安徽中考数学专题复习-实践操作
中考数学专题复习《设计方案》测试卷-附带答案
中考数学专题复习《设计方案》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一选择题1.(2023九上·菏泽月考)在数学活动课上老师让同学们判断一个由四根木条组成的四边形是否为矩形下面是一个学习小组拟定的方案其中正确的方案是()A.测量四边形的三个角是否为直角B.测量四边形的两组对边是否相等C.测量四边形的对角线是否互相平分D.测量四边形的其中一组邻边是否相等2.(2023九上·安徽期中)某班计划在劳动实践基地内种植蔬菜班长买回来10米长的围栏准备围成两边靠墙(两墙垂直且足够长)的菜园为了让菜园面积尽可能大同学们提出了围成矩形等腰直角三角形(两直角边靠墙)扇形这三种方案如图所示.最佳方案是()A.方案1B.方案2C.方案1或方案2D.方案33.(2022·自贡)九年级2班计划在劳动实践基地内种植蔬菜班长买回来8米长的围栏准备围成一边靠墙(墙足够长)的菜园为了让菜园面积尽可能大同学们提出了围成矩形等腰三角形(底边靠墙)半圆形这三种方案最佳方案是()A.方案1B.方案2C.方案3D.方案1或方案24.(2023·衡水模拟)要得知某一池塘两端A B的距离发现其无法直接测量两同学提供了如下间接测量方案.方案Ⅰ:如图1 先过点B作BF⊥AB再在BF上取C D两点使BC=CD接着过点D作BD的垂线DE交AC的延长线于点E 则测量DE的长即可方案Ⅱ:如图2 过点B作BD⊥AB再由点D观测用测角仪在AB的延长线上取一点C 使∠BDC=∠BDA则测量BC的长即可.对于方案ⅠⅡ说法正确的是()A.只有方案Ⅰ可行B.只有方案Ⅱ可行C.方案Ⅰ和Ⅱ都可行D.方案Ⅰ和Ⅱ都不可行5.(2023·北京市模拟)某产品的盈利额(即产品的销售价格与固定成本之差)记为y 购买人数记为x 其函数图象如图1所示.由于日前该产品盈利未达到预期相关人员提出了两种调整方案图2 图3中的实线分别为调整后y与x的函数图象.给出下列四种说法其中正确说法的序号是()①图2对应的方案是:保持销售价格不变并降低成本②图2对应的方案是:提高销售价格并提高成本③图3对应的方案是:提高销售价格并降低成本④图3对应的方案是:提高销售价格并保持成本不变A.①③B.②③C.①④D.②④二填空题6.(2022·瓯海模拟)小芳和小林为了研究图中“跑到画板外面去的两直线a b所成的角(锐角)”问题设计出如下两个方案:小林的方案小芳的方案测αβ的度数.测∠1 ∠ACB的度数.已知小林测得∠β=115°小芳作了AB=BC 并测得∠1=80°则直线a b所成的角为.7.(2023九上·港南期中)生物工作者为了估计一片山林中雀鸟的数量设计了如下方案:先捕捉50只雀鸟给它们做上标记后放回山林一段时间后再从山林中随机捕捉80只其中有标记的雀鸟有2只请你帮助工作人员估计这片山林中雀鸟的数量为只.8.(2021·东城模拟)数学课上李老师提出如下问题:已知:如图AB是⊙O的直径射线AC交⊙O于C.求作:弧BC的中点D.同学们分享了如下四种方案:①如图1 连接BC作BC的垂直平分线交⊙O于点D.②如图2 过点O作AC的平行线交⊙O于点D.③如图3 作∠BAC的平分线交⊙O于点D.④如图4 在射线AC上截取AE使AE=AB连接BE交⊙O于点D.上述四种方案中正确的方案的序号是.9.(2022·房山模拟)为确定传染病的感染者医学上可采用“二分检测方案”.假设待检测的总人数是2m(m为正整数).将这2m个人的样本混合在一起做第1轮检测(检测1次)如果检测结果是阴性可确定这些人都未感染 如果检测结果是阳性 可确实其中感染者 则将这些人平均分成两组 每组2m−1个人的样本混合在一起做第2轮检测 每组检测1次.依此类推:每轮检测后 排除结果为阴性的组 而将每个结果为阳性的组再平均分成两组 做下轮检测 直至确定所有的感染者. 例如 当待检测的总人数为8 且标记为“x ”的人是唯一感染者时 “二分检测方案”可用如图所示.从图中可以看出 需要经过4轮共n 次检测后 才能确定标记为“x ”的人是唯一感染者.(1)n 的值为(2)若待检测的总人数为8 采用“二分检测方案” 经过4轮共9次检测后确定了所有的感染者 写出感染者人数的所有可能值三 实践探究题10.(2024·镇海区月考)根据以下素材 探索完成任务.如何确定木板分配方案?素材1我校开展爱心义卖活动 小艺和同学们打算推销自己的手工制品.他们以每块15元的价格买了100张长方形木板 每块木板长和宽分别为80cm 40cm.素材2现将部分木板按图1虚线裁剪 剪去四个边长相同的小正方形(阴影).把剩余五个矩形拼制成无盖长方体收纳盒 使其底面长与宽之比为3:1.其余木板按图2虚线裁剪出两块木板(阴影是余料) 给部分盒子配上盖子.素材3义卖时的售价如标签所示:问题解决任计算盒子高度求出长方体收纳盒的高度.务1 任务2 确定分配方案1若制成的有盖收纳盒个数大于无盖收纳盒 但不到无盖收纳盒个数的2倍 木板该如何分配?请给出分配方案.任务3确定分配方案2为了提高利润 小艺打算把图2裁剪下来的余料(阴影部分)利用起来 一张矩形余料可以制成一把小木剑 并以5元/个的价格销售.请确定木板分配方案 使销售后获得最大利润.11.(2023九上·鹿城月考)某校准备在校园里利用围墙(墙可用最大长度为25.2m )和48m 长的篱笆墙围成Ⅰ Ⅱ两块矩形开心农场.某数学兴趣小组设计了三种方案(除围墙外 实线部分为篱笆墙 且不浪费篱笆墙) 请根据设计方案回答下列问题:(1)方案一:如图① 全部利用围墙的长度 但要在Ⅰ区中留一个宽度AE =2m 的矩形水池 且需保证总种植面积为185.52m 2 试确定CG 的长(2)方案二:如图② 使围成的两块矩形总种植面积最大 请问BC 应设计为多长?此时最大面积为多少?(3)方案三:如图③ 在图中所示三处位置各留1m 宽的门 且使围成的两块矩形总种植面积最大 请问BC 应设计为多长?此时最大面积为多少?12.【综合与实践】有言道:“杆秤一头称起人间生计 一头称起天地良心”.某兴趣小组将利用物理学中杠杆原理制作简易杆秤.小组先设计方案 然后动手制作 再结合实际进行调试 请完成下列方案设计中的任务. 【知识背景】如图 称重物时 移动秤砣可使杆秤平衡 根据杠杆原理推导得:(m 0+m)⋅l =M ⋅(a +y).其中秤盘质量m 0克 重物质量m 克 秤砣质量M 克 秤纽与秤盘的水平距离为l 厘米 科纽与零刻线的水平距离为a 厘米 秤砣与零刻线的水平距离为y 厘米. 【方案设计】目标:设计简易杆秤.设定m0=10,M=50最大可称重物质量为1000克零刻线与末刻线的距离定为50厘米.(1)当秤盘不放重物秤砣在零刻线时杆秤平衡请列出关于l a的方程(2)当秤盘放入质量为1000克的重物秤砣从零刻度线移至末刻线时杠杆平衡请列出关于l a的方程(3)根据(1)和(2)所列方程求出l和a的值(4)根据(1)-(3)求y关于m的函数解析式(5)从零刻线开始每隔100克在科杆上找到对应刻线请写出相邻刻线间的距离. 13.(2023九上·长清期中)某校项目式学习小组开展项目活动过程如下:项目主题:测量旗杆高度问题驱动:能利用哪些科学原理来测量旗杆的高度?组内探究:由于旗杆较高需要借助一些工具来测量比如自制的直角三角形硬纸板标杆镜子甚至还可以利用无人机…确定方法后先画出测量示意图然后实地进行测量并得到具体数据从而计算旗杆的高度.成果展示:下面是同学们进行交流展示时的部分测量方案:方案一方案二…测量标杆皮尺自制直角三角板硬纸板皮尺…工具测量示意图说明:线段AB 表示学校旗杆 小明的眼睛到地面的距离CD =1.7m 测点F 与B D 在同一水平直线上 D F B 之间的距离都可以直接测得 且A B C D E F 都在同一竖直平面内 点A C E 三点在同一直线上.说明:线段AB 表示旗杆 小明的身高CD =1.7m 测点D 与B 在同一水平直线上 D B 之间的距离可以直接测得 且A B CD E F G 都在同一竖直平面内 点A C E 三点在同一直线上 点C F G 三点在同一直线上.测量数据B D 之间的距离 16.8m B D 之间的距离 16.8m … D F 之间的距离 1.35mEF 的长度0.50m…EF 的长度2.60mCE 的长度0.75m… … …根据上述方案及数据 请你选择一个方案 求出学校旗杆AB 的高度.(结果精确到0.1m )14.(2024九上·杭州月考)根据以下素材 探索完成任务.如何设计喷泉喷头的升降方案?素材1如图 有一个可垂直升降的喷泉 喷出的水柱呈抛物线.记水柱上某一点到喷头的水平距离为x 米 到湖面的垂直高度为y 米.当喷头位于起始位置时 测量得x 与y 的四组数据如下: x (米) 0 2 3 4 y (米)121.751素材2公园想设立新的游玩项目 通过升降喷头 使游船能从水柱下方通过 如图 为避免游船被喷泉淋到 要求游船从水柱下方中间通过时 顶棚上任意一点到水柱的竖直距离均不小于0.4米.已知游船顶棚宽度为2.8米 顶棚到湖面的高度为2米.问题解决 任务确定喷泉形状 结合素材1 求y 关于x 的表达式.1任务2探究喷头升降方案为使游船按素材2要求顺利通过求喷头距离湖面高度的最小值.15.(2023九上·温州期末)根据素材解决问题.设计货船通过圆形拱桥的方案素材1图1中有一座圆拱石桥图2是其圆形桥拱的示意图测得水面宽AB=16m 拱顶离水面的距离CD=4m.素材2如图3 一艘货船露出水面部分的横截面为矩形EFGH 测得EF=3m EH=10m.因水深足够货船可以根据需要运载货物.据调查船身下降的高度y(米)与货船增加的载重量x (吨)满足函数关系式y=1100x.问题解决任务1确定桥拱半径求圆形桥拱的半径.任务2拟定设计方案根据图3状态货船能否通过圆形桥拱?若能 最多还能卸载多少吨货物?若不能 至少要增加多少吨货物才能通过?16.(2024九下·宁波月考)根据以下素材 探索完成任务.如何确定拍照打卡板素材一 设计师小聪为某商场设计拍照打卡板(如图1) 图2为其平面设计图.该打卡板是轴对称图形 由长方形DEFG 和等腰三角形ABC 组成 且点B F G C 四点共线.其中 点A 到BC 的距离为1.2米 FG =0.8米 DG =1.5米.素材二因考虑牢固耐用 小聪打算选用甲 乙两种材料分别制作长方形DEFG 与等腰三角形ABC (两种图形无缝隙拼接) 且甲材料的单价为85元/平方米 乙材料的单价为100元/平方米.问题解决任务一推理最大高度小聪说:“如果我设计的方案中CB长与C D 两点间的距离相等 那么最高点B 到地面的距离就是线段DG 长” 他的说法对吗?请判断并说明理由.任务二 探究等腰三角形ABC 面积 假设CG 长度为x 米 等腰三角形ABC 的面积为S 求S 关于x 的函数表达式.任务三确定拍照打卡板 小聪发现他设计的方案中 制作拍照打卡板的总费用不超过180元 请你确定CG 长度的最大值.17.(2024九上·杭州月考)根据以下素材 探索完成任务如何设计拱桥上救生圈的悬挂方案?素材1图1是一座抛物线形拱桥 以抛物线两个水平最低点连线为x 轴 抛物线离地面的最高点的铅垂线为y 轴建立平面直角坐标系 如图2所示. 某时测得水面宽20m 拱顶离水面最大距离为10m 抛物线拱形最高点与x 轴的距离为5m .据调查 该河段水位在此基础上再涨1m 达到最高.素材2为方便救助溺水者 拟在图1的桥拱上方栏杆处悬挂救生圈 如图3 救生圈悬挂点为了方便悬挂 救生圈悬挂点距离抛物线拱面上方1m 且相邻两救生圈悬挂点的水平间距为4m .为美观 放置后救生圈关于y 轴成轴对称分布.(悬挂救生圈的柱子大小忽略不计)任务1确定桥拱形状 根据图2 求抛物线的函数表达式.任务2拟定设计方案求符合悬挂条件的救生圈个数 并求出最右侧一个救生圈悬挂点的坐标.任务3探究救生绳长度 当水位达到最高时 上游个落水者顺流而下到达抛物线拱形桥面的瞬间 若要确保救助者把拱桥上任何一处悬挂点的救生圈抛出都能抛到落水者身边 求救生绳至少需要多长.(救生圈大小忽略不计 结果保留整数)问题解决(1)任务1 确定桥拱形状 根据图2 求抛物线的函数表达式. (2)任务2 拟定设计方案求符合悬挂条件的救生圈个数 并求出最右侧一个救生圈悬挂点的坐标. (3)任务3 探究救生绳长度当水位达到最高时 上游个落水者顺流而下到达抛物线拱形桥面的瞬间 若要确保救助者把拱桥上任何一处悬挂点的救生圈抛出都能抛到落水者身边 求救生绳至少需要多长.(救生圈大小忽略不计 结果保留整数)18.(2023九上·浙江期中)根据以下素材 探索完成任务.绿化带灌溉车的操作方案素材1辆绿化带灌溉车正在作业 水从喷水口喷出 水流的上下两边缘可以抽象为两条抛物线的一部分:喷水口离开地面高1.6米 上边缘抛物线最高点离喷水口的水平距离为3米 高出|喷水口0.9米 下边缘水流形状与上边缘相同 且喷水口是最高点。
2020年中考数学专题复习教学案--动手操作题(附答案)
同步测试4
(2020最新模拟·南宁)已知 在平面直角坐标系中的位置如图16所示.画出 绕点 按顺时针方向旋转 .
【答案】旋转后的图形如图17.
动手操作题
近年来中考数学试题加强了对学生动手操作能力的考查,出现了一类新题型--动手操作题.这类试题能够有效地考查学生的实践能力、创新意识和直觉思维能力.解决这类问题需要通过观察、操作、比较、猜想、分析、综合、抽象和概括等实践活动和思维过程,灵活运用所学知识和生活经验,探索和发现结论,从而解决问题.
5.将任意三角形剪切可以拼成一个与此三角形面积相等的矩形.
方法如下(如图23—1):
请你类似上面图示的方பைடு நூலகம்,解答下列的问题:
(1)对任意三角形(如图23—2),设计一种与上例不同的方案,将它分成若干块,再拼成一个与原三角形面积相等的矩形.
(2)对任意四边形(如图23—3),设计一种方案,将它分成若干块,再拼成一个与原四边形面积相等的矩形.
【答案】1.
类型二:图形拼接型动手操作题
图形拼接问题,就是将已知的若干个图形重新拼合成符合条件的新图形.
例2(2020最新模拟·安徽)如图5,将正方形沿图中虚线(其中x<y)剪成①②③④四块图形,用这四块图形恰能拼成一个矩形(非正方形).请画出拼成的矩形的简图.
【分析与解答】我们观察图5中的4块图形各边之间的对应关系,找出能拼接在一起的边,如图6就是一种拼接方法.
中考数学试题中动手操作题可分为图形折叠型动手操作题、图形拼接型动手操作题、图形分割型动手操作题和作图型动手操作题等四种类型.
实践操作问题(精练)-2019年中考数学高频考点突破全攻略(解析版)
一、选择题(10×3=30分)1.如图所示,将矩形纸片先沿虚线AB按箭头方向向右对折,接着对折后的纸片沿虚线CD向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是()A.B. C. D.【分析】严格按照图中的方法亲自动手操作一下,即可很直观地呈现出来,也可仔细观察图形特点,利用对称性与排除法求解.2.(扬州)如图,矩形纸片ABCD中,AB=4,BC=6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是()A、6B、3C、2.5D、2【解答】解:如图以BC为边作等腰直角三角形△EBC,延长BE交AD于F,得△ABF是等腰直角三角形,作EG⊥CD于G,得△EGC是等腰直角三角形,在矩形ABCD中剪去△ABF,△BCE,△ECG得到四边形EFDG,此时剩余部分面积的最小=4×6﹣×4×4﹣×3×6﹣×3×3=2.5.故选C.3.(2018•嘉兴•3分)将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是()A. (A)B.(B)C. (C)D. (D)4.(2016•曲靖)如图,C,E是直线l两侧的点,以C为圆心,CE长为半径画弧交l于A,B两点,又分别以A,B为圆心,大于AB的长为半径画弧,两弧交于点D,连接CA,CB,CD,下列结论不一定正确的是()A 、CD ⊥lB 、点A ,B 关于直线CD 对称C 、点C ,D 关于直线l 对称 D 、CD 平分∠ACB5. (2018•海南•3分)如图1,分别沿长方形纸片ABCD 和正方形纸片EFGH 的对角线AC ,EG 剪开,拼成如图2所示的▱KLMN ,若中间空白部分四边形OPQR 恰好是正方形,且▱KLMN 的面 积为50,则正方形EFGH 的面积为( )A .24B .25C .26D .27【分析】如图,设PM=PL=NR=AR=a ,正方形ORQP 的边长为b ,构建方程即可解决问题; 【解答】解:如图,设PM=PL=NR=AR=a ,正方形ORQP 的边长为b .由题意:a 2+∴a 2=25, ∴正方形EFGH 的面积=a 2=25, 故选:B . 6. 有若干张面积分别为a 2、b 2、ab 的正方形和长方形纸片,阳阳从中抽取了1张面积为a 2的正方形纸片,4张面积为ab的长方形纸片,若他想拼成一个大正方形,则还需要抽取面积为b2的正方形纸片()A.2张B.4张C.6张D.8张7.如图,在一张△ABC纸片中,∠C=90°,∠B=60°,DE是中位线,现把纸片沿中位线DE剪开,计划拼出以下四个图形:①邻边不等的矩形;②等腰梯形;③有两个角为锐角的菱形;④正方形.那么以上图形一定能被拼成的个数为()A.1 B.2 C.3 D.4【分析】将该三角形剪成两部分,拼图使得△ADE和直角梯形BCDE不同的边重合,即可解题.【解答】解:①使得BE与AE重合,即可构成邻边不等的矩形,如图:∵∠B=60°,∴AC=BC,∴CD≠BC.学科&网②使得CD与AD重合,即可构成等腰梯形,如图:③使得AD 与DC 重合,能构成有两个角为锐角的是菱形,如图:故计划可拼出①②③. 故选C8. 如图,在一张三角形纸片ABC 中,∠C =90°,∠B =60°,DE 是中位线,现把纸片沿中位线DE 剪开,计划拼出以下四个图形:①邻边不等的矩形;②等腰梯形;③有两个角为锐角的菱形;④正方形.那么以上图形一定能被拼出的个数为( )A .1B .2C .3D .4②把△ADE 以AD 为对称轴作轴对称变换,再向下平移DC 的长度,即可构成等腰梯形,如解图②.③把△ADE 绕点D 旋转180°,即可构成有两个角为锐角的菱形,如解图③.④正方形无法拼成.9. 如图,在矩形ABCD 中,点E ,F 分别在边AB ,BC 上,且AE =13AB ,将矩形沿直线EF 折叠,点B 恰好落在AD 边上的点P 处,连结BP 交EF 于点Q ,有下列结论:①EF =2BE ;②PF =2PE ;③FQ =4EQ ;④△PBF 是等边三角形.其中正确的是(D )A .①②B .②③C .①③D .①④∴BE=2EQ.∵EF=2BE,EQ+FQ=4EQ,∴FQ=3EQ,故③错误;由翻折的性质,得∠EFP=∠EFB=30°,∴∠BFP=30°+30°=60°.又∵∠PBF=90°-∠EBQ=90°-30°=60°,∴△PBF是等边三角形,故④正确.综上所述,正确的结论是①④.10.如图,直角三角形纸片ABC中,AB=3,AC=4,D为斜边BC中点,第1次将纸片折叠,使点A与点D重合,折痕与AD交于点P1;设P1D的中点为D1,第2次将纸片折叠,使点A与点D1重合,折痕与AD交于点P2;设P2D1的中点为D2,第3次将纸片折叠,使点A与点D2重合,折痕与AD交于点P3;…;设P n﹣1D n﹣2的中点为D n﹣1,第n次将纸片折叠,使点A与点D n﹣1重合,折痕与AD交于点P n(n>2),则AP6的长为()A.B.C.D.【分析】先写出AD、AD1、AD2、AD3的长度,然后可发现规律推出AD n的表达式,继而根据AP n=AD n即可得出AP n的表达式,也可得出AP6的长.二、填空题(6×4=24分).11.如图,在△ABC中,D,E分别是边AB,AC的中点,∠B=50°.现将△ADE沿DE折叠,使点A落在三角形所在平面内的点A1处,则∠BDA1的度数为°.【解析】∵DE为△ABC的中位线,∴DE∥BC,∴∠ADE=50°.由折叠的性质,得∠A1DE=∠ADE=50°.∴∠BDA1=180°-∠ADE-∠A1DE=180°-50°-50°=80°.12.如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为2m+4 .【分析】根据拼成的矩形的面积等于大正方形的面积减去小正方形的面积,列式整理即可得解.【解答】解:设拼成的矩形的另一边长为x,则4x=(m+4)2﹣m2=(m+4+m)(m+4﹣m),解得x=2m+4.故答案为:2m+4.学科&网13. (山东省东营市·4分)如图,折叠矩形ABCD 的一边AD ,使点D 落在BC 边的点F 处,已知折痕AE =55cm , 且tan ∠EFC =34,那么矩形ABCD 的周长_____________cm .14. 在Rt△ABC 中,∠A =90°,AB =3 cm ,AC =4 cm ,以斜边BC 上距离B 点3 cm 的点P 为中心,把这个三角形按逆时针方向旋转90°得到Rt△DEF ,则旋转前后两个直角三角形重叠部分的面积为 cm 2.【解析】设DF 与AC ,BC 分别交于点R ,Q ,过点P 作PM ⊥QR 于点M ,作PN ⊥AC 于点N ,易得四边形PMRN 为正方形,重叠部分的面积和正方形PMRN 的面积相等,易得△CPN ∽△CBA ,∴PN BA =CP CB ,即PN 3=25,∴PN =65(cm),∴正方形PMRN 的面积为3625 cm 2,故重叠部分的面积为3625cm 2.15. 如图①所示,用形状相同、大小不等的三块直角三角形木板,恰好能拼成如图②所示的四边形ABCD ,如果AE =4,CE =3BE ,那么这个四边形的面积是 .16.(2018·辽宁大连·3分)如图,矩形ABCD中,AB=2,BC=3,点E为AD上一点,且∠ABE=30°,将△AB E 沿BE翻折,得到△A′BE,连接CA′并延长,与AD相交于点F,则DF的长为.解:如图作A′H⊥BC于H.∵∠ABC=90°,∠ABE=∠EBA′=30°,∴∠A′BH=30°,∴A′H=BA′=1,BH=A′H=,∴CH=3﹣.∵△CDF∽△A′HC,∴ =,∴ =,∴DF=6﹣2.故答案为:6﹣2.三、解答题(共46分).17.某市要在一块平行四边形ABCD的空地上建造一个四边形花园,要求花园所占面积是▱ABCD面积的一半,并且四边形花园的四个顶点作为出入口,要求分别在▱ABCD的四条边上,请你设计两种方案:方案(1):如图(1)所示,两个出入口E、F已确定,请在图(1)上画出符合要求的四边形花园,并简要说明画法;方案(2):如图(2)所示,一个出入口M 已确定,请在图(2)上画出符合要求的梯形花园,并简要说明画法.【分析】 本题属于开放性试题,不管哪种方案都离不开所设计的四边形的面积是▱ABCD 面积的一半,作平行线是解题的关键,因为平行线间的距离处处相等.画法3:如图3(1)在AD 上取一点H ,使DH =CF ;(2)在CD 上任取一点G 连接EF 、FG 、GH 、HE ,则四边形EFGH 就是所要画的四边形.方案(2)画法:如图4:(1)过M 点作MP ∥AB 交AD 于点P ,(2)在AB 上取一点Q ,连接PQ ,(3)过M 作MN ∥PQ 交DC 于点N ,连接QM 、PN 、MN 则四边形QMNP 就是所要画的四边形.(本题答案不唯一,符合要求即可)18. (2018•江苏无(1)请用直尺(不带刻度(21)中这样的直线AC 是否唯一?若唯一,请说明理由;若不唯一,请在图中画出 所有这样的直线AC ,并写出与之对应的函数表达式.【解答】(1)解:如图△ABC即为所求;(2)解:这样的直线不唯一.①作线段OB的垂直平分线AC,满足条件,此时直线的解析式为y=﹣32x+132②作矩形OA′BC′,直线A′C′,满足条件,此时直线A′C′的解析式为y=﹣23x+4.学科&网19.(2018济宁)在一次数学活动课中,某数学小组探究求环形花坛(如图所示)面积的方法,现有以下工具;①卷尺;②直棒 EF;③T 型尺(CD 所在的直线垂直平分线段 AB).(1)在图 1 中,请你画出用 T 形尺找大圆圆心的示意图(保留画图痕迹,不写画法);(2)如图 2,小华说:“我只用一根直棒和一个卷尺就可以求出环形花坛的面积,具体做法如下:将直棒放置到与小圆相切,用卷尺量出此时直棒与大圆两交点 M,N 之间的距离,就可求出环形花坛的面积”如果测得 MN=10m,请你求出这个环形花坛的面积.【解答】解:(1)如图点 O 即为所求;20.(2018黑龙江龙东)(8.00分)如图,在Rt△BCD中,∠CBD=90°,BC=BD,点A在CB的延长线上,且BA=BC,点E在直线BD上移动,过点E作射线EF⊥EA,交CD所在直线于点F.(1)当点E在线段BD上移动时,如图(1)所示,求证:BC﹣DE=DF.(2)当点E在直线BD上移动时,如图(2)、图(3)所示,线段BC、DE与DF又有怎样的数量关系?请直接写出你的猜想,不需证明.【解答】(1)证明:如图1中,在BA上截取BH,使得BH=BE.∵BC=AB=BD,BE=BH,∴AH=ED,∵∠AEF=∠ABE=90°,∴∠AEB+∠FED=90°,∠AEB+∠BAE=90°,∴∠FED=∠HAE,∵∠BHE=∠CDB=45°,∴∠AHE=∠EDF=135°,∴△AHE≌△EDF,∴HE=DF,∴BC﹣DE=BD﹣DE=BE=EH=DF.∴BC﹣DE=DF.(2)解:如图2中,在BC上截取BH=BE,同法可证:DF=EH.可得:DE﹣BC=DF.如图3中,在BA上截取BH,使得BH=BE.同法可证:DF=HE,可得BC+DE=DF.【点评】本题考查全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.21. (2018山东日照)(13分)问题背景:我们学习等边三角形时得到直角三角形的一个性质:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.即:如图1,在Rt△ABC中,∠ACB=90°,∠ABC=30°,则:AC=AB.探究结论:小明同学对以上结论作了进一步研究.(1)如图1,连接AB边上中线CE,由于CE=AB,易得结论:①△ACE为等边三角形;②BE与CE之间的数量关系为.(2)如图2,点D是边CB上任意一点,连接AD,作等边△ADE,且点E在∠ACB的内部,连接BE.试探究线段BE与DE之间的数量关系,写出你的猜想并加以证明.(3)当点D为边CB延长线上任意一点时,在(2)条件的基础上,线段BE与DE之间存在怎样的数量关系?请直接写出你的结论.拓展应用:如图3,在平面直角坐标系xOy中,点A的坐标为(﹣,1),点B是x轴正半轴上的一动点,以AB为边作等边△ABC,当C点在第一象限内,且B(2,0)时,求C点的坐标.【解答】解:探究结论(1)如图1中,∵∠ACB=90°,∠B=30°,∴∠A=60°,∵AC=AB=AE=EB,∴△ACE是等边三角形,∴EC=AE=EB,故答案为EC=EB.(2)如图2中,结论:ED=EB.理由:连接PE.(3)当点D为边CB延长线上任意一点时,同法可证:ED=EB,故答案为ED=EB.拓展应用:如图3中,作AH⊥x轴于H,CF⊥OB于F,连接OA.∵A(﹣,1),∴∠AOH=30°,由(2)可知,CO=CB,∵CF⊥OB,∴OF=FB=1,∴可以假设C(1,n),∵OC=BC=AB,∴1+n2=1+(+2)2,∴n=2+,∴C(1,2+).学科&网。
中考数学专项突破之实践操作与探究 课件
∵∠AEC=∠B'ED,∠ACB'=∠CAD,
∴∠ADB'=∠DAC.∴B'D∥AC.
