程花钱最少?(备选题: 一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运这批货物分别用2a 次、a 次能运完;若甲、丙两车合运相同次数运完这批货物时,甲车共运了180吨;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270吨.问:(1)乙车每次所运货物量是甲车每次所运货物量的几倍;(2)现甲、乙、丙合运相同次数把这批货物运完时,货主应付车主运费各多少元(按每运1吨付运费20元计算).参考答案:1. 112-;提示:原方程可化为(2)(3)(8)(9)x x x x ++=++,解之得x =112-. 2.6或-4;提示:把原方程去分母,得(1)5m x -=,因为原方程会产生增根,则2x =或2x =-,分别代入求解即可.3. 设甲队单独做x 天完成,乙队单独做y 天完成,丙队单独做z 天完成,则 111611110112315x y y z x z +=+=+=⨯⎧⎨⎪⎪⎪⎩⎪⎪⎪,,. 解方程组,得 ∴x y z ===⎧⎨⎪⎩⎪101530,,. (2)设甲队做一天应付给a 元,乙队做一天应付给b 元,丙队做一天应付给c 元.则有()()()6870010950055500a b b c a b +=+=+=⎧⎨⎪⎩⎪,,. 解方程组,得 a b c ===⎧⎨⎪⎩⎪800650300,,. ∵10a=8000(元),15b=9750(元),∴由甲队单独完成此工程花钱最少.(备选题答案):解法1:设这批货物共有T 吨.甲车每次运t 甲吨,乙车每次运t 乙吨. ………………………………………………………………………1分(l )∵2a·t 甲=T ,a·t 乙=T ,∴t 甲∶t 乙=l∶2.………………2分即乙车每次运货量是甲车的2倍.………………3分 (2)由题意列方程…………………5分由(1)知,t 乙=2t 甲,解方程,得T=540.………………6分∵甲车运180吨,丙车运540-180=360(吨),∴丙车每次运货量也是甲车的2倍.∴甲车车主应得运费乙、丙车主各得运费:…………………7分答;(1)乙车每次运货量是甲车每次运货量的2倍;(2)应付甲车车主运费2160元,付乙、丙两车车主运费各4320元.………………8分解法2:(l)同解法1;………………2分(2)设甲车每次运t甲吨,乙车每次运2t甲吨,丙车每次运t丙吨.………3分…………… 5分这批货物总量为180+180×2=540(吨).…………6分以下同解法1.。
新人教版初中数学八年级数学上册第五单元《分式》测试卷(含答案解析)(3)
一、选择题1.下列说法:①解分式方程一定会产生增根;②方程4102x -=+的根为2;③方程11224=-x x 的最简公分母为2(24)-x x ;④1111x x x+=+-是分式方程.其中正确的个数是( )A .1B .2C .3D .42.已知2340x x --=,则代数式24x x x --的值是( ) A .3B .2C .13D .12 3.若x 2y 5=,则x y y +的值为( ) A .25 B .72C .57D .754.下列说法正确的是( ) A .分式242x x --的值为零,则x 的值为2± B .根据分式的基本性质,m n 可以变形为22mx nxC .分式32xy x y-中的,x y 都扩大3倍,分式的值不变 D .分式211x x ++是最简分式 5.在同一平面内,我们把两条直线相交将平面分得的区域数记为1a ,三条直线两两相交最多将平面分得的区域数记为2a ,四条直线两两相交最多将平面分得的区域数记为()3,,1a n ⋅⋅⋅+条直线两两相交最多将平面分得的区域数记为n a ,若121111011111n a a a ++⋅⋅⋅+=---,则n =( ) A .10 B .11 C .20 D .216.化简2111313x x x x +⎫⎛-÷ ⎪---⎝⎭的结果是( ) A .2 B .23x - C .41x x -- D .21x - 7.从7-、5-、3-、1-、3、6这六个数中,随机抽取一个数,记为k ,若数k 使关于x的分式方程3211k x x +=--的解为非负数,那么这6个数中所有满足条件的k 的值之和是( )A .4-B .0C .3D .68.已知a 、b 为实数且满足a ≠﹣1,b ≠﹣1,设M =11a b a b +++,N =1111a b +++,则下列两个结论( ) ①ab =1时,M =N ;ab >1时,M <N .②若a +b =0,则M •N ≤0.A .①②都对B .①对②错C .①错②对D .①②都错 9.下列分式中,最简分式是( )A .211x x +-B .2211x x -+ C .2222x xy y x xy -+- D .21628x x -+ 10.下列各式中,无论x 取何值,分式都有意义的是( ). A .132x - B .213x + C .231x x + D .21x x + 11.若分式2132x x x --+的值为0,则x 的值为( ) A .1- B .0C .1D .±1 12.计算a b a b a ÷⨯的结果是() A .a B .2a C .2b a D .21a二、填空题13.已知3m n +=.则分式222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭的值是_________. 14.已知13x x-=,则21x x ⎛⎫+= ⎪⎝⎭________. 15.化简23x x+=____. 16.关于x 的分式方程3122m x x -=--无解,则m 的值为_____. 17.化简分式:2121211a a a a +⎛⎫÷+= ⎪-+-⎝⎭_________. 18.计算:222213699211-+-+⋅⋅=--++x x x x x x x x ___________. 19.计算:262393x x x x -÷=+--______.20.计算:()30120202-⎛⎫---= ⎪⎝⎭______. 三、解答题21.某社区为了落实“惠民工程”,计划将社区的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的3倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需10天. (1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?22.先化简,再求值:()()()()2222222a b a b b a a a b a ⎡⎤-+-+--÷⎣⎦,其中12a =,112b -⎛⎫=- ⎪⎝⎭.23.(1)计算:(-14)-2-)0+(-5)9×(-0.28); (2)因式分解:(1-a )2+4(a-1);(3)计算:(x+3)2-(x+2)(x-1). 24.小红到离家2100米的学校参加艺术节联欢会,到学校时发现演出道具忘在家中,此时距联欢会开始还有45分钟,于是她马上步行回家取道具,随后骑自行车返回学校.已知小红骑自行车到学校比她从学校步行到家用时少20分钟,且骑自行车的平均速度是步行平均速度的3倍.(1)小红步行的平均速度(单位:米/分)是多少?(2)小红能否在联欢会开始前赶到学校?(通过计算说明你的理由)25.计算:(1)化简:()()22n m n m n -++;(2)解分式方程:2132163x x x -=---. 26.先化简231124a a a +⎛⎫+÷ ⎪--⎝⎭,然后请你从2,2,1--和0中选取一个合适的值代入a ,求此时原式的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据分式方程的定义、解分式方程、增根的概念及最简公分母的定义解答.【详解】解:分式方程不一定会产生增根,故①错误; 方程4102x -=+的根为x=2,故②正确; 方程11224=-x x 的最简公分母为2x(x-2),故③错误; 1111x x x+=+-是分式方程,故④正确; 故选:B .【点睛】 此题考查分式方程的定义、解分式方程、增根的概念及最简公分母的定义,熟记各定义及正确解方程是解题的关键.2.D解析:D【分析】利用等式的性质对2340x x --=变形可得43x x-=,利用分式的性质对24x x x --变形可得141x x--,从而代入求值即可. 【详解】由条件2340x x --=可知,0x ≠, ∴430x x --=,即:43x x-=, 根据分式的性质得:21144411x x x x x x x==------, 将43x x-=代入上式得:原式11312==-, 故选:D .【点睛】 本题主要考查分式的化简求值,熟练掌握分式的运算是解题的关键.3.D解析:D【分析】根据同分母分式的加法逆运算得到x y x y y y y +=+,将x 2y 5=代入计算即可. 【详解】 解:∵x 2y 5=, ∴x y x y 2y y y 5+=+=+175=, 故选:D .【点睛】此题考查同分母分式的加减法,已知式子的值求分式的值.4.D解析:D【分析】直接利用分式的值为零的条件以及分式的基本性质、最简分式的定义分别分析得出答案.【详解】A 、分式242x x --的值为零,则x 的值为−2,故此选项错误; B 、根据分式的基本性质,等式m n =22mx nx(x≠0),故此选项错误; C 、分式32xy x y -中的x ,y 都扩大3倍,分式的值扩大为3倍,故此选项错误; D 、分式211x x ++是最简分式,正确; 故选:D .【点睛】此题主要考查了分式的值为零的条件以及分式的基本性质、最简分式的定义,正确掌握相关定义和性质是解题关键.5.C解析:C【分析】根据直线相交得到交点个数的规律,再利用裂项法进行有理数的运算即可解题.【详解】根据题意得,2条直线最多将平面分成4个区域1=4a ,3条直线最多将平面分成7个区域2=7a ,4条直线最多将平面分成11个区域3=11a ,5条直线最多将平面分成16个区域4=16a则11=3=1+2a -,21=6=1+2+3a -,31=10=1+2+3+4a -,41=15=1+2+3+4+5a - 1=1+2+3+4+51n a n ∴-++12111111n a a a ∴++⋅⋅⋅+--- 111=1+21+2+31+2+3++(n+1)++⋅⋅⋅+ 111=(1+2)2(1+3)3(1+n+1)(n+1)222++⋅⋅⋅+⨯⨯11122334(1)(2)n n ⎡⎤=+++⎢⎥⨯⨯++⎣⎦ 1111112233412n n ⎡⎤=-+-++-⎢⎥++⎣⎦ 11222n ⎡⎤=-⎢⎥+⎣⎦ 2n n =+ 121111011111n a a a ++⋅⋅⋅+=--- 10211n n ∴=+ 2101211n ∴-=+ 21211n ∴=+ 222n ∴+=20n ∴=经检验n=20是原方程的根故选:C .【点睛】本题考查相交线,是重要考点,难度一般,掌握相关知识是解题关键.6.D解析:D【分析】利用乘法分配律计算即可【详解】解:原式=11(3)(3)3(1)(1)x x x x x x +⋅--⋅--+-=1-31x x --=21x -, 故选D .【点睛】本题主要考查了分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则. 7.C解析:C【分析】先对分式方程进行求解,即用含k 的代数式表示分式方程的解,然后根据题意可进行求解.【详解】 解:由3211k x x +=--可得:52x k =+, ∵分式方程的解为非负数,且1x ≠, ∴502k +≥且512k +≠,解得:5k ≥-且3k ≠- ∴满足条件的有5-、1-、3、6,∴它们的和为51363--++=;故选C .【点睛】 本题主要考查分式方程及一元一次不等式的解法,熟练掌握分式方程及一元一次不等式的解法是解题的关键.8.C解析:C【分析】对于①,计算M-N 的值可以判断M>N 还是M<N ;对于②,计算M N 的值,然后根据a 、b 满足的条件判断其大于0还是小于0.【详解】∵M =11a b a b +++,N = 1111a b +++, ∴M ﹣ N =11a b a b +++﹣( 1111a b +++) =22(1)(1)ab a b -++, ①当ab =1时,M ﹣N =0,∴M =N ,当ab >1时,2ab >2,∴2ab ﹣2>0,当a <0时,b <0,(a +1)(b +1)>0或(a +1)(b +1)<0,∴M ﹣N >0或M ﹣N <0,∴M >N 或M <N ;故①错误;②M •N =(11a b a b +++)•( 1111a b +++) =()()()()221111a a b b a b a b +++++++.∵a +b =0, ∴原式=()()2211a b a b +++ =224(1)(1)ab a b ++. ∵a ≠﹣1,b ≠﹣1,∴(a +1)2(b +1)2>0.∵a +b =0,∴ab ≤0,M •N ≤0,故②对.故选:C .【点睛】本题考查分式运算的应用,熟练掌握分式的运算法则是解题关键.9.B解析:B【分析】最简分式的标准是分子、分母中不含有公因式,不能再约分,判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分;【详解】A 、()()21111111x x x x x x ++==-+-- ; B 、2211x x -+ 的分子分母不能再进行约分,是最简分式; C 、()()22222x y x xy y x y x xy x x y x --+-==-- ;D 、()()()24416428242x x x x x x +---==++ ; 故选:B .