水塔水位控制系统PLC设计完整版

合集下载

PLC控制水塔水位

PLC控制水塔水位

PLC控制水塔液位及温度控制程序设计
一:设计目的:
1、用PLC构成水塔液位和温度的自动控制系统。

2、了解PLC在实际生活中的应用。

二:控制要求:
(1)闭合水池低液位开关,驱动电磁阀打开,开始进水同时进行加热和搅拌,使水受热均匀,当水位到达水池高液位时,停止加水,但还可以加热,直到加热到温度为20度到30度之间为止,同时驱动蜂鸣器发出声音提醒。

(2)在蜂鸣器提醒的期间可以打开水塔低液位开关,启动抽水电机向水塔抽水并同时停止加热和搅拌。

直到到达水塔的高液位停止抽水。

三:设计参考:
1、输入:
2、输出:
X1 水塔高液位控制开关S1 Y0 电磁阀
X2 水塔低液位控制开关S2 Y1 抽水电动机
X3 水池高液位控制开关S3 Y2 加热器
X4 水池低液位控制开关S4 Y3 搅拌器
C5 温度传感器S5 Y4 蜂鸣器
四:设计流程图为:
五:水塔控制示意图:
六:硬件连接图如下:
七:由以上的分析可得梯形图如下:
八:从上梯形图可以看出,闭合X4后,一直进行加水并加热,直到水池充满,当热量到达20到30度之间蜂鸣器开始提醒,这之间可以打开水塔的低液位的开关,此时抽水机工作,关闭加热和搅拌,直到到达水塔高液位,整个系统停止工作。

水塔水位plc自动控制

水塔水位plc自动控制

水塔水位plc自动控制用plc控制水位的自动控制原理水塔水位自动控制一、实验目的用PLC 构成水塔水位自动控制系统二、实验设备1)Dais-__ 可编程控制模拟实验仪2)计算机3)连接导线一套三、实验内容1、控制要求:当水塔水位低于水位界(S4 为ON 表示)时,电磁阀Y 打开,于是进水(S4 为OFF 表示水池水位高于水池低水界),当水池水位高于水池低水界(S3 为ON 表示),电磁阀Y 关闭。

1)I/O 分配表:输入输出SB4:X2 L2:Y1SB3:X32)输入下图的梯形图。

3)调试并运行程序,观察结果。

2、控制要求:当水池水位低于SB4 所指示的位置时,启动SB4 按钮,L2 所指示的电机工作,水池进水。

当水池水位达到SB3 所指示的位置时,启动SB3 按钮,使L2 所指示的电机关闭,停止进水;当水塔水位低于SB2 所指示的位置时,启动SB2 按钮,L1 所指示的电机工作,开始水塔进水。

当水塔水位达到SB1 所指示的位置时,启动SB1 按钮,使L1 所指示的电机停止工作。

1)I/O 分配表:输入输出SB1:X0 L1:Y0SB2:X1 L2:Y1SB3:X2SB4:X32)输入下图的梯形图。

用plc控制水位的自动控制原理3)调试并运行程序,观察结果。

四、编程练习1)当水池水位低于水位界时(S4 为ON),电磁阀Y 打开进水(S4 为OFF 表示水池水位高于水池低水界)。

当水位高于水池高水位界(S3 为ON 表示),阀门关闭。

当S4 为OFF 时,且水塔水位低于水塔低位界时,S2 为ON,电动机M 运转,开始抽水。

当水塔水位高于水塔高水位界时,电动机M 停止。

根据上述控制要求编制水塔水位自动控制程序,并上机调试运行。

2)当水池水位低于水位界时(S4 为ON 表示),电磁阀Y 打开进水(Y 为ON)定时器开始定时,2S 以后,如果S4 还不为OFF,那么阀Y 指示灯闪烁,表示阀Y 没有进水,出现故障,S3 为ON 后,阀Y 关闭(Y 为OFF)。

水塔水位控制plc系统设计

水塔水位控制plc系统设计

目录摘要 (2)第一章绪论 (2)1.1可编程控制器的产生 (2)1.2PLC的发展 (4)1.3PLC的基本结构 (5)1.4PLC特点 (9)1.5PLC的工作原理 (10)1.6梯形图程序设计及工作过程分析 (12)第二章水塔水位系统PLC硬件设计 (14)2.1要求独立完成水塔水位控制PLC系统设计与调试。

(14)2.2水塔水位系统控制电路 (15)2.3输入/输出分配 (16)2.3.1 列出水塔水位控制系统PLC的输入/输出接口分配表 (16)2.3.2 水塔水位系统的输入/输出设备 (17)第三章水塔水位控制系统PLC软件设计 (18)3.1工作过程 (18)3.2程序流程图 (19)3.3梯形图 (20)3.4水塔水位控制系统梯形图的对应指令表 (21)第四章设计总结 (22)辞谢 (23)参考文献 (24)水塔水位控制PLC系统设计姓名:XXX[摘要]在工农业生产过程中,经常需要对水位进行测量和控制。

水位控制在日常生活中应用也相当广泛,比如水塔、地下水、水电站等情况下的水位控制。

而水位检测可以有多种实现方法,如机械控制、逻辑电路控制、机电控制等。

本文采用PLC进行主控制,在水箱上安装一个自动测水位装置。

利用水的导电性连续地全天候地测量水位的变化,把测量到的水位变化转换成相应的电信号,主控台应用MCGS组态软件对接收到的信号进行数据处理,完成相应的水位显示、故障报警信息显示、实时曲线和历史曲线的显示,使水位保持在适当的位置。