若选择②证明:如图④,设展开后点E的对应点为F,
∵四边形ABCD是平行四边形,
∴CF∥AE,∴∠DAC=∠ACF.
由折叠可得∠ACE=∠ACF,CE=CF,
∴∠DAC=∠ACE.∴AE=CE,∴AE=CF,∴四边形AECF是菱形.
∶1.∴小红折叠的矩形纸片的长、宽之比为1∶1或 ∶1.
(4)如图⑦,∠AB'D=90°时,∠B'AD=30°,B'A=4 ,则BC=AD=
AB'=8.
如图⑧,∠B'AD=90°时,∠B'DA=30°,
BC=AD= AB'=12.
如图⑨,∠B'AD=90°时,∠AB'D=30°,
BC=AD=
所得结论.操作性问题是让学生按题目要求进行操作,考查学生的动手能力、想象
能力和概括能力.
方法点拨
解决这类问题,注意运用分类讨论、类比猜想、验证归纳等数学思想方法,灵
活地解决问题.在平时的学习中,要注重操作类习题的解题训练,提高思维的开放性,
培养创新能力.
解题技巧
此类问题解决一般有这样的几个步骤:
第一步:审清题意,找准解题的切入点.
图①
问题探究
(2)如图②,☉O的半径为13,弦AB=24,M是AB的中点,P是☉O上一动点,求PM的最
大值;
(2)当PM⊥AB时,此时PM最大,
连接OA,如图②,
由垂径定理可知AM= AB=12.
∵OA=13,
∴在Rt△AOM中,由勾股定理可知OM=5,
中考数学“动手操作”专题训练试题[1]
中考数学“动手操作”专题训练试题江苏 文页一、选择题1,如图,CD 是Rt △ABC 斜边AB 上的高,将△BCD 沿CD 折叠,B 点恰好落在AB 的中点E 处,则∠A 等于( )A.25°B.30°C.45°D.60°2,如图,小亮拿一张矩形纸图(1),沿虚线对折一次得图(2),下将对角两顶点重合折叠得图(3).按图(4)沿折痕中点与重合顶点的连线剪开,得到三个图形,这三个图形分别是( )A .都是等腰梯形B .都是等边三角形C .两个直角三角形,一个等腰三角形3,Rt △ABC 中,斜边AB =4,∠B=60º,将△ABC 绕点B 旋转60º,顶点C 运动的路线长是( )A.3π B .3π2 C .π D .3π4 4,用一把带有刻度尺的直角尺, ①可以画出两条平行的直线a 和b, 如图(1); ②可以画出∠AOB 的平分线OP, 如图(2); ③可以检验工件的凹面是否为半圆, 如图(3); ④可以量出一个圆的半径, 如图(4). 这四种说法正确的有( )图(1) 图(2) 图(3) 图(4)A. 4个B. 3个C. 2个D. 1个5,如图1所示,将长为20cm ,宽为2cm 的长方形白纸条,折成图2所示的图形并在其一面着色,则着色部分的面积为( )A .234cmB .236cmC .238cmD .240cm6,当身边没有量角器时,怎样得到一些特定度数的角呢?动手操作有时可以解“燃眉之急”.如图,已知矩形ABCD ,我们按如下步骤操作可以得到一个特定的角:(1)以点A 所(4)(3)沿虚线剪开对角顶点重合折叠(2)(1)图1 图2A B CD在直线为折痕,折叠纸片,使点B 落在AD 上,折痕与BC 交于E ;(2)将纸片展平后,再一次折叠纸片,以E 所在直线为折痕,使点A 落在BC 上,折痕EF 交AD 于F .则∠AFE =( )A .60︒B .67.5︒C .72︒D .75︒7,如图,把矩形纸条ABCD 沿EF ,GH 同时折叠,B ,C 两点恰好落在AD 边的P 点处,若∠FPH =90°,PF =8,PH =6,则矩形ABCD 的边BC 长为( )A.20B.22C.248,如图,把边长为2的正方形的局部进行图①~图④的变换,拼成图⑤,则图⑤的面积是( )A.18B.16C.12D.89,把一张正方形纸片按如图.对折两次后,再挖去一个小圆孔,那么展开后的图形应为10,如图,将n 个边长都为1cm的正方形按如图所示摆放,点A 1、 A 2、…、A n分别是正方形的中心,则n 个这样的正方形重叠部分的面积和为( )A .41cm 2 B .4n cm 2 C .41-n cm 2D .n )41( cm 2 二、填空题11,在同一平面内,用两个边长为a 的等边三角形纸片(纸片不能裁剪)可以拼成的四边形是___.① ② ③ ④ ⑤A .B .C .D .12,如图,是用形状、大小完全相同的等腰提梯形密铺成的图案,则这个图案中的等腰梯形的底角(指锐角)是 度.13,用等腰直角三角板画∠AOB =45°,并将三角板沿OB 方向平移到如图所示的虚线处后绕点M 逆时针方向旋转22°,则三角板的斜边与射线OA 的夹角α为___°.14,如图,正方形ABCD 的边长为4,MN BC ∥分别交AB CD ,于点M N ,,在MN 上任取两点P Q ,,那么图中阴影部分的面积是 .15,如图,一宽为2cm 的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆两个交点处的读数恰好为“2”和“8”(单位:cm ),则该圆的半径为 cm.16,用一条宽相等的足够长的纸条,打一个结,如图(1)所示,然后轻轻拉紧、压平就可以得到如图(2)所示的正五边形ABCDE ,其中∠BAC = 度.17,如图所示为农村一古老的捣碎器,已知支撑柱AB 的高为 0.3米,踏板DE 长为1.6米,支撑点A 到踏脚D 的距离为0.6米,现在踏脚着地,则捣头点E 上升了 __米.A图 (2)图(1)DM N18,小华将一条直角边长为1的一个等腰直角三角形纸片(如图1),沿它的对称轴折叠1次后得到一个等腰直角三角形(如图2),再将图2的等腰直角三角形沿它的对称轴折叠后得到一个等腰直角三角形(如图3),则图3中的等腰直角三角形的一条腰长为_____________;同上操作,若小华连续将图1的等腰直角三角形折叠n 次后所得到的等腰直角三角形(如图n+1)的一条腰长为_________.三、解答题19,如图是一个食品包装盒的侧面展开图。
2024中考数学专题5.7相似三角形压轴训练专题 (全国通用)
考向5.7 相似三角形压轴训练专题例题:(2021·安徽·中考真题)如图1,在四边形ABCD 中,ABC BCD ∠=∠,点E 在边BC 上,且//AE CD ,//DE AB ,作CF //AD 交线段AE 于点F ,连接BF .(1)求证:ABF EAD △≌△;(2)如图2,若9AB =,5CD =,ECF AED ∠=∠,求BE 的长;(3)如图3,若BF 的延长线经过AD 的中点M ,求BE EC的值.(1)证明://AE CD ,AEB DCE ∴∠=∠;//DE AB ,ABE DEC ∴∠=∠,12∠=∠,ABC BCD ∠=∠ ,ABE AEB ∴∠=∠,DCE DEC ∠=∠,AB AE =∴,DE DC =,//AF CD ,//AD CF ,∴四边形AFCD 是平行四边形AF CD∴=AF DE∴=在ABF 与EAD 中.12AB EA AF ED =⎧⎪∠=∠⎨⎪=⎩,()ABF EAD SAS ∴△≌△(2)ABF EAD △≌△,BF AD ∴=,在AFCD □中,AD CF =,BF CF ∴=,FBC FCB ∴∠=∠,又2FCB ∠=∠ ,21∠=∠,1FBC ∴∠=∠,在EBF △与EAB 中.1EBF BEF AEB ∠=∠⎧⎨∠=∠⎩,EBF EAB ∴△∽△;EBEFEA EB ∴=;9AB = ,9AE ∴=;5CD = ,5AF ∴=;4EF ∴=,49EBEB ∴=,6BE ∴=或6-(舍);(3)延长BM 、ED 交于点G .ABE 与DCE 均为等腰三角形,ABC DCE ∠=∠,ABE DCE ∴△∽△,AB AE BE DC DE CE∴==,设1CE =,BE x =,DC DE a ==,则AB AE ax ==,AF CD a ==,(1)EF a x ∴=-,//AB DG ,3G ∴∠=∠;在MAB △与MDG 中,345G MA MD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()MAB MDG AAS ∴△≌△;DG AB ax ∴==.(1)EG a x ∴=+;//AB EG ,FAB FEG ∴△∽△,FA AB FE EG∴=,(1)(1)a ax a x a x ∴=-+,(1)1x x x -∴=+,2210x x ∴--=,2(1)2x ∴-=,1x ∴=11x ∴=,21x =+,1BE EC∴=一、单选题1.(2018·山东聊城·中考真题)如图,在平面直角坐标系中,矩形OABC 的两边OA ,OC 分别在x 轴和y 轴上,并且OA=5,OC=3.若把矩形OABC 绕着点O 逆时针旋转,使点A 恰好落在BC 边上的A 1处,则点C 的对应点C 1的坐标为( )A .(﹣91255,)B .(﹣12955,)C .(﹣161255,)D .(﹣121655,)2.(2020·四川遂宁·中考真题)如图,在正方形ABCD 中,点E 是边BC 的中点,连接AE 、DE ,分别交BD 、AC 于点P 、Q ,过点P 作PF ⊥AE 交CB 的延长线于F ,下列结论:①∠AED +∠EAC +∠EDB =90°,②AP =FP ,③AE ,④若四边形OPEQ 的面积为4,则该正方形ABCD 的面积为36,⑤CE •EF =EQ •DE .其中正确的结论有( )A .5个B .4个C .3个D .2个3.(2018·广西桂林·中考真题)如图,在平面直角坐标系中,M 、N 、C 三点的坐标分别为(12,1),(3,1),(3,0),点A 为线段MN 上的一个动点,连接AC ,过点A 作AB AC ⊥交y 轴于点B ,当点A 从M 运动到N 时,点B 随之运动,设点B 的坐标为(0,b ),则b 的取值范围是( )A .114b -≤≤B .514b -≤≤C .9142b -≤≤D .914b -≤≤二、填空题4.(2017·贵州黔南·中考真题)如图,在ABC 中,AB =2,AC =4,ABC 绕点C 按逆时针方向旋转得到A B C ''△,使CB '∥AB ,分别延长AB ,CA '相交于点D ,则线段BD 的长为__.5.(2016·四川资阳·中考真题)如图,在等腰直角△ABC 中,∠ACB=90°,CO ⊥AB 于点O ,点D 、E 分别在边AC 、BC 上,且AD=CE ,连结DE 交CO 于点P ,给出以下结论:①△DOE 是等腰直角三角形;②∠CDE=∠COE ;③若AC=1,则四边形CEOD 的面积为14;④22222AD BE OP DP PE +-=⋅,其中所有正确结论的序号是___________.三、解答题6.(2019·广西梧州·中考真题)如图,在矩形ABCD 中,4,3AB BC ==,AF 平分DAC ∠,分别交,DC BC 的延长线于点,E F ;连接DF ,过点A 作AH DF ∕∕,分别交,BD BF 于点,G H .(1)求DE 的长;(2)求证:1DFC ∠=∠.7.(2012·浙江金华·中考真题)在锐角△ABC 中,AB=4,BC=5,∠ACB=45°,将△ABC 绕点B 按逆时针方向旋转,得到△A 1BC 1.(1)如图1,当点C 1在线段CA 的延长线上时,求∠CC 1A 1的度数;(2)如图2,连接AA 1,CC 1.若△ABA 1的面积为4,求△CBC 1的面积;(3)如图3,点E 为线段AB 中点,点P 是线段AC 上的动点,在△ABC 绕点B 按逆时针方向旋转过程中,点P 的对应点是点P 1,求线段EP 1长度的最大值与最小值.8.(2013·江苏盐城·中考真题)阅读材料:如图①,△ABC 与△DEF 都是等腰直角三角形,∠ACB=∠EDF=90°,且点D 在AB 边上,AB 、EF 的中点均为O,连结BF 、CD 、CO ,显然点C 、F 、O 在同一条直线上,可以证明△BOF ≌△COD ,则BF=CD解决问题:(1)将图①中的Rt △DEF 绕点O 旋转得到图②,猜想此时线段BF 与CD 的数量关系,并证明你的结论;(2)如图③,若△ABC 与△DEF 都是等边三角形,AB 、EF 的中点均为O,上述(1)中结论仍然成立吗?如果成立,请说明理由;如果不成立,请求出BF 与CD 之间的数量关系;(3)如图④,若△ABC 与△DEF 都是等腰三角形,AB 、EF 的中点均为O,且顶角∠ACB=∠EDF=α,请直接写出BF CD的值(用含α的式子表示出来).9.(2018·浙江舟山·中考真题)已知,ABC ∆中,B C ∠=∠,P 是BC 边上一点,作CPE BPF ∠=∠,分别交边AC ,AB 于点E ,F .(1)若CPE C ∠=∠(如图1),求证:PE PF AB +=.(2)若CPE C ∠≠∠,过点B 作CBD CPE ∠=∠,交CA (或CA 的延长线)于点D .试猜想:线段PE ,PF 和BD 之间的数量关系,并就CPE C ∠>∠情形(如图2)说明理由.(3)若点F 与A 重合(如图3),27C ∠= ,且PA AE =.①求CPE ∠的度数;②设PB a =,PA b =,AB c =,试证明:22a cb c-=.10.(2015·四川成都·中考真题)如图,在Rt△ABC中,∠ABC=90°,AC的垂直平分线分别与AC,BC及AB 的延长线相交于点D,E,F,且BF=BC,⊙O是△BEF的外接圆,∠EBF的平分线交EF于点G,交于点H,连接BD、FH.(1)求证:△ABC≌△EBF;(2)试判断BD与⊙O的位置关系,并说明理由;(3)若AB=1,求HG•HB的值.一、单选题BC=2,M为1.(2021·广西百色·中考真题)如图,矩形ABCD各边中点分别是E、F、G、H,AB=AB上一动点,过点M作直线l⊥AB,若点M从点A开始沿着AB方向移动到点B即停(直线l随点M移动),直线l扫过矩形内部和四边形EFGH外部的面积之和记为S.设AM=x,则S关于x的函数图象大致是()A .B .C .D .2.(2019·辽宁鞍山·中考真题)如图,正方形ABCD 和正方形CGFE 的顶点C ,D ,E 在同一条直线上,顶点B ,C ,G 在同一条直线上.O 是EG 的中点,∠EGC 的平分线GH 过点D ,交BE 于点H ,连接FH 交EG于点M ,连接OH .以下四个结论:①GH ⊥BE ;②△EHM ∽△GHF ;③BC CG1;④HOM HOG S S △△=2,其中正确的结论是( )A .①②③B .①②④C .①③④D .②③④3.(2015·广西贵港·中考真题)如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC 于点F ,连接DF ,分析下列五个结论:①△AEF ∽△CAB ;②CF=2AF ;③DF=DC ;④tan ∠⑤S 四边形CDEF =52S △ABF ,其中正确的结论有( )A .5个B .4个C .3个D .2个二、填空题4.(2017·湖北十堰·中考真题)如图,正方形ABCD 中,BE=EF=FC ,CG=2GD ,BG 分别交AE ,AF 于M ,N .下列结论:①AF ⊥BG ;②BN=NF ;③38MB MG =;④S 四边形CGNF =S 四边形ANGD .其中正确的结论的序号是_______.5.(2015·四川南充·中考真题)如图,正方形ABCD 边长为1,以AB 为直径作半圆,点P 是CD 中点,BP 与半圆交于点Q ,连结DQ .给出如下结论:①DQ =1;②;③S △PDQ =;④cos ∠ADQ=.其中正确结论是_________.(填写序号)三、解答题6.(2021·内蒙古赤峰·中考真题)数学课上,有这样一道探究题.如图,已知ABC 中,AB =AC =m ,BC =n ,()0180BAC αα∠=︒<<︒,点P 为平面内不与点A 、C 重合的任意一点,将线段CP 绕点P 顺时针旋转a ,得线段PD ,E 、F 分别是CB 、CD 的中点,设直线AP 与直线EF 相交所成的较小角为β,探究EF AP 的值和β的度数与m 、n 、α的关系,请你参与学习小组的探究过程,并完成以下任务:(1)填空:【问题发现】小明研究了60α=︒时,如图1,求出了EF PA =___________,β=___________;小红研究了90α=︒时,如图2,求出了EF PA =___________,β=___________;【类比探究】他们又共同研究了α=120°时,如图3,也求出了EF PA ;【归纳总结】最后他们终于共同探究得出规律:EF PA =__________(用含m 、n 的式子表示);β=___________ (用含α的式子表示).(2)求出120α=︒时EF PA的值和β的度数.7.(2021·湖南岳阳·中考真题)如图,在Rt ABC 中,90ACB ∠=︒,60A ∠=︒,点D 为AB 的中点,连接CD ,将线段CD 绕点D 顺时针旋转()60120αα︒<<︒得到线段ED ,且ED 交线段BC 于点G ,CDE ∠的平分线DM 交BC 于点H .(1)如图1,若90α=︒,则线段ED 与BD 的数量关系是________,GD CD=________;(2)如图2,在(1)的条件下,过点C 作//CF DE 交DM 于点F ,连接EF ,BE .①试判断四边形CDEF 的形状,并说明理由;②求证:BE FH =;(3)如图3,若2AC =,()tan 60m α-︒=,过点C 作//CF DE 交DM 于点F ,连接EF ,BE ,请直接写出BE FH的值(用含m 的式子表示).8.(2021·四川乐山·中考真题)在等腰ABC 中,AB AC =,点D 是BC 边上一点(不与点B 、C 重合),连结AD .(1)如图1,若60C ∠=°,点D 关于直线AB 的对称点为点E ,结AE ,DE ,则BDE ∠=________;(2)若60C ∠=°,将线段AD 绕点A 顺时针旋转60︒得到线段AE ,连结BE .①在图2中补全图形;②探究CD 与BE 的数量关系,并证明;(3)如图3,若AB AD k BC DE==,且ADE C ∠=∠,试探究BE 、BD 、AC 之间满足的数量关系,并证明.9.(2020·湖北省直辖县级单位·中考真题)实践操作:第一步:如图1,将矩形纸片ABCD 沿过点D 的直线折叠,使点A 落在CD 上的点A '处,得到折痕DE ,然后把纸片展平.第二步:如图2,将图1中的矩形纸片ABCD 沿过点E 的直线折叠,点C 恰好落在AD 上的点C '处,点B 落在点B '处,得到折痕EF ,B C ''交AB 于点M ,C F '交DE 于点N ,再把纸片展平.问题解决:(1)如图1,填空:四边形AEA D '的形状是_____________________;(2)如图2,线段MC '与ME 是否相等?若相等,请给出证明;若不等,请说明理由;(3)如图2,若2cm,'4cm AC DC '==,求:DN EN 的值.10.(2020·四川内江·中考真题)如图,正方形ABCD 中,P 是对角线AC 上的一个动点(不与A 、C 重合),连结BP ,将BP 绕点B 顺时针旋转90︒到BQ ,连结QP 交BC 于点E ,QP 延长线与边AD 交于点F .(1)连结CQ ,求证:AP CQ =;(2)若14AP AC =,求:CE BC 的值;(3)求证:PF EQ =.11.(2021·湖北十堰·中考真题)已知抛物线25y ax bx =+-与x 轴交于点()1,0A -和()5,0B -,与y轴交于点C ,顶点为P ,点N 在抛物线对称轴上且位于x 轴下方,连AN 交抛物线于M ,连AC 、CM .(1)求抛物线的解析式;(2)如图1,当tan 2ACM ∠=时,求M 点的横坐标;(3)如图2,过点P 作x 轴的平行线l ,过M 作MD l ⊥于D ,若MD =,求N 点的坐标.1.A【解析】【分析】直接利用相似三角形的判定与性质得出△ONC1三边关系,再利用勾股定理得出答案.【详解】过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,由题意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠3,则△A1OM∽△OC1N,∵OA=5,OC=3,∴OA1=5,A1M=3,∴OM=4,∴设NO=3x,则NC1=4x,OC1=3,则(3x)2+(4x)2=9,解得:x=±35(负数舍去),则NO=95,NC1=125,故点C的对应点C1的坐标为:(-95,125).故选A.【点拨】此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A1OM∽△OC1N是解题关键.2.B【解析】【分析】①正确:证明∠EOB=∠EOC=45°,再利用三角形的外角的性质即可得出答案;②正确:利用四点共圆证明∠AFP=∠ABP=45°即可;③正确:设BE=EC=a,求出AE,OA即可解决问题;④错误:通过计算正方形ABCD的面积为48;⑤正确:利用相似三角形的性质证明即可.【详解】①正确:如图,连接OE,∵四边形ABCD是正方形,∴AC⊥BD,OA=OC=OB=OD,∴∠BOC=90°,∵BE=EC,∴∠EOB=∠EOC=45°,∵∠EOB=∠EDB+∠OED,∠EOC=∠EAC+∠AEO,∴∠AED+∠EAC+∠EDO=∠EAC+∠AEO+∠OED+∠EDB=90°,故①正确;②正确:如图,连接AF,∵PF⊥AE,∴∠APF=∠ABF=90°,∴A,P,B,F四点共圆,∴∠AFP=∠ABP=45°,∴∠PAF=∠PFA=45°,∴PA=PF,故②正确;③正确:设BE=EC=a,则AE,OA=OC=OB=OD a,∴AE AO AE ,故③正确;④错误:根据对称性可知,OPE OQE ≅△△,∴OEQ S △=12OPEQ S 四边形=2,∵OB =OD ,BE =EC ,∴CD =2OE ,OE ⊥CD ,∴ EQ OE 1==DQ CD 2, OEQ CDQ △△,∴ODQ S =4△, CDQ S =8△,∴CDO S =12△,∴ABCD S =48正方形,故④错误;⑤正确:∵∠EPF =∠DCE =90°,∠PEF =∠DEC ,∴EPF ECD △△,∴EF PE =ED EC,∴EQ =PE ,∴CE•EF =EQ•DE ,故⑤正确;综上所诉一共有4个正确,故选:B .【点拨】本题主要考查了三角形外角性质、四点共圆问题、全等与相似三角形的综合运用,熟练掌握相关概念与方法是解题关键.3.B【解析】【分析】延长NM 交y 轴于P 点,则MN ⊥y 轴.连接CN .证明△PAB ∽△NCA ,得出PB PA NA NC=,设PA=x ,则NA=PN-PA=3-x ,设PB=y ,代入整理得到22393()24y x x x =-=--+,根据二次函数的性质以及12≤x≤3,求出y 的最大与最小值,进而求出b 的取值范围.【详解】解:如图,延长NM 交y 轴于P 点,则MN ⊥y 轴.连接CN .在△PAB 与△NCA 中,9090APB CNA PAB NCA CAN ∠∠︒⎧⎨∠∠︒-∠⎩====,∴△PAB ∽△NCA ,∴PB PA NA NC=,设PA=x ,则NA=PN-PA=3-x ,设PB=y ,∴31y x x =-,∴22393()24y x x x =-=--+,∵-1<0,12≤x≤3,∴x=32时,y 有最大值94,此时b=1-94=-54,x=3时,y 有最小值0,此时b=1,∴b 的取值范围是-54≤b≤1.故选:B .【点拨】本题考查了相似三角形的判定与性质,二次函数的性质,得出y 与x 之间的函数解析式是解题的关键.4.6.【解析】【详解】试题分析:∵将△ABC 绕点C 按逆时针方向旋转得到△A′B′C ,AB =2,AC =4,∴A′B′=AB =2,AC′=AC =4,∠CA′B′=∠A.又∵CB′∥AB ,∴∠A′CB′=∠A. ∴△A′CB′∽△DAC.∴CA A B AD AC'''=,即4284AD AD =⇒=. ∴BD=6.考点:1.旋转的性质;2.平行的性质;3.相似三角形的判定和性质.5.①②③④.【解析】【详解】试题分析:①正确.如图,∵∠ACB=90°,AC=BC ,CO ⊥AB∴AO=OB=OC ,∠A=∠B=∠ACO=∠BCO=45°,在△ADO 和△CEO 中,∵OA=OC ,∠A=∠ECO ,AD=CE ,∴△ADO ≌△CEO ,∴DO=OE ,∠AOD=∠COE ,∴∠AOC=∠DOE=90°,∴△DOE 是等腰直角三角形.故①正确.②正确.∵∠DCE+∠DOE=180°,∴D 、C 、E 、O 四点共圆,∴∠CDE=∠COE ,故②正确.③正确.∵AC=BC=1,∴S △ABC =12×1×1=12,S 四边形DCEO =S △DOC +S △CEO =S △CDO +S △ADO =S △AOC =12S △ABC =14,故③正确.④正确.∵D 、C 、E 、O 四点共圆,∴OP•PC=DP•PE ,∴22OP +2DP•PE=22OP +2OP•PC=2OP (OP+PC )=2OP•OC ,∵∠OEP=∠DCO=∠OCE=45°,∠POE=∠COE ,∴△OPE ∽△OEC ,∴OP OE OE OC =,∴OP•OC=2OE ,∴22OP +2DP•PE=22OE =2DE =22CD CE +,∵CD=BE ,CE=AD ,∴22222AD BE OP DP PE +=+⋅,∴22222AD BE OP DP PE +-=⋅.故④正确.考点:勾股定理;四点共圆.6.(1)32=DE ;(2)见解析.【解析】【分析】(1)由AD CF ∕∕,AF 平分DAC ∠,可得FAC AFC ∠=∠,得出5AC CF ==,可证出ADE FCE ∆∆∽,则AD DE CF CE =,可求出DE 长;(2)由ADG HBG ∆∆∽,可求出DG ,则DE DC DG DB=,可得EG BC ∕∕,则1AHC ∠=∠,根据DF AH ∕∕,可得AHC DFC ∠=∠,结论得证.