【点睛】本题考查了最简分式,分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题,在解题中一定要引起注意;.10.B解析:B【分析】根据分式有意义的条件:分母不等于0确定答案.【详解】A 、若3x-2≠0,即23x ≠时分式有意义,故该选项不符合题意; B 、∵230x +>,∴无论x 取何值,分式都有意义,故该项符合题意; C 、∵20x ≥,∴x ≠0时分式有意义,故该选项不符合题意;D 、若210x +≠即12x ≠-时分式有意义,故该选项不符合题意; 故选:B .【点睛】此题考查分式有意义的的条件:分母不等于0. 11.A解析:A【分析】根据分式值为零的条件列出方程和不等式,解方程和不等式得到答案.【详解】由题意得:|x|−1=0,x 2−3x+2≠0,解得,x =-1,故选:A .【点睛】本题考查的是分式为零的条件,掌握分式值为零的条件是分子等于零且分母不等于零是解题的关键.12.C解析:C【分析】先把除法变成乘法,然后约分即可.【详解】 解:2a b b b b a a b a a a a÷⨯=⋅⋅=, 故选:C .【点睛】本题考查了分式的乘除混合运算,解题的关键是熟练掌握乘除混合运算法则.二、填空题13.【分析】根据分式运算法则即可求出答案【详解】解:===当m+n=-3时原式=故答案为:【点睛】本题考查分式解题的关键是熟练运用分式的运算法则本题属于基础题型 解析:13【分析】根据分式运算法则即可求出答案.【详解】 解:222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭=22(2)m n m mn n m m+-++÷ =2()m n m m m n +⋅-+ =1m n-+, 当m+n=-3时, 原式=13故答案为:13 【点睛】本题考查分式,解题的关键是熟练运用分式的运算法则,本题属于基础题型.14.13【分析】把已知等式两边分别平方适当变形后再将所求代数式展开整体代入求解【详解】解:∵∴即∴故答案为:13【点睛】此题主要考查了分式的求值以及完全平方公式正确运用公式是解题关键解析:13【分析】把已知等式两边分别平方适当变形后,再将所求代数式展开整体代入求解.【详解】解:∵13x x-=, ∴2211()29x x x x -=+-=,即22111x x +=,∴22211211213x x x x ⎛⎫+=++=+= ⎪⎝⎭, 故答案为:13.【点睛】此题主要考查了分式的求值以及完全平方公式,正确运用公式是解题关键.15.【分析】原式利用同分母分式的加法法则计算即可得到结果【详解】故答案为:【点睛】此题考查了分式的加减法熟练掌握运算法则是解本题的关键 解析:5x. 【分析】 原式利用同分母分式的加法法则计算即可得到结果.【详解】232+3x x x+=5x =. 故答案为:5x【点睛】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键. 16.-3【分析】先求解分式方程得到用m 表示的根然后再确定该分式方程的增根最后让分式方程的根等于增根并求出m 的值即可【详解】解:m+3=x-2x=m+5由的增根为x=2令m+5=2解得m=-3故填:-3【解析:-3【分析】先求解分式方程得到用m 表示的根,然后再确定该分式方程的增根,最后让分式方程的根等于增根并求出m 的值即可.【详解】 解:3122m x x-=-- 3122m x x +=-- 312m x +=- m+3=x-2x=m+5 由3122m x x-=--的增根为x=2 令m+5=2,解得m=-3.故填:-3.本题主要考查了解分式方程以及分式方程的增根,理解增根的定义是解答本题的关键. 17.【分析】先计算括号内的加法再将除法化为乘法再计算乘法即可【详解】解:===故答案为:【点睛】本题考查分式的混合运算掌握运算顺序和每一步的运算法则是解题关键 解析:11a - 【分析】先计算括号内的加法,再将除法化为乘法,再计算乘法即可.【详解】 解:2121211a a a a +⎛⎫÷+ ⎪-+-⎝⎭ =2112211a a a a a +-+÷-+- =211(1)1a a a a +-⋅-+ =11a -, 故答案为:11a -. 【点睛】本题考查分式的混合运算.掌握运算顺序和每一步的运算法则是解题关键.18.【分析】先将分子和分母分解因式再计算乘法并将结果化为最简分式【详解】【点睛】此题考查分式的乘法计算法则:分子相乘作积的分子分母相乘作积的分母 解析:31x x -- 【分析】先将分子和分母分解因式,再计算乘法,并将结果化为最简分式.【详解】2222221369(1)(1)3(3)39211(3)(3)(1)11-+-++-+--⋅=⋅⋅=--+++--+-x x x x x x x x x x x x x x x x x x . 【点睛】此题考查分式的乘法计算法则:分子相乘作积的分子,分母相乘作积的分母.19.1【分析】先将分母因式分解再将除法转化为乘法再根据法则计算即可【详解】故答案为:1【点睛】本题主要考查了分式的混合运算解题的关键是掌握分式的混合运算顺序和运算法则解析:1【分析】先将分母因式分解,再将除法转化为乘法,再根据法则计算即可.【详解】262393x x x x -÷+-- 633(3)(3)2x x x x x -=+⋅++- 333x x x =+++ 33x x +=+ 1=.故答案为:1.【点睛】本题主要考查了分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则. 20.9【分析】根据零指数幂与负整数指数幂的运算法则进行求解【详解】故答案为:9【点睛】本题考查了零指数幂与负整数指数幂熟练掌握其运算法则是解题的关键解析:9【分析】根据零指数幂与负整数指数幂的运算法则进行求解.【详解】()30120201(8)1892-⎛⎫---=--=+= ⎪⎝⎭. 故答案为:9.【点睛】 本题考查了零指数幂与负整数指数幂,熟练掌握其运算法则是解题的关键.三、解答题21.(1)这项工程的规定时间是30天;(2)该工程的费用为225000元【分析】(1)设这项工程的规定时间是x 天,根据甲、乙队先合做15天,余下的工程由甲队单独需要10天完成,可得出方程解答即可;(2)先计算甲、乙合作需要的时间,然后计算费用即可.【详解】(1)设这项工程的规定时间是x 天,根据题意得:1110()1513x x x+⨯+=, 解得:x =30.经检验x =30是原分式方程的解.答:这项工程的规定时间是30天;(2)该工程由甲、乙队合做完成,所需时间为:111()22.530303÷+=⨯(天), 则该工程施工费用是:()22.565003500225000⨯+=(元).答:该工程的费用为225000元.【点睛】本题考查了分式方程的应用,解答此类工程问题,经常设工作量为“单位1”,注意仔细审题,运用方程思想解答.22.a b --,32【分析】原式中括号中利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算,去括号合并后利用多项式除以单项式法则计算得到最简结果,把a 与b 的值代入计算即可求出值.【详解】解:()()()()2222222a b a b b a a a b a ⎡⎤-+-+--÷⎣⎦()22222444422a ab b a b a ab a ⎡⎤=-++---÷⎣⎦()2224422a ab a ab a =--+÷()2222a ab a =--÷a b =--, ∵1122b -⎛⎫=-=- ⎪⎝⎭∴当12a =,2b =-时,原式()13222=---=. 【点睛】 本题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键. 23.①20;②(a-1)(a+3);③5x+11.【分析】(1)根据负指数幂,零指数幂及乘方法则计算即可;(2)提取公因式(a-1),进而分解因式即可;(3)先运用完全平方公式与多项式的乘法去括号,然后合并同类项.【详解】解原式=16-1+5×(-5×0.2)8=20(2)原式=(a-1)2+4(a-1)=(a-1)(a-1+4)=(a-1)(a+3)(3)原式=x 2+6x+9-(x 2+x-2)=x 2+6x+9-x 2-x+2=5x+11.【点睛】本题考查了负指数幂,零指数幂及乘方法则,提取公因式法分解因式及整式的混合运算,熟练运用运算性质是解题的关键.24.(1)70米/分;(2)能,见解析【分析】(1)设小红步行的平均速度为x 米/分,则骑自行车的平均速度为3x 米/分.由小红骑自行车到学校比她从学校步行到家用时少20分钟为等量关系建立方程求出其解即可; (2)根据(1)求出的结论计算小红往返的时间之和与45分钟作比较就可以得出结论.【详解】(1)解:设小红步行的平均速度是x 米/分,则骑自行车的平均速度是3x 米/分. 根据题意,得21002100203x x-=, 方程两边同乘最简公分母3x ,得6300210060x -=,解得70x =.检验:把70x =代入最简公分母3x ,得33700x =⨯≠,因此,70x =是原方程的根.答:小红步行的平均速度是70米/分.(2)由(1),得70x =,3210x =,所以小红骑自行车的速度是210米/分,于是,小红回家取道具共花时间:2100210030104070210+=+=(分), 由于4045<,因此,小红能在联欢会开始前赶到学校.【点睛】本题是一道行程问题的应用题,考查了列分式方程解实际问题,分式方程的解法,解答时小红骑自行车到学校比她从学校步行到家用时少20分钟为等量关系建立方程是关键. 25.(1)24m mn +;(2)x=1【分析】(1)根据单项式乘多项式法则和完全平方公式,即可得到结果;(2)通过去分母,把分式方程化为整式方程,即可求解.【详解】(1)原式=22222mn n m mn n -+++=24m mn +;(2)2132163x x x -=--- 213213(21)x x x -=--- 2(21)3x x --=-423x x --=-55=xx=1,经检验,x=1是方程的解,∴x=1.【点睛】本题主要考查整式的混合运算以及解分式方程,熟练掌握完全平方公式以及解分式方程的步骤,是解题的关键.26.2a +,2【分析】把括号内通分,并把除法转化为乘法,约分化简后从所给数中选一个使分式有意义的数代入计算即可.【详解】 解:原式=2234221a a a a a --⎛⎫+⨯ ⎪--+⎝⎭ =()()22121a a a a a +-+⨯-+ =2a +,∵a 取2,-2,-1时分式无意义,∴a 只能取0,∴原式=0+2=2.【点睛】本题考查了分式的混合运算,熟练掌握分式的运算法则是解答本题的关键.分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先算乘除,再算加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.。
八年级下学期单元测试三(分式A卷)
1八年级下学期单元测试三(分式A 卷)一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. .用换元法把方程222(1)6(1)711x x x x +++=++化为关于y 的方程627y y+=,那么下列换元正确的是 ( )(A)11y x =+. (B)211y x =+.(C)211x y x +=+. (D)211x y x +=+.2. 若关于x 的方程1011m x x x --=--有增根,则m 的值是A.3 B.2 C.1 D.1-3. 若使分式22231x x x +--的值为0,则x 的取值为( )A.1或1- B.3-或1 C.3-D.3-或1-4. 分式22212121x x x x x x x +---++,,的最简公分母是( ) A.2()(1)x x x -+B.22(1)(1)x x -+ C.2(1)(1)x x x -+D.2(1)x x +5. 满足方程:1212x x =--的x 值为( ) A.1B.2C.0D.没有6. 若3x =-是分式方程312ax x=-的解,则a 的值为( )(A)95- (B)95(C)59(D) 59-7. 当1a =-时,分式22a a a a+-( )A.等于零 B.等于1C.等于1-D.没有意义8. 计算32a a-+的结果等于( ) (A)5a- (B)1a(C)1a-(D)无意义9. 计算21a b b÷的结果是( )(A)2a (B)22a b(C)22a b(D)222a b10. 如果分式33x x --之值为1,则x 的值为( )A.0x ≥ B.3x > C.0x ≥且3x ≠ D.3x ≠二、填空题:本大题共10小题,每小题3分,共30分,把答案填写在题中横线上. 11. 当x 时,分式11x x +-有意义12. 若12x y y-=,则x y= .13. 若分式1(3)(1)x x x --+的值为零,则x 等于 .