数学二次根式试题及答案
初三数学二次根式试题答案及解析
初三数学二次根式试题答案及解析1.计算:=.【答案】【解析】=2﹣=.【考点】二次根式的加减法.2.下列实数是无理数的是()A.B.C.D.【答案】A.【解析】理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项:A、是无理数,选项正确;B、C、D、都是整数,是有理数,选项错误. 故选A.【考点】无理数.3.若式子有意义,则实数x的取值范围是【答案】x≥1.【解析】根据二次根式的性质可以得到x-1是非负数,由此即可求解.试题解析:依题意得x-1≥0,∴x≥1.【考点】二次根式有意义的条件.4.方程的解为 .【答案】x=1【解析】方程两边平方,得:2-x=1,解得:x=1.经检验:x=1是方程的解.故答案是:x=1.【考点】无理方程.5.函数y中,自变量x的取值范围是【答案】x≥.【解析】根据二次根式的意义,2x﹣1≥0,解得x≥.故答案是x≥.【考点】函数自变量的取值范围.6.计算:-12003+()-2-|3-|+3tan60°。
【答案】6【解析】首先计算乘方,化简二次根式,去掉绝对值符号,然后进行乘法,加减即可.本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式的化简,正确记忆特殊角的三角函数值.解:原式=﹣1+4﹣3+3+3×,=﹣1+4+3,=6.7.计算:·-=________.【答案】2【解析】原式=-=3-=2.8.使二次根式有意义的x的取值范围是 .【答案】x≤2.【解析】根据二次根式的性质,被开方数大于等于0,即:2﹣x≥0,解得:x≤2.故答案是x≤2.【考点】二次根式的性质.9.与的大小关系是()A.>B.<C.=D.不能比较【答案】A.【解析】∵,∴,∴.故选A.【考点】实数大小比较.10.计算:.【答案】.【解析】先算乘除,再算加减,有括号的先算括号里面的,特别的能利用公式的应用公式简化计算过程.试题解析:==.【考点】二次根式的化简.11.【答案】.【解析】根据分母有理化、二次根式、非零数的零次幂的意义进行计算即可得出答案.试题解析:考点: 实数的混合运算.12.计算: .【答案】.【解析】把括号展开即可求值.试题解析:故答案为:.考点: 二次根式的运算.13.下列计算中,正确的是()A.B.C.D.【答案】D.【解析】A.已经是最简的,故本选项错误;B. ,故本选项错误;C. ,故本选项错误;D. ,故本选项正确.故选D.【考点】二次根式化简.14.实数范围内有意义,则x的取值范围是()A.x>1B.x≥l C.x<1D.x≤1【答案】B.【解析】根据根式有意义的条件,根号下面的数或者式子要大于等于0,即解得:x≥l.【考点】根式有意义的条件.15.计算:【答案】.【解析】根据二次根式的混合运算顺序和运算法则计算即可.试题解析:【考点】二次根式的混合运算.16.是整数,则正整数n的最小值是()A.4B.5C.6D.7【答案】C.【解析】∵,∴当时,,∴原式=,∴n的最小值为6.故选C.考点: 二次根式的化简.17.实数4的平方根是.【答案】±2.【解析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的一个平方根:∵(±2)2=4,∴16的平方根是±2.【考点】平方根.18.要使式子在实数范围内有意义,字母a的取值必须满足()A.a≥2B.a≤2C.a≠2D.a≠0【答案】A【解析】使式子在实数范围内有意义,必须有a-2≥0,解得a≥2,故选A【考点】二次根式成立的条件.19.下列运算正确的是()A.B.C.D.【答案】D.【解析】A.和不是同类二次根式,不能合并,此选项错误;B.3和不是同类二次根式,不能合并,此选项错误;C.,此选项错误;D.,此选项正确.故选D.【考点】二次根式的混合运算.20.若,,求.的值【答案】4【解析】本题考查的是二次根式的混合运算,同时考查了因式分解,把a2b+ab2的因式分解为ab(a-b),再代入计算即求解为4.试题解析:解:∵,∴∴【考点】1、二次根式的混合运算.2、因式分解.21.下列运算正确的是()A.B.C.D.【答案】D【解析】二次根式的性质:当时,,当时,.A、,B、,C、,均错误;D、,本选项正确.【考点】二次根式的混合运算22.要使式子有意义,则x的取值范围是 .【答案】【解析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须。
初一数学二次根式试题答案及解析
初一数学二次根式试题答案及解析1.一个数的算术平方根是,则这个数是_____ _____.【答案】2.【解析】∵一个数的算术平方根是,∴这个数为()2=2.故答案是2.【考点】算术平方根.2. 9的平方根是()A.3B.±3C.D.81【答案】B【解析】根据平方根的定义可判断.【考点】平方根3. 49的算术平方根是.【答案】7【解析】根据算术平方根的意义可求.【考点】算术平方根4.的平方根为()A.B.C.3D.【答案】B.【解析】由于=3,故其平方根是.故选B.【考点】平方根.5.在3.14,中,无理数有()个A.1个B.2个C.3个D.4个【答案】B.【解析】有限小数、整数、分数都属于有理数,故3.14,,==2都是有理数,开不尽方的平方根,圆周率都是无限不循环小数,所以是无理数.故选B.【考点】实数的分类.6.下列说法中正确的是()A.