[关键词]水位控制、三菱PLC fx2n第一章绪论1.1可编程控制器的产生可编程控制器是二十世纪七十年代发展起来的控制设备,是集微处理器、储存器、输入/输出接口与中断于一体的器件,已经被广泛应用于机械制造、冶金、化工、能源、交通等各个行业。

计算机在操作系统、应用软件、通行能力上的飞速发展,大大加强了可编程控制器通信能力,丰富了可编程控制器编程软件和编程技巧,增强了PLC过程控制能力。

水塔供水系统的PLC控制设计

水塔供水系统的PLC控制设计

课程设计课程名称电气控制与PLC课程设计课题名称水塔供水系统的PLC控制设计专业测控技术班级1301学号姓名指导老师刘星平,赖指南,谭梅,沈细群2016年6月17日电气信息学院课程设计任务书课题名称水塔供水系统的PLC控制设计姓名专测控技术与仪器班级学号指导老师刘星平、赖指南等课程设计时间2016年6月6日-2016年6月17日(15、16周)教研室意见意见:同意审核人:汪超林国汉一.任务及要求设计任务:以PLC为核心,设计一个水塔供水系统的PLC控制系统,为此要求完成以下设计任务:1.根据系统的基本结构、工艺过程和控制要求,确定控制方案。

2.配置电器元件,选择PLC型号。

3.绘制PLC控制系统线路原理图和PLC I/O接线图。

设计PLC梯形图程序,列出指令程序清单。

4.上机调试程序。

5.上位机组态监控的设计(可选项)6.编写设计说明书。

设计要求(1)所选控制方案应合理,所设计的控制系统应能够满足控制对象的工艺要求,并且技术先进,安全可靠,操作方便。

(2)所绘制的设计图纸符合国家标准局颁布的GB4728-84《电气图用图形符号》、GB6988-87《电气制图》和GB7159-87《电气技术中的文字符号制定通则》的有关规定。

(3)所编写的设计说明书应语句通顺,用词准确,层次清楚,条理分明,重点突出。

二.进度安排1.第一周星期一:布置课程设计任务,讲解设计思路和要求,查阅设计资料。

2.第一周星期二~星期四:详细了解控制系统的基本组成结构、工艺过程和控制要求。

确定控制方案。

配置电器元件,选择PLC型号。

绘制控制系统的控制线路原理图和控制系统的PLC I/O接线图。

设计PLC梯形图程序,列出指令程序清单。

4.第一周星期五:上机调试程序。

5.第二周星期二~星期四:编写设计说明书。

6.第二周星期五:答辩。

三.参考资料[1] 刘星平.PLC原理及工程应用[M].北京:中国电力出版社,2014年。

[2]廖常初.S7-200 PLC编程及应用[M].北京:机械工业出版社,2014年。

基于PLC的水塔水位控制系统设计

基于PLC的水塔水位控制系统设计

基于PLC的水塔水位控制系统设计1控制要求1)因为电动机的功率较大,为减少启动电流,电动机采用定子串电阻降压启动,每2机组开启时间间隔5s。

2)为防止一台电动机因长期闲置而产生锈蚀,备用电动机(如未设置系统默认为5号)可通过预设开关随意的设置。

3)每台电机设置手动和制动两种方式控制,在自动控制状态时,不论设置哪一台电动机作为备用,其余四台都要按顺序启动。

4)在自动控制状态下,如果由于故障某台电动机组停止,而水塔水位又为到达高水位时,备用电动机组自动降压启动;同时对发生故障的电动机组根据故障性质发出停机警报信号,提请维护人员及时排除故障。

当水塔水位达到高水位时,高液位传感器发出停机信号,各个电动机组停止运转。

当水塔水位低于低水位时,低液位传感器自动发出开机信号,系统自动按顺序降压启动。

5)每台电动机都有运行状态指示灯(运行,备用和警报)。

6)液位传感器要有状态指示灯。

2 编程元件的地址分配表水塔水位控制系统PLC的输入/输出接口分配表如下表。

表1 I/O地址分配表3水塔水位控制系统的PLC外部接线如图1所示。

图1 PLC控制外部接线图4水塔水位系统控制程序4.1程序流程图水塔水位控制系统的PLC控制流程图,根据设计要求,如图2所示。

图2 水塔水位控制系统流程图4.2梯形图程序水塔水位控制系统的梯形图程序见附录。

5系统运行调试及S7-PLCSIM仿真当电机均为自动运行模式,电机1为备用电机且无故障电机时,输入低液位传感器信号则电机2、3、4、5依次起动,每两个机组开启时间相隔5s。