班级______________________________________ 姓名____________________ 考场号________________ 考号_______________----------------------------------------------------密---------------------------------封--------------------------------线------------------------------------------------214. 当x 时,分式2549x -有意义.15. 2b a c b c a b cb a cb a c+-+-=-+---- .16. 当x = 时,分式2231x x -+的值为正,当x = 时,分式2(3)3x x--的值为负.17. 约分2131218n nx ybx b+-=- ,23415()25()a b c a c b -=- .18. 计算22122x xx -=-- .19. 222(1)24x xxx x--= .20. 若a b c ,,是不等于零的实数,且111a b +=,11211 5.b c ca+=+=,那么222a b c = .三、运算题:本大题共8小题,共40分,解答应写出必要的计算过程、推演步骤或文字说明. 21.(本小题5分) .解方程:1302x x -=-22.(本小题5分) (1)x 满足什么条件时,分式23x +有意义?(2)x 取何值时,分式321x x -无意义?(3)x 取何值时,分式242x x -+的值为零?23.(本小题5分) 先化简,再求值.2221211x x x x x x--+--÷,其中2x =-.24.(本小题5分) 解方程. (1)1215x x=-; (2)21233x x x-=---.25.(本小题5分) 已知:0a b c ++=求证:11111130a b c bc c b a b ⎛⎫⎛⎫⎛⎫++++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.326.(本小题5分) 计算:222244(4)2x xy yx y x y-+-+÷.27.(本小题5分) 解方程12433x x x -=---.28.(本小题5分) m 为何值时,关于x 的方程223242m x x x x +=--+会产生增根?参考答案一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. D2. B3. C4. C5. C6. (D)7. A8. (C)9. (C)10. C二、填空题:本大题共10小题,每小题3分,共30分,把答案填写在题中横线上. 11. 1x ≠ 12.3213. 1 14. 32x ≠±15. 2- 16. 302x x >>;且3x ≠17. 2223()35yb b c xa-,-18. 1x -19. 12x --20.136三、运算题:本大题共8小题,共40分,解答应写出必要的计算过程、推演步骤或文字说明.班级______________________________________ 姓名____________________ 考场号________________ 考号_______________----------------------------------------------------密---------------------------------封--------------------------------线------------------------------------------------421.(本小题5分) 解:方程两边都乘以(2)x x -得3(2)x x--=360x x -+= 26x -=- 3x =经检验 3x =是原方程的根22.(本小题5分) 解:(1)由分母30x +=,得3x =-. 所以,当x 取3-以外的任何实数时,分式23x +有意义.(2)由分母210x -=,得12x =.所以,当12x =时,分式321x x -无意义.(3)由分子240x -=,得2x =或2x =-. 由分母20x +=,得2x =-. 所以,当2x =时,分式242x x -+的值为零.23.(本小题5分) 解:2221211x x x x x x--+--÷22(1)(1)(1)(1)(1)(1).11x x x x x x x x x x x x +--=--++==-- 当2x =-时,原式2(2)(2)2(2)13-+-==---.24.(本小题5分) 解:(1)两边同时乘以5(1)x x -,得52(1)x x =-.解这个方程,得23x =-.检验:将23x =-代入原方程,得左边35=-=右边.所以,23x =-是原方程的根.(2)将原程化为21233x x x -=----.两边同时乘以(3)x -,得212(3)x x -=---. 解这个方程,得3x =.检验:将3x =代入原方程,得左边2333-=-.分母为0,无意义.所以,3x =是原方程的增根,原方程无解.25.(本小题5分) 证明:1111113a b c bc c b a b ⎛⎫⎛⎫⎛⎫++++++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1111111111113a b c a b ca abc b a b c c⎛⎫⎛⎫⎛⎫=++-+++-+++-+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1111111111113a b c abc a b c a b c ⎛⎫⎛⎫⎛⎫=++-+++-+++-+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭111()a b c abc ⎛⎫=++++⎪⎝⎭0a b c ++=111()0a b c ab c ⎛⎫∴++++=⎪⎝⎭,即证.26.(本小题5分) 22(2)x y x y -+27.(本小题5分) 解:两边同时乘以(3)x-,得124(3)x x-=--.解这个方程,得3x=.检验:将3x=代入原方程,得左边3133-=-.分母为0,无意义.所以3x=是原方程的增根,原方程无解.28.(本小题5分) 4m=-或65。
分式单元测试题7套
分式单元测试题1一、选择题 1.在式子,,,,中,分式有( )A .1个B .2个C .3个D .4个2.分式无意义的条件是( ) A .x≠—3 B . x=-3 C .x=0 D .x=3 3.下列各分式中与分式的值相等是( ) A . B . C . D .—4.计算(—)·的结果是( )A . 4B . -4C .2aD .-2a5.分式方程的解是( ) A .x=-2 B .x=2 C . x=±2 D.无解 6.把分式中的,都扩大3倍,那么分式的值( ) A .扩大为原来的3倍 B .缩小为原来的C .扩大为原来的9倍D .不变 7.若分式的值为0,则x 的值为( ) A .3 B .3或-3 C .-3 D .08.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求需提前5 天交货.设每天应多做x 件,则x 应满足的方程为 ( )A .B .C .D . 二、填空题 9.当x= 时,分式值为零. 10.计算.= . 11.用科学记数法表示0.002 014= .12.分式的最简公分母是____ ______.13.若方程无解,则__________________. 14.已知-=,则的值为________________.15.若=+(R 1≠R 2),则表示R 1的式子是________________. 16.某电子元件厂准备生产4600个电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产.若乙车间每天生产的电子元件个数是甲车间的1.3倍,结果用33天完成任务.问:甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x 个,根据题意可得方程为________________. 三、解答题17.计算:(1)(2x -3y 2)-2÷(x -2y )3; (2) ÷ +.x y 3πa 13+x 31+x aa 232+x xb a a --b a a --b a a +-a b a -ab a-2-a a 2+a aaa 24-2114339x x x +=-+-(0)xyx y x y+≠+x y 1334922+--x x x 72072054848x -=+72072054848x +=+720720548x -=72072054848x-=+22x x --2323()a b a b --÷222439xx x x --与322x mx x -=--m =a 1b 121ba ab-R 111R 21R 21+-x x 41222-+-x x x 11-x18.先化简,再求值:,其中. 19.解方程.20.先仔细看(1)题,再解答(2)题. (1)a 为何值时,方程= 2 + 会产生增根? 解:方程两边乘(x-3),得x = 2(x-3)+a①.因为x=3是原方程的增根,•但却是方程①的解,所以将x=3代入①,得3=2×(3-3)+a ,所以a=3. (2)当m 为何值时,方程-=会产生增根?25.贵港市在旧城改造过程中,需要整修一段全长2400米的道路,为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务,求原计划每小时修路 的长度.26.荷花文化节前夕,我市对观光路工程招标时,接到甲、乙两个工程队的投标书,甲、乙施工一天的工程费用分别为1.5万元和1.1万元,市政局根据甲、乙两队的投标书测算,有三种施工方案. (1)甲队单独做这项工程刚好如期完成.(2)乙队单独做这项工程,要比规定日期多5天.(3)若甲、乙两队合作4天后,余下的工程由乙队单独做,也正好如期完成. 在确保如期完成的情况下,你认为哪种方案最节省工程款,通过计算说明理由.211122x x x -⎛⎫-÷ ⎪++⎝⎭2x =21124x x x -=--3x x -3ax -1y y -2m y y -1y y-分式单元测试题2一、选择题 1.在,,,中,是分式的有( ). A .1个 B .2个 C .3个D .4个2.如果把分式中的x 和y 都扩大2倍,那么分式的值( ). A .不变B .扩大2倍C .扩大4倍D .缩小2倍3.分式有意义的条件是( ). A .x ≠0 B .y ≠0 C .x ≠0或y ≠0 D .x ≠0且y ≠0 4.下列分式中,计算正确的是( ).A .B .C .D . 5.化简的结果是( ). A . B .a C .a -1 D .6.化简·(x -3)的结果是( ). A .2B .C .D . 7.化简,可得( ).A .B .C .D . 8.甲、乙两班学生植树造林,已知甲班每天比乙班多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植树x 棵,则根据题意列出的方程是( ).A .B .C .D .二、填空题9.当x =__________时,分式无意义.10.化简:=__________. 11.随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7 mm 2,这个数用科学记数法表示为__________ mm 2.12.已知x =2 012,y =2 013,则(x +y )·=__________. 13.观察下列各等式:,,,…,根据你发现的规律计算:=__________(n 为正整数). 14.甲计划用若干天完成某项工作,在甲独立工作两天后,乙加入此项工作,且甲、乙两人工效相同,结果提前两天完成任务,设甲计划完成此项工作的天数是x ,则x 的值是__________.15.含有同种果蔬但浓度不同的A ,B 两种饮料,A 种饮料重40千克,B 种饮料重60千克,现从这两种饮料中各倒出一部分,且倒出部分的重量相同,再将每种饮料所倒出的部分与另一种饮料余下的部分混合.如果混合后的两种饮料所含的果蔬浓度相同,那么从每种饮料中倒出的相同的重量是__________千克.16.某市为治理污水,需要铺设一段全长为300 m 的污水排放管道.铺设120 m 后,为了尽量减少施工对城市交通所造成的影响,后来每天铺设管道的长度比原计划增加20%,结果共用30天完成这一任务.求原计划每天铺设管道的长度.如果设原计划每天铺设x m 管道,那么根据题意,可得方程__________.2a b -(3)x x x +5πx +a ba b+-2xx y+22x yx y-+2()23()3b c a b c a +=+++222a b a b a b +=++22()1()a b a b -=-+2212x y xy x y y x -=---211a a a a --÷1a 11a -21131x x x +⎛⎫- ⎪--⎝⎭21x -23x -41x x --1111x x -+-221x -221x --221xx -221xx --80705x x=-80705x x =+80705x x=+80705x x =-13x -22x y x y x y---2244x y x y+-1111212=-⨯1112323=-⨯1113434=-⨯2222122334(1)n n +++⋅⋅⋅+⨯⨯⨯+三、解答题17.化简:.18.已知x -3y =0,求·(x -y )的值. 19.(1); (2).20.已知y =.试说明不论x 为任何有意义的值,y 的值均不变.21.为抗旱救灾,某部队计划为驻地村民新修水渠3 600米,为了水渠能尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成修水渠任务.问原计划每天修水渠多少米?32322222b b ab b a b a a b ab b a ++÷--+-2222x yx xy y+-+271326x x x +=++11222x x x-=---222693393x x x x x x x+++÷-+--分式单元测试题31. 当x=______时,分式212+-x x 有意义;当 x=_____时,分式)2)(1(12+--x x x 的值为0.2.根据分式的性质填空 (1)22()()x yy x y -=-; (2) 22()1a a a a -=--- 3.约分:21545x x -=_________;ayax yx --=_____________.4.分式21,,234y x x y xy的最简公分母是______________. 5.用科学记数法表示: 0.00000980 =____________________. 6. 计算:222x xy y ⎛⎫÷= ⎪-⎝⎭______________. 7.在3x π-,2a b +,13m +,2a a 中分式的个数是________个. 8. 关于x 的方程311x m x x -=--产生增根,则m 的值为 。