【详解】(1)解:∵矩形ABCD 中, AD CF ∕∕,∴DAF ACF ∠=∠,∵AF 平分DAC ∠,∴DAF CAF ∠=∠,∴FAC AFC ∠=∠,∴AC CF =,∵4,3AB BC ==,∴5AC ==,∴5CF =,∵AD CF ∕∕,∴ADE FCE ∆∆∽,∴AD DECF CE =,设DE x =,则354xx =-,解得32x =∴32=DE ;(2)∵,AD FH AF DH ∕∕∕∕,∴四边形ADFH 是平行四边形,∴3AD FH ==,∴2,5CH BH ==∵AD BH ∕∕,∴ADG HBG ∆∆∽,∴DGADBG BH =,∴355DGDG =-,∴158DG =,∵32=DE ,∴45DE DCDG DB ==,∴EG BC ∕∕,∴1AHC ∠=∠,又∵DF AH ∕∕,∴AHC DFC ∠=∠,1DFC ∠=∠.【点拨】考核知识点:相似三角形综合运用.证明相似三角形,运用相似三角形性质是关键.7.(1)∠CC 1A 1=90°.(2)S △CBC1=254.(3)最小值为:EP 12.最大值为:EP 1= 7.【解析】【分析】(1)由旋转的性质可得:∠A 1C 1B=∠ACB=45°,BC=BC 1,又由等腰三角形的性质,即可求得∠CC 1A 1的度数.(2)由旋转的性质可得:△ABC ≌△A 1BC 1,易证得△ABA 1∽△CBC 1,利用相似三角形的面积比等于相似比的平方,即可求得△CBC 1的面积.(3)由①当P 在AC 上运动至垂足点D ,△ABC 绕点B 旋转,使点P 的对应点P 1在线段AB 上时,EP 1最小;②当P 在AC 上运动至点C ,△ABC 绕点B 旋转,使点P 的对应点P 1在线段AB 的延长线上时,EP 1最大,即可求得线段EP 1长度的最大值与最小值.【详解】解:(1)∵由旋转的性质可得:∠A 1C 1B=∠ACB=45°,BC=BC 1,∴∠CC 1B=∠C 1CB=45°.∴∠CC 1A 1=∠CC 1B+∠A 1C 1B=45°+45°=90°.(2)∵由旋转的性质可得:△ABC ≌△A 1BC 1,∴BA=BA 1,BC=BC 1,∠ABC=∠A 1BC 1.∴11BA BA BC BC =,∠ABC+∠ABC 1=∠A 1BC 1+∠ABC 1∴∠ABA 1=∠CBC 1.∴△ABA 1∽△CBC 1∴1122ABA CBC S AB 416S CB 525∆∆⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭.∵S△ABA1=4,∴S△CBC1=254.(3)过点B作BD⊥AC,D为垂足,∵△ABC为锐角三角形,∴点D在线段AC上.在Rt△BCD中,①如图1,当P在AC上运动至垂足点D,△ABC绕点B旋转,使点P的对应点P1在线段AB上时,EP1最小.最小值为:EP1=BP1﹣BE=BD﹣2.②如图2,当P在AC上运动至点C,△ABC绕点B旋转,使点P的对应点P1在线段AB的延长线上时,EP1最大.最大值为:EP1=BC+BE=5+2=7.8.(1)根据等腰直角三角形和旋转的性质,由SAS证出△BOF≌△COD,即可得出结论.(2)不成立.根据等边三角形和旋转的性质,证出△BOF∽△COD,即可得出结论.(3)BFtan CD2α=.【解析】【详解】分析:(1)根据等腰直角三角形和旋转的性质,由SAS证出△BOF≌△COD,即可得出结论.(2)根据等边三角形和旋转的性质,证出△BOF∽△COD,即可得出结论.(3)如图,连接CO、DO,仿(2)可证△BOF∽△COD,从而BF BO CD CO=.由点O是AB的中点,可得CO⊥AB,∴BOtan2COα=.∴BFtanCD2α=.解:(1)相等.证明如下:如图,连接CO、DO,∵△ABC是等腰直角三角形,点O是AB的中点,∴BO=CO,CO⊥AB.∴∠BOC=900.同理,FO=DO,∠DOF=900.∴∠BOF=900+∠COF,∠COD=900+∠COF.∴∠BOF=∠COD.∴△BOF≌△COD(SAS).∴BF=CD.(2)不成立.如图,连接CO、DO,∵△ABC 是等边三角形,∴∠CBO=600.∵点O 是AB 的中点,∴CO ⊥AB ,即∠BOC=900.∴在Rt △BOC 中,CO tan CBO BO ∠==同理,∠DOF=900,DO FO =.∴CO DO BO FO=.又∵∠BOF=900+∠COF ,∠COD=900+∠COF.∴∠BOF=∠COD.∴△BOF ∽△COD.∴CD CO BF BO==∴CD =.(3)BF tan CD 2α=.9.(1)证明见解析;(2)猜想:BD PE PF =+,理由见解析;(3)①51CPE ∠= ;②证明见解析.【解析】【详解】【分析】(1)根据平行线的判定,得到//PE AF ,//PF AE ,证明PE AF =.即可证明PE PF AB +=. (2)过点B 作DC 的平行线交EP 的延长线于点G ,证明FBP ∆≌()GBP ASA ∆,得到PF PG =.证明四边形BGED 是平行四边形,即可得到BD EG PG PE PE PF ==+=+.(3)①设CPE BPF x ∠=∠=,27APE PEA C CPE x ∠=∠=∠+∠=+ ,根据三角形的内角和列出方程,求解即可.②延长BA 至M ,使AM AP =,连结MP ,证明 ABP PBM ∆~∆.根据相似三角形的性质得到BP BM AB BP=,即可证明.【解答】(1)∵B C ∠=∠,CPE BPF ∠=∠,CPE C ∠=∠,∴B BPF CPE ∠=∠=∠,BPF C ∠=∠,∴PF BF =,//PE AF ,//PF AE ,∴PE AF =.∴PE PF AF BF AB +=+=.(2)猜想:BD PE PF =+,理由如下:过点B 作DC 的平行线交EP 的延长线于点G ,则ABC C CBG ∠=∠=∠,∵CPE BPF ∠=∠,∴BPF CPE BPG ∠=∠=∠,又BP BP =,∴FBP ∆≌()GBP ASA ∆,∴PF PG =.∵CBD CPE ∠=∠,∴//PE BD ,∴四边形BGED 是平行四边形,∴BD EG PG PE PE PF ==+=+.(3)①设CPE BPF x ∠=∠=,∵27C ∠= ,PA AE =,∴27APE PEA C CPE x ∠=∠=∠+∠=+ ,又180BPA APE CPE ∠+∠+∠= ,即27180x x x +++= ,∴51x = ,即51CPE ∠= .②延长BA 至M ,使AM AP =,连结MP ,∵27C ∠= ,51BPA CPE ∠=∠= .∴180BAP B BPA ∠=-∠-∠ 102M MPA ==∠+∠ ,∵AM AP =,∴1512M MPA BAP ∠=∠=∠= ,∴M BPA ∠=∠,而B B ∠=∠,∴ABP PBM ∆~∆.∴BP BM AB BP=,∴2BP AB BM =⋅.∵PB a =,PA AM b ==,AB c =,∴()2a c b c =+,∴22a cb c-=.【点评】考查平行四边形的判定与性质,全等三角形的判定与性质,相似三角形的判定与性质, 综合性比较强,对学生综合能力要求较高.10.(1)证明见试题解析;(2)相切,理由见试题解析;(3)2.【解析】【分析】(1)由∠ABC=90°和FD ⊥AC ,得到∠ABF=∠EBF ,由∠DEC=∠BEF ,得到∠DCE=∠EFB ,从而得到△ABC ≌△EBF (ASA );(2)BD 与⊙O 相切.连接OB ,只需证明∠DBE+∠OBE=90°,即可得到OB ⊥BD ,从而有BD 与⊙O 相切;(3)连接EA ,EH ,由DF 为线段AC 的垂直平分线,得到AE=CE ,由△ABC ≌△EBF ,得到AB=BE=1,进而得到=故1BF BC ==即可得出结论24EF =+又因为BH 为角平分线,易证△EHF 为等腰直角三角形,故222EF HF =,得到22122HF EF ==△GHF ∽△FHB ,得到2HG HB HF ⋅=.【详解】解:(1)∵∠ABC=90°,∴∠CBF=90°,∵FD ⊥AC ,∴∠CDE=90°,∴∠ABF=∠EBF ,∵∠DEC=∠BEF ,∴∠DCE=∠EFB ,∵BC=BF ,∴△ABC ≌△EBF (ASA );(2)BD 与⊙O 相切.理由:连接OB ,∵DF 是AC 的垂直平分线,∴AD=DC ,∴BD=CD ,∴∠DCE=∠DBE ,∵OB=OF ,∴∠OBF=∠OFB ,∵∠DCE=∠EFB ,∴∠DBE=∠OBF ,∵∠OBF+∠OBE=90°,∴∠DBE+∠OBE=90°,∴OB ⊥BD ,∴BD 与⊙O 相切;(3)连接EA ,EH ,∵DF 为线段AC 的垂直平分线,∴AE=CE ,∵△ABC ≌△EBF ,∴AB=BE=1,∴=,∴1BF BC ==+∴(2222114EF BE BF =+=+=+,又∵BH 为角平分线,∴∠EBH=∠EFH=45°,∴∠HEF=∠HBF=45°,∠HFG=∠EBG=45°,∴△EHF 为等腰直角三角形,∴222EF HF =,∴22122HF EF ==∵∠HFG=∠FBG=45°,∠GHF=∠GHF ,∴△GHF ∽△FHB ,∴HF HGHB HF =,∴2HG HB HF ⋅=,∴22HG HB HF ⋅==.【点拨】本题考查了全等三角形的判定和性质,相似三角形的判定和性质,圆周角定理,勾股定理,线段的垂直平分线的性质,直角三角形的性质,等腰直角三角形的判定和性质,熟练掌握这些定理是解题的关键.1.D【解析】【分析】把M 点的运动过程分为AE 段(0x ≤≤)和BE x ≤≤可知在AE 段HAE GHD EOM GPS S S S S S =+--△△△△,分别表示出四个三角形的面积即可用x 表示出S ;同理当在BE 段时1111HAE GHD EO M GP S S S S S S =+++△△△△,分别表示出四个三角形的面积即可用x 表示出S ;最后根据x与S 的函数关系式对图像进行判断即可【详解】解:如下图所示,当M 点的运动过程在AE 段则由题意可知HAE GHD EOM GPSS S S S S =+--△△△△∵四边形ABCD 是矩形,直线l ⊥AB ,H 、E 、F 、G 为AD 、AB 、BC 、CD 的中点∴=HAE GHD S S △△,=EOM GPSS S △△∴22HAE EOMS S S =-△△∵1=2HAE S AE AH △,11122AH AD BC ===,12AE AB ==∴1=2HAE S AE AH △∵直线l ⊥AB∴∠OME =∠A =90°∴△HAE ∽△OME ∴AH OM AE ME=∴OM =又∵ME AE AM x=-=∴)OM x ==∴)212EOM S OM ME x ==- △∴)222HAE EOM S S S x =-=△△如下图所示,当M 点的运动过程在BE 段同理当在BE 段时1111HAE GHD EO M GP S S S S S S =+++△△△△即1122HAE EO M S S S =+△△同理可以得到111O M E =11M E AM AE x =-=∴111O M E x ==∴11211112EO M S O M M E x ==- △∴11222HAE EO MS S S x=+=△△综上所述当M点的运动过程在AE段时)222HAE EOMS S S x=-=--△△,二次函数开口向下;当M 点的运动过程在BE段时2S x=,二次函数开口向上故选D.【点拨】本题主要考查了二次函数图像,矩形的性质,相似三角形等等知识点,解题的关键在于能够熟练掌握相关知识点进行求解运算.2.A【解析】【分析】由四边形ABCD和四边形CGFE是正方形,得出△BCE≌△DCG,推出∠BEC+∠HDE=90°,从而得GH⊥BE;由GH是∠EGC的平分线,得出△BGH≌△EGH,再由O是EG的中点,利用中位线定理,得HO∥BG 且HO=12BG;由△EHG是直角三角形,因为O为EG的中点,所以OH=OG=OE,得出点H在正方形CGFE 的外接圆上,根据圆周角定理得出∠FHG=∠EHF=∠EGF=45°,∠HEG=∠HFG,从而证得△EHM∽△GHF;设HN=a,则BC=2a,设正方形ECGF的边长是2b,则NC=b,CD=2a,由HO∥BG,得出△DHN∽△DGC,即可得出DN HNDC CG=,得到b2a a2a2b-=,即a2+2ab-b2=0,从而求得BC1CG-,设正方形ECGF的边长是2b,则,得到,通过证得△MHO∽△MFE,得到OM OHEM EF===1OMOE===,进一步得到1HOM HOMHOE HOGS SS S∆∆∆∆==.【详解】解:如图,∵四边形ABCD 和四边形CGFE 是正方形,∴BC =CD ,CE =CG ,∠BCE =∠DCG ,在△BCE 和△DCG 中,BC CD BCE DCGCE CG =⎧⎪∠=∠⎨⎪=⎩∴△BCE ≌△DCG (SAS ),∴∠BEC =∠BGH ,∵∠BGH+∠CDG =90°,∠CDG =∠HDE ,∴∠BEC+∠HDE =90°,∴GH ⊥BE .故①正确;∵△EHG 是直角三角形,O 为EG 的中点,∴OH =OG =OE ,∴点H 在正方形CGFE 的外接圆上,∵EF =FG ,∴∠FHG =∠EHF =∠EGF =45°,∠HEG =∠HFG ,∴△EHM ∽△GHF ,故②正确;∵△BGH ≌△EGH ,∴BH =EH ,又∵O 是EG 的中点,∴HO ∥BG ,∴△DHN ∽△DGC ,DN HN DC CG∴=设EC 和OH 相交于点N .设HN =a ,则BC =2a ,设正方形ECGF 的边长是2b ,则NC =b ,CD =2a ,222b a a a b-∴=即a 2+2ab ﹣b 2=0,解得:a =b =(﹣b ,或a =(﹣1b (舍去),212ab ∴=1BCCG ∴=故③正确;∵△BGH ≌△EGH ,∴EG =BG ,∵HO 是△EBG 的中位线,∴HO =12BG ,∴HO =12EG ,设正方形ECGF 的边长是2b ,∴EG =,∴HOb ,∵OH ∥BG ,CG ∥EF ,∴OH ∥EF ,∴△MHO △MFE ,∴OM OH EM EF ===∴EMOM ,∴1OMOE ===,∴1HOMHOES S ∆∆=-∵EO =GO ,∴S △HOE =S △HOG ,∴1HOMHOGS S ∆∆=-故④错误,故选A .【点拨】本题考查了正方形的性质,以及全等三角形的判定与性质,相似三角形的判定与性质,正确求得两个三角形的边长的比是解决本题的关键.3.B【解析】【详解】过D 作DM ∥BE 交AC 于N ,∵四边形ABCD 是矩形,∴AD ∥BC ,∠ABC=90°,AD=BC ,∵BE ⊥AC 于点F ,∴∠EAC=∠ACB ,∠ABC=∠AFE=90°,∴△AEF ∽△CAB ,故①正确;∵AD ∥BC ,∴△AEF ∽△CBF ,∴AE AF BC CF =,∵AE=12AD=12BC ,∴12AF CF =,∴CF=2AF ,故②正确,∵DE ∥BM ,BE ∥DM ,∴四边形BMDE 是平行四边形,∴BM=DE=12BC ,∴BM=CM ,∴CN=NF ,∵BE ⊥AC 于点F ,DM ∥BE ,∴DN ⊥CF ,∴DF=DC ,故③正确;设AD=a ,AB=b ,易知△BAE ∽△ADC ,有A D AD B AE C =,即2a b a b=∵tan ∠CAD==CD b AD a ,∴tan ∠④错误;∵△AEF ∽△CBF ,∴12EF AE BF BC ==,∴S △AEF =12S △ABF ,S △ABF =16S 矩形ABCD ,∵S △ABE =14S 矩形ABCD ,S △ACD =12S 矩形ABCD ,∴S △AEF =112S 四边形ABCD ,又∵S 四边形CDEF =S △ACD ﹣S △AEF =12S 矩形ABCD ﹣112S 矩形ABCD =512S 矩形ABCD ,∴S 四边形CDEF =52S △ABF ,故⑤正确;故选B .考点:1.相似三角形的判定与性质;2.矩形的性质;3.综合题.4.①③.【解析】【详解】试题分析:①易证△ABF ≌△BCG ,即可解题;②易证△BNF ∽△BCG ,即可求得的值,即可解题;③作EH⊥AF,令AB=3,即可求得MN,BM的值,即可解题;④连接AG,FG,根据③中结论即可求得S四边形CGNF和S四边形ANGD,即可解题.①∵四边形ABCD为正方形,∴AB=BC=CD,∵BE=EF=FC,CG=2GD,∴BF=CG,∵在△ABF和△BCG中,,∴△ABF≌△BCG,∴∠BAF=∠CBG,∵∠BAF+∠BFA=90°,∴∠CBG+∠BFA=90°,即AF⊥BG;①正确;②∵在△BNF和△BCG中,,∴△BNF∽△BCG,∴,∴BN=NF;②错误;③作EH⊥AF,令AB=3,则BF=2,BE=EF=CF=1,AF=,∵S△ABF=AFBN=ABBF,∴BN=,NF=BN=,∴AN=AF﹣NF=,∵E是BF中点,∴EH是△BFN的中位线,∴EH=,NH=,BN∥EH,∴AH=,,解得:MN=,∴BM=BN﹣MN=,MG=BG﹣BM=,∴,③正确;④连接AG,FG,根据③中结论,则NG=BG﹣BN=,∵S四边形CGNF=S△CFG+S△GNF=CGCF+NFNG=1+,S四边形ANGD=S△ANG+S△ADG=ANGN+ADDG=,∴S四边形CGNF≠S四边形ANGD,④错误;故答案为①③.考点:全等三角形的判定和性质,相似三角形的判定和性质.5.①②④【解析】【分析】①连接OQ,OD,如图1.易证四边形DOBP是平行四边形,从而可得DO∥BP.结合OQ=OB,可证到∠AOD=∠QOD,从而证到△AOD≌△QOD,则有DQ=DA=1;②连接AQ,如图2,根据勾股定理可求出BP.易证Rt△AQB∽Rt△BCP,运用相似三角形的性质可求出BQ,从而求出PQ的值,就可得到PQBQ的值;③过点Q作QH⊥DC于H,如图3.易证△PHQ∽△PCB,运用相似三角形的性质可求出QH,从而可求出S△DPQ的值;④过点Q作QN⊥AD于N,如图4.易得DP∥NQ∥AB,根据平行线分线段成比例可得32DN PQAN BQ==,把AN=1-DN代入,即可求出DN,然后在Rt△DNQ中运用三角函数的定义,就可求出cos∠ADQ的值.【详解】解:①连接OQ,OD,如图1.易证四边形DOBP是平行四边形,从而可得DO∥BP.结合OQ=OB,可证到∠AOD=∠QOD,从而证到△AOD≌△QOD,则有DQ=DA=1.故①正确;②连接AQ,如图2.则有CP=12,=.易证Rt△AQB∽Rt△BCP,运用相似三角形的性质可求得则=,∴32 PQBQ=.故②正确;③过点Q作QH⊥DC于H,如图3.易证△PHQ∽△PCB,运用相似三角形的性质可求得QH=35,∴S△DPQ=12DP•QH=12×12×35=320.故③错误;④过点Q作QN⊥AD于N,如图4.易得DP ∥NQ ∥AB ,根据平行线分线段成比例可得32DN PQ AN BQ ==,则有312DN DN =-,解得:DN=35.由DQ=1,得cos ∠ADQ=35DN DQ =.故④正确.综上所述:正确结论是①②④.故答案为:①②④.【点拨】本题主要考查了圆周角定理、平行四边形的判定与性质、相似三角形的判定与性质、全等三角形的判定与性质、平行线分线段成比例、等腰三角形的性质、平行线的性质、锐角三角函数的定义、勾股定理等知识,综合性比较强,常用相似三角形的性质、勾股定理、三角函数的定义来建立等量关系,应灵活运用.6.(1)【问题发现】12,60°,45°;【类比探究】见(2)题的解析;【归纳总结】2n m ,1802a ︒-;(2),30°【解析】【分析】(1)当60α=︒时,△ABC 和△PDC 都是等边三角形,可证△ACP ∽△ECF ,从而有12EF AP =,∠Q =β=∠ACB =60°;当90α=︒时,△ABC 和△PDC 都是等腰直角三角形,同理可证△ACP ∽△ECF 即可解决,依此可得出规律;(2)当120α=︒,可证CE AC =,CF CP =CE CA CF CP =,由∠ECF =∠ACP ,可得△PCA ∽△FCE 即可解决问题.【详解】(1)【问题发现】如图1,连接AE ,PF ,延长EF 、AP 交于点Q ,当60α=︒时,△ABC 和△PDC 都是等边三角形,∴∠PCD =∠ACB =60°,PC =CD ,AC =CB ,∵F 、E 分别是CD 、BC 的中点,∴12CF PC =,12CE AC =,∴CF CE PC AC=,又∵∠ACP =∠ECF ,∴△ACP ∽△ECF ,∴12EF AP =,∠CEF =∠CAP ,∴∠Q =β=∠ACB =60°,当90α=︒时,△ABC 和△PDC 都是等腰直角三角形,如图2,连接AE ,PF ,延长EF 、AP 交于点Q ,∴∠PCD =∠ACB =45°,PC CD ,AC ,∵F 、E 分别是CD 、BC 的中点,∴CE AC =,CF PC =∴CF CE PC AC=,又∵∠ACP=∠ECF,∴△ACP∽△ECF,∴EFAP==,∠CEF=∠CAP,∴∠Q=β=∠ACB=45°,【归纳总结】由此,可归纳出22nEF CE nAP AC m m===,β=∠ACB=1802a︒-;(2)当120α=︒,连接AE,PF,延长EF、AP交于点Q,∵AB=AC,E为BC的中点,∴AE⊥BC,∠CAE=60°∴sin60°=CEAC=,同理可得:CFCP=∴CE CFAC CP=,∴CE CACF CP=,又∵∠ECF=∠ACP,∴△PCA∽△FCE,∴EF ECAP AC==∠CEF=∠CAP,∴∠Q=β=∠ACB=30°.【点拨】本题主要考查了三角形相似的判定与性质,通过解决本题感受到:图形在变化但解决问题的方法不变,体会“变中不变”的思想.7.(1)ED BD =(2)①正方形,理由见解析;②见解析;(3【解析】【分析】(1)根据“斜中半”定理可得CD AD BD ==,然后根据旋转的性质可得CD ED =,从而得出ED BD =,再结合题意推出30B DCG ∠=∠=︒,从而根据正切函数的定义求出GD CD即可;(2)①通过证明CDF EDF △≌△,并综合条件//CF DE ,推出四边形CDEF 是正方形;②首先根据CFH DGH △△∽推出DH DG FH CD ==GBE GDH △≌△得到BE DH =,即可得出结论;(3)根据题意可首先证明四边形CDEF 是菱形,然后证明出EBG HFC △△∽,即可推出结论BE BG FH FC =,再作DK CG ⊥,通过解直角三角形,求出BG 的长度,从而得出结论.【详解】(1)∵点D 为Rt ABC 中斜边AB 的中点,∴CD AD BD ==,∵线段CD 绕点D 顺时针旋转得到线段ED ,∴CD ED =,∴ED BD =,∵Rt ABC 中,90ACB ∠=︒,60A ∠=︒,∴30B ∠=︒,∵CD BD =,∴30B DCG ∠=∠=︒,∴在Rt DCG 中,tan tan 30GD DCG CD =∠=︒=故答案为:ED BD =(2)①正方形,理由如下:∵90α=︒,DM 平分CDE ∠,∴90CDE ∠=︒,CDF EDF ∠=∠,∵CD ED =,DF DF =,∴()CDF EDF SAS △≌△,∴DCF DEF ∠=∠,∵//CF DE ,∴180FCD CDE ∠+∠=︒,∴90FCD ∠=︒,∴90DCF DEF CDE ∠=∠=∠=︒,∴四边形CDEF 为矩形,又∵CD ED =,∴四边形CDEF 为正方形;②显然,在正方形CDEF 中,CFH GDH △△∽,∴DH DG FH CF=,又∵CD CF =,∴DH DG FH CD ==由(1)得:60,,A CD AD ∠=︒=则ACD △为等边三角形,∴60ADC ∠=︒,∵90CDE ∠=︒,∴30GDB ∠=︒,∴GDB GBD ∠=∠,GD GB =,又∵DE DB =,∴()1180752DBE DEB GDB ∠=∠=︒-∠=︒,∴753045GBE ∠=︒-︒=︒,∵45GDH ∠=︒,∴GBE GDH∠=∠在GBE 与GDH 中,GDH GBE GD GBDGH BGE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()GBE GDH ASA △≌△,∴BE DH =,∴BE DH DG FH FH CD ===(3)同(2)中①理,CDF EDF △≌△,∴CDF EDF ∠=∠,CFD EFD ∠=∠,∵//CF DE ,∴CFD EDF ∠=∠,∴CFD CDF ∠=∠,EDF EFD ∠=∠,∴CF CD =,ED EF =,∴四边形CDEF 为菱形,∵ACD △为等边三角形,∴2AC CD AD BD ====,菱形的边长也为2,由题意,2HDG α∠=,13022DEB DBE ADE α∠=∠=∠=︒+,∵30DBG ∠=︒,∴2EBG α∠=,即:HDG EBG ∠=∠,∴EBG HDG △△∽,∵在菱形CDEF 中,HFC HDG △△∽,∴EBG HFC △△∽,∴BE BG FH FC=,如图,作DK CG ⊥,∵30DCK ∠=︒,∴60CDK ∠=︒,60KDG α∠=-︒,∵2CD =,∴1DK =,CK =在Rt KDG △中,()tan tan 60GK KDG m DKα=∠=-︒=,∴GK m =,∴CG m =,在Rt ABC 中,BC ==∴BG BC CG m m =-==,∵2CF CD ==,∴BE BG FH FC ==.【点拨】本题考查相似三角形的判定与性质,特殊平行四边形的判定与性质,以及锐角三角函数等,综合性较强,掌握基本图形的性质,灵活运用相似三角形以及锐角三角函数是解题关键.8.(1)30°;(2)①见解析;②CD BE =;见解析;(3)()AC k BD BE =+,见解析【解析】【分析】(1)先根据题意得出△ABC 是等边三角形,再利用三角形的外角计算即可(2)①按要求补全图即可②先根据已知条件证明△ABC 是等边三角形,再证明AEB ADC △≌△,即可得出CD BE=(3)先证明AC BC AD DE=,再证明ACB ADE △∽△,得出BAC EAD ∠=∠,从而证明AEB ADC △≌△,得出BD BE BC +=,从而证明()AC k BD BE =+【详解】解:(1)∵AB AC =,60C ∠=°∴△ABC 是等边三角形∴∠B =60°∵点D 关于直线AB 的对称点为点E∴AB ⊥DE ,∴BDE ∠=30︒故答案为:30︒;(2)①补全图如图2所示;②CD 与BE 的数量关系为:CD BE =;证明:∵AB AC =,60BAC ∠=︒.∴ABC 为正三角形,又∵AD 绕点A 顺时针旋转60︒,∴AD AE =,60EAD ∠=︒,∵60BAD DAC ∠+∠=︒,60BAD BAE ∠+∠=︒,∴BAE DAC ∠=∠,∴AEB ADC △≌△,∴CD BE =.(3)连接AE .∵AB AD k BC DE ==,AB AC =,∴AC AD BC DE =.∴AC BC AD DE=.又∵ADE C ∠=∠,∴ACB ADE △∽△,∴BAC EAD ∠=∠.∵AB AC =,∴AE AD =,∴BAD DAC BAD BAE ∠+∠=∠+∠,∴DAC BAE ∠=∠,∴AEB ADC △≌△,CD BE =.∵BD DC BC +=,∴BD BE BC +=.又∵AC k BC=,∴()AC k BD BE =+.【点拨】本题考查相似三角形的证明及性质、全等三角形的证明及性质、三角形的外角、轴对称,熟练进行角的转换是解题的关键,相似三角形的证明是重点9.(1)正方形;(2)MC ME '=,见解析;(3)25【解析】【分析】(1)有一组邻边相等且一个角为直角的平行四边形是正方形;(2)连接EC ',由(1)问的结论可知,90AD BC EAC B '=∠=∠=︒,,又因为矩形纸片ABCD 沿过点E 的直线折叠,可知折叠前后对应角以及对应边相等,有B B '∠=∠,B C BC ''=,90AE B C EAC B ''''=∠=∠=︒,,可以证明Rt EC A ' 和Rt C EB '' 全等,得到C EA EC B '''∠=∠,从而有MC ME '=;(3)由Rt EC A Rt C EB ''' ≌,有AC B E ''=;由折叠知,AC BE '=,可以计算出()8cm AB =;用勾股定理计算出DF 的长度,再证明DNF ENG ∽得出等量关系,从而得到:DN EN 的值.【详解】(1)解:∵ABCD 是平行四边形,∴'////AD BC EA ,'//AE DA ∴四边形'AEA D 是平行四边形∵矩形纸片ABCD 沿过点D 的直线折叠,使点A 落在CD 上的点A '处∴'AED A ED≌∴'AE A E=∵90A ∠=∴四边形AEA D '的形状是正方形故最后答案为:四边形AEA D '的形状是正方形;(2)MC ME'=理由如下:如图,连接EC ',由(1)知:AD AE=∵四边形ABCD 是矩形,∴90AD BC EAC B '=∠=∠=︒,由折叠知:B C BC B B'''=∠=∠,∴90AE B C EAC B ''''=∠=∠=︒,。