低液位传感器指示灯灯亮。

具体仿真运行如图3所示。

图3电机无故障时自动起动仿真图当电机1故障,电机2为手动模式,电机3备用时,输入低液位信号电机3、4、5依次自动起动,按下电机2的手动开按钮时,电机2起动。

具体仿真运行如图4所示。

图4 有电机故障时运行仿真图当输入高液位信号时,所有电机停止,高液位指示灯变亮。

具体的仿真运行如图5所示。

水塔水位的PLC控制设计

水塔水位的PLC控制设计

水塔水位的PLC控制设计院系名称:机电学院班级:机自074学号:200700314416指导教师:靳继勇姓名:石亚罕日期:2010 年9 月16一、目录一、目录 (2)二、前言 (3)三、设计任务书 (4)四、控制方案的选择 (6)6、硬件的选择 (6)(1)确定Plc的cpu的型号 (6)(2)液位传感器的选用 (6)7、信号指示的设计 (6)8、采用顺序启动 (6)五、输入输出的分配 (7)六、PLC接线图 (9)七、主线路原理图 (10)八、控制电路 (11)九、操作面板 (12)十、系统操作说明 (13)十一、系统的调试说明以及注意事项 (13)10、调试说明 (13)11、注意事项 (14)十二、参考书目 (14)十三、附录1:系统梯形图 (15)十四、附录2:主程序 (19)十五、课设小结 (26)二、前言在工业控制过程中, 继电接触器控制系统因其没有运算、处理、通讯等功能, 而不能完成复杂的控制方式, 20 世纪60 年代PLC 控制系统应运而生, 它综合了计算机技术、自动控制技术和通信技术等现代科技, 是当今工业自动控制的标准设备之一; 20 世纪70年代以后, 又相继出现了集散控制系统DCS、现场总线控制系统FCS, 现在以及今后很长一段时间内三种控制方式将并存。

可编程序控制器( P rogrammab le LogicCon t ro ller 简称PLC) 是一种专为在工业环境应用而设计的数字运算电子系统, 它将计算机技术、自动控制技术和通讯技术融为一体, 成为实现单机、车间、工厂自动化的核心设备, 具有可靠性高、抗干扰能力强、组合灵活、编程简单、维修方便等诸多优点。

随着技术的进步, 其控制功能由简单的逻辑控制、顺序控制发展为复杂的连续控制和过程控制, 成为自动化领域的三大技术支柱(PLC、机器人、CADö CAM ) 之一。

其主要应用的技术领域有: 顺序控制、过程控制、位置控制、生产过程的监控和管理、结合网络技术等。

水塔水位控制PLC系统设计

水塔水位控制PLC系统设计

轻工职业技术学院PLC课程设计名称:水塔水位控制PLC课程设计院系:机电工程系班级:普高11机电(2)班姓名:涛目录1.课程设计目的 (3)2.课程设计题目和要求 (3)2.1设计题目 (3)2.2控制要求 (3)3.设计容 (3)3.1PLC的构成 (3)3.2PLC的工作原理 (4)3.3梯形图程序设计及工作过程分析 (6)3.4水塔水位控制系统PLC软件设计 (7)3.41工作过程 (7)3.42程序流程图 (8)3.43梯形图 (9)3.44水塔水位控制系统梯形图的对应指令表 (10)4.设计总结 (11)参考文献 (11)1.课程设计目的(1)通过对工程实例的模拟,熟练的掌握PLC的编程和程序调试方法。

(2)进一步熟悉PLC的I/O连接。

(3)熟悉水塔水位控制的编程方法。

2.课程设计题目和要求2.1设计题目水塔水位控制系统2.2控制要求1.因电动机功率较大,为减少起动电流,电动机采用定子串电阻降压启动,并要错开起动时间(间隔时间为5s)。

2.为防止某一台电动机因长期闲置而产生锈蚀,备用电动机可通过预置开关随意设置。

如果未设置备用电动机组号,则系统默认为5号电动机组为备用。

3.每台电动机都有手动和自动两种控制状态。

在自动控制状态时,不论设置哪一台电动机作为备用,其余的4台电动机都要按顺序逐台起动。

4.在自动控制状态下,如果由于故障使某台电动机组停车,而水塔水位又未达到高水位时,备用电动机组自动降压起动;同时对发生故障的电动机组根据故障性质发出停机报警信号,提醒维护人员及时排除故障。

当水塔水位达到高水位时,高液位传感器发出停机信号,各个电动机组停止运行。

当水塔水位低于低水位时,低液位传感器自动发出开机信号,系统自动按顺序降压起动。

5.因水泵房距离水塔较远,每台电动机都有就地操作按钮和远程操作按钮。

6.每台电动机都有运行状态指示灯(运行、备用和故障)。

7.液位传感器要有位置状态指示灯。

3主要容3.1 PLC的构成根据物理结构形式不同,PLC分为整体式和组合式(模块式)两种。

《PLC》水塔水位的模拟控制实验

《PLC》水塔水位的模拟控制实验

《PLC》水塔水位的模拟控制实验一、实验目的1.学会用PLC构成水塔水位的自动控制系统2.熟练掌握PLC编程软件的编程方法和应用二、实验设备三、面板图1四、控制要求当水池水位低于水池低水位界(SB4为ON表示),阀L2打开进水(L2为ON)定时器开始定时,4秒后,如果SB4还不为OFF,那么阀L2指示灯闪烁,表示阀L2没有进水,出现故障,SB3为ON后,阀L2关闭(L2为OFF)。

当SB4为OFF时,且水塔水位低于水塔低水位界时SB2为ON,电机L1运转抽水。

当水塔水位高于水塔水位界时电机L1停止。

五、端口分配表2六、操作步骤1、按照I/O端口分配表或接线图完成PLC与实验模块之间的接线,将PLC的DI 输入端中的1M、2M公共端接到公共端的M端,将PLC的DO输出端中的1L、2L、3L公共端接到公共端的L+端,实验挂箱的COM端接到公共端的M端。

+24V接到公共端的L+端,认真检查,确保正确无误。

2、打开示例程序或用户自己编写的控制程序,进行编译,有错误时根据提示信息修改,直至无误,用PC/PPI通讯编程电缆连接计算机串口与PLC通讯口,打开PLC主机电源开关,下载程序至PLC中,下载完毕后将PLC的“RUN/STOP”开关拨至“RUN”状态。