《第十五章 分式》单元测试卷含答案(共6套)
《第十五章 分式》单元测试卷(一)(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分) 1.下列各式中,分式的个数为( ),,,,,,.A. B. C. D. 2.要使分式有意义,则应满足( )A .≠-1B .≠2C .≠±1D .≠-1且≠23.化简:( )A.0B.1C.D.4.将分式中的,的值同时扩大到原来的2倍,则分式的值( )A.扩大到原来的倍B.缩小到原来的C.保持不变D.无法确定5.若分式的值为零,则的值为( )A.或B.C.D.6.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是( ) A. B. C.D. 3x y -21a x -3a b -12x y +12x y +2123x x =-+5432211x xx x -=--x 1x x -2x x y +x y 221122+--x x x 60045050x x =+60045050x x =-60045050x x =+60045050x x =-7.对于下列说法,错误的个数是( )①是分式;②当时,成立;③当时,分式的值是零;④;⑤;⑥. A.6 B.5 C.4 D.3 8.把,,通分的过程中,不正确的是( ) A .最简公分母是(-2)(+3)2 B . C . D .9.下列各式变形正确的是( )A. B. C.D.10.若,则w=( ) A. B. C. D.二、填空题(每小题3分,共24分) 11.化简的结果是 . 12.将下列分式约分:(1) ;(2).13.计算= .14. 有一个分式,三位同学分别说出了它的一些特点,甲:分式的值不可能为0;乙:分式有意义时的取值范围是≠±1;丙:当=-2时,分式的值为1.请你写出满足上述全部特点的一个分式: .15.已知,则________.1x ≠2111x x x -=+-33x x +-11a b a a b ÷⨯=÷=2a a a x y x y +=+3232x x-⋅=-x y x y x y x y -++=---22a b a bc d c d--=++0.20.03230.40.0545a b a b c d c d --=++a b b ab c c b--=--241142w a a ⎛⎫+⋅= ⎪--⎝⎭2(2)a a +≠-2(2)a a -+≠2(2)a a -≠2(2)a a --≠-2211121x x x x +⎛⎫+÷ ⎪--+⎝⎭258xx 22357mnn m -2223362cab b c b a ÷222n m m n m n n m m ---++16.若,则=_____________.17.代数式有意义时,应满足的条件是_____________. 18.为改善生态环境,防止水土流失,某村拟在荒坡地上种植960棵树, 由于青年团员的支持,每日比原计划多种20棵,结果提前4天完成任务,问原计划每天种植多少棵树?设原计划每天种植棵树,根据题意可列方程__________________.三、解答题(共46分)19.(6分)约分:(1);(2).20.(4分)通分:,. 21.(10分)计算与化简:(1);(2);(3);(4); (5). 22.(5分)先化简,再求值:,其中,. 23.(6分)若, 求的值.24.(9分)解下列分式方程: (1);(2);(3). 25.(6分)“母亲节”前夕,某商店根据市场调查,用3 000元购进第一批盒装花,上市后很快售完,接着又用5 000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花的盒数的2倍,且每盒花的进价比第一批的进价少50544≠==zy x z y x y x 32+-+11x -x 22444a a a --+22211m m m -+-21x x -2121x x --+222x y y x ⋅22211444a a a a a --÷-+-22142a a a ---211a a a ---()()222142y x x y xy x y x +-÷⋅-222693bab a aba +--x1y 1y xy x y xy x ---+2232730100+=x x 132543297=-----x x x x 21212339x x x -=+--元.求第一批盒装花每盒的进价.参考答案1.C 解析:由分式的定义,知,,为分式,其他的不是分式.2. D 解析:要使分式有意义,则 (+1)(-2)≠0,∴ +1≠0且-2≠0, ∴ ≠-1且≠2.故选D .3. C 解析:原式=-== =x .点拨:此题考查了同分母分式相减,分母不变,分子相减.4.A 解析:因为,所以分式的值扩大到原来的2倍.5.C 解析:若分式的值为零,则所以6. A 解析:若原计划平均每天生产x 台机器,则现在每天可生产(x +50)台,根据现在生产600台机器所需时间与原计划生产450台机器所需时间相同,从而列出方程. 7.B 解析:不是分式,故①不正确;当时,成立,故②正确; 当 时,分式的分母,分式无意义,故③不正确;④,故④不正确;,故⑤不正确; ,故⑥不正确.8. D 解析:A.最简公分母为(-2)(+3)2,正确; B.(分子、分母同乘,通分正确; C.(分子、分母同乘),通分正确;D.通分不正确,分子应为2×(-2)=2-4.故选D .9.D 解析:,故A 不正确;,故B 不正确; ,故C 不正确;,故D 正确.21a x -3ab-12x y +()()y x x y x x y x x y x x +⨯=+=+=+22222224222122+--x x x 60045050x x=+1x ≠2111x x x -=+-33x x +-10. D 解析:∵ , ∴ .11.x -1 解析:原式=÷ =× =x -1.12.(1) (2)解析:(1);(2). 13. 解析: 14.(答案不唯一) 解析:由题意,可知所求分式可以是,,等,答案不唯一.15. 解析:因为,所以,所以16.解析:设则所以17.x ≠±1 解析:由题意知分母不能为0,∴ |x |-1≠0,∴ ,则x ≠±1.18. 解析:根据“原计划完成任务的天数实际完成任务的天数”列方程即可.依题意列方程为. 19.解:(1); (2) ()()()()41211222222a w w w a a a a a a ⎛⎫-++⋅=⋅=-⋅=⎪⎪-+--++⎝⎭()22w a a =---≠83x n m5-258x x 83x 22357mn nm -nm5-c b a 323.36262322223322233cb a abc b c b a c ab b c b a =⋅=÷79n m 34=()()()()()()()()n m n m m n m n m n m n n m n m n m m n m m n m n n m m -+--+++-+-=---++2222()()()().799734342222222==⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=-+=-+-++-=n n n n n n n n m n m n n m n m m n mn mn m 118544≠===k z y x .11811815844432==+-+=+-+k k k k k k k z y x y x 420960960=+-x x 420960960=+-x x 22444a a a --+()22)2(222-+=-+-=a a a a a )(22211m m m-+-()().111)1()1(1)1()1(22m m m m m m m m +-=+--=+--=20.解:因为与的最简公分母是 所以; . 21.解:(1)原式=. (2)原式=.(3)原式==.(4)原式====.(5)原式=. 22.解: 当,时, 原式23.解:因为所以所以24.解:(1)方程两边都乘,得. 解这个一元一次方程,得. 检验:把代入原方程,左边右边. 所以,是原分式方程的根.21x x -2121x x --+21x x-()211)1(1--=-=x x x x x 2121x x --+()221)1(1--=--=x x x x 4y()()()()()2221112a a a a a a +--⋅+--()()212a a a +=+-()()()()()()2222222222a a a a a a a a a a +---=-+-+-+()()21222a a a a -=-++2111a a a +--()()2111a a a a -+--2211a a a -+-11a -()()()12222xy x y x y y x y x x y +-⋅⋅=-+--()().3336932222b a ab a b a a b ab a ab a -=--=+--.49162498212483==---=-ba ax 1y 1().41422342)(322232=--=--+-=--+-=---+xy xy xy xy xy xy xy y x xy y x y xy x y xy x(2)方程两边都乘,得. 整理,得.解这个一元一次方程,得. 检验:把代入原方程,左边右边. 所以,是原分式方程的根. (3)方程两边都乘,得. 整理,得.解这个一元一次方程,得. 检验可知,当时,.所以,不是原分式方程的根,应当舍去.原分式方程无解. 25. 解:设第一批盒装花的进价是x 元/盒,则 2×=,解得 x =30. 经检验,x =30是原分式方程的根. 答:第一批盒装花每盒的进价是30元.点拨:本题考查了分式方程的应用.注意:分式方程需要验根,这是易错的地方.《第十五章 分式》单元测试卷(二)一、选择题:(每小题3分,共30分) 二、1.下列各式,,,,,中,是分式的共有( )A.1个B.2个C.3个D.4个2.如果分式的值等于0,那么( )A. B. C. D.x 000 350005-x 2b a -x x 3+πy +5()1432+x b a b a -+)(1y x m-242--x x 2±=x 2=x 2-=x 2≠x3.与分式相等的是( ) A. B. C. D. 4.若把分式中的x 和y 都扩大3倍,那么分式的值( ) A .扩大3倍 B .不变 C .缩小3倍 D .缩小6倍5.化简的结果是( )A.B. C. D. 6.下列算式中,你认为正确的是( ) A .B. C . D . 7.甲乙两个码头相距千米,某船在静水中的速度为a 千米/时,水流速度为b 千米/时,则船一次往返两个码头所需的时间为( )小时. A.B. C. D. 8.甲、乙两班学生参加植树造林,已知甲班每天比乙班多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植树棵,则根据题意得出的方程是( )A .B .C .D . 9.分式方程若有增根,则增根可能是( ) A .1 B . C .1或 D .010.若三角形三边分别为a 、b 、c ,且分式的值为0,则此三角形一定是( )A. 不等边三角形B. 腰与底边不等的等腰三角形C. 等边三角形D. 直角三角形 二、填空题:(每空2分,共18分)ba ba --+-b a b a -+b a b a +-b a b a -+-ba b a +--xyyx 2+2293m mm --3+m m 3+-m m 3-m m m m-31-=---a b a b a b 11=⨯÷baa b 3131aa -=b a b a b a b a +=--⋅+1)(1222s b a s +2b a s -2b s a s +ba sb a s -++x 80705x x =-80705x x =+80705x x =+80705x x =-214111x x x +-=--1-1-ca b bc ac ab --+-211.