安徽省2023年中考数学一轮复习专题训练:锐角三角函数 试卷
安徽省2023年中考数学一轮复习专题训练:锐角三角函数一、选择题(本大题共12小题,每小题5分,满分60分)1. (2020•中山市模拟)如图,在Rt △ABC 中,∠ACB=90o,BC=4,cosB=,点M 是AB 的中点,则CM 的长为( )A.2B.3C.4D.62. 如图,在菱形ABCD 中,DE ⊥AB,3cos A 5,BE=2,则tan ∠DBE 的值是( )A.123. (2021·西安模拟)如图,在△ABC 中,AB =10,cos ∠ABC =35,D 为BC 边上一点,且AD =AC,若DC =4,则BD 的值为( )A.2B.3C.4D.54. (2022安徽合肥市第四十五中学)如图,已知O 的两条弦AC,BD 相交于点E,∠BAC=70o ,∠ACD=50o ,连接OE,若E 为AC 中点,那么sin ∠OEB 的值为( )A.12 5. (2020•邢台一模)如图,已知点C 从点B 出发,沿射线BD 方向运动,运动到点D 后停止,则在这个过程中,从A 观测点C 的俯角将( )A.增大B.减小C.先增大后减小D.先减小后增大6. (2020•重庆)如图,在距某居民楼AB 楼底B 点左侧水平距离60m 的C 点处有一个山坡,山坡CD 的坡度(或坡比)i =1:0.75,山坡坡底C 点到坡顶D 点的距离CD =45m,在坡顶D 点处测得居民楼楼顶A 点的仰角为28°,居民楼AB 与山坡CD 的剖面在同一平面内,则居民楼AB 的高度约为(参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)( )A.76.9mB.82.1mC.94.8mD.112.6m7. (2021九上·历下期末)我国航天事业捷报频传,天舟二号于2021年5月29日成功发射,震撼人心.当天舟二号从地面到达点A 处时,在P 处测得A 点的仰角∠DPA 为30°,A 与P 两点的距离为10千米;它沿铅垂线上升到达B 处时,此时在P 处测得B 点的仰角∠DPB 为45°,则天舟二号从A 处到B 处的距离AB 的长为( )(参考数据:,)A.2.0千米B.1.5千米C.2.5千米D.3.5千米8. (2020•九龙坡区校级二模)小华同学在数学实践活动课中测量自己学校门口前路灯的高度.如图,校门E 处,有一些斜坡EB,斜坡EB 的坡度i=1:2.4:从E 点沿斜坡行走了4.16米到达坡顶的B 处,在B 处看路灯顶端O 的仰角为35o ,再往前走3米在D 处,看路灯顶端O 的仰角为65o ,则路灯顶端O 到地面的距离约为( )(已知sin350.6︒≈,cos350.8︒≈,tan350.7︒≈,sin650.9︒≈,cos650.4︒≈,tan 65 2.1)︒≈A.5.5米B.4.8米C.4.0米D.3.2米9. (2020•江津区校级模拟)我校小伟同学酷爱健身,一天去爬山锻炼,在出发点C 处测得山顶部A 的仰角为30度,在爬山过程中,每一段平路CD 、EF 、GH 与水平线平行,每一段上坡路(DE 、FG 、HA 与水平线的夹角都是45度,在山的另一边有一点B(B 、C 、D 同一水平线上),斜坡AB 的坡度为2:1,且AB 长为900,其中小伟走平路的速度为65.7米/分,走上坡路的速度为42.3米/分.则小伟从C 出发到坡顶A 的时间为( )(图中所有点在同一平面内2 1.41≈,3 1.73)≈A.60分钟B.70分钟C.80分钟D.90分钟10. (2020•广元)规定:sin(﹣x)=﹣sinx,cos(﹣x)=cosx,cos(x+y)=cosxcosy ﹣sinxsiny,给出以下四个结论:(1)sin(﹣30°);(2)cos2x =cos 2x ﹣sin 2x;(3)cos(x ﹣y)=cosxcosy+sinxsiny;(4)cos15°. 其中正确的结论的个数为( )A.1个B.2个C.3个D.4个11. (2021·武汉模拟)如图,把n 个边长为1的正方形拼接成一排,求得tan ∠BA 1C =1,tan ∠BA 2C =13,tan ∠BA 3C =17 ,…,依此规律写出tan ∠BA 7C =1n,则n =( )A.40B.41C.42D.4312. (2020•沙坪坝区校级一模)小林在放学路上,看到隧道上方有一块宣传“重庆--行千里,致广大”竖直标语牌CD.他在A 点测得标语牌顶端D 处的仰角为42o ,由A 点沿斜坡AB 下到隧道底端B 处(B,C,D 在同一条直线上),AB=10m,坡度为i=1:,隧道高6.5m(即BC=6.5m,则标语牌CD 的长为( )m(结果保留小数点后一位).(参考数据:sin420.67︒≈,cos420.74︒≈,tan420.90︒≈,3 1.73)≈A.4.3B.4.5C.6.3D.7.8二、填空题(本大共8小题,每小题5分,满分40分)13. (2021·长春)如图是净月潭国家森林公园一段索道的示意图.已知A,B 两点间的距离为30米,∠A =α,则缆车从A 点到达B 点,上升的高度(BC 的长)为( )A.30sin α米B.30sin α米C.30cos α米D.30cos α米 14. (2022安徽淮南)如图,已知直线1l ∥2l ∥3l ∥4l ,相邻两条平行直线间的距离都是1,如果正方形ABCD 的四个顶点分别在四条直线上,则sin α=______.15. (2020•金华)如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A,B,C均为正六边形的顶点,AB 与地面BC 所成的锐角为β.则tan β的值是 .16. (2020•宝安区二模)如图,从甲楼顶部A 处测得乙楼顶部D 处的俯角α为30o ,又从A 处测得乙楼底部C 处的俯角β为60o .已知两楼之间的距离BC 为18米,则乙楼CD 的高度为 .(结果保留根号)17. (2021·长沙模拟)如图,Rt △ABC 中,∠C =90°,sin ∠A =35,O 是AC 边上一点,以OA 为半径的⊙O 交AB 于点D,若BD =2,AD =AC,则线段OB 的长为____.18. (2020•东莞市校级一模)如图所示,在山脚C 处测得山项A 仰角为30o ,沿着水平地面向前300米到达点D,在D 点测得山顶A 的仰角为60o ,则山高AB 为 米(结果保留根号).19. (2020•哈尔滨模拟)如图,在四边形ABCD 中,tan ∠ABC=,BD 为对角线,∠ABD+∠BDC=90o,过点A 作AE ⊥BD 于点E,连接CE,若AE=DE,EC=DC=5,则△ABC 的面积为 .20. (2020•鹿城区校级二模)图1是我校闻澜阁前楼梯原设计稿的侧面图,AD//BC,∠C=90o ,楼梯AB 的坡比为1:2,为了增加楼梯的舒适度,将其改造成如图2,测量得BD=2AB=18m,M 为BD 的中点,过点M 分别作MN//BC 交∠ABD 的角平分线于点N,MP//BN 交AD 于点P,其中BN 和MP 为楼梯,MN 为平地,则平地MN 的长度为________.三、解答题(本大题共6道小题,每小题6-12分)21. (6分)(2020•盐城)如图,在△ABC中,∠C=90°,tanA,∠ABC的平分线BD交AC于点D,CD=,求AB的长?22. (6分)(2020•随州)如图,某楼房AB顶部有一根天线BE,为了测量天线的高度,在地面上取同一条直线上的三点C,D,A,在点C处测得天线顶端E的仰角为60°,从点C走到点D,测得CD=5米,从点D测得天线底端B的仰角为45°,已知A,B,E在同一条垂直于地面的直线上,AB=25米.(1)求A与C之间的距离;(2)求天线BE的高度.(参考数据: 1.73,结果保留整数)23. (6分)(2020年湖北省枣阳市太平一中中考数学模拟题)已知:如图,一艘渔船正在港口A的正东方向40海里的B处进行捕鱼作业,突然接到通知,要该船前往C岛运送一批物资到A港,已知C岛在A港的北偏东60°方向,且在B的北偏西45°方向.问该船从B处出发,以平均每小时20海里的速度行驶,需要多少时间才能把这批物资送到A港(精确到1小时)(该船在C岛停留半个小时)?1.411.732.45)324. (8分)(2020武汉五调)如图,四边形ABCD 是矩形,E,F 分别是AD,CD 上的点,BF ⊥CE,垂足为G,连接AG(1)求证:BCCD BF CF (2)若G 为CE 的中点,求证:sin ∠AGB =BFCF25. (12分)(2020•临沂)如图,要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α般要满足60°≤α≤75°,现有一架长5.5m 的梯子.(1)使用这架梯子最高可以安全攀上多高的墙(结果保留小数点后一位)?(2)当梯子底端距离墙面2.2m 时,α等于多少度(结果保留小数点后一位)?此时人是否能够安全使用这架梯子?(参考数据:sin75o ≈0.97,cos75o ≈0.26,tan75o ≈3.73,sin23.6o ≈0.40,cos66.4o ≈0.40,tan21.8o ≈0.40)26. (12分)(2022·慈溪模拟)图1为科研小组研制的智能机器,水平操作台为l,底座AB 固定,高AB 为50cm,始终与平台l 垂直,连杆BC 长度为60cm,机械臂CD 长度为40cm,点B,C 是转动点,AB,BC 与CD 始终在同一平面内,张角∠ABC 可在60°与120°之间(可以达到60°和120°)变化,CD 可以绕点C 任意转动.FDA B CEG(1)转动连杆BC,机械臂CD,使张角∠ABC最大,且CD∥AB,如图2,求机械臂臂端D到操作台l的距离DE的长.(2)转动连杆BC,机械臂CD,要使机械臂端D能碰到操作台l上的物体M,则物体M离底座A的最远距离和最近距离分别是多少?。
专题49实践操作问题(压轴题)-决胜2021中考数学压轴题全揭秘资料
一、选择题1.(2013年山东德州3分)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为【】A.(1,4)B.(5,0)C.(6,4)D.(8,3)2. (2013年浙江宁波3分)7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足【】A.a=52b B.a=3b C.a=72b D.a=4b3. (2013年江苏镇江3分)如图,A、B、C是反比例函数ky(k<0)x图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有【】A.4条B.3条C.2条D.1条【答案】A。
【考点】反比例函数综合题,点到直线的距离,平行线的性质,全等、相似三角形的判定和性质,分类讨思想的应用。
【分析】如解答图所示,满足条件的直线有两种可能:一种是与直线BC平行,符合条件的有两条,如图中的直线a、b;一种是过线段BC的中点,符合条件的有两条,如图中的直线c、d。
∴满足条件的直线有4条。
故选A 。
4. (2012安徽省4分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是【 】A .10B .54C . 10或54D .10或1725. (2012福建三明4分)如图,在平面直角坐标系中,点A 在第一象限,点P 在x 轴上,若以P ,O ,A 为顶点的三角形是等腰三角形,则满足条件的点P 共有【 】A.2个B.3个C.4个D.5个【答案】C。
【考点】等腰三角形的判定。
【分析】如图,分OP=AP(1点),OA=AP(1点),OA=OP(2点)三种情况讨论。
中考数学复习《综合实践题》经典题型及测试题(含答案)
中考数学复习《综合实践题》经典题型及测试题(含答案)题型解读此类题考查形式多样,但都与实际问题结合,且解决实际问题时一般会用到前面的结论,解题时要多结合前面的问题,大胆猜想.综合性较强,入手简单,但要得满分较难,此类题型是今后中考命题的方向,应引起重视.1.如图①,△ABC 和△DEF 中,AB =AC ,DE =DF ,∠A =∠D. (1)求证:BC AB =EFDE;(2)由(1)中的结论可知,等腰三角形ABC 中,当顶角∠A 的大小确定时,它的对边(即底边BC)与邻边(即腰AB 或AC)的比值也就确定,我们把这个比值记作T(A),即T(A)=∠A的对边(底边)∠A的邻边(腰)=BCAB .如T(60°)=1.①理解巩固:T(90°)=________,T (120°)=________,若α是等腰三角形的顶角,则T(α)的取值范围是________;②学以致用:如图②,圆锥的母线长为9,底面直径PQ =8,一只蚂蚁从点P 沿着圆锥的侧面爬行到点Q ,求蚂蚁爬行的最短路径长(精确到0.1).(参考数据:T(160°)≈1.97,T (80°)≈1.29,T (40°)≈0.68)2. (1)如图①,已知△ABC,以AB、AC为边分别向△ABC外作等边△ABD和等边△ACE,连接BE、CD,请你完成图形(尺规作图,不写作法,保留作图痕迹),并证明:BE=CD;(2)如图②,已知△ABC,以AB、AC为边分别向外作正方形ABFD和正方形ACGE,连接BE、CD,猜想BE与CD有什么数量关系?并说明理由;(3)运用(1),(2)解答中所积累的经验和知识,完成下题:如图③,要测量池塘两岸相对的两点B、E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长(结果保留根号).3.问题:如图①,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图①证明上述结论.【类比引申】如图②,四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足__________关系时,仍有EF=BE+FD.【探究应用】如图③,在某公园的同一水平面上,四条道路围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC =120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且A E⊥AD,DF=40(3-1)米,现要在E、F 之间修一条笔直的道路,求这条道路EF的长.(结果取整数,参考数据:2≈1.41,3≈1.73)4.理解:数学兴趣小组在探究如何求tan 15°的值,经过思考、讨论、交流,得到以下思路: 思路一 如图①,在Rt △ABC 中,∠C =90°,∠ABC =30°,延长CB 至点D ,使BD =BA ,连接AD.图① 设AC =1,则BD =BA =2,BC = 3.tan D =tan 15°=12+3=2-3(2+3)(2-3)=2- 3. 思路二 利用科普书上的和.(.差.).角正切公式.....:tan (α±β)=tan α±tan β1∓tan αtan β. 假设α=60°,β=45°代入差角正切公式:tan 15°=tan (60°-45°)=tan 60°-tan 45°1+tan 60°tan 45°=3-11+3=2- 3.思路三 在顶角为30°的等腰三角形中,作腰上的高也可以… 思路四 …请解决下列问题(上述思路仅供参考). (1)类比:求出tan 75°的值;(2)应用:如图②,某电视塔建在一座小山上,山高BC 为30米,在地平面上有一点A ,则得A 、C 两点间距离为60米,从A 测得电视塔的视角(∠CAD)为45°,求这座电视塔CD 的高度;(3)拓展:如图③,直线y =12x -1与双曲线y =4x 交于A 、B 两点,与y 轴交于点C ,将直线AB 绕点C 旋转45°后,是否仍与双曲线相交?若能,求出交点P 的坐标;若不能,请说明理由.图②图③备用图5.【操作发现】在计算器上输入一个正数,不断地按“ ”键求算术平方根,运算结果越来越接近1或都等于1.【提出问题】输入一个实数,不断地进行“乘以常数k ,再加上常数b”的运算,有什么规律? 【分析问题】我们可用框图表示这种运算过程:也可用图象描述:如图①,在x 轴上表示出x 1,先在直线y =kx +b 上确定点(x 1,y 1),再在直线y =x 上确定纵坐标为y 1的点(x 2,y 1),然后在x 轴上确定对应的数x 2,…,依次类推. 【解决问题】研究输入实数x 1时,随着运算次数n 的不断增加,运算结果x n 怎样变化. (1)若k =2,b =-4,得到什么结论?可以输入特殊的数如3,4,5进行观察研究; (2)若k>1,又得到什么结论?请说明理由;(3)①若k =-23,b =2,已在x 轴上表示出x 1(如图②所示),请在x 轴上表示x 2,x 3,x 4,并写出研究结论;②若输入实数x 1时,运算结果x n 互不相等,且越来越接近常数m ,直接写出k 的取值范围及m 的值(用含k ,b 的代数式表示).6.问题提出(1)如图①,已知△ABC.请画出△ABC关于直线AC对称的三角形.问题探究(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2.是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米.现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=5米,∠EHG=45°.经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件.试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.1. (1)证明:∵AB=AC,DE=DF,∴ABDE=ACDF,又∵∠A =∠D ,∴△ABC ∽△DEF ,∴BC EF =ABDE ,∴BC AB =EF DE. (2)解:①2,3,0<T (α)<2.【解法提示】①如解图①,在Rt △ABC 中,∠A =90°,∠B =∠C =45°, ∴设AB =AC =x ,由勾股定理得BC =2x , ∴T(90°)=BC AB =2x x=2;第1题解图①第1题解图②如解图②,在△ABC 中,∠A =120°,AB =AC , 过点A 作AD ⊥BC , ∴∠BAD =60°,BD =12BC ,设AD =y ,在Rt △ABD 中,∠BAD =60°, ∴BD =AD·tan 60°=3y ,AB =2AD =2y , ∴BC =2BD =23y , ∴T(120°)=23y2y=3; ∵∠A<180°,当∠A =180°时,此时AB =AC =12BC 即T(A)=BC AB =BC 12BC =2,∵要构成三角形,∴T(A)<2, ∵T(A)>0,∴0<T (α)<2.第1题解图②如解图,设圆锥的底面半径为r ,母线长为l ,∵圆锥的底面圆周长=圆锥展开图扇形的弧长,即2πr =n πl180,∴rl=n360,∵r=4,l=9,∴n=160.∵T(80°)≈1.29,∴蚂蚁爬行的最短距离=T(80°)×l≈1.29×9≈11.6.2. 解:(1)作图如解图①,第2题解图①证明:∵△ABD和△ACE为等边三角形,则AB=AD,AE=AC,∠DAB=∠EAC=60°,又∵∠DAC=∠DAB+∠BAC=∠EAC+∠BAC=∠BAE,∴△DAC≌△BAE(SAS),∴BE=CD.(2)BE=CD.理由如下:∵四边形ABFD和四边形ACGE为正方形,∴AB=AD,AC=AE,∠DAB=∠EAC=90°,又∵∠DAC=∠DAB+∠BAC=∠EAC+∠BAC=∠BAE,∴△DAC≌△BAE(SAS),∴BE=CD.(3)如解图②,以AB为边,作等腰直角三角形ABD,∠BAD=90°,第2题解图②则AD=AB=100米,∠ABD=45°,∴BD=100 2 米,连接CD,则由(2)可得,BE=CD,∵∠ABC=45°,∴∠DBC=90°,在Rt△DBC中,BC=100米,BD=100 2 米,由勾股定理得CD=1002+(1002)2=100 3 米,则BE=CD=100 3 米.3. 【发现证明】证明:如解图①,将△ABE绕点A逆时针旋转90°到△ADG,则AB与AD重合,第3题解图①∴∠BAE =∠DAG ,∠B =∠ADG ,BE =GD , AE =AG ,∴∠GAF =∠DAF +∠GAD =∠BAE +∠DAF =45°, 在正方形ABCD 中,∠B =∠ADC =90°, ∴∠ADG +∠ADF =180°,即G 、D 、F 在一条直线上, ∵∠EAF =45°,在△EAF 和△GAF 中,AE =AG ,∠EAF =∠GAF =45°,AF =AF , ∴△EAF ≌△GAF(SAS ), ∴EF =GF ,∴EF =FG =FD +DG =FD +BE. 【类比引申】∠EAF =12∠BAD.【解法提示】如解图②,延长CB 至M ,使BM =DF ,连接AM , ∵∠ABC +∠D =180°,∠ABC +∠ABM =180°, ∴∠D =∠ABM , 在△ABM 和△ADF 中, ⎩⎪⎨⎪⎧AB =AD ∠ABM =∠D BM =DF,第3题解图②∴△ABM ≌△ADF(SAS ),∴AF =AM ,∠DAF =∠BAM , ∵∠BAD =2∠EAF , ∴∠DAF +∠BAE =∠EAF =12∠BAD , ∴∠EAB +∠BAM =∠EAM =∠EAF , 在△FAE 和△MAE 中,⎩⎪⎨⎪⎧AE =AE ∠FAE =∠MAE AF =AM, ∴△FAE ≌△MAE(SAS ), ∴EF =EM ,又∵EM =BE +BM =BE +DF , ∴EF =BE +DF.【探究应用】解:如解图③,连接AF ,延长BA 、CD 交于点O , ∵∠BAD =150°,∠ADC =120°, ∴∠OAD =30°,∠ODA =60°, ∴△OAD 是直角三角形. ∵AD =80,∴AO =403,OD =40,∵OF =OD +DF =40+40(3-1)=403, ∴AO =OF ,第3题解图③∴∠OAF =45°, ∵∠OAD =30°, ∴∠DAF =15°, ∵∠EAD =90°,∴∠EAF =∠EAD -∠DAF =75°=12∠BAD ,又∠B +∠ADC =180°,由(2)知EF =BE +DF.∠BAE =∠BAD -∠EAD =150°-90°=60°=∠B , ∴△ABE 为等边三角形, ∴BE =AB =80,∴EF =BE +DF =80+40(3-1)≈109(米). 4. 解:(1)如解图①,在Rt △ABC 中,∠C =90°,∠ABC =30°,延长CB 至点D ,使BD =BA ,连接AD.第4题解图①设AC =1,则BD =BA =2,BC =3,tan ∠DAC =tan 75°=DC AC =BD +BC AC =2+31=2+ 3.