3、按下按钮SB4为ON后,阀L2打开进水(L2为ON)。

定时器开始定时,4秒后,如果SB4还不为OFF,那么阀L2指示灯闪烁,表示阀L2没有进水,出现故障。

4、按下按钮SB3为ON后,阀L2关闭(L2为OFF)。

5、松开按钮SB4(SB4为OFF)时,按下SB2(SB2为ON)即水塔水位低于水塔低水位界时,电机L1运转抽水。

6、按下按钮L1电机L1停止。

七、实验总结1.了解并掌握水塔水位模拟控制的的工作原理。

2.能熟练运用编制和调试PLC程序的方法3。

基于PLC的水塔水位控制系统设计

基于PLC的水塔水位控制系统设计

毕业论文(设计)基于PLC的供水系统设计系部自动控制工程系专业名称电气自动化技术班级姓名学号2011年10月27日基于PLC的供水系统设计摘要随着社会经济的迅速发展,人们对供水质量和供水系统可靠性的要求不断提高:再加上目前能源紧缺,利用先进的自动化技术、控制技术以及通讯技术,设计高性能、搞节能、能适应不同领域的恒压供水系统已成为必然趋势。

本设计是针对居民生活用水而设计的.由PLC、变频器、压力传感器等组成控制系统,调节水泵的输出流量。

电动机泵组由四台水泵并联而成,由变频器或工频电网供电,根据供水系统出口水压和流量来控制变频器电动机泵组的速度和切换,是系统运行在最合理状态,保证按需供水.本设计介绍了采用PLC控制的变频调速供水系统,由PLC进行逻辑控制,由变频器进行压力调节再经过PID运算,通过PLC控制变频于工频切换,实现闭环自动调节恒压变量供水.关键词:变频调速;恒压供水;PID调节;PLC;变频器The design of water supply system based on PLCAbstractWith the rapid development of social economy,people water quality and water supply to demand for improved system reliability:coupled with the current energy shortage,the use of advanced automation technology, control technology and communication technology, design high—performance, engage in energy conservation,to adapt Water Supply System in different fields has become an inevitable trend。

基于PLC的水塔水位控制系统设计

基于PLC的水塔水位控制系统设计

目录1.结论 (3)1.1 可编程控制器的产生 (3)1.2 PLC的特点 (3)1.3 PLC的基本结构 (3)1.4 PLC的工作方式 (4)1.5 PLC的发展 (5)2.水塔水位控制系统PLC硬件设计 (6)2.1水塔水位控制系统要求 (6)2.2水塔水位控制系统主电路 (6)2.3I/O口的分配 (7)3.水塔水位控制系统PLC的软件设计 (8)3.1 程序流程图 (8)3.2 梯形图 (9)4.设计总结 (11)参与文献 (11)第1章绪论1.1可编程控制器的产生可编程控制器(Programmable Controller),也称可编程逻辑控制器(Programmable Logic Controller),是以微处理器为核心的工业自动控制通用装置,是计算机家族的一名成员,简称PC,为了避免与个人电脑(也简称为PC)相混淆,通常将可编程控制器简称为PLC。

可编程控制器的产生与继电器—接触器控制系统有很大的关系。

继电器—接触器控制已有上百年的历史,它是一种用弱电信号控制强电信号的电磁开关,具有结构简单、电路直观、价格低廉、容易操作、易于维修的优点。

此种控制系统布局固定,按预先规定的时间、条件、顺序工作。

对于工作模式固定、要求比较简单的场合非常适用,至今仍有广泛的用途。

1.2 PLC的特点一、可靠性高,抗干扰能力强二、编程简单,易于掌握三、组合灵活,使用方便四、功能强,通用性好五、开发周期短,成功率高六、体积小,重量轻,功耗低1.3 PLC的基本结构PLC实质是一种专用于工业控制的计算机,其硬件结构基本上与微型计算机相同,如图1-1所示:一、中央处理单元(CPU)中央处理单元(CPU)是PLC的控制中枢。

它按照PLC系统程序赋予的功能接收并存储从编程器键入的用户程序和数据;检查电源、存储器、I/O以及警戒定时器的状态,并能诊断用户程序中的语法错误。

当PLC投入运行时,首先它以扫描的方式接收现场各输入装置的状二、存储器存放系统软件的存储器称为系统程序存储器。

水塔水位PLC自动控制系统程序

水塔水位PLC自动控制系统程序
M205
高速
Y015 低速输出 口
* (5)故障指示部分 T0 X005 74 用于报警 主系统停 止键
M107 进水阀故 障标志
M107
进水阀故 障标志
M107 78
进水阀故 障标志
T1 T2ຫໍສະໝຸດ K5T2 83 T1K5
Y005 水泵故障 指示灯
T3 88
X005
主系统停 止键
M106 水泵故障 标志
水塔水位PLC自动控制系统(应电2班)
Y001 水泵输出
M201
M205 M203 低速
手动水塔 高速 注水
K20 T6 T6 X007
水塔降速 位
M205 高速
M205
高速
X007
水塔降速 位
M204 低速
M203
低速
Y016 DI速输出 口
M204
低速
X002 T3
水塔下限 位
K50
水塔水位PLC自动控制系统(应电2班)
M101
M101
X003
水池上限 位
M102 水池自动 注水
M102
水池自动 注水
X004
水池下限 位
K30 T0 用于报警
X002
水塔下限 位
M103 水塔缺水 标志位
M103
X001
X004 M104 自动注水 (水塔)
水塔缺水 水塔上限 水池下限 标志位 位 位
M104
自动注水 (水塔)
X011
* (1)主电源控制 X000 X005 M107 M106 0 主控制系 主系统停 进水阀故 水泵故障 统启动键 止键 障标志 标志
水塔水位PLC自动控制系统(应电2班)