当x ________时,分式有意义. 12.利用分式的基本性质填空: (1)(2) 13.计算:__________. 14. 计算:= . 15. 分式的最简公分母是 . 16. 当x= 时,分式的值等于 .17. 生物学家发现一种病毒的长度约为0.000 043毫米,用科学记数法表示为_____________米. 18. 已知,则分式的值为 ___ . 三、解答题:(每题5分,共25分) 19.计算:(1) (2)(3) (4)20. 先化简,再求值: ,其中.xx2121-+())0(,10 53≠=a axy xy a ()1422=-+a a =+-+3932a a a abba b ab -÷-)(2abb a 65,43,322x x +-5121311=-y x yxy x yxy x ---+2232x y y x y x y x -+-+-+212222222)(ab a ab b ab a a ab -⋅+-÷-1111-÷⎪⎭⎫ ⎝⎛--x x x 32232)()2(b a c ab ---÷x x x x x x 11132-⋅⎪⎭⎫ ⎝⎛+--2=x四、解分式方程:(每题6分,共12分) 21. 22.五、列方程解应用题:(每题6分,共12分)23. 某工人原计划在规定时间内恰好加工1500个零件,改进了工具和操作方法后,工作效率提高为原来的2倍,因此加工1500个零件时,比原计划提前了5小时,问原计划每小时加工多少个零件?24. 学校在假期内对教室内的黑板进行整修,需在规定期限内完成.如果由甲工程小组做,恰好如期完成;如果由乙工程小组做,则要超过规定期限3天.结果两队合作了2天,余下部分由乙组独做,正好在规定期限内完成,问规定期限是几天?六、解答题:(共3分) 25.为何值时,关于的方程会产生增根. 答案:1、C2、C3、B4、C5、B6、D7、D8、D9、C 10、B87176=-+--x x x 1412112-=-++x x x m x 223242mx x x x +=--+11、 12、(1) (2) 13、 14、 15、 16、 -117、 18、19、 (1)0 (2) (3) 1 (4) 20、 21、822、 是增根,原方程无解。
八年级上册数学单元测试卷-第3章 分式-青岛版(含答案)
八年级上册数学单元测试卷-第3章分式-青岛版(含答案)一、单选题(共15题,共计45分)1、当分式有意义时,字母x应满足()A.x≠-1B.x=0C.x≠1D.x≠02、已知x﹣=﹣y,且x+y≠0,则xy的值为()A.-1B.0C.1D.23、已知(x2+y2+1)(x2+y2+3)=8,则x2+y2的值为()A.﹣5或1B.5或﹣1C.5D.14、如图,锐角△ABC中,AD是高,E,F分别是AB,AC中点,EF交AD于G,已知GF=1,AC= 6,△DEG的周长为10,则△ABC的周长为()A.27B.28C.28-4D.20+25、若把分式的x、y同时扩大10倍,则分式的值()A.扩大10倍B.缩小10倍C.不变D.缩小5倍6、若,则的值是()A. B. C. D.7、计算的结果为()A. B. C. D.18、如图,在△OAB中, CD∥AB,若OC:OA =1:2,则下列结论:(1);(2);(3). 其中正确的结论是()A.(1)(2)B.(1)(3)C.(2)(3)D.(1)(2)(3)9、化简的结果是()A. B. C. D.110、若分式的值为0,则x的值为()A.±1B.1C.-1D.211、约分的结果是()A. B. C. D.12、如图,在△ABC中,AB=18,BC=15,cos B=,DE∥AB,EF⊥AB,若=,则BE长为()A.7.5B.9C.10D.513、绵阳到某地相距n千米,提速前火车从绵阳到某地要t小时,提速后行车时间减少了0.5小时,提速后火车的速度比原来速度快了()A. B. C. - D. -14、在比例尺为1:2000 的地图上测得、两地间的图上距离为,则两地间的实际距离为()A. ;B. ;C. ;D. .15、解分式方程,去分母得()A. B. C. D.二、填空题(共10题,共计30分)16、分式的值为零的条件是________ .17、计算•=________.18、关于x的方程=1的解是负数,则a的取值范围是________.19、若使代数式有意义,则x的取值范围是________.20、要使有意义,则的取值范围是________.21、如图,正方形ABCD中,E为AB边上一点,过点E作EF⊥AB交对角线BD于点F.连接EC交BD于点G.取DF的中点H,并连接AH.若AH= ,EG= ,则四边形AEFH的面积为________.22、当x=________时,分式的值为0.23、在正数范围内定义一种运算“※”,其规则为a※b= + ,如2※4= + = .根据这个规则x※(﹣2x)= 的解为________.24、“国十条”等楼市新政的出台,使得房地产市场交易量和楼市房价都一味呈现止涨观望的态势.若某一商人在新政的出台前进货价便宜8%,而现售价保持不变,那么他的利润率(按进货价而定)可由目前的x%增加到(x+10)%,x等于________.25、若|a﹣1|+(ab﹣2)2=0,则…=________.三、解答题(共5题,共计25分)26、先化简,再求值:÷+1,在0,1,2三个数中选一个合适的,代入求值.27、化简:.28、当m为何值时,解方程会产生增根?29、广州市中山大道快速公交(简称BRT)试验线道路改造工程中,某工程队小分队承担了300米道路的改造任务.为了缩短对站台和车道施工现场实施围蔽的时间,在确保工程质量的前提下,该小分队实际施工时每天比原计划多改造道路20%,结果提前5天完成了任务,求原计划平均每天改造道路多少米?30、已知实数满足,若,,请你猜想与的数量关系,并证明.参考答案一、单选题(共15题,共计45分)1、C2、C3、D4、C5、C6、C7、A8、A9、B10、C11、A12、C13、C14、C15、A二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。
人教版八年级上册数学第十五章《分式》单元测试卷(Word版,含答案)
人教版八年级上册数学第十五章《分式》单元测试卷(60分钟 100分)一、选择题(每小题3分,共30分)1.(南充中考)若1x =-4,则x 的值是( )A .4B .14C .-14D .-42.在第127届“广交会”上,有近26 000家厂家进行“云端销售”.其中数据26 000用科学记数法表示为( )A .26×103B .2.6×103C .2.6×104D .0.26×1053.下列式子:-5x ,1a +b,12 a 2-12 b 2,310m ,2π ,其中分式有( ) A .1个 B .2个 C .3个 D .4个4.计算1m +2 -14-m 2 ÷1m -2的结果为( ) A .0 B .1m +2 C .2m +2 D .m +2m -25.下列等式是四位同学解方程x x -1 -1=2x 1-x过程中去分母的一步,其中正确的是( )A .x -1=2xB .x -1=-2C .x -x -1=-2xD .x -x +1=-2x 6.若a =-0.32,b =-3-2,c =⎝⎛⎭⎪⎫-13 -2 ,d =⎝ ⎛⎭⎪⎫-13 0,则大小关系正确的是( ) A .a <b <c <d B .b <a <d <c C .a <d <c <d D .c <a <d <b7.若a =1,则a 2a +3 -9a +3的值为( ) A .2 B .-2 C .12 D .-128.(呼伦贝尔中考)甲、乙两人做某种机械零件,已知甲做240个零件与乙做280个零件所用的时间相等,两人每天共做130个零件.设甲每天做x 个零件,下列方程正确的是( )A .240x =280130-xB .240130-x=280x C .240x +280x =130 D .240x -130=280x9.对于两个不相等的实数a ,b ,我们规定符号Min{a ,b }表示a ,b 中的较小的值,如Min{2,4}=2,按照这个规定,方程Min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1x -2,3x -2 =x -1x -2 -2的解为( )A .0B .0或2C .无解D .不确定10.关于x 的分式方程2x +a x +1=1的解为负数,则a 的取值范围是( ) A .a >1 B .a <1C .a <1且a ≠-2D .a >1且a ≠2二、填空题(每小题3分,共24分)11.(北京中考)若代数式1x -7有意义,则实数x 的取值范围是__ __. 12.(广州中考)方程x x +1 =32x +2的解是 . 13.(呼和浩特中考)分式2x x -2 与8x 2-2x 的最简公分母是__ __,方程2x x -2 -8x 2-2x=1的解是__ __. 14.有一个分式,三位同学分别说出了它的一个特点,甲:分式的值不可能为0;乙:分式有意义时x 的取值范围是x ≠±1;丙:当x =-2时,分式的值为1.请你写出满足上述全部特点的一个分式: .15.(嘉兴中考)数学家斐波那契编写的《算经》中有如下问题:一组人平分10元钱,每人分得若干;若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第一次分钱的人数.设第一次分钱的人数为x 人,则可列方程 .16.已知3x -4(x -1)(x -2) =A x -1 +B x -2,则实数A =__ __. 17.若(x -y -2)2+|xy +3|=0,则⎝ ⎛⎭⎪⎪⎫3x x -y -2x x -y ÷1y 的值是 . 18.数学家们在研究15,12,10这三个数的倒数时发现112 -115 =110 -112 .因此就将具有这样性质的三个数称为调和数,如6,3,2也是一组调和数.现有一组调和数x ,5,3(x >5),则x =__ __.三、解答题(共46分)19.(6分)计算或化简:(1)(-1)2 022-|-7|+9 ×(5 -π)0+⎝ ⎛⎭⎪⎫15 -1 . (2)(徐州中考)⎝ ⎛⎭⎪⎫1-1a ÷a 2-2a +12a -2. 20.(6分)解方程:(1)(遵义中考)1x -2 =32x -3. (2)(大庆中考)2x x -1 -1=4x -1. 21.(8分)(鄂州中考)先化简x 2-4x +4x 2-1 ÷x 2-2x x +1 +1x -1,再从-2,-1,0,1,2中选一个合适的数作为x 的值代入求值.22.(8分)某茶店用4 000元购进了A 种茶叶若干盒,用8 400元购进了B 种茶叶若干盒,所购B 种茶叶比A 种茶叶多10盒,且B 种茶叶每盒进价是A 种茶叶每盒进价的1.4倍.(1)A ,B 两种茶叶每盒进价分别为多少元?(2)若第一次所购茶叶全部售完后,第二次购进A ,B 两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B 种茶叶的售价是每盒400元,两种茶叶各售出一半后,为庆祝元旦,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5 800元(不考虑其他因素),求本次购进A ,B 两种茶叶各多少盒?。
华东师大版八年级下册第16章《分式》单元测试卷(原卷版+解析版)
华东师大版八年级下册第16章《分式》单元测试卷(原卷版)本试卷三个大题共22个小题,全卷满分120分,考试时间120分钟。
题号一二三全卷总分总分人1718 19 20 21 22 得分1、答题前,请考生务必将自己姓名、考号、班级等写在试卷相应的位置上;2、选择题选出答案后,用钢笔或黑色水笔把答案标号填写在选择题答题卡的相应号上。
一、选择题(本大题共12个小题,每小题4分,共48分.以下每小题都给出了A 、B 、C 、D 四个选项,其中只有一个是符合题目要求的。