【一题多解】tan 75°=tan (45°+30°)=tan 45°+tan 30°1-tan 45°·tan 30°=1+331-33=3+33-3=2+ 3.第4题解图②(2)如解图②,在Rt △ABC 中,AB =AC 2-BC 2=602-302=303, sin ∠BAC =BC AC =3060=12,即∠BAC =30°,∵∠DAC =45°,∴∠DAB =45°+30°=75°.在Rt △ABD 中,tan ∠DAB =DBAB =2+3,∴DB =AB·tan ∠DAB =303·(2+3)=603+90, ∴DC =DB -BC =603+90-30= 603+60.(米)答:这座电视塔CD 的高度为(603+60)米.第4题解图③(3)直线AB 能与双曲线相交, 点P 的坐标为(-1,-4)或(43,3),理由如下:若直线AB 绕点C 逆时针旋转45°后,与双曲线相交于点P 1、P 2,如解图③,过点C 作CD ∥x 轴,过点P 1作P 1E ⊥CD 于点E ,过点A 作AF ⊥CD 于点F.解方程组⎩⎨⎧y =12x -1y =4x,得⎩⎪⎨⎪⎧x =4y =1,或⎩⎪⎨⎪⎧x =-2y =-2, ∴点A(4,1),点B(-2,-2).对于y =12x -1,当x =0时,y =-1,则C(0,-1),OC =1,∴CF =4,AF =1-(-1)=2, ∴tan ∠ACF =AF CF =24=12, ∴tan ∠P 1CE =tan (∠ACP 1+∠ACF)=tan (45°+∠ACF)=tan 45°+tan ∠ACF 1-tan 45°·tan ∠ACF=1+121-12=3,即P 1ECE =3.设点P 的坐标为(a ,b), 则有⎩⎪⎨⎪⎧ab =4b +1a =3,解得⎩⎪⎨⎪⎧a =-1b =-4,或⎩⎪⎨⎪⎧a =43b =3, ∴点P 的坐标为(-1,-4)或(43,3);(ii )若直线AB 绕点C 顺时针旋转45°后,与x 轴相交于点G ,如解图④. 由(i )可知∠ACP =45°,P(43,3),则CP ⊥CG .过点P 作PH ⊥y 轴于H , 则∠GOC =∠CHP =90°,∠GCO =90°-∠HCP =∠CPH ,第4题解图④∴△GOC ∽△CHP , ∴GO CH =OCHP. ∵CH =3-(-1)=4,PH =43,OC =1,∴GO 4=143=34, ∴GO =3,G(-3,0).设直线CG 的解析式为y =kx +b ,则有⎩⎪⎨⎪⎧-3k +b =0b =-1,解得⎩⎪⎨⎪⎧k =-13b =-1,∴直线CG 的解析式为y =-13x -1.联立⎩⎨⎧y =-13x -1y =4x,消去y ,得4x =-13x -1,整理得x 2+3x +12=0,∵b 2-4ac =32-4×1×12=-39<0, ∴方程没有实数根,∴直线绕点C 顺时针旋转45°,与双曲线无交点.(综上所述,直线AB 绕点C 逆时针旋转45°后,能与双曲线相交,交点P 的坐标为(-1,-4)或(43,3).5. 解:(1)若k =2, b =-4,①x 1=3时,x 2=2×3-4=2,x 3=2×2-4=0,x 4=2×0-4=-4,x 5=2×(-4)-4=-12; ②x 1=4时,x 2=2×4-4=4,x 3=2×4-4=4,x 4=2×4-4=4,x 5=2×4-4=4; ③x 1=5时,x 2=2×5-4=6,x 3=2×6-4=8,x 4=2×8-4=12,x 5=2×12-4=20, 由上面的特殊值可得,y =2x -4与y =x 交点的横坐标为4, 所以当输入的值x>4时,x n 的值会随着运算次数的增大而增大; 当输入的值x =4时,x n 的值不变;当输入的值x<4时,x n 的值会随着运算次数的增大而减小.(2)当k>1时,y =kx +b 与y =x 的交点坐标横坐标为x =-bk -1,所以当输入的值x>-bk -1时,x n 的值会随着运算次数的增大而增大;当输入的值x =-bk -1时,x n 的值不变;当输入的值x<-bk -1时,x n 的值会随着运算次数的增大而减小.理由如下:直线y =kx +b 与直线y =x 的交点坐标为(b 1-k ,b 1-k ),当x >b 1-k时,对于同一个x 的值,kx +b >x ,∴y 1>x 1,∵y 1=x 2,∴x 1<x 2,同理x 2<x 3<…<x n ,∴当x 1>b1-k 时,随着运算次数n的增加,x n 越来越大,同理,当x 1<b 1-k 时,随着运算次数n 的增加,x n 越来越小,当x =b1-k 时,随着运算次数n 的增加,x n 保持不变.(3)①画如解图,第5题解图结论:通过画图可得,x n 的值越来越靠近两个函数图象交点的横坐标即65;②|k|<1且k ≠0时,m =-bk -1.即-1<k <1且k ≠0, 【解法提示】两个函数图象的交点的横坐标满足kx +b =x ,解得x =-bk -1,且k ≠0,由(1)得|k|<1.6. (1)【思路分析】要作对称图形,先要考虑对称的性质,即对应点关于对称轴对称,只需作出点B 关于直线AC 的对称点D ,连接AD ,CD 即可.第6题解图①解:如解图①,△ADC 即为所求作三角形.【作法提示】(1)过点B 作直线AC 的垂线,垂足为点O ;(2)在垂线上截取OD =OB ,连接AD ,CD ,则△ADC 即为所要求作的三角形.(2)【思路分析】四边形EFGH 的周长=EF +FG +GH +HE ,由题意可知AF 和AE 的长均为定值,利用勾股定理可求得EF 的长为定值,所以要求四边形周长的最小值,只需令FG +GH +HE 最小即可,利用作对称线段将所求线段和转化到三角形中进行求解,进而利用直角三角形三边关系求出线段和最小值.第6题解图②解:存在.理由如下:如解图②,作点E 关于CD 的对称点E′,作点F 关于BC 的对称点F′,连接E′F′,交BC 于点G ,交CD 于点H ,连接FG 、EH ,则F ′G =FG ,E ′H =EH ,所以此时四边形EFGH 的周长最小.这是因为:在BC 上任取一点G′,在CD 上任取一点H′,则FG′+G′H′+H′E =F′G′+G′H′+H ′E ′≥E ′F ′.由题意得:BF′=BF =AF =2,DE ′=DE =2,∠A =90°, ∴AF ′=6,AE ′=8.∴E ′F ′=10,EF =2 5.∴四边形EFGH 周长的最小值为EF +FG +GH +HE =EF +E ′F ′=25+10.∴在BC、CD上分别存在满足条件的点G、H,使四边形EFGH的周长最小,最小值是25+10.(3)【思路分析】要使四边形EFGH面积最大,因为E、F、G的位置确定,即△EFG的面积是固定的,只要求以EG为底边的△EGH最大面积即可,且∠EHG为45°,作△EFG关于EG的对称图形,以点F 的对称点O为圆心,作以EG为弦的圆,根据圆的基本性质,即EG的中垂线与圆的交点即为所求的点H′,然后再由对称的性质和勾股定理求解即可.解:能裁得.∵∠EFG=∠A=90°,∴∠2+∠AFE=∠1+∠AFE=90°,∴∠1=∠2,∵EF=FG=5,∴△AEF≌△BFG(AAS),∴AF=BG,AE=BF.设AF=x,则AE=BF=3-x,∴x2+(3-x)2=(5)2解得x1=1或x2=2,∵AF<BF,∴x2=2舍去,∴AF=BG=1,AE=BF=2,∴DE=4,CG=5.如解图③,连接EG,作△EFG关于EG的对称图形△EOG,则四边形EFGO为正方形,∠EOG=90°.以点O为圆心,OE长为半径作⊙O,则∠EHG=45°的点H在⊙O上.连接FO,并延长交⊙O于点H,则点H在EG中垂线上.第6题解图③连接EH、GH,则∠EHG=45°.此时,四边形EFGH就是想要裁得的四边形EFGH中面积最大的.连接CE,则CE=CG=DE2+CD2=5.∴点C在线段EG的中垂线上,连接HC,∴点F、O、H、C在一条直线上,又∵EG=EF2+FG2=10,∴FO=EG=10.又∵CF=BF2+BC2=210,∴OC=10.又∵OH=OE=FG=5,∴OH<OC,∴点H 在矩形ABCD 的内部,∴可以在矩形板材ABCD 中,裁得符合条件的面积最大的四边形EFGH 部件,这个部件的面积即S 四边形EFGH=12EG·FH =12×10×(10+5)=(5+522)m 2. ∴所裁得的四边形部件EFGH 是符合条件的面积最大的部件,这个部件的面积为(5+522) m 2.难点突破本题的难点在于第(3)问点H 位置的确定,题中已知点E 、F 、G 的位置,即解决本题的实质是求以EG 为底边的△EGH 的面积最大时点H 的位置,由于∠EHG =45°,想到作直角△EFG 关于EG 的对称图形,则以点F 的对称点为圆心、EG 为弦的圆在矩形ABCD 内的点H 满足题意,根据圆的基本性质,则点H 为EG 的中垂线与所作圆的交点.。
2024年中考数学复习:综合与实践专项练习
综合与实践专项练习类型1 实践操作型试题1.(2022江苏宿迁)如图,在网格中,每个小正方形的边长均为1,每个小正方形的顶点称为格点,点A、B、C、D、M 均为格点.【操作探究】在数学活动课上,佳佳同学在如图①的网格中,用无刻度的直尺画了两条互相垂直的线段AB、CD,相交于点P,并给出部分说理过程.请你补充完整......:解:在网格中取格点E,构建两个直角三角形,分别是△ABC 和△CDE.在Rt△ABC中, tan∠BAC=BCAC =12,在Rt△CDE 中, ,所以tan∠BAC=tan∠DCE.所以∠BAC=∠DCE.因为∠ACP+∠DCE=∠ACB=90°,所以∠ACP+∠BAC=90°.所以∠APC=90°,即AB⊥CD.【拓展应用】(1)图②是以格点O 为圆心,AB 为直径的圆,请你只用无刻度的直尺........,在BM 上找出一点P,使PM=AM,写出作法,并给出证明;(2)图③是以格点O为圆心的圆,请你只用无刻度的直尺........,在弦AB 上找出一点P,使AM²=AP⋅AB,写出作法,不用证明.2.(2022 黑龙江齐齐哈尔)综合与实践数学是以数量关系和空间形式为主要研究对象的科学.数学实践活动有利于我们在图形运动变化的过程中去发现其中的位置关系和数量关系,让我们在学习与探索中发现数学的美,体会数学实践活动带给我们的乐趣.转一转:如图①,在矩形ABCD 中,点E、F、G分别为边BC、AB、AD 的中点,连接EF、DF,H 为DF 的中点,连接GH.将△BEF绕点B 旋转,线段DF、GH 和CE 的位置和长度也随之变化.当△BEF绕点B顺时针旋转90°时,请解决下列问题:(1)图②中,AB=BC,此时点E落在AB的延长线上,点F 落在线段BC上,连接AF,猜想GH 与CE 之间的数量关系,并证明你的猜想;(2)图③中,AB=2,BC=3,则GHCE =¯;(3)当AB=m,BC=n时, GHCE =¯;剪一剪、折一折:(4)在(2)的条件下,连接图③中矩形的对角线AC,并沿对角线AC剪开,得△ABC(如图④).点M、N分别在AC、BC上,连接MN,将△CMN沿MN 翻折,使点C 的对应点P 落在AB 的延长线上,若PM 平分∠APN,,则CM的长为.类型2 探究迁移型试题3.(2022 山东泰安)问题探究(1) 在△ABC 中,BD,CE 分别是∠ABC 与∠BCA的平分线.①若∠A=60°,AB=AC,如图1,试证明:BC=CD+BE;②将①中的条件“AB=AC”去掉,其他条件不变,如图2,问①中的结论是否成立?并说明理由;迁移运用(2)若四边形ABCD 是圆的内接四边形,且∠ACB=2∠ACD,∠CAD=2∠CAB,如图3,试探究线段AD,BC,AC 之间的等量关系,并证明.4.(2022 甘肃武威)已知正方形ABCD,E为对角线AC上一点.【建立模型】如图1,连接BE,DE.求证:BE=DE;【模型应用】如图2,F 是DE 延长线上一点,FB⊥BE,EF交AB 于点G,连接AF.(1)判断△FBG的形状并说明理由;(2)若G为AB 的中点,且AB=4,求AF的长;【模型迁移】如图3,F 是DE 延长线上一点,FB⊥BE,EF 交AB 于点G,BE=BF.求证:GE= (√2−1)DE.类型3 综合应用型试题5.(2022山东潍坊)为落实“双减”政策,老师布置了一项这样的课后作业:二次函数的图象经过点(-1,-1),且不经过第一象限,写出满足这些条件的一个函数表达式.【观察发现】请完成作业,并在直角坐标系中画出大致图象;【思考交流】小亮说:“满足条件的函数图象的对称轴一定在y轴的左侧.”小莹说:“满足条件的函数图象一定在x轴的下方.”你认同他们的说法吗?若不认同,请举例说明;【概括表达】小博士认为这个作业的答案太多,老师不方便批阅,于是探究了二次函数y=ax²+bx+c的图象与系数a,b,c 的关系,得出了提高老师作业批阅效率的方法.请你探究这个方法,写出探究过程.6.(2022湖南湘潭)在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,过点B、C分别作l的垂线,垂足分别为点D、E.(1)特例体验:如图①,若直线l∥BC,AB=AC =√2,,分别求出线段BD、CE 和DE 的长;(2)规律探究:(i)如图②,若直线l从图①状态开始绕点A 旋转α(0°<α<45°),请探究线段BD、CE和DE 的数量关系并说明理由;(ii)如图③,若直线l从图①状态开始绕点A顺时针旋转α(45°<α<90°),与线段BC相交于点H,请再探究线段BD、CE 和DE的数量关系并说明理由;(3)尝试应用:在图③中,延长线段BD交线段AC于点F,若CE=3,DE=1,求S△BFC-。
2019中考数学总复习之----综合与实践试题精品集锦(二)
决战2019中考数学总复习之综合与实践精品试题集锦(二)24综合与实践(本题满分12分)如图,在△ABC中,AB=AC,点D在边BC所在的直线上,过点D作DE∥AC交直线AB于点E,DF∥AB交直线AC于点F.(1)当点D在边BC上时,如图①,求证:DE+DF=AC.(2)当点D在边BC的延长线上时,如图②;当点D在边BC的反向延长线上时,如图③.请分别写出图②、图③中DE,DF,AC之间的数量关系,不需要证明.(3)若AC=6,DE=4,则DF=________.24综合与实践(本题满分12分)阅读下面材料:在数学课上,老师请同学思考如下问题:如图1,我们把一个四边形ABCD的四边中点E,F,G,H依次连接起来得到的四边形EFGH是平行四边形吗?小敏在思考问题是,有如下思路:连接AC.结合小敏的思路作答(1)若只改变图1中四边形ABCD的形状(如图2),则四边形EFGH还是平行四边形吗?说明理由;参考小敏思考问题方法解决一下问题:(2)如图2,在(1)的条件下,若连接AC,BD.①当AC与BD满足什么条件时,四边形EFGH是菱形,写出结论并证明;②当AC与BD满足什么条件时,四边形EFGH是矩形,直接写出结论.24综合与实践(本题满分12分)在图1﹣﹣图4中,菱形ABCD的边长为3,∠A=60°,点M是AD边上一点,且DM= AD,点N是折线AB﹣BC上的一个动点.(1)如图1,当N在BC边上,且MN过对角线AC与BD的交点时,则线段AN的长度为________.(2)当点N在AB边上时,将△AMN沿MN翻折得到△A′MN,如图2,①若点A′落在AB边上,则线段AN的长度为________;②当点A′落在对角线AC上时,如图3,求证:四边形AM A′N是菱形;________③当点A′落在对角线BD上时,如图4,求的值.________24综合与实践(本题满分12分)四边形ABCD是边长为4的正方形,点E在边AD所在直线上,连接CE,以CE为边,作正方形CEFG(点D,点F在直线CE的同侧),连接BF.(1)如图1,当点E与点A重合时,请直接写出BF的长;(2)如图2,当点E在线段AD上时,AE=1;①求点F到AD的距离;②求BF的长;(3)若BF=,请直接写出此时AE的长.24综合与实践(本题满分12分)在矩形ABCD中,已知AD>AB.在边AD上取点E,使AE=AB,连结CE,过点E作EF⊥CE,与边AB或其延长线交于点F.猜想:如图①,当点F在边AB上时,线段AF与DE的大小关系为.探究:如图②,当点F在边AB的延长线上时,EF与边BC交于点G.判断线段AF与DE的大小关系,并加以证明.应用:如图②,若AB=2,AD=5,利用探究得到的结论,求线段BG的长.24综合与实践(本题满分12分)(1)问题提出:苏科版《数学》九年级(上册)习题2.1有这样一道练习题:如图①,BD、CE是△ABC的高,M是BC的中点,点B、C、D、E是否在以点M为圆心的同一个圆上?为什么?在解决此题时,若想要说明“点B、C、D、E在以点M为圆心的同一个圆上”,在连接MD、ME的基础上,只需证明.(2)初步思考:如图②,BD、CE是锐角△ABC的高,连接DE.求证:∠ADE=∠ABC,小敏在解答此题时,利用了“圆的内接四边形的对角互补”进行证明.(请你根据小敏的思路完成证明过程.)(3)推广运用:如图③,BD、CE、AF是锐角△ABC的高,三条高的交点G叫做△ABC 的垂心,连接DE、EF、FD,求证:点G是△DEF的内心.24综合与实践(本题满分12分)如图所示,在△ABC中,AB=AC=2,BC=2,∠A=90°.取一块含45°角的直角三角尺,将直角顶点放在斜边BC的中点O处,一条直角边过点A(如图1).三角尺绕点O顺时针方向旋转,使90°角的两边与Rt△ABC的两边AB,AC分别相交于点E,F(如图2).设BE=x,CF=y.(1)探究:在图2中,线段AE与CF有怎样的大小关系?证明你的结论.(2)求在上述旋转过程中y与x的函数表达式,并写出x的取值范围.(3)若将直角三角尺45°角的顶点放在斜边BC边的中点O处,一条直角边过点A(如图3).三角尺绕O点顺时针方向旋转,使45°角的两边与Rt△ABC的两边AB,AC分别相交于点E,F(如图4).在三角尺绕点O旋转的过程中,△OEF是否能成为等腰三角形?若能,直接写出△OEF为等腰三角形时x的值;若不能,请说明理由.24综合与实践(本题满分12分)如图6,我们把对角线互相垂直的四边形叫做垂美四边形(1)概念理解:如图7,在四边形ABCD中,AB=AD,CB=CD,四边形ABCD是垂美四边形吗?请说明理由.(2)性质探究:试探索垂美四边形ABCD的两组对边AB,CD与BC,AD之间的数量关系.猜想结论: (要求用文字语言叙述).写出证明过程(先画出图形, 写出已知、求证,再证明)(3)问题解决:如图8,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形形ABDE,连接CE,BG,GE,若AC=4,AB=5,求GE的长.24综合与实践(本题满分12分)如图1,小红将一张直角梯形纸片沿虚线剪开,得到矩形和三角形两张纸片,测得AB=15,AD=12.在进行如下操作时遇到了下面的几个问题,请你帮助解决.(1)将△EFG的顶点G移到矩形的顶点B处,再将三角形绕点B顺时针旋转使E点落在CD边上,此时,EF恰好经过点A(如图2)求FB的长度;(2)在(1)的条件下,小红想用△EFG包裹矩形ABCD,她想了两种包裹的方法如图3、图4,请问哪种包裹纸片的方法使得未包裹住的面积大?(纸片厚度忽略不计)请你通过计算说服小红.。
2022年九年级数学复习专题---图形的变换(平移、翻折、旋转)综合问题题
2022年中考数学复习专题---图形的变换(平移、翻折、旋转)综合题班级:___________姓名:___________学号:___________1.综合与实践 问题情境:综合与实践课上,同学们以“三角形纸片的折叠与旋转“为主题展开数学活动,探究有关的数学问题. 动手操作:已知:三角形纸片ABC 中,6120AB AC BC BAC ==∠=︒,,.将三角形纸片ABC 按如下步骤进行操作: 第一步:如图1,折叠三角形纸片ABC ,使点C 与点A 重合,然后展开铺平,折痕分别交BC AC ,于点D E ,,连接AD ,易知AD CD =.第二步:在图1的基础上,将三角形纸片ABC 沿AD 剪开,得到ABD ∆和ACD ∆.保持ABD ∆的位置不变,将ACD ∆绕点D 逆时针旋转得到FDG ∆(点F G ,分别是A C ,的对应点),旋转角为()0360αα︒<<︒问题解决:(1)如图2,小彬画出了旋转角0120α︒<<︒时的图形,设线段FG AC ,交于点P ,连接AG DP ,.小彬发现DP 所在直线始终垂直平分线段AG .请证明这一结论;(2)如图3,小颖画出了旋转角90α=︒时的图形,设直线AF 与直线CG 相交于点O ,连接CF 判断此时COF ∆的形状,说明理由;(3)在ACD ∆绕点D 逆时针旋转过程中,当FG BC ⊥时,请直接写出B F ,两点间的距离.2.如图,△ABC 中,已知∠C=90°,∠B=60°,点D 在边BC 上,过D 作DE ⊥AB 于E . (1)连接AD ,取AD 的中点F ,连接CF ,EF ,判断△CEF 的形状,并说明理由(2)若.把△BED 绕着点D 逆时针旋转m (0<m <180)度后,如果点B 恰好落在初始Rt △ABC 的边上,那么m=3.问题背景:如图1,在矩形ABCD 中,30AB ABD =∠=︒,点E 是边AB 的中点,过点E 作EF AB ⊥交BD 于点F . 实验探究:(1)在一次数学活动中,小明在图1中发现AEDF=_________. 将图1中的BEF 绕点B 按逆时针方向旋转90︒,连接,AE DF ,如图2所示,发现AEDF=_________. (2)小亮同学继续将BEF 绕点B 按逆时针方向旋转,连接,AE DF ,旋转至如图3所示位置,请问探究(1)中的结论是否仍然成立?并说明理由. 拓展延伸:(3)在以上探究中,当BEF 旋转至D 、E 、F 三点共线时,AE 的长为____________.4.如图,在Rt ABC 中,90ACB ∠=︒,CD 平分ACB ∠.P 为边BC 上一动点,将DPB 沿着直线DP 翻折到DPE ,点E 恰好落在CDP 的外接圆O 上. (1)求证:D 是AB 的中点.(2)当60BDE ∠=︒,BP =DC 的长.(3)设线段DB 与O 交于点Q ,连结QC ,当QC 垂直于DPE 的一边时,求满足条件的所有QCB ∠的度数.5.如图1,O 为正方形ABCD 的中心,分别延长OA 、OD 到点,F E ,使OF=2OA ,OE 2OD =,连接EF ,将FOE ∆绕点O 按逆时针方向旋转角α得到F OE ''∆,连接,AE BF ''(如图2).(1)探究AE '与BF '的数量关系,并给予证明; (2)当30α=︒时,求证:AOE '为直角三角形.6.如图,在△ABC 中,AB =∠B =45°,∠C =60°. (1)求BC 边上的高线长.(2)点E 为线段AB 的中点,点F 在边AC 上,连结EF ,沿EF 将△AEF 折叠得到△PEF . ①如图2,当点P 落在BC 上时,求∠AEP 的度数. ②如图3,连结AP ,当PF ⊥AC 时,求AP 的长.7.如图1,点C 在线段AB 上,分别以AC 、BC 为边在线段AB 的同侧作正方形ACDE 和正方形BCMN , 连结AM 、BD .(1)AM与BD的关系是:________.(2)如果将正方形BCMN绕点C顺时针旋转锐角α(如图2).(1) 中所得的结论是否仍然成立?请说明理由.(3)在(2)的条件下,连接AB、DM,若AC=4,BC=2,求AB2+DM2的值.8.已知正方形ABCD,一等腰直角三角板的一个锐角顶点与A重合,将此三角板绕A点旋转时,两边分别交直线BC、CD于M、N.(1)当M、N分别在边BC、CD上时(如图1),求证:BM+DN=MN;(2)当M、N分别在边BC、CD所在的直线上时(如图2),线段BM、DN、MN之间又有怎样的数量关系,请直接写出结论;(不用证明)(3)当M、N分别在边BC、CD所在的直线上时(如图3),线段BM、DN、MN之间又有怎样的数量关系,请写出结论并写出证明过程.9.如图,已知∠ABC=90°,△ABE是等边三角形,点P为射线BC上任意一点(点P与点B不重合),连接AP,将线段AP绕点A逆时针旋转60°得到线段AQ,连接QE并延长交射线BC于点F.(1)如图,当BP=BA时,∠EBF=______°,猜想∠QFC =______°;(2)如图,当点P为射线BC上任意一点时,猜想∠QFC的度数,并加以证明.(3)已知线段AB=BP=x,点Q到射线BC的距离为y,求y关于x的函数关系式.10.我们知道,直角坐标系是研究“数形结合”的重要工具.请探索研究下列问题:(1)如图1,点A 的坐标为(-5,1),将点A 绕坐标原点(0,0)按顺时针方向旋转90°,得对应点A ',若反比例函数(0)k y x x=>的图像经过点A ',求k 的值.(2)将(1)中的(0)ky x x =>的图像绕坐标原点(0,0)按顺时针方向旋转45°,如图2,旋转后的图像与x 轴相交于点B ,若直线x =C 与点D ,求△BCD 的面积. (3)在(2)的情况下,半径为6的M 的圆心M 在x 轴上,如图3,若要使△BCD 完全在M 的内部,求M 的圆心M 横坐标xm 的范围(直接写出结果,不必写详细的解答过程).11.对于平面直角坐标系xOy 中的点A 和点P ,若将点P 绕点A 逆时针旋转90︒后得到点Q ,则称点Q 为点P 关于点A 的“垂链点”,图1为点P 关于点A 的“垂链点”Q 的示意图.(1)已知点A 的坐标为(0,0),点P 关于点A 的“垂链点”为点Q ;①若点P 的坐标为(2,0),则点Q 的坐标为________; ②若点Q 的坐标为(2,1)-,则点P 的坐标为________; (2)如图2,已知点C 的坐标为(1,0),点D 在直线113y x =+上,若点D 关于点C 的“垂链点”在坐标轴上,试求出点D 的坐标;(3)如图3,已知图形G 是端点为(1,0)和(0,2)-的线段,图形H 是以点O 为中心,各边分别与坐标轴平行的边长为6的正方形,点M 为图形G 上的动点,点N 为图形H 上的动点,若存在点(0,)T t ,使得点M 关于点T 的“垂链点”恰为点N ,请直接写出t 的取值范围.12.