PLC-水塔水位自动控制-

PLC-水塔水位自动控制-

(2)常数
在编程中经常会使用常数。常数数据长度可为字节、字和双字, 在机器内部旳数据都以二进制存储,但常数旳书写能够用二进制、 十进制、十六进制、ASCII码或浮点数(实数)等多种形式。几种 常数形式分别如表3.9所示。
CPU旳存储区
1. 输入映像寄存器(I)(I0.0~I15.7),每个扫描周期采样。 2.输出映像寄存器(Q)(Q0.0~Q15.7),每个扫描周期末尾 3. 变量存储器(V) 4.位存储器(M)区(M0.0~M31.7) 5.定时器(T)存储器区 6.计数器(C)存储器区 7.高速计数器(HC) 8.累加器(AC) 9. 特殊存储器(SM)标志位 如SM0.0,SM0.1,SM0.4,SM0.5
CPU旳存储区
10.局部存储器(L)区 11.模拟量输入映像寄存器(AI) 12.模拟量输出映像寄存器(AQ) 13.顺序控制继电器(S)
三、寻址方式
1. 直接寻址方式
按位寻址 存储区内另有某些元件是具有一定功能
旳硬件,因为元件数量极少,所以不用 指出元件所在存储区域旳字节,而是直 接指出它旳编号。 按字节、字或双字寻址
返回本节
PLC编程语言旳国际原则
1.顺序功能图 2.梯形图 3.功能块图 4.语句表 5. 其他编程语言
图3.4 顺序流程图
1. 顺序功能图
T0 S1
T1 S2
S T2 S3
S
T3 T8
S8 S
T9
2. 梯形图(LAD)
图3.2 梯形图举例
3. 功能块图(FBD)
功能块图(FBD)旳图形构造与数字电子电路旳构 造极为相同,如下图3.3所示。
必须指定存储器标识符、字节地址和位号,如 图3.8 所示。图3.8中MSB表达最高位,LSB表

水塔供水的PLC控制系统设计”

水塔供水的PLC控制系统设计”

某居民住宅小区内生活水塔,高40米,由设在水塔附近的三台水泵为其供水。

水泵电动机功率为33KW,额定电压380V。

水塔正常水位变化2.15M,由安装在水箱内的上、下水位开关S1、S2进行控制。

为反映各水泵工作是否正常,在每台水泵的压力出口处设置压力继电器SP1—SP3,将其常开触点作为PLC输入,检测出水压力是否正常。

具体控制要求如下:(1)三台电动机均为降压启动,以减小启动电流的冲击,启动时间为t1。

(2)电动机启动时间错开,上台电动机全压运行t2后,下一台台才能启动(3)三台电动机均设置有过载保护(4)三台水泵正常运行时采用两用一备,为防止备用泵长期闲置锈蚀,要求备用机组可用按钮任意切换。

(5)设手动/自动转换开关SAC。

手动时,可由操作者分别启动每一台水泵,各水泵不进行联动;自动时,由上、下水位开关对水泵的起停自动控制,且启动时要联动。

(6)若运行中任一台水泵出现故障,备用机组立即投入运行。

设计任务:1.具体设计内容包括:(1)系统设计方案的确定及说明(2)PLC选型及I/O分配(3)主电路设计及绘制(4)PLC硬件系统(5)设计梯形图并进行功能说明,实现所要求的功能2.应完成的技术资料有:(1)PLC控制系统主电路及电气原理图(2)PLC控制程序及其说明一份(3)PLC外部接线图一份(4)主要设备、材料清单一份由于上传不了太多的图片(就3张),先把第二张的梯形图图片传在这里(此张图片里我已把端口分配好,在图片右边蓝框里),其他图片我把它传到了我的空间“水塔控制梯形图”里,并每张图片的梯形图都背上了解释(如果不是太懂的话,可以给我信息,我一般晚上8点在线),在此选用的是西门子的S7-200 PLC,由于电机运行的主电路很容易找到(不过如果你什么都不懂的话,可能会沸点时间,不过还是可以解决的),在此没有给出,而对于报告什么的这我不能帮你解决,这只能靠你解决了,如果有什么疑问,可给我留言或给我信息)在此现将STL语句表贴在下面,然后是梯形图:STL;Network 1LD SM0.1S M0.3, 1Network 2LD I0.3= M0.2Network 3LDN I0.3A I1.1LD M0.0AN I0.3 OLDAN I1.0O M0.2= M0.0Network 4LD M0.0AN I0.3A T37LD Q0.0AN I0.3 OLDAN I1.0LD M0.0A I0.3A T37A I0.0OLD= Q0.0Network 5LD I0.0LDN I0.3A M0.0 OLDTON T37, +10Network 6LDN I0.3A T38A T39LD Q0.1AN I0.3 OLDAN I1.0LD I0.3A T39A I0.1OLD= Q0.1Network 7LDN I0.3A Q0.0 TON T38, +30Network 8LD I0.1LDN I0.3A T38OLDTON T39, +10Network 9LD SM0.5 AN I0.3LD I0.3CTU C0, 20Network 10LD Q0.0A Q0.1= M0.1 Network 11LD M0.1R M0.3, 1 Network 12LD C0A M0.3AN I0.3AN Q0.2= Q0.3 Network 13LDN I0.3A Q0.3O I0.2TON T40, +10Network 14LDN I0.3A T40LD Q0.2AN I0.3AN Q0.0AN Q0.1 OLDAN I1.0LD I0.3A T40A I0.2LD I0.4A T41OLDOLD= Q0.2Network 15LD I0.4TON T41, +10 梯形图:。