)1、在代数式m 1,3b ,π1-x ,y x +2,aa 1+中,分式的个数是( )A 、2B 、3C 、4D 、52、下列各分式中,是最简分式的是( )A 、x x 22B 、1122+++x x xC 、x x 1+ D 、112--x x 3、将分式yx x42-中的x ,y 的值同时扩大为原来的2022倍,则变化后分式的值( )A 、扩大为原来的2022倍B 、缩小为原来的20221C 、保持不变D 、以上都不正确4、已知0132=+-x x ,则xx 1-的值是( ) A 、5B 、7±C 、5±D 、35、若b a ≠,则下列分式化简正确的是( )A 、b a b a =--22B 、b a mb a m =+C 、b ab a =22D 、b abab =26、下列运算正确的是( )A 、692432b b a a b =•B 、2323132b a b ab =+ C 、a a a 32121=+ D 、1211112-=+--a a a 7、分式方程13132=----xx x 的解为( ) A 、2=xB 、无解C 、3=xD 、3-=x8、若关于x 的分式方程2113+-=--x mx x 产生增根,则m 的值为( ) A 、1-B 、2-C 、1D 、29、随着电影《你好,李焕英》热映,其同名小说的销量也急剧上升、某书店分别用400元和600元两次购进该小说,第二次数量比第一次多1倍,且第二次比第一次进价便宜4元,设书店第一次购进x 套,根据题意,下列方程正确的是( )A 、42600400=-x x B 、42400600=-x x C 、46002400=-xx D 、44002600=-xx 10、若关于x 的分式方程21121=----x k x kx 无解,则k 的值为( ) A 、31-=kB 、1=kC 、31=k 或2 D 、0=k 11、已知关于x 的分式方程xkx x -=--343的解为负数,则k 的取值范围是( ) A 、12-≤k 且3-≠k B 、12->k C 、12-<k 且3-≠k D 、12-<k 12、若关于x 的不等式组()⎪⎩⎪⎨⎧-≤+-≥-+12224131x a x x x 有解,且使关于y 的分式方程32221-=--+--yya y y 的解为非负数、则满足条件的所有整数a 的和为( ) A 、9- B 、8- C 、5- D 、﹣4二、填空题(本大题共4个小题,每小题4分,共16分) 13、已知611=+y x ,则yxy x y xy x +-++525的值为 ; 14、对于实数a 、b ,定义一种新运算“*”为:ba ab a -=*,这里等式右边是实数运算。
八年级数学第二学期《分式》单元测试题
《第3章 分式》单元测试题一、选择题1.在下列各式ma m x xb a x x a ,),1()3(,43,2,3222--÷++π中,是分式的有( ) A.2个 B.3个 C.4个 D.5个2.要使分式733-x x 有意义,则x 的取值范围是( ) A.x=37 B.x>37 C.x<37 D.x ≠=37 3.若分式4242--x x 的值为零,则x 等于( ) A.2 B.-2 C.2± D.04.计算)1(1xx x x -÷-所得的正确结论为( ) A.11-x B.1 C.11+x D.-1 5.把分式2222-+-+-x x x x 化简的正确结果为( ) A.482--x x B.482+-x x C.482-x x D.48222-+x x 6.当x=33时,代数式)23(232x x x x x -+÷--的值是( ) A.213- B.213+ C.313- D.313+ 二、填空题7.若分式)3)(2(2+--a a a 的值为0,则a= .8.已知当x=-2时,分式ax b x -- 无意义,x=4时,此分式的值为0,则a+b= . 9.使分式方程3232-=--x m x x 产生增根,m 的值为 . 10.要使15-x 与24-x 的值相等,则x= . 11.化简=-+-ab b b a a . 12.已知5922=-+b a b a ,则a :b= .13若121-x 与)4(31+x 互为倒数,则x= . 三、解答题14.计算(22+--x x x x )24-÷x x ; 15化简⎪⎪⎭⎫ ⎝⎛++÷--ab b a b a b a 22222;16.化简:⎪⎭⎫ ⎝⎛--+÷--13112x x x x 。
17. (1)125552=-+-x x x (2)22122=-+-x x x x(3)114112+-=-+x x x (4)x x x x x -+=-+2516318.若关于x 的方程x x x k --=+-3423有增根,试求k 的值。
分式单元测试题 (含答案)
一、选择【1】题1. 下列各式:()2221451,, , 532x x y x x x π---其中分式共有() A .1个 B .2个 C .3个 D .4个2.下列计算正确的是()A.m m m x x x 2=+B.22=-n n x xC.3332x x x =⋅D.264x x x -÷=3. 下列约分正确的是()A .313m m m +=+ B .212y x y x -=-+ C .123369+=+a b a b D .()()y x a b y b a x =--4.若x 、y 的值均扩大为原来的2倍,则下列分式的值保持不变的是()A.y x23 B.223y x C.y x 232 D.2323y x5.计算x x -++1111的正确结果是()A.0B.212x x -C.212x -D.122-x6. 在一段坡路,小明骑自行车上坡的速度为每小时V 1千米,下坡时的速度为每小时V 2千米,则他在这段路上、下坡的平均速度是每小时()A .221v v +千米 B .2121v v v v +千米 C .21212v v v v +千米 D .无法确定7. 某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x 件,则x 应满足的方程为() A .x +48720─548720= B .x +=+48720548720 C .572048720=-x D .-48720x +48720=58. 若0≠-=y x xy ,则分式=-x y 11() A .xy 1B .x y -C .1D .-1 9. 已知xy x y +=1,yz y z +=2,zxz x +=3,则x 的值是()A .1 B.125 C.512D.-1 10.小明骑自行车沿公路以akm/h 的速度行走全程的一半,又以bkm/h 的速度行走余下的一半路程;小明骑自行车以akm/h 的速度走全程时间的一半,又以bkm/h 的速度行走另一半时间(a b ≠),则谁走完全程所用的时间较少?()A .小明 B.小刚 C.时间相同 D.无法确定 二、填空题11. 分式12x ,212y ,15xy -的最简公分母为.12. 约分:(1)=b a ab2205__________,(2)=+--96922x x x __________. 13. 方程x x 527=-的解是.14. 使分式2341x x -+的值是负数x 的取值范围是.15. 一项工程,甲单独做x 小时完成,乙单独做y 小时完成,则两人一起完成这项工程需要__________小时.16. 一个两位数的十位数字是6,如果把十位数字与个位数字对调,那么所得的两位数与原来的两位数之比是74,原来得两位数是______________.17. 若13x x +=,则4221x x x ++__________.18. 对于正数x ,规定f (x )=x 1x +,例如f (3)=33134=+,f (13)=1131413=+,计算f (12006)+ f (12005)+ f (12004)+ …f (13)+ f (12x )+ f (1)+ f (1)+f (2)+ f (3)+ … + f (2004)+ f (2005)+ f (2006)=.三、解答题 19.计算:(1)333x x x ---(2)222246⎪⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛x y x y 20.计算:(1)bc c b abb a +-+(2)÷+--4412a a a 214a a --21.计算:⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛----42318521q p q p 22.计算:2222221m n mn n mnm mn n m n n ⎡⎤-+-⋅⎢⎥-+--⎣⎦23.解分式方程:(1)3215122=-+-x x x (2)1637222-=-++x x x x x24.先化简,再求值:已知12+=x ,求x x x x x x x 112122÷⎪⎭⎫ ⎝⎛+---+的值25.一根约为1m 长、直径为80mm 的圆柱形的光纤预制棒,可拉成至少400km 长的光纤.试问:光纤预制棒被拉成400km 时,12cm 是这种光纤此时的横截面积的多少倍?(结果保留两位有效数字,要用到的公式:圆柱体体积=底面圆面积×圆柱的高)26.从甲地到乙地有两条公路,一条是全长600km 的普通公路,另一条是全长480km 的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km /h ,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间. 27.问题探索:(1)已知一个正分数m n(m >n >0),如果分子、分母同时增加1,分数的值是增大还是减小?请证明你的结论.(2)若正分数m n(m >n >0)中分子和分母同时增加2,3…k (整数k >0),情况如何?(3)请你用上面的结论解释下面的问题:建筑学规定:民用住宅窗户面积必须小于地板面积,但按采光标准,窗户面积与地板面积的比应不小于10%,并且这个比值越大,住宅的采光条件越好,问同时增加相等的窗户面积和地板面积,住宅的采光条件是变好还是变坏?请说明理由.一、选择题1.A 2.D 3.C 4.A 5.C 6.C 7.D 8.C 9.A 10.B(提示:设全程为1,小明所用时间是1122a b+=1()2a b ab +,小刚所用时间是1a b +,小明所用时间减去小刚所用时间得1()2a b ab +-1a b +=21()2()a b ab ab a b +-+=221()2()a b ab a b ++>0,显然小明所用时间较多) 二、填空题11.210xy 12.(1)14a (2)33x x +- 13.x =-5 14.x >34 15.xyx y +16.63 17.18(提示:由13x x +=得21()9x x+=,2217x x+=,∴4221x x x ++=22118x x ++=)18.2007(提示:原式=12007+12006+…+13+12+12+23+…12006+20062007= (12007+20062007)+(12006+12006)+…+(12+12)=2007三、解答题19.(1)原式=3(3)33x x x x ---=--=-1 (2)原式=24423616y y x x ÷=22441636y x x y =2249x y20.(1)原式=()()c a b a b c abc abc ++-=()()c a b a b c abc abc ++-=ac bc ab acabc +-- bc ab abc -=()b c a abc -=c aac -(2)原式=211(2)(2)(2)a a a a a --÷-+-=21(2)(2)(2)1a a a a a -+---=2a + 21.原式=1(2)3(4)15()28p q ------÷-=45pq-22.原式=2()()()()1m n n m n mn m n m n m n n ⎡⎤-+-⎢⎥-+--⎣⎦=1()1n mn m n m n n ----1 1n mn m n n ---=mnm n --23.(1)原方程变形为252121x x x ---=3,方程两边同乘以(21)x -,得253(21)x x -=-,解得x =12-,检验:把12x =-代入(21)x -,(21)x -≠0,∴12x =-是原方程的解,∴原方程的解是12x =-.(2)原方程变形为736(1)(1)(1)(1)x x x x x x +=+-+-,方程两边同乘以最简公分母(1)(1)x x x +-,得7(1)3(1)6x x x-++=,解得x=1,检验:把1=x 代入最简公分母(1)(1)x x x +-,(1)(1)x x x +-=0,∴1=x 不是原方程的解,应舍去,∴原方程无解.24.原式=211(1)(1)x x x x x x ⎛⎫+-÷ ⎪--⎝⎭=222(1)(1)1(1)(1)x x x x x x x x ⎛⎫+--÷ ⎪--⎝⎭=22211(1)x x x x x --÷-=21(1)x x x --=21(1)x --,当12+=x 时,原式=21-=12-25.光纤的横截面积为:1×π)10400()21080(323⨯÷⨯⨯-=4π910-⨯(平方米),∴()9410410--⨯÷π≈8.0310⨯.答:平方厘米是这种光纤的横截面积8.0310⨯倍. 26.设客车由高速公路从甲地到乙地需x 小时,则走普通公路需2x 小时,根据题意得:6004804.52x x-=,解得x =8,经检验,x =8是原方程的根,答:客车由高速公路从甲地到乙地需8小时.27.(1)m n <11++m n (m >n >0)证明:∵mn-11++m n =()1+-m m m n ,又∵m >n >0,∴()1+-m m m n <0,∴mn<11++m n(2)mn<kmkn++(m>n>0,k>0)(3)设原来的地板面积和窗户面积分别为x、y,增加面积为a,则由(2)知:axay++>xy,所以住宅的采光条件变好了。
七年级数学下册《分式》单元测试卷(附带答案)