如图,正比例函数y =12x 与反比例函数()0k y x x =>的图象交于点A ,将正比例函数y =12x 向上平移6个单位,交y 轴于点C ,交反比例函数图象于点B ,已知AO =2BC . (1)求反比例函数解析式;(2)作直线AB ,将直线AB 向下平移p 个单位,恰与反比例函数图象有唯一交点,求p 的值.13.综合与实践:问题情境:(1)如图,点E 是正方形ABCD 边CD 上的一点,连接BD 、BE ,将DBE ∠绕点B 顺针旋转90︒,旋转后角的两边分别与射线DA 交于点F 和点G .①线段BE 和BF 的数量关系是______.②写出线段DE 、DF 和BD 之间的数量关系.并说明理由;操作探究:(2)在菱形ABCD 中,60ADC ∠=︒,点E 是菱形ABCD 边CD 所在直线上的-点,连接BD 、BE ,将DBE ∠绕点B 顺时针旋转120︒,旋转后角的两边分别与射线DA 交于点F 和点G .①如图,点E 在线段DC 上时,请探究线段DE 、DF 和BD 之间的数量关系,写出结论并给出证明;②如图,点E在线段CD的延长线上时,BE交射线DA于点M,若2==,直接写出线段FM和AGDE DC a的长度.14.两个全等的直角三角形ABC和DEF重叠在一起,其中∠A=60°,AC=4.固定△ABC不动,将△DEF 进行如下操作:(1)操作发现如图①,△DEF沿线段AB向右平移(即D点在线段AB内移动),连接DC,CF,FB,四边形CDBF的形状在不断的变化,那么它的面积大小是否变化呢?如果不变化,请求出其面积.(2)猜想论证如图②,当D点移到AB的中点时,请你猜想四边形CDBF的形状,并说明理由.(3)拓展探究如图③,△DEF的D点固定在AB的中点,然后绕D点按顺时针方向旋转△DEF,使DF落在AB边上,此时F点恰好与B点重合,连接AE,求sinα翻折问题姓名:___________班级:___________学号:___________1.如图将矩形纸片ABCD 沿AE 翻折,使点B 落在线段DC 上,对应的点为F . (1)求证:EFC DAF ∠=∠;(2)若3tan 4AE EFC =∠=,求AB 的长.2.如图,在Rt△ABC 中,∠C=90°,AC=BC=2,AD 是BC 边上的中线,将A 点翻折与点D 重合,得到折痕EF ,求:CE AE 的值.3.如图,点A ,M ,N 在O 上,将MN 沿MN 折叠后,与AM 交于点B .(1)若70MAN ∠=︒,则ANB ∠=________°; (2)如图1,点B 恰好是翻折所得MN 的中点, ①若MA MN =,求AMN ∠的度数;②若tan MAN ∠=tan AMN ∠的值; (3)如图2,若222AB BN MN +=,求MBAB的值.4.已知矩形ABCD 中,AB =2,BC =m ,点E 是边BC 上一点,BE =1,连接AE ,沿AE 翻折△ABE 使点B 落在点F 处.(1)连接CF ,若CF ∥AE ,求m 的值;(2)连接DF ,若65≤DF ,求m 的取值范围.5.如图1,一张矩形纸ABCD ,ABa AD=,点,E F 分别在边,CD AB 上,且AE EF =,把ADE 沿AE 翻折得到AGE .(1)如图1,若1AD =.(Ⅰ)当AD DE =时,AFE ∠=_____度; (Ⅱ)当//AG EF 时,求AF 的长度.(2)若直线EG 与边AB 交于点H ,当2AH FH =时,求a 的最小值.6.如图,在折纸游戏中,正方形ABCD 沿着BE ,BF 将BC ,AB 翻折,使A ,C 两点恰好落在点P . (1)求证:45EBF ∠=︒.(2)如图,过点P 作//MN BC ,交BF 于点Q . ①若5BM =,且10MP PN ⋅=,求正方形折纸的面积. ②若12QP BC =,求AM BM的值.7.如图,在ABC 中,12,120AC BC ACB ==∠=︒,点D 是AB 边上一点,连接CD ,以CD 为边作等边CDE △.(1)如图1,若45CDB ∠=︒,求等边CDE △的边长;(2)如图2,点D 在AB 边上移动过程中,连接BE ,取BE 的中点F ,连接,CF DF ,过点D 作DG AC ⊥于点G . ①求证:CFDF .②如图3,将CFD 沿CF 翻折得CFD ',连接BD ',求出BD '的最小值.8.在矩形ABCD 中,1AB =,BC a =,点E 是边BC 上一动点,连接AE ,将ABE △沿AE 翻折,点B 的对应点为点B '.(1)如图,设BE x =,BC =E 从B 点运动到C 点的过程中. ①AB CB ''+最小值是______,此时x =______; ②点B '的运动路径长为.(2)如图,设35BE a =,当点B 的对应点B '落在矩形ABCD 的边上时,求a 的值.9.如图1,平行四边形ABCD 的对角线AC ,BD 相交于点O ,CD 边的垂直平分线EH 交BD 于点E ,连接AE ,CE .(1)过点A 作//AF EC 交BD 于点F ,求证:AF BF =;(2)如图2,将ABE △沿AB 翻折得到'ABE △.①求证:'//BE CE ;②若'//AE BC ,1OE =,求CE 的长度.10.如图,矩形ABCD 中,已知6AB =.8BC =,点E 是射线BC 上的一个动点,连接AE 并延长,交射线DC 于点F .将ABE △沿直线AE 翻折,点B 的对应点为点B ',延长AB '交直线CD 于点M .(1)如图1,若点B '恰好落在对角线AC 上,求BE CE的值. (2)如图2.当点E 为BC 的中点时,求DM 之长.(3)若32BE CE =,求sin DAB '∠.11.【基础巩固】(1)如图①,ABC ACD CED α∠=∠=∠=,求证:ABC CED ∽△△.【尝试应用】(2)如图②,在菱形ABCD 中,60A ∠=︒,点E ,F 分别为边,AD AB 上两点,将菱形ABCD 沿EF 翻折,点A 恰好落在对角线DB 上的点P 处,若2PD PB =,求AE AF的值. 【拓展提高】(3)如图③,在矩形ABCD 中,点P 是AD 边上一点,连接,PB PC ,若2,4,120PA PD BPC ==∠=︒,求AB 的长.12.如图,在ABC 中,60B ∠=︒,AD BC ⊥于点D ,CE AB ⊥于点E ,AB CE =.(1)如图1,将ABD △沿AD 翻折到AFD ,AF 交CE 于点G ,探索线段AB 、AG 、CG 之间有何等量关系,并加以证明;(2)如图2,H 为直线BC 上任意一点,连接AH ,将AH 绕点A 逆时针旋转60°到AH ',连接CH ',若BD =,求CH '的最小值.13.如图,在矩形ABCD 中,12BC AB =,F 、G 分别为AB 、DC 边上的动点,连接GF ,沿GF 将四边形AFGD 翻折至四边形EFGP ,点E 落在BC 上,EP 交CD 于点H ,连接AE 交GF 于点O(1)GF 与AE 之间的位置关系是:______,GF AE 的值是:______,请证明你的结论;(2)连接CP ,若3tan 4CGP ∠=,GF =CP 的长14.如图,在矩形ABCD 中,8AB =,10BC =,点P 在矩形的边CD 上由点D 向点C 运动.沿直线AP 翻折ADP ∆,形成如下四种情形,设DP x =,ADP ∆和矩形重叠部分(阴影)的面积为y .(1)如图4,当点P 运动到与点C 重合时,求重叠部分的面积y ;(2)如图2,当点P 运动到何处时,翻折ADP ∆后,点D 恰好落在BC 边上?这时重叠部分的面积y 等于多少?15.如图1,ABC 中,AB AC =,点D 在BA 的延长线上,点E 在BC 上,连接DE 、DC ,DE 交AC 于点G ,且DE DC =.(1)找出一个与BDE ∠相等的角;(2)若AB =mAD ,求DG GE的值(用含m 的式子表示); (3)如图2,将ABC 沿BC 翻折,若点A 的对应点A '恰好落在DE 的延长线上,求BE EC的值.16.在等腰直角三角形ABC中,∠BAC=90°,AB=AC,D是斜边BC的中点,连接AD.(1)如图1,E是AC的中点,连接DE,将△CDE沿CD翻折到△CDE′,连接AE′,当时,求AE的值.(2)如图2,在AC上取一点E,使得CE=13AC,连接DE,将△CDE沿CD翻折到△CDE′,连接AE′交BC于点F,求证:DF=CF.。
2022年中考数学专题复习考前冲刺一元二次方程练习(安徽版)
2022年中考数学专题复习考前冲刺一元二次方程练习(安徽版)学校:___________姓名:___________班级:___________考生__________评卷人得分一、单选题 1.若()2223aa x --=是关于x 的一元二次方程,则a 的值是( ) A .0 B .2 C .-2 D .±22.已知x 1,x 2是一元二次方程x 2+2x ﹣3=0的两根,则x 1+x 2,x 1x 2的值分别为( )A .﹣2,3B .2,3C .3,﹣2D .﹣2,﹣3 3.已知函数y =kx 2﹣7x ﹣7的图象和x 轴有交点,则k 的取值范围是( )A .74k >-B .74k ≥-C .74k ≥-且k ≠0D .74k >-且k ≠0 4.下列方程中两个实数根的和等于2的方程是( )A .2x 2-4x+3=0B .2x 2-2x-3=0C .2y 2+4y-3=0D .2t 2-4t-3=0 5.下列一元二次方程中,有两个不相等实数根的方程是【 】 A .x 2﹣3x+1=0 B .x 2+1=0 C .x 2﹣2x+1=0 D .x 2+2x+3=0 6.一元二次方程x 2+kx ﹣3=0的一个根是x =1,则k 的值为( )A .2B .﹣2C .3D .﹣37.用公式法解方程(x +2)2=6(x +2)-4时,b 2-4ac 的值为( )A .52B .32C .20D .-128.关于x 的一元二次方程()22m 2x x m 40-++-=有一个根为0,则m 的值应为( )A .2B .2-C .2或2-D .19.已知 2222()(2)80m n m n +++-=,则m2+n2的值为( )A .-4或2B .-2或4C .-4D .210.如果关于x 的一元二次方程x2﹣4|a|x+4a2﹣1=0的一个根是5,则方程的另一个根是( )A .1B .5C .7D .3或711.方程2(1)230m x mx -+-=是关于x 的一元二次方程,则( )A .1m ≠±B .1m =C .1m ≠-D .1m ≠12.一元二次方程23610x x -+=的二次项系数、一次项系数分别是( )A .3,6-B .3,1C .6-,1D .3,613.下列方程中有一个根为-1的方程是( )A .220x x +=B .23250x x +-=C .2540x x -+=D .22350x x --=14.关于x 的方程(x ﹣2)2=1﹣m 无实数根,那么m 满足的条件是( )A .m >2B .m <2C .m >1D .m <115.一元二次方程y 2﹣4y ﹣3=0配方后可化为( )A .(y ﹣2)2=7B .(y+2)2=7C .(y ﹣2)2=3D .(y+2)2=3 16.方程210x x +-=的根是( )A .15-B .152-+C .15-+D .152-± 17.一元二次方程()()122x x ++=的解是( )A .10x =,23x =-B .11x =-,22x =-C .11x =,22x =D .10x =,23x = 18.一元二次方程25204x x +-=的根的情况是( ) A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法判断19.方程x 2﹣2x ﹣4=0和方程x 2﹣4x+2=0中所有的实数根之和是( )A .2B .4C .6D .820.某超市一月份的营业额为40万元,一月、二月、三月的营业额共200万元, 如果平均每月增长率为x ,则由题意列方程为 ( )A .40(1+x )2=200B .40+40×2×x=200C .40+40×3×x=200D .40[1+(1+x )+(1+x )2]=200 评卷人得分二、填空题 21.已知2x =是方程220x mx ++=的一个根,则m 的值是_______.22.已知3是一元二次方程x 2﹣4x+c=0的一个根,则方程的另一个根是________.23.如果关于x 的方程220x x k -+=(k 为常数)有两个不相等的实数根,那么k 的取值范围是__________.24.某工厂三月份的利润为90万元,五月份的利润为108.9万元,则平均每月增长的百分率为________25.关于x 的方程a (x+m )2+b=0的解是x1=2,x2=﹣1,(a ,b ,m 均为常数,a≠0),则方程a (x+m+2)2+b=0的解是________ .26.若分式 221x x x --+ 的值为零,则x=________. 27.若方程x 2+2x -11=0的两根分别为m 、n ,则mn (m +n )=______.28.如果关于x 的方程x2﹣5x+k=0没有实数根,那么k 的值为________29.若关于 x 的方程 ()()2240x x x m --+= 有三个根,且这三个根恰好可以作为一个三角形的三条边的长,则 m 的取值范围是________.30.关于x 的方程mx 2+x ﹣m+1=0,有以下三个结论: 当m=0时,方程只有一个实数解; 当m≠0时,方程有两个不等的实数解; 无论m 取何值,方程都有一个负数解,其中正确的是__(填序号).31.若31210m x x ---=是关于x 的一元二次方程,则m 的值为__.32.一元二次方程20x mx n --=的两实根是12x =,23x =,则m =__,n =__.33.一个三角形的两边长分别为3和5,第三边长是方程x 2-6x +8=0的根,则三角形的周长为_____.34.已知关于x 的一元二次方程210mx x ++=有实数根,则m 的取值范围是__. 35.关于x 的一元二次方程22(2)340m x x m -++-=有一个解是0,另一个根为 _______.36.如图所示,点阵M 的层数用n 表示,点数总和用S 表示,当66S =时,则n =__.37.如图,在长为10m ,宽为8m 的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为248m ,则道路的宽应为__m .评卷人得分三、解答题38.已知m是关于x的方程2450+的一个根,则2x x-=+=__m m28参考答案:1.C【解析】【详解】由题意得:222,20a a -=-≠ ,解得:a=-2.故选C.2.D【解析】【分析】根据根与系数关系可得:x 1+x 2=-b a,x 1•x 2=c a . 【详解】由题意知,x 1+x 2=-2b a=-,x 1•x 2=3c a =-. 故选D【点睛】本题考核知识点:根与系数关系. 解题关键点:熟记根与系数关系.3.B【解析】【分析】对k 分情况进行讨论,0k =时,为一次函数,符合题意;0k ≠时,二次函数,求解即可.【详解】解:当0k =时,函数为77y x =--,为一次函数,与x 轴有交点,符合题意;当0k ≠,函数为277y kx x =--,为二次函数,因为图像与x 轴有交点 所以,2(7)470k ∆=-+⨯≥,解得74k ≥-且0k ≠ 综上,74k ≥- 故选B【点睛】此题考查了二次函数与x 轴有交点的条件,解题的关键是对k 分情况进行讨论,易错点是容易忽略0k =的情况.4.D【解析】【详解】A 中,由 =(-4)2-4×2×3=-8<0,故方程无实数根,故A 错误;B 中, =(-2)2-4×2×(-3)=28>0,则x 1+x 2=1;C 中, =42-4×2×(-3)=40>0, 则x 1+x 2=-2;D 中 =(-4)2-4×2×(-3)=40>0,则x 1+x 2=2.故选D.点睛:根与系数的关系:x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=-b a ,x 1x 2=c a. 5.A【解析】【详解】分别计算出各项中方程根的判别式的值,找出大于0的选项即可:A 、a=1,b=﹣3,c=1,=b 2﹣4ac=5>0, 方程有两个不相等的实数根,本选项符合题意;B 、a=1,b=0,c=1,=b 2﹣4ac=﹣4<0, 方程没有实数根,本选项不合题意;C 、a=1,b=﹣2,c=1,=b 2﹣4ac=0, 方程有两个相等的实数根,本选项不合题意;D 、a=1,b=2,c=3,=b 2﹣4ac=﹣5<0, 方程没有实数根,本选项不合题意.故选A .6.A【解析】【详解】将1x =代入方程230x kx +-=有130k +-=,解得2k =,故选A7.C【解析】解: (x +2)2=6(x +2)﹣4, x 2﹣2x ﹣4=0, a =1,b =﹣2,c =﹣4, b 2﹣4ac =4+16=20.故选C .点睛:此题考查了公式法解一元一次方程,解此题时首先要化简.还要注意熟练应用公式.8.B【解析】【分析】把x=0代入方程可得到关于m 的方程,解方程可得m 的值,根据一元二次方程的定义m-2≠0,即可得答案.【详解】关于x 的一元二次方程()22240m x x m -++-=有一个根为0,240m ∴-=且20m -≠,解得,2m =-.故选B .【点睛】 本题考查一元二次方程的解及一元二次方程的定义,使等式两边成立的未知数的值叫做方程的解,明确一元二次方程的二次项系数不为0是解题关键.9.D【解析】【分析】先设y=m 2+n 2,则原方程变形为y 2+2y-8=0,运用因式分解法解得y 1=-4,y 2=2,即可求得m 2+n 2的值【详解】设y=m 2+n 2,原方程变形为y (y+2)-8=0,整理得,y 2+2y-8=0,(y+4)(y-2)=0,解得y 1=-4,y 2=2,所以m2+n2的值为2,故选D.【点睛】本题考查了换元法解一元二次方程:我们常用的是整体换元法,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.10.D【解析】【分析】设方程的另一个根为m,根据韦达定理可得关于a、m的二元一次方程组,解方程组可得m的值.【详解】设方程的另一个根为m,由韦达定理可得:5+m=4|a|,即|a|=54m+,5m=4a2-1 ,把 代入 得:5m=2(5)16m+×4-1,整理得:m2-10m+21=0,解得:m=3或m=7,故选D.【点睛】本题主要考查一元二次方程根与系数的关系及解方程组的能力,由韦达定理得出关于a、m 的二元一次方程组是解题的关键.11.D【解析】【分析】根据一元二次方程的定义,得到关于m的不等式,解之即可.【详解】解:根据题意得:m≠,解得:1故选D.【点睛】本题考查一元二次方程的定义,解题关键是正确掌握一元二次方程的定义.12.A【解析】【分析】根据一元二次方程的定义解答.【详解】3x2−6x+1=0的二次项系数是3,一次项系数是−6,常数项是1.故答案选A.【点睛】本题考查的知识点是一元二次方程的一般形式,解题的关键是熟练的掌握一元二次方程的一般形式.13.D【解析】【分析】根据方程根的定义,把x=-1分别代入各方程,进而判断得出答案.【详解】当x=-1时,A.2+=2×(-1)2+(-1)=1≠0,故选项A不符合题意;2x xB.2325+-=3×(-1)2+2×(-1)-5=-4≠0,故选项B不符合题意;x xC.254-+=(-1)2-5×(-1)+4=10≠0,故选项C不符合题意;x xD. 2--=2×(-1)2-3×(-1)-5=0,故选项D符合题意.235x x故选D.【点睛】此题主要考查了一元二次方程的根的意义,正确掌握一元二次方程的根的意义是解题关键.14.C【分析】因为方程没有实数根,所以方程根的判别式240b ac ∆=-<,据此代入数据求出不等式解集.【详解】将()221x m -=-化简得2x 430x m -++=,因为()()244130m ∆=--⨯⨯+<,所以161240x m --<,m>1.所以选C.【点睛】考查了根的判別式,总结:一元二次方程根的情况与判別式 的关系: >0方程有两个不相等的实数根; =0方程有两个相等的实数根; <0今方程没有实数根. 15.A【解析】【分析】先表示得到243y y -=,再把方程两边加上 4 ,然后把方程左边配成完全平方形式即可 .【详解】解:243y y -=,2447y y -+=,()227y -=.故选A .【点睛】 本题考查解一元二次方程配方法: 将一元二次方程配成()2x m n +=的形式, 再利用直接开平方法求解, 这种解一元二次方程的方法叫配方法 .16.D【解析】【分析】观察原方程,可用公式法求解.【详解】解: 1a =,1b =,1c =-,241450b ac -=+=>,152x -±=; 故选:D .【点睛】本题考查了一元二次方程的解法,正确理解运用一元二次方程的求根公式是解题的关键. 17.A【解析】【分析】先把方程化为一般式, 然后利用因式分解法解方程 .【详解】解:230x x +=,()30x x +=,0x =或30x +=,所以10x =,23x =-.故选A .【点睛】 本题考查了解一元二次方程---因式分解法: 就是先把方程的右边化为 0 ,再把左边通过因式分解化为两个一次因式的积的形式, 那么这两个因式的值就都有可能为 0 ,这就能得到两个一元一次方程的解, 这样也就把原方程进行了降次, 把解一元二次方程转化为解一元一次方程的问题了(数学转化思想) .18.A【解析】【分析】根据根的判别式,判断方程根的情况即可.【详解】解: 2254241904b ac ⎛⎫=-=-⨯⨯-=> ⎪⎝⎭,方程有两个不相等的实数根,故答案为A.【点睛】本题考查了一元二次方程20(ax bx c a b c ++=,,是常数且0)a ≠的根的判别式.根判别式24b ac =-,(1)当0>时,一元二次方程有两个不相等的实数根;(2)当0=时,一元二次方程有两个相等的实数根;(3)当0<时,一元二次方程没有实数根.19.C【解析】【分析】由方程根与系数的关系可分别求得每个方程的两根之和,即可求得答案.【详解】解: 方程x 2-2x-4=0的判别式 =(-2)2+4×4=20>0,方程x 2-2x-4=0的实数根之和是-b a =2, 方程x 2-4x+2=0的判别式 =(-4)2+4×2=24>0,方程x 2-4x+2=0的两根之和为4,方程x 2-2x-4=0和方程x 2-4x+2=0中所有的实数根之和为6,故选C .【点睛】本题主要考查方程根与系数的关系,掌握方程根与系数的关系是解题的关键,注意根与系数的关系应用的前提是该方程有实数根.20.D【解析】【分析】根据平均每月增长率为x ,可求二月、三月的营业额,利用一月、二月、三月的营业额共200万元,可建立方程.【详解】由题意,二月的营业额为40(1+x ),三月的营业额为40(1+x )2,一月、二月、三月的营业额共200万元, 40+40(1+x )+40(1+x )2=200,即40[1+(1+x )+(1+x )2]=200,故选D .【点睛】本题重点考查等比数列模型的构建,考查学生分析解决问题的能力,属于基础题. 21.-3.【解析】【分析】把x=2代入已知方程,列出关于m 的新方程,通过解新方程即可求得m 的值.【详解】依题意,把x=2代入方程得:22+2m+2=0,解得m=-3,故答案为-3.【点睛】本题考查的是一元二次方程的根即方程的解的定义,代入求解即可,相对比较简单. 22.1【解析】【分析】设另一个根为t ,根据方程根与系数的关系得出3+t=4,求解即可.【详解】解:设另一个根为t ,根据题意得3+t=4,解得t=1,则方程的另一个根为1.故答案为:1.【点睛】本题考查了一元二次方程根与系数的关系,当0∆≥, 设一元二次方程()200++=≠ax bx c a 两根为12,x x ,则1212,b c x x x x a a +=-=. 23.1k <【解析】根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式的意义得到△>0,即(-2)2-4×1×k>0,然后解不等式即可.【详解】解: 关于x的方程x2-2x+k=0(k为常数)有两个不相等的实数根,>0,即(-2)2-4×1×k>0,解得k<1,k的取值范围为k<1.故答案为:k<1.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.24.10%【解析】【分析】设该商店平均每月利润增长的百分率是x,那么四月份的利润为90(1+x),五月份的利润为90(1+x)(1+x),然后根据五月份的利润达到108.9万元即可列出方程,解方程即可.【详解】设该商店平均每月利润增长的百分率是x,依题意得:90(1+x)2=108.9,1+x=±1.1,x=0.1=10%或x=-2.1(负值舍去),即该商店平均每月利润增长的百分率是10%.故答案为10%【点睛】此题主要考查了一元二次方程的知识,属于增长率的问题,一般公式为原来的量×(1±x)2=后来的量,其中增长用+,减少用-,难度一般.25.x3=0,x4=﹣3【解析】把后面一个方程中的x+2看作整体,相当于前面一个方程中的x求解.【详解】关于x的方程a(x+m)2+b=0的解是x1=2,x2=-1,(a,m,b均为常数,a≠0),方程a(x+m+2)2+b=0变形为a[(x+2)+m]2+b=0,即此方程中x+2=2或x+2=-1,解得x=0或x=-3.故答案为x3=0,x4=-3.【点睛】此题主要考查了方程解的定义.注意由两个方程的特点进行简便计算.26.2【解析】【分析】分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.