任务二 水塔水位的PLC控制

任务二  水塔水位的PLC控制

低速定时器
OUT T
低速累计定时器 OUT ST
0.1~3276.7
ENO:=OUT_T(EN,C oil,Value);
普通定时器 累计定时器
OUTH T OUTH ST
0.01~327.67
高速定时器
OUTHS T
高速累计定时器 OUTHS ST
0.001~32.767
ENO:=OUTH(EN,Co il,Value);
11
项目一 任务二 水塔水位的PLC控制
FX5UPLC定 时器的分类
通用定时器 累计定时器
低速定时器
普通定时器
高速定时器
低速累计定 时器
普通累计定 时器
高速累计定 时器
12
项目一 任务二 水塔水位的PLC控制
表1-14 定时器输出指令使用要素
名称
助记符 定时范围(s)
梯形图表示
FBD/LD表示
ST表示
编号
功能描述
SM400 SM401 SM402
SM0 SM52 SM409 SM410 SM412 SM471030
SM8000 SM8001 SM8002 SM8004 SM8005 SM8011 SM8012 SM801231 SM8-022 SM801249 SM802304
运行监视,PLC运行时为ON 运行监视,PLC运行时为OFF 初始化脉冲,仅在PLC运行开始时ON一个扫描周期 发生出错,OFF:无出错,ON:有出错 PLC内置电池电压过低时为ON 10ms时钟脉冲,通、断各5ms 100ms时钟脉冲,通、断各50ms 1借s位时标钟志脉位冲:,减通、运断算各结0果.5为s 零时置位 2进s时位钟标脉志冲位,:通加、运断算各有1进s 位或结果溢出时置位 1指mi令n时执钟行脉完冲成,标通志、位断:各执3行0s完成为ON 零为标ON志时位禁:止加全减部运输算出结果为零时置位

(完整版)基于PLC的水塔水位控制系统毕业设计论文

(完整版)基于PLC的水塔水位控制系统毕业设计论文
可以提高供水系统的稳定性和可靠性,同时系统具有良好的节能性。
第2章可编程器简介
2.1可编程控制器的产生
可编程控制器是二十世纪七十年代发展起来的控制设备,是集微处理器、储存器、输入输出接口与中断于一体的器件,已经被广泛应用于机械制造、冶金、化工、能源、交通等各个行业。计算机在操作系统、应用软件、通行能力上的飞速发展,大大加强了可编程控制器通信能力,丰富了可编程控制器编程软件和编程技巧,增强了PLC过程控制能力。因此,无论是单机还是多机控制、是流水线控制还是过程控制,都可以采用可编程控制器,推广和普及可编程控制器的使用技术,对提高我国工业自动化生产及生产效率都有十分重要的意义。
3.2.1设计分析15
3.2.2可行性试验16
3.2.3可行性分析17
3.3水位闭环控制系统17
第4章PLC中PID控制器的实现19
4.1 PID算法19
4.2 PID应用20
4.3 PLC实现PID控制的方式20
4.4 PLC PID控制器的实现21
4.5 PID指令及回路表23
第5章 系统硬件开发设计24
7.1本课题研究结论35
7.2课题存在问题38
第1章引言
在工业生产中,电流、电压、温度、压力、液位、流量、和开关量等都是常用的主要被控参数。其中,水位控制越来越重要。在社会经济飞速发展的今天,水在人们正常生活和生产中起着越来越重要的作用。一旦断了水,轻则给人民生活带来极大的不便,重则可能造成严重的生产事故及损失。因此给水工程往往成为高层建筑或工矿企业中最重要的基础设施之一。任何时候都能提供足够的水量、平稳的水压、合格的水质是对给水系统提出的基本要求。就目前而言,多数工业、生活供水系统都采用水塔、层顶水箱等作为基本储水设备,由一级或二级水泵从地下市政水管补给。传统的控制方式存在控制精度低、能耗大、可靠性差等缺点。可编程控制器(PLC)是根据顺序逻辑控制的需要而发展起来的,是专门为工业环境应用而设计的数字运算操作的电子装置。鉴于其种种优点,目前水位控制的方式被PLC控制取代。同时,又有PID控制技术的发展,因此,如何建立一个可靠安全、又易于维护的给水系统是值得我们研究的课题。

(完整版)水塔水位的PLC控制的设计毕业设计论文

(完整版)水塔水位的PLC控制的设计毕业设计论文

摘要设计和实现了一种采用可编程序控制器为主控制机的供水控制系统。

该控制系统是在传统水塔供水的基础上,加入了PLC、变频器等器件组成,能够实现水塔水位的供水。

详细论述了系统硬件结构、操作流程和控制方法,以及各器件之间的协调控制方法,实现了对水塔水位的自动控制,提高了供水质量。

关键词:PLC(Programmable Logic Controller)目录一概述 (1)二水塔供水自动控制系统方案设计 (2)设计方案 (2)三水塔水位自动控制系统设计 (2)1水泵电动机控制电路的设计 (2)2水位传感器的选择 (4)四水塔水位自动控制系统的组成 (6)1、系统构成及其控制要求 (6)2系统框图 (7)五 PLC的设计 (7)1可编程序控制器(PLC)简介 (7)2PLC工作原理 (8)3PLC的编程语言--梯形图 (9)4SYSMAC-C系列P型机概述 (10)5水塔水位自动控制系统的软件设计 (11)六结束语(系统总结分析) (17)1系统的优点 (17)2结束语 (17)参考文献 (19)致谢 (20)水塔水位的PLC控制系统设计一概述我国的水工业科技发展较快,与国际先进水平的差距正在不断缩小,水工业科技体系已初步形成,拥有一支从事水工业基础科学研究、应用研究、产品研制和工程化产业化开发的科技队伍。