七年级数学下册《分式》单元测试卷(附带答案)一、选择题(共10小题)1. 下列方程中,x=2不是它的一个解的是( )A. x+1x =52B. x2−4=0C. xx−2+1=2x−2D. x−2x2+3x+2=03. 已知方程:①xx +x24=6②2x+2+x=3③1x2−9=0④(x+38)(x+6)=−1这四个方程中,分式方程的个数是( )A.1B. 2C. 3D. 47. 为了绿化环境,需要在一块矩形场地上移植草皮.已知矩形场地的宽为x米,矩形的长比宽多14米,恰好铺满场地所需草皮的面积是3200平方米.根据题意,可以列出关于x的方程是( )A. x(x−14)=3200B. x(x+14)=3200C. 2x(x+14)=3200D. 2x(x−14)=32008. 若分式x2−4x2+x−2的值为零,则x的值为( )A. 2B. −2C. 1D. 2或−29. 用换元法解分式方程x+1x2+x2x+1=2时,若设x+1x2=y,那么原方程可化为关于y的方程是( )A. y2−2y+1=0B. y2+2y+1=0C. y2+y+2=0D. y2+y−2=010. 两车在两城间不断往返行驶:甲车从A城开出,乙车从B城开出,且比甲车早出发1小时,两车在途中距A,B两城分别为200公里和240公里的C处相遇;相遇后乙车改为按甲车速度行驶,而甲车却提速若干公里/时,两车恰巧又在C处相遇;然后甲车再次提速5公里/时,乙车则提速50公里/时,两车恰巧又在C处相遇.那么从起行到第3次相遇,乙车共行驶了( )小时.二、填空题(共6小题)11. 分式aa2+2ab+b2和ba+b的最简公分母是.12. 已知甲乙两人共同完成一件工作需12天.若甲乙两人单独完成这件工作,则乙所需的天数是甲所需天数的1.5倍,设甲单独完成这件工作需x天,则可列方程.13. 分母中含有,叫做.14. 当x时,分式x+5x+2有意义.15. 同分母分式加减法则:同分母分式相加减,分母,分子相.16. 若用去分母的方法解关于x的方程2x−1=1−k1−x有增根,则k=.三、解答题(共7小题)17. 下列方程中,哪些是分式方程?(1)x+1x=3(2)1x=2(3)2x−54+x3=12(4)2x−2=1x−118. 解分式方程的一般步骤,可用流程图表述为:19. 计算:(1)2x +3x=;(2)23x −13x=;(3)xx−y −yx−y=;(4)2a+1ab −1ab=.20. 化简再求值3a2−ab9a2−6ab+b2,其中a=34,b=−23.21. 小张利用休息日进行登山锻炼,从山脚到山顶的路程为12千米,他上午8时从山脚出发,到达山顶后停留了半小时,再原路返回,下午3时30分回到山脚,假设他上山与下山时都是匀速行走,且下山比上山时的速度每小时快1千米,求小张上山时的速度.22. 按照解分式方程的一般步骤解关于x的分式方程k(x+1)(x−1)+1=1x+1,出现增根x=−1,求k的值.23.甲的速度每小时a千米,乙的速度每小时b千米,如果从A地到B地,甲用m小时,那么乙要用多少小时?(结果用分式表示)参考答案1. C2. B3. C4. B5. B6. D7. B8. A9. A11. (a+b)212. 1x +11.5x=11213. 未知数的方程,分式方程14. ≠−215. 不变,加减16. 217. (1)(2)(4)是分式方程.18. 去分母;检验19. (1)5x (2)13x(3)1(4)2b20. a3a−b9 3521. 设上山时的速度为x千米每小时,则下山的速度为(x+1)千米每小时小张从山脚出发到回到山脚,总用时为:7小时30分,即7.5小时由题意得12 x +12x+1+0.5=7.5整理得7x2−17x−12=0解得x1=3,x2=−47 (舍)经检验,x=3是原方程的解故小张上山时的速度是3千米每小时22. k=−223. amb。
《分式》单元测试题
宜宾市八中2011级数学 《分式》单元测试题姓名: 分数: 一.选择题(每小题3分,共30分)1.下列各式中,分式的个数为 ( )3x y -,21a x -,1x π+,3ab -, 12x y +,12x y +,2123x x =-+; A 、2个; B 、3个; C 、4个; D 、5个; 2.下列各式正确的是 ( ) A 、c c a b a b =----; B 、;c ca b a b =--++C 、c c a b a b =---+; D 、c ca b a b-=----;3. -0.0000077用科学记数法表示为 ( )A 、-57.710-⨯; B 、-67710-⨯; C 、57710-⨯; D 、-67.710-⨯; 4.下列分式是最简分式的是 ( )A 、22x y x y -+;B 、11m m --;C 、3xy yxy-; D 、6132m m -;5.将分式2x x y+中的x 、y 的值同时扩大2倍,则扩大后分式的值 ( ) A 、扩大2倍; B 、缩小2倍; C 、保持不变; D 、无法确定; 6、方程112212-=-x x 的解是 ( )A .无解; B. 1- C. 0 ; D. 1.7、解方程4223=-+-xx x 时,去分母后得 ( ) A.)2(43-=-x x ; B. )2(43-=+x x ; C.4)2()2(3=-+-x x x ; D.43=-x8、已知1)1(0=-x ,则 ( ) A. 1=x ; B. 1-=x ; C. 1≠x ; D. x 为任意实数;9、要修一条公路,甲单修路需a 小时完成,乙单独需b 小时完成,那么甲乙两人合修需要 ( )小时完成. A .ab b a + B.b a ab + C. ab 1 D ba 11+ 10、若31=+-xx ,则=+-22x x ( )A. 9;B. 8; C . 7; D. 6 二.填空题(每小题3分,共30分) 11.若分式33x x --的值为零,则x = ; 12.分式2x y xy +,23y x ,26x y xy -的最简公分母为 ; 13.计算:201()( 3.14)3π--+-= ;14、解分式方程275-=x x 其根为________; 15、用小数表示:-3101.3-⨯= ; 16、将式子3233)()(--ab a 化为不含负整数指数的形式是 ; 17、计算:=-+-mn mn m n ; 18、已知311=-a b ,则2322a a b ba ab b+---= ; 19、若)3)(2(4232-+-=-++x x x x B x A 则A+B= ; 20、汽艇顺流而下行驶60千米以后返回,共用5小时10分。
分式单元测试卷
《分式》单元测试卷一.选择题 1.使分式2xx +有意义的x 的取值范围是( ) A .2x ≠B .2x ≠-C .2x >-D .2x <2.如果分式2xx-的值为0,那么x 为( ).A.-2B. 0C. 1D. 23.化简分式2bab b +的结果为( ) A.1a b + B.11a b + C.21a b + D.1ab b + 4.如果2ab=,则2222a ab b a b -++= ( )A .45B . 1C . 35 D . 25.计算a b a bb a a +⎛⎫-÷⎪⎝⎭的结果为( ) A .a b b -B .a bb +C .a ba -D .a ba+6.某种长途电话的收费方式如下:接通电话的第一分钟收费a 元,之后的每一分钟收费b 元.如果某人打该长途电话被收费8元钱,则此人打长途电话的时间是( )A .8a b -分钟 B .8a b +分钟 C .8a bb-+分钟 D .8a bb--分钟 7.分式方程1123x =-的解为( )A .2x =B .1x =C .1x =-D .2x =-8.解分式方程81877x x x--=--,可知方程( ) A .解为7x =B .解为8x =C .解为15x =D .无解9.有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程( )A .9001500300x x =+;B .9001500300x x =- ; C .9001500300x x =+; D .9001500300x x=- 10.关于x 的方程11ax =+的解是负数,则a 的取值范围是( )A.1a <B.1a <且0a ≠C.1a ≤ D.1a ≤或0a ≠二.填空题 11.要使分式231x x +-有意义,则x 需满足的条件为 .12.若分式242--x x 的值为0,则x 的值为 .13. 用科学记数法表示:-0.00002006= 。
分式单元测试卷
分式单元测试卷一、选择题(每小题3分,共30分)1.下列各式中,是分式的有()A. 5/8B. (x+y)/2C. y/(x-1)D. 3π答案:C2.下列各式中,是最简分式的是()A. (a2) C. (y-1)/(y+1) D. (a2)/(a2)答案:C3.若分式 (x+1)/(x-1) 的值为0,则 x 的值为()A. 1B. -1C. 0D. 2答案:B(注意,x=1时分母为0,分式无意义,所以排除A)4.下列分式中,当 x=2 时,其值为3的是()A. (2x)/(x+1)B. (x+2)/(x-1)C. (3x)/(x+2)D. (2x+2)/(x)答案:D(代入x=2验证)5.下列关于分式的说法中,正确的是()A. 分式的分子、分母都是整式B. 分式的分母中一定含有字母C. 分式的值一定小于1D. 分式的分子一定小于分母答案:A、B(C、D选项均存在反例)6.若分式方程 (x+1)/(x-2) = a 有增根,则增根为()A. 2B. -2C. 1D. 0答案:A(增根是分式方程化为整式方程后产生的使分式方程的分母为0的根)7.下列计算正确的是()A. (a+b)/(c+d) = a/c + b/dB. (a2)/(a+b) = a-bC. (x+1)/(x^2-1) = 1/(x-1)D. (2xy)/(4x^2y^2) = 1/(2xy)答案:B(A、C选项均不能通过合并同类项或化简得到;D选项化简后应为1/(2xy),但分母中的xy不能为0,所以不能说等于1/(2xy)在所有情况下都成立)8.下列各式中,与 (y)/(x) 相等的是()A. (2y)/(2x)B. (-y)/(-x)C. (y^2)/(x^2)D. (xy)/(x^2)答案:A、B(A选项分子分母同时除以2得到原式;B选项分子分母同时乘以-1得到原式)9.若分式 (2x-1)/(3x+2) 的值为正数,则 x 的取值范围是()A. x > 1/2B. x < -2/3C. x > 1/2 或 x < -2/3D. -2/3 < x < 1/2答案:C(分子分母同号时分式值为正数)10.下列关于分式方程的说法中,错误的是()A. 分式方程中一定含有分母中含有未知数的分式B. 分式方程的解可能是无理数C. 分式方程无解时一定是因为产生了增根D. 解分式方程时通常要去分母答案:C(分式方程无解可能是因为无解、有增根或解为原分式方程的禁止值等原因)二、填空题(每小题3分,共15分)11.当 x = _______ 时,分式 (x-1)/(x+2) 的值为1。
分式3
初二数学单元测试卷 分式一、选择题1. 若092=-x ,则062962=-+-x x x 的值为( ) A.0 B.-3 C.0或-3 D.12. 下列等式:①c b a c b a --=--)( ; ②x y x x y x -=-+- ; ③c b a c b a +-=+-;④m n m m n m --=-- 中,成立的是( )A.①②B.③④C.①③D.②④3. 若14+a 表示一个整数,则整数a 可取的值的个数是( ) A.3 B.4 C.5 D.6 4.如果323223=⎪⎭⎫ ⎝⎛÷⎪⎪⎭⎫ ⎝⎛b a b a ,那么48b a 等于( ) A. 6 B.9 C.12 D.815. 南京到上海铁路长300 km ,为了适应两市经济的发展,客车的速度比原来每小时增加了40 km ,因此从南京到上海的时间缩短了一半,设客车原来的速度是x km/h ,则根据题意列出的方程是( )A.3004012300x x -=· B. 300402300x x -=· C. 3004012300x x +=· D. 300402300x x +=· 6.把分式xyy x -中的x 、y 的值都扩大2倍,则分式的值( ) A 不变 B 扩大2倍 C 扩大4倍 D 缩小一半7. 化简3222121()11x x x x x x x x --+-÷+++的结果为( ). (A)x-1 (B)2x-1 (C)2x+1 (D)x+18. 在一段坡路,小明骑自行车上坡的速度为每小时V 1千米,下坡时的速度为每小时V 2千米,则他在这段路上、下坡的平均速度是每小时 ( )A .221v v +千米B .2121v v v v +千米C .21212v v v v +千米D .12122v v v v +千米 9. 已知)1(≠--=e an a m e ,则a 等于( ) A.e n m --1 B.e me n --1 C.e ne m --1 D.以上答案都不对. 10.下列算式中正确的是( ) A. ()125100=⨯- B.3310101--= C.33212--= D.0.0016=4106.1⨯二、填空题1. 在下列各式:11,11,2,22+--x x x x x 中,分式的个数为_________ 2. 对于分式42-x x ,当_________x 时,分式有意义,当_________x 时,分式的值为零。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式复习测试卷一.选择题(共16小题)1.人体中红细胞的直径约为0.0000077m,将数0.0000077用科学记数法表示为()A.77×10﹣5B.0.77×10﹣7C.7.7×10﹣6D.7.7×10﹣72.人体血液中每个成熟红细胞的平均直径为0.0000077米,用科学记数法表示为()A.7.7×10﹣5米B.77×10﹣6米C.77×10﹣5米D.7.7×10﹣6米3.