据此可以解答本题.【详解】依题意得x2-x-2=0,解得x=2或-1,x+1≠0,即x≠-1,x=2.【点睛】此题考查的是对分式的值为0的条件的理解和因式分解的方法的运用,该类型的题易忽略分母不为0这个条件.27.22【解析】【分析】【详解】方程x2+2x-11=0的两根分别为m、n,m+n=-2,mn=-11,mn(m+n)=(-11)×(-2)=22.故答案是:2228.k>25 4【解析】【分析】据题意可知方程没有实数根,则有△=b2-4ac<0,然后解得这个不等式求得k的取值范围即可.【详解】关于x的方程x2-5x+k=0没有实数根,<0,即△=25-4k<0,k>254,故答案为k>254.【点睛】本题主要考查了一元二次方程根的判别式(△=b2-4ac)判断方程的根的情况:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有:当△<0时,方程无实数根.基础题型比较简单.29.3<m≤4【解析】【分析】根据原方程可知x-2=0,和x2-4x+m=0,因为关于x的方程(x-2)(x2-4x+m)=0有三个根,所以x2-4x+m=0的根的判别式 >0,然后再由三角形的三边关系来确定m的取值范围【详解】解: 关于x的方程(x-2)(x2-4x+m)=0有三个根,x-2=0,解得x1=2;x2-4x+m=0,=16-4m≥0,即m≤4,x2=2+4m-x3=2-4m-又 这三个根恰好可以作为一个三角形的三条边的长,且最长边为x2,x1+x3>x2;解得3<m≤4,m的取值范围是3<m≤4.故答案为3<m≤430.【解析】【详解】试题分析:分别讨论m=0和m≠0时方程mx2+x﹣m+1=0根的情况,进而填空.解:当m=0时,x=﹣1,方程只有一个解, 正确;当m≠0时,方程mx2+x﹣m+1=0是一元二次方程,△=1﹣4m(1﹣m)=1﹣4m+4m2=(2m ﹣1)2≥0,方程有两个实数解, 错误;把mx2+x﹣m+1=0分解为(x+1)(mx﹣m+1)=0,所以x=﹣1是方程mx2+x﹣m+1=0的根, 正确;故答案为 .考点:根的判别式;一元一次方程的解.31.1【解析】【分析】m-=,即可求得m的值.本题根据一元二次方程的一般形式,即可得到312【详解】m-=,解:依题意得:312m=.解得1故答案是:1 .【点睛】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2 的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).32.5-6【解析】【分析】根据根与系数的关系结合方程的两实根是12x =,23x =,可求出m ,n 的值, 此题得解 .【详解】解:一元二次方程20x mx n --=的两实根是12x =,23x =,125m x x ∴=+=,12·6n x x =-=-.故答案为 5 ;6-.【点睛】本题考查根与系数的关系,解题关键是 牢记“两根之和等于-b a,两根之和等于c a ” . 33.12【解析】【分析】先求方程x 2-6x+8=0的根,再由三角形的三边关系确定出三角形的第三边的取值范围,即可确定第三边的长,利用三角形的周长公式可求得这个三角形的周长.【详解】 三角形的两边长分别为3和5, 5-3<第三边<5+3,即2<第三边<8,又 第三边长是方程x 2-6x+8=0的根, 解之得根为2和4,2不在范围内,舍掉, 第三边长为4.即勾三股四弦五,三角形是直角三角形.三角形的周长:3+4+5=12.故答案为12.【点睛】本题考查了解一元二次方程和三角形的三边关系.属于基础题型,应重点掌握. 34.14m 且0m ≠ 【解析】【分析】由于关于x 的一元二次方程有实数根, 计算根的判别式, 得关于m 的不等式, 求解即可【详解】解:关于x 的一元二次方程210mx x ++=有实数根,则 140m =-,且0m ≠.解得14m ≤且0m ≠. 故答案为14m ≤且0m ≠. 【点睛】本题考查了根的判别式、 一次不等式的解法及一元二次方程的定义 . 题目难度不大, 解题过程中容易忽略0m ≠条件而出错 .35.34【解析】【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即把0代入方程求解可得m 的值;把m 的值代入一元二次方程中,求出x 的值,即可得出答案.【详解】解:把x=0代入方程(m+2)x 2+3x+m 2-4=0得到m 2-4=0,解得:m=±2,m-2≠0,m=-2,当m=-2时,原方程为:-4x 2+3x=0 解得:x 1=0,x 2=34, 则方程的另一根为x=34. 【点睛】本题主要考查对一元二次方程的解,解一元二次方程等知识点的理解和掌握,能求出m 的值是解此题的关键.36.11【解析】【分析】由等差数列的求和公式结合66S =,即可得出关于n 的一元二次方程, 解之取其正值即可得出结论 .【详解】解:根据题意得:()1662n n +=,化简得:21320n n +-=,解得:111n =,212n =-(舍 去) .故答案为 11 .【点睛】本题考查一元二次方程的应用, 找准等量关系, 正确列出一元二次方程是解题关键 . 37.2【解析】【分析】设道路的宽为xm ,则剩余部分可合成长为()10x m - ,宽为()8x -米的长方形, 根据矩形的面积公式结合绿化面积为248m ,即可得出关于x 的一元二次方程, 解之取其较小值即可得出结论 .【详解】解:设道路的宽为xm ,则剩余部分可合成长为()10x m -,宽为()8x -米的长方形, 根据题意得:()()10848x x --=, 整理得:12x =,216x =.80x ->,8x ∴<,2x ∴=.故答案为2.【点睛】本题考查一元二次方程的应用, 找准等量关系, 正确列出一元二次方程是解题关键 . 38.10【解析】【分析】利用一元二次方程的解的定义得到245m m +=,再把228m m + 变形为()224m m +,然后利用整体代入的方法计算.【详解】解:m是关于x的方程2450+-=的一个根,x x2450∴+-=,m m245∴+=,m m()22m m m m∴+=+=⨯=.28242510故答案为10 .【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.答案第17页,共17页。
中考数学专题:例+练——第7课时 动手操作题(含答案)
OGFB DACE第7课时 动手操作题操作型问题是指通过动手测量、作图(象)、取值、计算等实验,猜想获得数学结论的探索研究性活动,这类活动完全模拟以动手为基础的手脑结合的科学研究形式,需要动手操作、合情猜想和验证,不但有助于实践能力和创新能力的培养,更有助于养成实验研究的习惯,符合新课程标准特别强调的发现式学习、探究式学习和研究式学习,鼓励学生进行“微科研”活动,培养学生乐于动手、勤于实践的意识和习惯,切实提高学生的动手能力、实践能力的指导思想.类型之一 折叠剪切问题折叠中所蕴含着丰富的数学知识,解决该类问题的基本方法就是,根据“折叠后的图形再展开,则所得的整个图形应该是轴对称图形”, 求解特殊四边形的翻折问题应注意图形在变换前后的形状、大小都不发生改变,折痕是它们的对称轴.折叠问题不但能使有利于培养我们的动手能力,而且还更有利于培养我们的观察分析和解决问题的能力.1.(山东省)将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去上方的小三角形. 将纸片展开,得到的图形是2.(·泰州市)如图,把一张长方形纸片对折,折痕为AB ,再以AB 的中点O 为顶点把平角∠AOB 三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O 为顶点的等腰三角形,那么剪出的等腰三角形全部展开铺平后得到的平面图形一定是A .正三角形B .正方形C .正五边形D .正六边形 3.(•济南市)如下左图:矩形纸片ABCD ,AB =2,点E 在BC 上,且AE=EC .若将纸片沿AE 折叠,点B 恰好落在AC 上,则AC 的长是 .4.(•重庆市)如上右图,在正方形纸片ABCD 中,对角线AC 、BD 交于点O ,折叠正方形纸片ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合.展开后,折痕DE 分别交AB 、AC 于点E 、G.连接GF.下列结论:①∠AGD=112.5°;②tan ∠AED=2;③S △AGD=S △OGD ;④四边形AEFG 是菱形;⑤BE=2OG.其中正确结论的序号是 .类型之二分割图形问题分割问题通常是先给出一个图形(这个图形可能是规则的,也有可能不规则),然后让你用直线、线段等把该图形分割成面积相同、形状相同的几部分。
九年级数学专题复习图形的折叠和动点问题
中考冲刺:动手操作与运动变换型问题【中考展望】1.对于实践操作型问题,在解题过程中学生能够感受到数学学习的情趣与价值,经历“数学化〞和“再创造〞的过程,不断提升自己的创新意识与综合水平,这是?全日制义务教育数学课程标准〔实验稿〕?的根本要求之一,因此,近年来实践操作性试题受到命题者的重视,屡次出现.2.估计在今年的中考题中,实践操作类题目依旧是出题热点,仍符合常规题型,与三角形的全等和四边形的性质综合考查.需具备一定的分析问题水平和归纳推理水平.图形的设计与操作问题,主要分为如下一些类型:1.设计好的图案,求设计方案〔如:在什么根本图案的根底上,进行何种图形变换等〕.2.利用根本图案设计符合要求的图案〔如:设计轴对称图形,中央对称图形,而积或形状符合特定要求的图形等〕.3.图形分割与重组〔如:通过对原图形进行分割、重组,使形状满足特定要求〕.4.动手操作〔通过折叠、裁剪等手段制作特定图案〕.解决这样的问题,除了需要运用各种根本的图形变换〔平移、轴对称、旋转、位似〕外,还需要综合运用代数、几何知识对图形进行分析、计算、证实,以获得重要的数据,辅助图案设计.另外,由于折叠操作相当于构造轴对称变换,因此折叠问题中,要充分利用轴对称变换的特性,以获得更多的图形信息.必要时,实际动手配合上理论分析比单纯的理论分析更为快捷有效.从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的.动态问题一般分两类,一类是代数综合题,在坐标系中有动点,动直线,一般是利用多种函数交叉求解.另一类就是几何综合题, 在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析水平进行考查.所以说, 动态问题是中考数学当中的重中之重,只有完全掌握,才有时机拼高分.【方法点拨】实践操作问题:解答实践操作题的关键是要学会自觉地运用数学知识去观察、分析、抽象、概括所给的实际问题, 揭示其数学本质,并转化为我们所熟悉的数学问题.解答实践操作题的根本步骤为:从实例或实物出发, 通过具体操作实验,发现其中可能存在的规律,提出问题,检验猜测.在解答过程中一般需要经历操作、观察、思考、想象、推理、探索、发现、总结、归纳等实践活动过程,利用自己已有的生活经验和数学知识去感知发生的现象,从而发现所得到的结论,进而解决问题.动态几何问题:1、动态几何常见类型〔1〕点动问题〔一个动点〕〔2〕线动问题〔二个动点〕〔3〕面动问题〔三个动点〕2、运动形式平移、旋转、翻折、滚动3、数学思想函数思想、方程思想、分类思想、转化思想、数形结合思想4、解题思路〔1〕化动为静,动中求静〔2〕建立联系,计算说明〔3〕特殊探路,一般推证【典型例题】例1.直角三角形通过剪切可以拼成一个与该直角三角形面积相等的矩形.方法如下〔如下图〕:请你用上而图示的方法,解答以下问题:〔1〕对以下图中的三角形,设计一种方案,将它分成假设干块,再拼成一个与原三角形而积相等的矩形;〔2〕对以下图中的四边形,设计一种方案,将它分成假设F块,再拼成一个与原四边形而积相等的矩形.举一反三:【变式】把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,那么展开后图形是〔〕例2.如下图,现有一张边长为4的正方形纸片点尸为正方形助边上的一点〔不与点儿点,重合〕将正方形纸片折卷,使点6落在P处,点.落在G处,PG交DC干H,折痕为历,连接出\ BH.〔1〕求证:/AP斤4BP氏〔2〕当点尸在边月〃上移动时,△府的周长是否发生变化?并证实你的结论;〔3〕设"为x,四边形质GF的面积为S,求出S与x的函数关系式,试问S是否存在最小值?假设存在, 求出这个最小值;假设不存在,请说明理由.例3.刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,ZB=90° , NC=60° ,ZA=30° , BC=6 cm;图②中,ZD=90° , ZE=45° , DE=4 cm.图③是刘卫同学所做的一个实验:他将ADEF的直角边DE与AABC的斜边AC重合在一起,并将aDEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).(1)在4DEF沿AC方向移动的过程中,刘卫同学发现:F、C两点间的距离逐渐.(填“不变〞、“变大〞或“变小〞)(2)刘卫同学经过进一步地研究,编制了如下问题:问题①:当ADEF移动至什么位置,即AD的长为多少时,F、C的连线与AB平行?问题②:当ADEF移动至什么位置,即AD的长为多少时,以线段AD、FC、BC的长度为三边长的三角形是直角三角形?问题③:在ADEF的移动过程中,是否存在某个位置,使得NFCD=15° ?如果存在,求出AD的长度;如果不存在,请说明理由.举一反三:【变式】如图,直角梯形OBCD是某市将要筹建的高新技术开发区用地示意图,其中DC〃0B,0B=6, CD=BC二4, BCLOB于B,以0为坐标原点,0B所在直线为x轴建立平面直角坐标系,开发区综合效劳治理委员会〔其占地而积不计〕设在点P〔4,2〕处.为了方便驻区单位准备过点P修一条笔直的道路〔路宽不计〕,并且是这条路所在的直线?将直角梯形OBCD分成面积相等的两局部,你认为直线?是否存在?假设存在求出直线?的解析式,假设不存在,请说明理由.例4.两个全等的直角三角形ABC和DEF重叠在一起,其中NA=60, , AC=1.固定AABC不动,将4DEF进行如下操作:(1)如下图,ZkDEF沿线段AB向右平移(即D点在线段AB内移动),连结DC、CF、FB,四边形CDBF 的形状在不断地变化,但它的面积不变化,请求出其面积.B E⑵如下图,WD点移动到.AB的中点时,请你猜测四边形CDBF的形状,并说明理由.(3)如下图,4DEF的D点固定在AB的中点,然后绕D点按顺时针方向旋转aDEF,使DF落在AB请你求出sin的值.例5.如图,在平面直角坐标系中,点C的坐标为〔0, 4〕,动点A以每秒1个单位长的速度,从点O 出发沿x轴的正方向运动,M是线段AC的中点.将线段AM以点A为中央,沿顺时针方向旋转90., 得到线段AB,过点B作x轴的垂线,垂足为E,过点C作y轴的垂线,交直线BE于点D,运动时间为t秒.〔1〕当点B与点D重合时,求t的值;〔2〕当t为何值时,S A BCD=^?4举一反三:【变式】如图,平行四边形ABCD中,AB=10, AD=6, NA=60° ,点P从点A出发沿折线AB-BC以每秒1 个单位长的速度向点C运动,当P与C重合时停止运动,过点P作AB的垂线PQ交AD或DC于Q.设P 运动时间为t秒,直线PQ扫过平行四边形ABCD的面积为S.求S关于t的函数解析式.D C【稳固练习】 一、选择题将一张正方形纸片按如下图对折两次,并在如图位置上剪去一个圆形小洞后展开铺平得到的图形一张正方形的纸片,如图1进行两次对折,折成一个正方形,从右下角的顶点,沿斜虚线剪去一个3.如图,把矩形ABCD 对折,折痕为MN 〔图甲〕,再把B 点棒在折痕MN 上的B,处.得到RtZ\AB' E 〔图1. A. K B.区启启展开后的这个图形的内角和是多少度?〔 〕2D.直角三角形4.如图,边长为5的等边三角形ABC 纸片,点E 在AC 边上,乙〕,再延长EB'交AD 于F,所得到的4EAF 是〔〕点F在AB边上,沿着EF折福,使点A落在BC边上的点D的位置,且EDLBC,那么CE的长是〔A、B、10-56C、56-5D、20-10V3二、填空题5.如佟1(1)是一个等腰梯形,由6个这样的等腰梯形恰好可以拼出如图⑵所示的一个菱形.对于图⑴ 中的等腰梯形,请写出它的内角的度数或腰与底边长度之间关系的一个正确结论:6.如图,AABC中,ZBAC=60°, NABC=45* AB= 2点,D是线段BC上的一个动点,以AD为直径画.0 分别交AB, AC于E, F ,连接EF,那么线段EF长度的最小值为7.如图①,在四边形ABCD中,ADII BC, Z C=90% CD=6cm.动点Q从点B出发,以lcm/S的速度沿BC运动到点C停止,同时,动点P也从B点出发,沿折线B玲A玲D运动到点D停止,且PQ±BC.设运动时间为t(s),点P运动的路程为y (cm),在直角坐标系中画出y关于t的函数图象为折线段OE 和EF (如图②).点M (4, 5)在线段OE上,那么图①中AB的长是cm.三、解做题8.阅读以下材料:小明遇到一个问题:5个同样大小的正方形纸片排列形式如图(1)所示,将它们分割后拼接成一个新的正方形.他的做法是:按图⑵所示的方法分割后,将三角形纸片①绕AB的中点D旋转至三角形纸片②处, 依此方法继续操作,即可拼接成一个新的正方形DEFG.请你参考小明的做法解决以下问题:(1)现有5个形状、大小相同的矩形纸片,排列形式如图(3)所示.请将其分割后拼接成一个平行四边形.要求:在图⑶中画出并指明拼接成的平行四边形(画出一个符合条件的平行四边形即可);(2)如图(4),在面积为2的平行四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点, 分别连结AF、BG、CH、DE得到一个新的平行四边形MNPQ.请在图(4)中探究平行四边形MWQ面积的大小(画图并直接写出结果).9.如图(a),把一张标准纸一次又一次对开,得到“2开〞纸、“4开〞纸、“8开〞纸、“16开〞纸……・已知标准纸的短边长为a.(1)如图(b),把这张标准纸对开得到的“16开〞张纸按如下步骤折叠:第一步将矩形的短边AB与长边AD对齐折叠,点B落在AD上的点B'处,铺平后得折痕AE;第二步将长边AD与折痕AE对齐折登,点D正好与点E重合,铺平后得折痕AF:贝|JAD:AB的值是 _______ , AD, AB的长分别是___________ ,:22) “2开〞纸、“4开〞纸、“8开〞纸的长与宽之比是否都相等?假设相等,直接写出这个比值;假设不相等,请分别计算它们的比值:(3)如图(c),由8个大小相等的小正方形构成“L〞型图案,它的4个顶点E, F, G, H分别在“16 开〞纸的边AB, BC, CD, DA上,求DG的长:(4)梯形MNPQ中,MN〃PQ, ZM=90° , MN=MQ=2PQ,且四个顶点乩N, P, Q都在“4开〞纸的边上,请直接写出两个符合条件且大小不同的直角梯形的面积.10.操作与探究(1)图(a)是一块直角三角形纸片•.将该三角形纸片按图中方法折登,点A与点C重合,DE为折痕.试证实aCBE是等腰三角形;(2)再将佟1(b)中的ACBE沿对称轴EF折叠(如图(b)).通过折叠,原三角形恰好折成两个重合的矩形,其中一个是内接矩形,另一个是拼合(指无缝重叠)所成的矩形,我们称这样的两个矩形为“组合矩形〞.你能将图(c)中的AABC折登成一个组合矩形吗?如果能折成,请在图(c)中画出折痕:(3)请你在图(d)的方格纸中画出一个斜三角形,同时满足以下条件:①折成的组合矩形为正方形:②顶点都在格点(各小正方形的顶点)上;(4)有一些特殊的四边形,如菱形,通过折登也能折成组合矩形(其中的内接矩形的四个顶点分别在原四边形的四边上).请你进一步探究,一个非特殊的四边形(指除平行四边形、梯形外的四边形)满足什么条件时,一定能折成组合矩形?11.在图1至图5中,正方形ABCD的边长为a,等腰直角三角形FAE的斜边AE=2b,且边AD和AE 在同一直线上.操作例如:当2bVa时,如图1,在BA上选取点G,使BG=b,连接FG和CG,裁掉4FAG和aCGB并分别拼接到AFEH和ACHD的位置构成四边形FGCH.思考发现:小明在操作后发现:该剪拼方法是先将AFAG绕点F逆时针旋转90°到AFEH的位置,易知EH与AD在同一直线上,连接CH.由剪拼方法可得DH=BG,故ACHD乌ZkCGB,从而又可将4CGB绕点C顺时针旋转90.到aCHD的位置.这样,对于剪拼得到的四边形FGCH 〔如下图〕,过点F作FM_L AE于点M 〔图略〕,利用SAS公理可判断△HFMgZkCHD,易得FH = HC=GC = FG, ZFHC=90° .进而根据正方形的判定方法,可以判断出四边形FGCH是正方形.〔1〕正方形FGCH的面积是__________ :〔用含a、b的式子表示〕⑵类比图1的剪拼方法,请你就图2至图4的三种情形分别画出剪拼成一个新正方形的示意图.联想拓展:小明通过探究后发现:当bWa时,此类图形都能剪拼成正方形,且所选取的点G的位置在BA方向上随着b的增大不断上移.当b>a时,如下图的图形能否剪拼成一个正方形?假设能,请你在图中画出剪拼的示意图;假设不能,12.AABC是等腰直角三角形,AC二BC=2, D是边AB上一动点(A、B两点除外),将△CAD绕点C按逆时针方向旋转角.得到ACEF,其中点E是点A的对应点,点F是点D的对应点.(1)如图1,当a =90°时,G是边AB上一点,且BG=AD,连接GF.求证:GF//AC;(2)如图2,当90° WaW180°时,AE与DF相交于点M.①当点M与点C、D不重合时,连接CM,求NCMD的度数;②设D为边AB的中点,当a从90°变化到180°时,求点M运动的路径长.。
2024年中考数学二轮复习题型全通关专练—综合与实践(含答案)
2024年中考数学二轮复习题型全通关专练—综合与实践(含答案)初中阶段综合与实践领域,可采用项目式学习的方式,以问题解决为导向,,整合数学与其他学科的知识和思想方法,让学生从数学的角度观察与分析、思考与表达、解决与阐释社会生活以及科学技术中遇到的现实问题,感受数学与科学、技术、经济、金融、地理、艺术等学科领域的融合,积累数学活动经验,体会数学的科学价值,提高发现与提出问题、分析与解决问题的能力,发展应用意识、创新意识和实践能力.考点讲解:跨章节的综合与实践,就是利用同板块的内容解决问题,但这些内容来自初中的不同年级的不同章节.【例1】(2023·宁夏·统考中考真题)1.综合与实践问题背景数学小组发现国旗上五角星的五个角都是顶角为36︒的等腰三角形,对此三角形产生了极大兴趣并展开探究.探究发现如图1,在ABC 中,36A ∠=︒,AB AC =.(1)操作发现:将ABC于点D,连接DE,DB (用含x的式子表示)(2)进一步探究发现:证明:512 BCAC-=底腰【变1】(2023·江苏盐城·统考中考真题)2.综合与实践【问题情境】如图1,小华将矩形纸片ABCD试卷第2页,共16页考点讲解:跨板块的综合与实践,就是利用不同数学模块的内容综合解决问题,但这些板块都来自于初中所学的知识,是这些知识的综合应用.【问题解决】请你基于上述数据整理的信息解答下列问题:(1)这8周每周来访旅客的平均人数有______万人;(2)求平均每周到访该市只游玩一天的游客人数;(3)请你通过计算估计第9周来访的旅客量约是多少万人?(精确到0.1)【问题提出】小组同学提出这样一个问题:若【问题探究】小颖尝试从“函数图象”的角度解决这个问题:设AB为m x,BC为m y.由矩形地块面积为成是反比例函数8yx=的图象在第一象限内点的坐标;满足条件的(),x y可看成一次函数这两个条件的(),x y就可以看成两个函数图象交点的坐标.试卷第4页,共16页(1)根据小颖的分析思路,完成上面的填空.【类比探究】(2)若6a =,能否围出矩形地块?请仿照小颖的方法,在图说明理由.【问题延伸】当木栏总长为m a 时,小颖建立了一次函数是直线2y x =-通过平移得到的,在平移过程中,当过点比例函数()80y x x=>的图象有唯一交点.(3)请在图2中画出直线2y x a =-+过点【拓展应用】小颖从以上探究中发现“能否围成矩形地块问题在第一象限内交点的存在问题”.(4)若要围出满足条件的矩形地块,且AB 值范围.考点讲解:跨学科的综合与实践,就是利用数学知识和方法解决其它学科的问题,或者把数学与其它学科结合起来,共同解决实际问题.【例1】(2022·广西·统考中考真题)芒果树叶的长宽比荔枝树叶的长宽比【问题解决】试卷第6页,共16页【知识背景】如图,称重物时,移动秤砣可使杆秤平衡,根据杠杆原理推导得:()0()m m l M a y +⋅=⋅+.其中秤盘质量0m 克,重物质量m 克,秤砣质量M 克,秤纽与秤盘的水平距离为l 厘米,秤纽与零刻线的水平距离为a 厘米,秤砣与零刻线的水平距离为y 厘米.【方案设计】目标:设计简易杆秤.设定010m =,50M =,最大可称重物质量为1000克,零刻线与末刻线的距离定为50厘米.任务一:确定l 和a 的值.(1)当秤盘不放重物,秤砣在零刻线时,杆秤平衡,请列出关于l ,a 的方程;(2)当秤盘放入质量为1000克的重物,秤砣从零刻线移至末刻线时,杆秤平衡,请列出关于l ,a 的方程;(3)根据(1)和(2)所列方程,求出l 和a 的值.任务二:确定刻线的位置.(4)根据任务一,求y 关于m 的函数解析式;(5)从零刻线开始,每隔100克在秤杆上找到对应刻线,请写出相邻刻线间的距离.(2023·广东·统考中考真题)7.综合与实践主题:制作无盖正方体形纸盒素材:一张正方形纸板.步骤1:如图1,将正方形纸板的边长三等分,画出九个相同的小正方形,并剪去四个角上的小正方形;步骤2:如图2,把剪好的纸板折成无盖正方体形纸盒.