但是,在水工业科技领域普遍存在着实用性差、转化率低的情况。

这已成为制约我国水工业产业化发展的关键。

在水工业科技产业化大潮到来之际,认真分析我国水工业科技发展历程,总结我国水工业科技的特点和特长是寻找水工业产业化突破口的关键。

目前,我国的供水自动化系统发展已初有成效。

供水自动化系统主要包括水厂自动化和供水管网调度自动化两个方面。

我国供水行业是推动水科技产业化的龙头。

给水行业是城市基础设施投资的主要方向之一。

在体制上,供水企业体制的变革已成为市场化发展的必然;在技术上,供水行业则面临着关键给水装备国产化、工艺技术成套设备化、自动控制现代化的迫切的技术要求。

水塔水位控制系统--plc课程设计报告

水塔水位控制系统--plc课程设计报告

《电气控制及PLC》课程设计姓名:班级:学号:成绩:本课程设计是电气工程专业教学计划中不可缺少的一个综合性教学环节,是实现理论与实践相结合的重要手段。

它的主要目的是培养学生综合运用本课程所学知识和技能去分析和解决本课程范围内的一般工程技术问题,建立正确的设计思想,掌握工程设计的一般程序和方法。

通过课程设计使学生得到工程知识和工程技能的综合训练,获得应用本课程的知识和技术去解决工程实际问题的能力。

一、工艺流程及分析 (2)二、设备选型 (5)三、输入输出端口分配 (5)四、输入输出硬件接线图 (5)五、程序设计 (5)六、总结 (8)一、工艺流程及分析1. 水塔水位控制系统:2. 水塔水位控制系统的工作方式当水池水位低于低水位界限时(S4为OFF时表示),报警灯2报警,阀门Y 打开给水池注水;10S后,如果S4继续保持OFF状态,表示阀门Y没有进水,出现了故障,报警灯2继续报警;如果S4为ON状态,表示水池水位开始升高,报警灯2解除。

当水塔水位低于低水位界限时(S2为OFF时表示),报警灯1报警,水泵M 开始从水池中抽水;10S后,如果S2继续保持OFF状态,表示水泵M没有抽水,出现了故障,报警灯1继续报警;如果S2为ON状态,表示水塔水位开始升高,报警灯1解除。

当水塔水位低于S2时,水泵M运行并开始抽水;直至水位到达高水位界限S1。

由于水塔要供水,所以水位会下降,当水塔水位介于S1和S2之间,不需要水泵M运行,避免水泵频繁启停。

当水塔水位再一次低于S2时,水泵M运行并开始抽水,直至水位到达高水位界限S1时,水泵M停止运行。

当水池水位低于S4时,阀门Y运行并开始放水;直至水位到达高水位界限S3。

由于水塔要抽水,所以水位会下降,当水塔水位介于S3和S4之间,不需要阀门Y打开,避免阀门频繁开关。

当水池水位再一次低于S4时,阀门Y打开并开始放水,直至水位到达高水位界限S3时,阀门Y关闭。

3.水塔供水情况分析经过对水塔水位控制系统的工作方式的综合分析,一次完整的水塔供水情况分为以下几种:(1). 水池水位低于S4,水塔水位低于S2时,阀门Y打开,水泵M关闭;(2). 水池水位低于S3高于S4,水塔水位低于S2时,阀门Y打开,水泵M 关闭;(3). 水池水位高于S3,水塔水位低于S2时,阀门Y关闭,水泵M打开;(4). 水池水位高于S3,水塔水位低于S1高于S2时,阀门Y关闭,水泵M 打开;(5). 水池水位高于S3,水塔水位高于S1时,阀门Y关闭,水泵M关闭;(6). 水池水位低于S3高于S4,水塔水位高于S1时,阀门Y关闭,水泵M 关闭;(7). 水池水位低于S4,水塔水位高于S1时,阀门Y打开,水泵M关闭;(8). 水池水位低于S3高于S4,水塔水位低于S1高于S2时,阀门Y关闭,水泵M关闭;(9). 水池水位低于S3高于S4,水塔水位低于S2时,阀门Y关闭,水泵M 打开。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水塔水位控制系统P L C
设计
HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】
水塔水位控制系统PLC设计
1、水塔水位控制系统PLC硬件设计
、水塔水位控制系统设计要求
水塔水位控制装置如图1-1所示
控制装置
水塔水位的工作方式:
当水池液位低于下限液位开关S4,S4此时为
ON,水阀Y打开(Y为ON),开始往水池里注水,
定时器开始定时,4秒以后,若水池液位没有超过
水池下限液位开关时(S4还不为OFF),则系统发
出报警(阀Y指示灯闪烁),表示阀Y没有进水,出现故障;若系统正常,此时水
池下限液位开关S4为OFF,表示水位高于下限水位。