下列各式是分式的是()A .B .C.x+1D .4.下列各式:,,,,其中分式共有()A.1个B.2个C.3个D.4个5.下列各式是分式的是()A .B .C .D .﹣6.下列各式从左到右的变形正确的是()A .B .C .D .7.下列各式正确的是()A .=﹣B .=﹣C .=﹣D .=﹣8.把分式方程﹣=2化为整式方程正确的是()A.1﹣x﹣2=2B.1﹣(x﹣2)=2(x﹣1)C.1+(x﹣2)=2(x﹣1)D.1+(x﹣2)=29.若分式无意义,则x的取值是()A.x=2或x=﹣2B.x=2C.x=﹣2D.x=010.若分式的值为0,则x的值为()A.4B.﹣4C.±4D.311.如果把中的x、y都扩大5倍,那么分式的值()A.扩大5倍B.不变C.缩小5倍D.扩大4倍12.将分式中的x、y的值同时扩大2倍,则分式的值()A.扩大2倍B .缩小到原来的C.保持不变D.无法确定13.下列分式是最简分式的是()A .B .C .D .14.下列是最简分式的是()A .B .C .D .15.若分式方程+2=0有增根,则a的值是()A.a=2B.a=C.a=﹣D.a=﹣3.16.关于x 的分式方程的解是负数,则m的取值范围是()A.m>﹣1B.m>﹣1且m≠0C.m≥﹣1D.m≥﹣1且m≠0二.填空题(共6小题)17.在显微镜下一个球形细菌的直径是0.0000053米,则用科学记数法可表示为米.18.数据0.0000032用科学记数法表示为.19.若分式的值为0,则x=.20.若解分式方程﹣=0时产生增根,则a=.21.若关于x的方程有增根,则a=.22.若方程有增根,则m=.三.解答题(共15小题)23.计算:(1)(2)(3)(4)+24.计算:(1)a÷b•(2)8x2y 4(4)﹣x+1 (4)(ab+b2)÷(5)(1+)÷()(6)25.解下列方程:(1)=(2)26.解下列分式为程:(1)(2)27.计算:|﹣3|﹣+﹣.28.计算:29.已知,试求的值.30.先化简,再求值:,其中x=﹣3.31.已知m=,求的值.32.若a+b=1,且a≠0,求(a +)÷的值.33.某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?34.甲、乙两地之间的高速公路全长200千米,比原来国道的长度减少了20千米,高速公路通车后,有一长途汽车的行驶速度提高了45千米/小时,从甲地到乙地的行驶时间减少了一半,求该长途汽车在原来国道上行驶的速度.35.某商店经销一种泰山旅游纪念品,4月份的营业额为2000元,为扩大销售量,5月份该商店对这种纪念品打9折销售,结果销售量增加20件,营业额增加700元.(1)求该种纪念品4月份的销售价格;(2)若4月份销售这种纪念品获利800元,5月份销售这种纪念品获利多少元?36.一项工程,甲,乙两公司合作,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?37.我校为了创建书香校园,去年购进一批图书,经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等.求文学和科普书的单价.分式复习测试卷参考答案与试题解析一.选择题(共16小题)1.人体中红细胞的直径约为0.0000077m,将数0.0000077用科学记数法表示为()A.77×10﹣5B.0.77×10﹣7C.7.7×10﹣6D.7.7×10﹣7【解答】解:0.0000077=7.7×10﹣6,故选:C.2.人体血液中每个成熟红细胞的平均直径为0.0000077米,用科学记数法表示为()A.7.7×10﹣5米B.77×10﹣6米C.77×10﹣5米D.7.7×10﹣6米【解答】解:0.0000077=7.7×10﹣6.故选:D.3.下列各式是分式的是()A .B .C.x+1D .【解答】解:A 、分母中不含有字母,因此它是整式,而不是分式.故本选项错误;B 、的分母中含有字母,因此它是分式.故本选项正确;C、x+1的分母中均不含有字母,因此它是整式,而不是分式.故本选项错误;D 、的分母中均不含有字母,因此它是整式,而不是分式.故本选项错误;故选:B.4.下列各式:,,,,其中分式共有()A.1个B.2个C.3个D.4个【解答】解:,的分母中不含有字母,属于整式.,的分母中含有字母,属于分式.故选:B.5.下列各式是分式的是()A .B .C .D .﹣【解答】解:是整式,故A错误;π是数字,不是字母,故不是分式;是分式,故C正确;﹣是整式,故D错误.故选:C.6.下列各式从左到右的变形正确的是()A .B .C .D .【解答】解:A、当a≠0时,=,错误;B 、==,错误;C 、﹣=,错误;D 、=,正确,故选:D.7.下列各式正确的是()A .=﹣B .=﹣C .=﹣D .=﹣【解答】解:A ,故A错误;B ,故B正确;C ,故C错误;D ,故D错误;故选:B.8.把分式方程﹣=2化为整式方程正确的是()A.1﹣x﹣2=2B.1﹣(x﹣2)=2(x﹣1)C.1+(x﹣2)=2(x﹣1)D.1+(x﹣2)=2【解答】解:方程两边都乘以x﹣1,得:1+(x﹣2)=2(x﹣1),故选:C.9.若分式无意义,则x的取值是()A.x=2或x=﹣2B.x=2C.x=﹣2D.x=0【解答】解:分式无意义,则可知x2﹣4=0,解得x=±2;故选:A.10.若分式的值为0,则x的值为()A.4B.﹣4C.±4D.3【解答】解:∵的值为0,∴|x|﹣4=0且x+4≠0,∴|x|=±4且x≠﹣4,∴x=4,故选:A.11.如果把中的x、y都扩大5倍,那么分式的值()A.扩大5倍B.不变C.缩小5倍D.扩大4倍【解答】解:根据题意得:=,则分式的值不变,故选:B.12.将分式中的x、y的值同时扩大2倍,则分式的值()A.扩大2倍B .缩小到原来的C.保持不变D.无法确定【解答】解:将分式中的x、y的值同时扩大2倍为=,即分式的值扩大2倍,故选:A.13.下列分式是最简分式的是()A .B .C .D .【解答】解:∵不能化简,是最简分式,故选项A符合要求,∵,故选项B不符合要求,∵,故选项C不符合要求,∵,故选项D不符合要求,故选:A.14.下列是最简分式的是()A .B .C .D .【解答】解:A 、,不是最简分式,错误;B 、,不是最简分式,错误;C 、是最简分式,正确;D 、,不是最简分式,错误;故选:C.15.若分式方程+2=0有增根,则a的值是()A.a=2B.a=C.a=﹣D.a=﹣3.【解答】解:去分母得:ax+2a+1+2x2﹣8=0,由分式方程有增根,得到x=2或x=﹣2,把x=2代入整式方程得:4a+1=0,即a=﹣;把x=﹣2代入整式方程,无解,则a 的值为﹣,故选:C.16.关于x 的分式方程的解是负数,则m的取值范围是()A.m>﹣1B.m>﹣1且m≠0C.m≥﹣1D.m≥﹣1且m≠0【解答】解:方程两边同乘(x+1),得m=﹣x﹣1解得x=﹣1﹣m,∵x<0,∴﹣1﹣m<0,解得m>﹣1,又x+1≠0,∴﹣1﹣m+1≠0,∴m≠0,即m>﹣1且m≠0.故选:B.二.填空题(共6小题)17.在显微镜下一个球形细菌的直径是0.0000053米,则用科学记数法可表示为 5.3×10﹣6米.【解答】解:0.0000053米,则用科学记数法可表示为5.3×10﹣6米.故答案为:5.3×10﹣6.18.数据0.0000032用科学记数法表示为 3.2×10﹣6.【解答】解:0.0000032用科学记数法表示为3.2×10﹣6,故答案为:3.2×10﹣6.19.若分式的值为0,则x=2.【解答】解:∵分式的值为0,∴解得x=2.故答案为:2.20.若解分式方程﹣=0时产生增根,则a=﹣8.【解答】解:方程两边同乘x﹣4得:2x+a=0,由题意将x=4代入方程得:8+a=0,解得:a=﹣8.故答案为:﹣8.21.若关于x的方程有增根,则a=1.【解答】解;方程两边都乘(x﹣2),得a=x﹣1﹣3(x﹣2),∵原方程有增根,∴最简公分母x﹣2=0,即x=2,把x=2代入整式方程,得a=1.故答案为1.22.若方程有增根,则m=1.【解答】解:方程两边都乘(x﹣2),得x﹣3=﹣m∵原方程有增根,∴最简公分母x﹣2=0,解得x=2,当x=2,2﹣3=﹣m,解得m=1.故答案为:1..三.解答题(共15小题)23.计算:(1)(2)(3)(4)+【解答】解:(1)==;(2)==;(3)==;(4)+=====.24.计算:(1)a÷b•(2)8x2y 4(3)﹣x+1(4)(ab+b2)÷(5)(1+)÷()(6)【解答】解:(1)a÷b•=a=;(2)8x2y 4=6x3y=12x;(3)﹣x+1===;(4)(ab+b2)÷=b(a+b )=;(5)(1+)÷()==;(6)=====﹣.25.解下列方程:(1)=(2)【解答】解:(1)方程两边乘以(x+1)(2x﹣1)得:2(2x﹣1)=5(x+1),解得:x=﹣7,检验:当x=﹣7时,(x+1)(2x﹣1)≠0,即x=﹣7是原方程的解,所以原方程的解为x=﹣7;(2)方程两边乘以x﹣2得:1﹣x=﹣1﹣2(x﹣2),解得:x=2,检验:当x=2时,x﹣2=0,即x=2不是原方程的解,所以原方程无解.26.解下列分式为程:(1)(2)【解答】解:(1)方程两边乘以x﹣3得:2﹣x﹣1=x﹣3,解得:x=2,检验:当x=2时,x﹣3≠0,即x=2是原方程的解,所以原方程的解为x=2;(2)原方程化为:﹣1=,方程两边乘以(x+1)(x﹣2)得:x(x﹣2)﹣(x+1)(x﹣2)=3,解得:x=﹣1,检验:当x=﹣1时,(x+1)(x﹣2)=0,即x=﹣1不是原方程的解,所以原方程无解.27.计算:|﹣3|﹣+﹣.【解答】解:原式=3﹣2+1﹣9=﹣7.28.计算:【解答】解:原式==2.故答案为2.29.已知,试求的值.【解答】解:由得,a﹣b=ab.∴===﹣5.30.先化简,再求值:,其中x=﹣3.【解答】解:原式=•=,当x=﹣3时,原式==.31.已知m=,求的值.【解答】解:原式=++,=,=,=,=﹣.当m=n时,原式=﹣=.32.若a+b=1,且a≠0,求(a +)÷的值.【解答】解:∵a+b=1,且a≠0,∴(a +)÷===a+b=1.33.某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?【解答】解:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x元,由题意,得=2×+300,解得x=5,经检验x=5是方程的解.答:该种干果的第一次进价是每千克5元;(2)[+﹣600]×9+600×9×80%﹣(3000+9000)=(600+1500﹣600)×9+4320﹣12000=1500×9+4320﹣12000=13500+4320﹣12000=5820(元).答:超市销售这种干果共盈利5820元.34.甲、乙两地之间的高速公路全长200千米,比原来国道的长度减少了20千米,高速公路通车后,有一长途汽车的行驶速度提高了45千米/小时,从甲地到乙地的行驶时间减少了一半,求该长途汽车在原来国道上行驶的速度.【解答】解:设该长途汽车在原来国道上行驶的速度为x千米/时,根据题意得=•,解得:x=55,经检验:x55是原分式方程的解,答:该长途汽车在原来国道上行驶的速度55千米/时.35.某商店经销一种泰山旅游纪念品,4月份的营业额为2000元,为扩大销售量,5月份该商店对这种纪念品打9折销售,结果销售量增加20件,营业额增加700元.(1)求该种纪念品4月份的销售价格;(2)若4月份销售这种纪念品获利800元,5月份销售这种纪念品获利多少元?【解答】解:(1)设该种纪念品4月份的销售价格为x元.根据题意得,20x=1000解之得x=50,经检验x=50是原分式方程的解,且符合实际意义,∴该种纪念品4月份的销售价格是50元;(2)由(1)知4月份销售件数为(件),∴四月份每件盈利(元),5月份销售件数为40+20=60件,且每件售价为50×0.9=45(元),每件比4月份少盈利5元,为20﹣5=15(元),所以5月份销售这种纪念品获利60×15=900(元).36.一项工程,甲,乙两公司合作,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?【解答】解:(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天.根据题意,得+=,解得x=20,经检验知x=20是方程的解且符合题意.1.5x=30故甲公司单独完成此项工程,需20天,乙公司单独完成此项工程,需30天;(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y﹣1500)元,根据题意得12(y+y﹣1500)=102000,解得y=5000,甲公司单独完成此项工程所需的施工费:20×5000=100000(元);乙公司单独完成此项工程所需的施工费:30×(5000﹣1500)=105000(元);故甲公司的施工费较少.37.我校为了创建书香校园,去年购进一批图书,经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等.求文学和科普书的单价.【解答】解:设文学书的单价为x元.根据题意,得=.解得x=8.经检验,x=8是原方程的解,且符合题意.x+4=12,则科普书的单价为12元,答:文学书的单价为8元,科普书的单价为12元.。