猜想与证明:试卷第8页,共16页(1)直接写出纸板上ABC ∠与纸盒上111A B C ∠的大小关系;(2)证明(1)中你发现的结论.(2023·广西北海·统考二模)8.综合与实践【数学理解】德国数学家米勒曾提出最大视角问题,对该问题的一般描述是:如图2,已知点A ,B 是MON ∠的边OM 上的两个定点,C 是ON 边上的一个动点,当且仅当ABC 的外接圆与ON 边相切于点C 时,ACB ∠最大.人们称这一命题为米勒定理.(1)【问题提出】如图1,在足球比赛场上,甲、乙两名队员互相配合向对方球门MN 进攻,当甲带球冲到A 点时,乙已跟随冲到B 点,仅从射门角度大小考虑,甲是自己射门好,还是迅速将球回传给乙,让乙射门好?假设球员对球门的视角越大,足球越容易被踢进.请结合你所学知识,求证:MBN MAN ∠>∠.(2)【问题解决】如图3,已知点A ,B 的坐标分别是()0,1,()0,3,C 是x 轴正半轴上的一动点,当ABC 的外接圆⊙D 与x 轴相切于点C 时,ACB ∠最大.当ACB ∠最大时,求点C 的坐标.(2023·山东临沂·统考中考真题)9.综合与实践问题情境小莹妈妈的花卉超市以15元/盆的价格新购进了某种盆栽花卉,为了确定售价,小莹帮试卷第10页,共16页(1)如图2,分别以BC 、CA 、AB 为边向外作的等腰直角三角形的面积为1S 、2S 、3S ,则1S 、2S 、3S 之间的数量关系是______.(2)如图3,分别以BC 、CA 、AB 为边向外作的等边三角形的面积为4S 、5S 、6S ,试猜想4S 、5S 、6S 之间的数量关系,并说明理由.实践应用(1)如图4,将图3中的BCD 绕点B 逆时针旋转一定角度至BGH ,ACE 绕点A 顺时针旋转一定角度至AMN ,GH 、MN 相交于点P .求证:PHN PMFG S S = 四边形;(2)如图5,分别以图3中Rt ABC 的边BC 、CA 、AB 为直径向外作半圆,再以所得图形为底面作柱体,BC 、CA 、AB 为直径的半圆柱的体积分别为1V 、2V 、3V .若4AB =,柱体的高8h =,直接写出12V V +的值.(2022·甘肃兰州·统考中考真题)11.综合与实践问题情境:我国东周到汉代一些出土实物上反映出一些几何作图方法,如侯马铸铜遗址出土车軎范、芯组成的(如图1),它的端面是圆形,如图2是用“矩”(带直角的角尺)确定端面圆心的方法.....:将“矩”的直角尖端A 沿圆周移动,直到AB AC =,在圆上标记A ,B ,C 三点;将“矩”向右旋转,使它左侧边落在A ,B 点上,“矩”的另一条边与圆的交点标记为D 点,这样就用“矩”确定了圆上等距离的A ,B ,C ,D 四点,连接AD ,BC 相交于点,这样就用“矩”确定了圆上等距离的A ,B ,C ,D 四点,连接AD ,BC 相交于点O ,即O 为圆心.(1)问题解决:请你根据“问题情境”中提供的方法,用三角板还原..我国古代几何作图确定圆心O .如图3,点A ,B ,C 在O 上,AB AC ⊥,且AB AC =,请作出圆心O .(保留作图痕迹,不写作法)(2)类比迁移:小梅受此问题的启发,在研究了用“矩”(带直角的角尺)确定端面圆心的方法后发现,如果AB 和AC 不相等,用三角板也可以确定圆心O .如图4,点A ,B ,C 在O 上,AB AC ⊥,请作出圆心O .(保留作图痕迹,不写作法)(3)拓展探究:小梅进一步研究,发现古代由“矩”度量确定圆上等距离点时存在误差,用平时学的尺规作图....的方法确定圆心可以减少误差.如图5,点A ,B ,C 是O 上任意三点,请用不带刻度的直尺和圆规作出圆心O .(保留作图痕迹,不写作法)请写出你确定圆心的理由:______________________________.(2023·广西桂林·统考一模)12.综合与实践[问题情境]学习完《解直角三角形的应用》后,同学们对如何建立解直角三角形的模型测量物体的实际高度产生了浓厚的兴趣,数学老师决定开展一次主题为《测量学校旗杆高度》的数学实践活动,并为各小组准备了卷尺、测角仪等工具,要求各小组建立测高模型并测量学校旗杆的高度.[问题探究]第一小组的同学经过讨论,制定出了如下测量实施方案:第一步,建立测高模型,画出测量示意图(如图1),明确需要测量的数据和测量方法:试卷第12页,共16页(1)n 的值为;该小组选择不同的位置测量三次,再以三次测量计算的旗杆高度的平均数作为研究结论,这样做的目的是.(2)该测量模型中,若CD a AC b ==,,仰角为α,用含a b α,,的代数式表示旗杆高度为.[拓展应用](3)第二小组同学设计的是另外一种测量方案,他们画出的测量示意图如图2,测量时,固定测角仪的高度为1m ,先在点C 处测得旗杆顶端B 的仰角30α=︒,然后朝旗杆方向试卷第14页,共16页(3)方法迁移:用正方形纸片ABCD 折叠出一个2阶奇妙矩形.要求:在图(3)中画出折叠示意图并作简要标注.(4)探究发现:小明操作发现任一个n 阶奇妙矩形都可以通过折纸得到.他还发现:如图(4),点E 为正方形ABCD 边AB 上(不与端点重合)任意一点,连接CE ,继续(2)中操作的第二步、第三步,四边形AGHE 的周长与矩形GDCK 的周长比值总是定值.请写出这个定值,并说明理由.(2023·青海·统考中考真题)15.综合与实践车轮设计成圆形的数学道理小青发现路上行驶的各种车辆,车轮都是圆形的.为什么车轮要做成圆形的呢?这里面有什么数学道理吗?带着这样的疑问,小青做了如下的探究活动:将车轮设计成不同的正多边形,在水平地面上模拟行驶.(1)探究一:将车轮设计成等边三角形,转动过程如图1,设其中心到顶点的距离是2,以车轮转动一次(以一个顶点为支点旋转)为例,中心的轨迹是 BD ,2BA CA DA ===,圆心角120BAD ∠=︒.此时中心轨迹最高点是C (即 BD 的中点),转动一次前后中心的连线是BD (水平线),请在图2中计算C 到BD 的距离1d .(2)探究二:将车轮设计成正方形,转动过程如图3,设其中心到顶点的距离是2,以车轮转动一次(以一个顶点为支点旋转)为例,中心的轨迹是 BD,2BA CA DA ===,圆心角90BAD ∠=︒.此时中心轨迹最高点是C (即 BD 的中点),转动一次前后中心的连线是BD (水平线),请在图4中计算C 到BD 的距离2d (结果保留根号).(3)探究三:将车轮设计成正六边形,转动过程如图5,设其中心到顶点的距离是2,以车轮转动一次(以一个顶点为支点旋转)为例,中心的轨迹是 BD ,圆心角BAD ∠=______.此时中心轨迹最高点是C (即 BD 的中点),转动一次前后中心的连线是BD (水平线),在图6中计算C 到BD 的距离3d =______(结果保留根号).(4)归纳推理:比较1d ,2d ,3d 大小:______,按此规律推理,车轮设计成的正多边形边数越多,其中心轨迹最高点与转动一次前后中心连线(水平线)的距离______(填“越大”或“越小”).(5)得出结论:将车轮设计成圆形,转动过程如图7,其中心(即圆心)的轨迹与水平地面平行,此时中心轨迹最高点与转动前后中心连线(水平线)的距离d ______.这样车辆行驶平稳、没有颠簸感.所以,将车轮设计成圆形.试卷第16页,共16页参考答案:答案第2页,共27页∵在菱形ABCD 中,BAD ∠=∴36,CAD ACD CD ∠=∠=︒=∴EDC DAC ACD ∠=∠+∠=∴EDC AEC ∠=∠,∴1CE CD ==,∴ACE △为黄金三角形,由折叠得:EF BD⊥,OB= BOF DOE∴∠=∠=︒,90四边形ABCD是矩形,∴∥,AD BC∴∠=∠,OBF ODEBMF BCD∴∠=∠,FBM DBC∠=∠,BFM BDC ∴△∽△,∴BM BFBC BD=,即3845BM=,答案第4页,共27页四边形ABCD 是矩形,OA OB ∴=,90OBA OBC ∠+∠=OAB OBA ∴∠=∠,设OAB OBA α∠=∠=,则90OBC α∠=︒-,答案第6页,共27页答案第8页,共27页(4)根据题意可得∶若要围出满足条件的矩形地块,内交点的存在问题,即方程()820x a a x -+=>有实数根,整理得:2280x ax -+=,∴()2Δ4280a =--⨯⨯≥,把()8,1代入2y x a =-+得:解得:17a =,∴817a ≤≤.【点睛】本题主要考查了反比例函数和一次函数综合,意得出等量关系,掌握待定系数法,会根据函数图形获取数据.5.(1)3.75,2.0(2)②(3)这片树叶更可能来自于荔枝,理由见解析答案第10页,共27页答案第12页,共27页设小正方形边长为1,则AC 22255AC BC AB +=+=Q ABC ∴ 为等腰直角三角形,∵1111111A C B C A C B ==⊥,【点睛】本题考查圆的基本性质,关系,垂径定理,圆的切线定理.9.(1)见解析(2)售价每涨价2元,日销售量少卖(3)①定价为每盆25元或每盆35够获得最大利润【分析】(1)按照从小到大的顺序进行排列即可;(2)根据表格数据,进行求解即可;(3)①设定价应为x元,根据题意,列出一元二次方程,进行求解即可;②设每天的利润为w,列出二次函数表示式,利用二次函数的性质,进行求解即可.答案第14页,共27页答案第16页,共27页作∠ABD=90°,BD与圆相交于∵∠CAB=∠ABD=90°,∴BC、AD是圆的直径,∴点O是圆的圆心.(2)解:如图所示,点O就是圆的圆心.答案第18页,共27页作∠ABD =90°,BD 与圆相交于D ,连接BC 、AD 相交于点O ,∵∠CAB =∠ABC =90°,∴BC 、AD 是圆的直径,∴点O 是圆的圆心.(3)解:如图所示,点O 就是圆的圆心.作AB 的垂直平分线DE ,作AC 的垂直平分线MN ,DE 交MN 于O ,∵DE 垂直平分AB ,∴DE 经过圆心,即圆心必在直线DE 上,∵MN 垂直平分AC ,∴MN 经过圆心,即圆心必在直线MN 上,∴DE 与MN 的交点O 是圆心.确定圆心的理由:弦的垂直平分线经过圆心.【点睛】本题考查圆周角定理的推论,垂径定理的推论,尺规作线段垂直平分线,熟练掌握直角的圆周角所对的弦是直径是解题的关键.12.(1)13.1;减小误差(2)tan b aα+答案第20页,共27页答案第22页,共27页设正方形的边长为2,根据折叠的性质,可得设DG x =,则2AG =-根据折叠,可得GH GD =理由如下,连接GE ,设正方形的边长为设DG x =,则4AG x=-根据折叠,可得GH GD =在Rt BEC △中,EC =答案第24页,共27页设DG x =,则1AG x=-根据折叠,可得GH GD =在Rt BEC △中,EC EB =∴211EH m =+-,在Rt ,Rt AEG GHE 中,2222,AG AE GE GH +=+2AB AD == ,AC 12BAC CAD ∴∠=∠=AB AD,AC⊥=∴∠=∠=ABD ADBsinAE AB ABD∴=⋅∠∴==-d CE AC AE∠=∴=,ABDAB BD∴ 是等边三角形,ABDBAD=∴∠︒,60在Rt ABE△中,=⋅∠=sinAE AB ABD答案第26页,共27页【点睛】本题考查了等腰三角形的性质,正方形的性质,圆的定义,解直角三角形等知识,解决问题的关键是弄清数量间的关系.。
2024安徽中考数学二轮专题复习 题型一 跨学科试题 (课件)
(2)如图,⊙O是经过南、北极的圆,地球半径OA约为6400 km,弦 BC∥OA,过点O作OK⊥BC于点K.连接OB.若∠AOB=44°,则以 BK为半径的圆的周长是北纬44°纬线的长度;
第3题图
(3)参考数据:π取3,sin44°≈0.69,cos44°≈0.72. 小组成员给出了如下解答,请你补充完整:
第5题图
(1) ED的长为____1_3___;
【解法提示】由题意可得,∠APB=∠EPD,
∠B=∠EDP=90°,
∴△ABP∽△EDP, ∴ AB BP
DE PD ∵AB=6.5,BP=4,PD=8, ∴ 6.5 4 , ∴ED=13.
DE 8
第5题图
(2)将木条BC绕点B按顺时针方向旋转一定角度得到BC′(如图②),点 P的对应点为P′,BC′与MN的交点为D′.从A点发出的光束经平面镜P′ 反射后,在MN上的光点为E′.若DD′=5,求EE′的长. (2)如解图,过点E′作∠E′FD′=∠E′D′F,过点E′ 作E′G⊥BC′于点G, ∴E′F=E′D′,FG=D′G,
(2)求R1关于U0的函数解析式;
(2)由题意,得 8 = U0 . R1 30 30
化简,得R1=
240-30; U0
(3)用含U0的代数式表示m;
(3)把R1=-2m+240代入R1=
240-30, U0
化简,得m=- 120+135;
U0
(4)若电压表量程为0~6伏,为保护电压表,请确定该电子体重秤可
A. ①③ B. ①④ C. ②③ D. ②④
2. [跨生物学科]——遗传基因 根据生物学家的研究,人体的许多特征都是由基因控制的.有的人是 单眼皮,有的人是双眼皮,这是由一对人体基因F是显性的,控制眼皮的一对基 因可能是ff,FF,Ff,fF.拥有基因ff的人是单眼皮,基因FF,Ff, fF的人是双眼皮,父母分别将他们的一对基因中的一个遗传给子女, 而且是等可能的. (1)如果父母都是双眼皮且他们的基因都是Ff,他们的子女是单眼皮
2020年中考数学热点冲刺5 操作探究问题(含答案解析)
热点专题5 操作探究问题实践操作性问题以趣味性强、思维含量高为特点,在具体的实践操作中主要有以下类型:(1)裁剪、折叠、拼图等问题,往往与面积与对称性相联系;(2)画图、测量、猜想、证明等探究性问题,往往要求答题者在给定的操作规则下,进行探索研究、大胆猜想、发现结论,进而提高个人的创新能力与实践能力.在2019年的中考中,操作性行问题主要包含几何体的展开与折叠,图案设计、程序框输入,尺规作图、几何图形的探究等题型,分值不一,难度不等.考向1几何体的展开与折叠1.(2019·济宁)如图,一个几何体上半部为正四校锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是()A B C D【答案】B【解析】选项A和C带图案的一个面是底面,不能折叠成原几何体的形式;选项B能折叠成原几何体的形式;选项D折叠后下面带三角形的面与原几何体中的位置不同.2.(2019·山西)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与"点"字所在面相对的面上的汉字是( )A.青B.春C.梦D.想【答案】B【解析】根据正方体的展开与折叠中面的关系,可知与"点"字所在面相对的面上的汉字是春,故选B . 考向2 图案设计与几何变换1.(2019·烟台)小明将一张正方形纸片按如图所示的顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),AOB ∠的度数是 .【答案】22.5︒【解析】在解本题的过程中,可以找一张正方形的纸片进行如题操作,通过测量,来得到答案,也可以利用图形的轴对称的性质,直接得到AOB ∠的度数是22.5︒.2.(2019·南充)如图,正方形MNCB 在宽为2的矩形纸片一端,对折正方形MNCB 得到折痕AE ,再翻折纸片,使AB 与AD 重合,以下结论错误的是( )A .210AB =+B .CD BC C .2BC CD EH =g D .sin AHD ∠【答案】A【解析】在Rt AEB ∆中,AB == //AB DH Q ,//BH AD ,∴四边形ABHD 是平行四边形,AB AD =Q ,∴四边形ABHD 是菱形,AD AB ∴=1CD AD AD ∴===,∴CD BC =,故选项B 正确,24BC =Q ,1)4CD EH ==g ,2BC CD EH ∴=g ,故选项C 正确, Q 四边形ABHD 是菱形,AHD AHB ∴∠=∠,sin sin AE AHD AHB AH ∴∠=∠==D 正确,故选:A . 3.(2019 · 北京)已知30AOB ∠=︒,H 为射线OA 上一定点,1OH =,P 为射线OB 上一点,M 为线段OH 上一动点,连接PM ,满足OMP ∠为钝角,以点P 为中心,将线段PM 顺时针旋转150︒,得到线段PN ,连接ON .(1)依题意补全图1;(2)求证:OMP OPN ∠=∠;(3)点M 关于点H 的对称点为Q ,连接QP .写出一个OP 的值,使得对于任意的点M 总有ON=QP ,并证明.解:(1)见下图(2)证明:∵30AOB ∠=︒,∴在△OPM 中,=180150OMP POM OPM OPM ︒-∠-∠=︒-∠∠, 又∵150MPN ∠=︒,∴150OPN MPN OPM OPM ∠=∠-∠=︒-∠,∴OMP OPN ∠=∠. (3)如下图,过点P 作PK ⊥OA 于K ,过点N 作NF ⊥OB 于F∵∠OMP=∠OPN ,∴∠PMK=∠NPF , 在△NPF 和△PMK 中,90NPF PMKNFO PKM PN PM ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△NPF ≌△PMK (AAS ),∴PF=MK ,∠PNF=∠MPK ,NF=PK , 又∵ON=PQ ,在Rt △NOF 和Rt △PKQ 中,ON PQ NF PK =⎧⎨=⎩,∴Rt △NOF ≌Rt △PKQ (HL ),∴KQ=OF ,备用图图1A设,MK y PK x ==,∵∠POA=30°,PK ⊥OQ ,∴2OP x =,∴,OK OM y ==-,∴2OF OP PF x y =+=+,)1MH OH OM y =-=--,1KH OH OK =-.∵M 与Q 关于H 对称,∴MH=HQ ,∴11y -++=2y -+,又∵KQ=OF ,∴22y x y -+=+,∴(22x =+,∴1x =,即PK=1, 又∵30POA ∠=︒,∴OP=2. 考向3 程序输入与规律探究1.(2019·重庆A 卷)按如图所示的运算程序,能使输出y 值为1的是 ( ) A .m=1,n=1 B .m=1,n=0 C .m=1,n=2D .m=2,n=1【答案】D .【解析】∵m=1,n=1,∴y=2m +1=3;∵m=1,n=0,∴y=2n -1=-1;∵m=1,n=2,∴y=2m +1=3;∵m=2,n=1,∴y=2n -1=1.故选D .18.(2019·东营)如图,在平面直角坐标系中,函数x y 33=和x y 3-=的图象分别为直线1l ,2l ,过1l 上的点A 1(1,33)作x 轴的垂线交2l 于点A 2,过点A 2作y 轴的垂线交1l 于点A 3,过点A 3作x 轴的垂线交2l 于点A 4…,一次进行下去,则点2019A 的横坐标为 .【答案】:-31009【解析】:本题考查坐标里的点规律探究题,观察发现规律:A 1(1,33),A 2(1,3-),A 3(-3,3-),A 4(-3,33),A 5(9,33),A 6(9,39-),A 7(-27,39-),……A 2n+1[(-3)n ,3×(-3)n ](n 为自然数),2019=1009×2+1,所以A 2019的横坐标为:(-3)1009=-31009. 考向4 尺规作图1.(2019·长沙)如图,Rt △ABC 中,∠C=90°,∠B=30°,分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于M 、N 两点,作直线MN ,交BC 于点D ,连接AD ,则∠CAD 的度数是( )A .20°B .30°C .45°D .60°【答案】B【解析】在△ABC 中,∵∠B=30°,∠C=90°,∴∠BAC=180°-∠B -∠C=60°,由作图可知MN 为AB 的中垂线,∴DA=DB ,∴∠DAB=∠B=30°,∴∠CAD=∠BAC -∠DAB=30°,故本题选:B .2.(2019·兰州)如图,矩形ABCD ,∠BAC=60°,以点A 为圆心,以任意长为半径作弧分别交AB ,AC 于点M ,N 两点,再分别以点M ,N 为圆心,以大于21MN 的长作半径作弧交于点P ,作射线AP 交BC 于点E ,若BE=1,则矩形ABCD 的面积等于 .【答案】【解析】在矩形ABCD 中,∠BAC=60°,∴∠B=90°,∠BCA=30°,∵AE 平分∠BAC ,∴∠BAE=∠EAC=30°∵在Rt △ABE 中,BE=1,∴AE=1sin30︒=2,AB=1tan30=︒EAC=∠ECA=30°,∴EC=AE=2,∴S矩形ABCD=AB ⋅BC=3.(2019·济宁)如图,点M 和点N 在∠AOB 内部.(1)请你作出点P ,使点P 到点M 和点N 的距离相等,且到∠AOB 两边的距离也相等(保留作图痕迹,不写作法);(2)请说明作图理由.解:(1)画出∠AOB 的角平分线,画出线段MN 的垂直平分线,两者的交点就得到P 点.(2)作图的理由:点P 在∠AOB 的角平分线上,又在线段MN 的垂直平分线上,∠AOB 的角平分线和线段MN 的垂直平分线的交点即为所求.4. (2019·长春)图①、图②、图③处均是6×6的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点A、B、C、D、E、F均在格点上.在图①、图②、图③中,只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求写出画法.(1)在图①中以线段AB为边画一个△ABM,使其面积为6.(2)在图②中以线段CD为边画一个△CDN,使其面积为6.(3)在图③中以线段EF为边画一个四边形EFGH,使其面积为9,且∠EFG=90°.解:(1)如图所示;(2)如图所示;(3)如图所示.考向5 几何探究1.(2019·武汉)问题背景:如图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,可推出结论:PA+PC=PE.问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=24.点O是△MNG内一点,则点O到△MNG 三个顶点的距离和的最小值是___________.【答案】【解析】由题构造等边△MFN,△MHO,图中2个彩色三角形全等(△MFH≌△MNO(SAS))∴OM+ON+OG=HO+HF+OG,∴距离和最小值为(Rt△FQG勾股定理)2.(2019·山西)综合与实践动手操作:第一步:如图1,正方形纸片ABCD沿对角线AC所在的直线折叠,展开铺平,再沿过点C的直线折叠,使点B,点D都落在对角线AC上.此时,点B与点D重合,记为点N,且点E,点N,点F三点在同一条直线上,折痕分别为CE,CF.如图2.第二步:再沿AC所在的直线折叠,△ACE与△ACF重合,得到图3.第三步:在图3的基础上继续折叠,使点C与点F重合,得到图4,展开铺平,连接EF,FG,GM,ME,如图5.图中的虚线为折痕.问题解决:(1)在图5中,∠BEC的度数是_____,AEBE的值是_____;(2)在图5中,请判断四边形EMGF的形状,并说明理由;(3)在不增加字母的条件下,请你以图5中的字母表示的点为顶点,动手画出....一个菱形(正方形除外),并写出这个菱形:_______.【解题过程】(1)∵正方形ABCD,∴∠ACB=45°,由折叠知:∠1=∠2=22.5°,∠BEC=∠CEN,BE=EN,∴∠BEC=90°-∠1=67.5°,∴∠AEN=180°-∠BEC-∠CEN=45°,∴cos45°=ENAE=,AEEN=,AE AEBE EN=(2)四边形EMGF是矩形.理由如下:∵四边形ABCD是正方形,∴∠B=∠BCD=∠D=90°,由折叠可知:∠1=∠2=∠3=∠4,CM=CG,∠BEC=∠NEC=∠NFC=∠DFC,∴∠1=∠2=∠3=∠4=°904=22.5°,∴∠BEC=∠NEC=∠NFC=∠DFC=67.5°,由折叠知:MH,GH分别垂直平分EC,FC,∴MC=ME,GC=GF.∴∠5=∠1=22.5°,∠6=∠4=22.5°,∴∠MEF=∠GFE=90°.∵∠MCG=90°,CM=CG,∴∠CMG=45°,又∵∠BME=4图2F∠1+∠5=45°,∴∠EMG=180°-∠CMG -∠BME=90°,∴四边形EMGF 是矩形; (3)答案不唯一,画出正确的图形(一个即可).菱形FGCH (或菱形EMCH )3.(2019·淮安)如图①,在△ABC 中,AB=AC=3,∠BAC=100°,D 是BC 的中点.小明对图①进行了如下探究:在线段AD 上任取一点P ,连接PB .将线段PB 绕点P 按逆时针方向旋转80°,点B 的对应点是点E ,连接BE ,得到△BPE.小明发现,随着点P 在线段AD 上位置的变化,点E 的位置也在变化,点E 可能在直线AD 的左侧,也可能在直线AD 上,还可能在直线AD 的右侧. 请你帮助小明继续探究,并解答下列问题:(1)当点E 在直线AD 上时,如图②所示.①∠BEP= °; ②连接CE ,直线CE 与直线AB 的位置关系是 .(2)请在图③中画出△BPE ,使点E 在直线AD 的右侧,连接CE.试判断直线CE 与直线AB 的位置关系,并说明理由.(3)当点P 在线段AD 上运动时,求AE 的最小值.【解题过程】(1)①由题意得,PE=PB ,∠BPE=80°,∴∠BEP=︒=︒-︒50280180; ②如图所示,∵AB=AC ,D 是BC 的中点,∠BAC=100°,∴∠ABC=︒=︒-︒402100180,∵∠BEP=50°,∴∠BCE=∠CBE=40°,∴∠ABC=∠BCE ,∴CE ∥AB .答案:①50°;②平行 (2)在DA 延长线上取点F ,使∠BFA=∠CFA=40°,总有△BPE ∽△BFC . 又∵△BPF ∽△BEC ,∴∠BCE=∠BFP=40°,∴∠BCE=∠ABC=40°,∴CE ∥AB .(3)当点P 在线段AD 上运动时,由题意得PB=PE=PC , ∴点B 、E 、C 在以P 为圆心、PB 为半径的圆上,如图所示:∴AE 的最小值为AC=3.。