当水位液面高于上限水位,则
S3为ON,阀Y关闭(Y为OFF)。

当S4为OFF时,且水塔水位低于水塔下限水位时(水塔下限水位开关S2为
ON),电机M开始工作,向水塔供水,当S2为OFF时,表示水塔水位高于水塔下
限水位。

当水塔液面高于水塔上限水位时(水塔上限水位开关S1为OFF),电机M
停止。

(注:当水塔水位低于下限水位,同时水池水位也低于下限水位时,水泵不
能启动)
水塔水位控制系统主电路
水塔水位控制系统主电路如图1-2所示:
图1-2 水塔水位控制系统主电路
、I/O接口分配
水塔水位控制系统PLC的I/O接口分配如表1-1所示。

这是一个单体控制小系统,没有特殊的控制要求,它有5个开关量,开关量输
出触点数有8个,输入、输出触点数共有13个,只需选用一般中小型控制器即
可。

据此,可以对输入、输出点作出地址分配,水塔水位控制系统的I/O接线图如
图1-3所示。

图1-3 水塔水位控制系统的I/O接线图
2、水塔水位控制系统PLC软件设计
程序流程图
水塔水位控制系统的PLC控制流程图,根据设计要求,控制流程图如图2-1所示。

图2-1 水塔水位控制系统的PLC控制流程图
梯形图程序设计及工作过程分析
梯形图编程语言是一种图形化编程语言,它沿用了传统的继电接触器控制中的触点、线圈、串并联等术语和图形符号,与传统的继电器控制原理电路图非常相似,但又加入了许多功能强而又使用灵活的指令,它比较直观、形象,对于那些熟悉继电器一接触器控制系统的人来说,易被接受。

继电器梯形图多半适用于比较简单的控制功能的编程,绝大多数PLC用户都首选使用梯形图编程。

梯形图编程的一般规则有:
(1)梯形图按自上而下、从左到右的顺序排列。

每一个逻辑行起始于左母线然后是触点的各种连接,最后是线圈或线圈与右母线相连,整个图形呈阶梯形。

梯形图所使用的元件编号地址必须在所使用PLC的有效范围内。

(2)梯形图是PLC形象化的编程方式,其左右两侧母线并不接任何电源,因而图中各支路也没有真实的电流流过。

但为了读图方便,常用“有电流”、“得电”等来形象地描述用户程序解算中满足输出线圈的动作条件,它仅仅是概念上虚拟的“电流”,而且认为它只能由左向右单方向流;层次的改变也只能自上而下。

(3)梯形图中的继电器实质上是变量存储器中的位触发器,相应某位触发器为“1态”,表示该继电器线圈通电,其动合触点闭合,动断触点打开,反之为“O 态”。

梯形图中继电器的线圈又是广义的,除了输出继电器、内部继电器线圈外,还包括定时器、计数器、移位寄存器、状态器等的线圈以及各种比较、运算的结果。

(4)梯形图中信息流程从左到右,继电器线圈应与右母线直接相连,线圈的右边不能有触点,而左边必须有触点。

(5)继电器线圈在一个程序中不能重复使用:而继电器的触点,编程中可以重复使用,且使用次数不受限制。

(6)PLC在解算用户逻辑时,是按照梯形图由上而下、从左到右的先后顺序逐步进行的,即按扫描方式顺序执行程序,不存在几条并列支路同时动作,这在设计梯形图时,可以减少许多有约束关系的联锁电路,从而使电路设计大大简化。

所以,由梯形图编写指令程序时,应遵循自上而下、从左到右的顺序,梯形图中的每个符号对应于一条指令,一条指令为一个步序。

当PLC运行时,用户程序中有众多的操作需要去执行,但CPU是不能同时去执行多个操作的,它只能按分时操作原理每一时刻执行一个操作。

这种分时操作的过程称为CPU对程序的扫描。

扫描从0000号存储地址所存放的第一条用户程序开始,在无中断或跳转控制的情况下,按存储地址号递增顺序逐条扫描用户程序,也就是顺序逐条执行用户程序,直到程序结束。

每扫描完一次程序就构成一个扫描周期,然后再从头开始扫描,并周而复始。

根据控制要求,设计的梯形图程序如图2-2所示。

水塔水位控制系统梯形图
图2-2 水塔水位控制系统梯形图
工作过程
设水塔、水池初始状态都为空着的,4个液位指示灯全亮。

当执行程序时,扫描到水池为液位低于水池下限液位时,电磁阀打开,开始往水池里进水,如果进水超过4秒,而水池液位没有超过水池下限位,说明系统出现故障,系统就会自动报警。

若4秒之后水池液位按预定的超过水池下限位,说明系统在正常的工作,水池下限位的指示灯灭,此时,水池的液位已经超过了下限位了,系统检测到此信号时,由于水塔液位低于水塔水位下限,水泵开始工作,向水塔供水,当水池的液位
超过水池上限液位时,水池上限指示灯灭,电磁阀就关闭,但是水塔现在还没有装满,可此时水塔液位已经超过水塔下限水位,则水塔下限指示灯灭,水泵继续工作,在水池抽水向水塔供水,水塔抽满时,水塔液位超过水塔上限,水塔上限指示灯灭,但刚刚给水塔供水的时候,水泵已经把水池的水抽走了,此时水塔液位已经低于水池上限,水池上限指示灯亮。

此次给水塔供水完成。

程序段1:
程序段2:
程序段3:
程序段4:
程序段5:
程序段6:
程序段7:
程序段8:
程序段9:。

相关文档
最新文档