立方根是它本身的数只有1和0B.算术平方根是它本身的数只有1和0C.平方根是它本身的数只有1和0D.绝对值是它本身的数只有1和0【答案】B.【解析】A.立方根是它本身的数除去1和0外,还有-1,故该选项错误;B.算术平方根是它本身的数只有1和0,故该选项正确;C.平方根是它本身的数只有1和0,故该选项错误;D.绝对值是它本身的数只有正数和0,故该选项错误.故选B.【考点】1.立方根;2.平方根;3.算术平方根;4.绝对值.7.下列各式正确的是()A.B.C.D.【答案】A.【解析】A选项正确,B、C、D选项错误.故选A.【考点】二次根式的化简.8.大于小于的所有整数的和是 .【答案】-4.【解析】求出和的范围,求出范围内的整数解,最后相加即可.∵-5<<-4,3<<4,∴大于小于的所有整数为-4,±3,±2,±1,0,∴-4-3-2-1+0+1+2+3=-4,【考点】估算无理数的大小.9.下列计算正确的是()A.B.C.D.【答案】D【解析】A.,故本选项错误;B.,故本选项错误;C.,表示25的算术平方根是5,故本选项错误;D.,故本选项正确,故选D.10.下列说法正确的是()A.一个数的立方根有两个,它们互为相反数B.一个数的立方根与这个数同号C.如果一个数有立方根,那么它一定有平方根D.一个数的立方根是非负数【答案】B【解析】一个数的立方根只有一个,A错误;一个数有立方根,但这个数不一定有平方根,如,C错误;一个正数的立方根是正数,一个负数的立方根是负数,0的立方根是0,所以D是错误的,故选B.11.已知2a-1的平方根是±3,3a+b-1的算术平方根是4,求a+2b的值.【答案】9【解析】解:因为2a-1的平方根是±3,所以2a-1=9,解得因为3a+b-1的算术平方根是4,所以3a+b-1=16.又所以故a+2b=9.12.在-4,,0,π,1,,这些数中,是无理数的是.【答案】π.【解析】无理数有:π.故答案为:π.【考点】无理数.13.如图,长方形内有两个相邻的正方形,面积分别为4和9,那么图中阴影部分的面积为()A.1B.2C.3D.4【答案】B【解析】设两个正方形的边长是x、y(x<y),得出方程x2=4,y2=9,求出x=2,y=3,代入阴影部分的面积是(y﹣x)x求出即可.解:设两个正方形的边长是x、y(x<y),则x2=4,y2=9,x=2,y=3,则阴影部分的面积是(y﹣x)x=(3﹣2)×2=2,故选B.点评:本题考查了算术平方根性质的应用,主要考查学生的计算能力.14.若(x-1)=64,则x=______。
初中数学二次根式精选试题(含答案和解析)
初中数学二次根式精选试题一.选择题1. (2018·湖南怀化·4分)使有意义的x的取值范围是()A.x≤3B.x<3 C.x≥3D.x>3【分析】先根据二次根式有意义的条件列出关于x的不等式.求出x 的取值范围即可.【解答】解:∵式子有意义.∴x﹣3≥0.解得x≥3.故选:C.【点评】本题考查的是二次根式有意义的条件.熟知二次根式具有非负性是解答此题的关键.2.(2018•江苏宿迁•3分)若实数m、n满足.且m、n恰好是等腰△ABC的两条边的边长.则△ABC的周长是()A. 12B. 10C. 8D. 6【答案】B【分析】根据绝对值和二次根式的非负性得m、n的值.再分情况讨论:①若腰为2.底为4.由三角形两边之和大于第三边.舍去;②若腰为4.底为2.再由三角形周长公式计算即可.【详解】由题意得:m-2=0.n-4=0.∴m=2.n=4.又∵m、n恰好是等腰△ABC的两条边的边长.①若腰为2.底为4.此时不能构成三角形.舍去.②若腰为4.底为2.则周长为:4+4+2=10.故选B.【点睛】本题考查了非负数的性质以及等腰三角形的性质.根据非负数的性质求出m、n的值是解题的关键.3.(2018•江苏无锡•3分)下列等式正确的是()A.()2=3 B.=﹣3 C.=3 D.(﹣)2=﹣3【分析】根据二次根式的性质把各个二次根式化简.判断即可.【解答】解:()2=3.A正确;=3.B错误;==3.C错误;(﹣)2=3.D错误;故选:A.【点评】本题考查的是二次根式的化简.掌握二次根式的性质:=|a|是解题的关键.4.(2018•江苏苏州•3分)若在实数范围内有意义.则x的取值范围在数轴上表示正确的是()A.B.C.D.【分析】根据二次根式有意义的条件列出不等式.解不等式.把解集在数轴上表示即可.【解答】解:由题意得x+2≥0.解得x≥﹣2.故选:D.【点评】本题考查的是二次根式有意义的条件.掌握二次根式中的被开方数是非负数是解题的关键.5.(2018•山东聊城市•3分)下列计算正确的是()A.3﹣2=B.•(÷)=C.(﹣)÷=2D.﹣3=【分析】根据二次根式的加减乘除运算法则逐一计算可得.【解答】解:A.3与﹣2不是同类二次根式.不能合并.此选项错误;B.•(÷)=•==.此选项正确;C.(﹣)÷=(5﹣)÷=5﹣.此选项错误;D.﹣3=﹣2=﹣.此选项错误;故选:B.【点评】本题主要考查二次根式的混合运算.解题的关键是掌握二次根式混合运算顺序和运算法则.6.(2018•上海•4分)下列计算﹣的结果是()A.4 B.3 C.2D.【分析】先化简.再合并同类项即可求解.【解答】解:﹣=3﹣=2.故选:C.【点评】考查了二次根式的加减法.关键是熟练掌握二次根式的加减法法则:二次根式相加减.先把各个二次根式化成最简二次根式.再把被开方数相同的二次根式进行合并.合并方法为系数相加减.根式不变.7. (2018•达州•3分)二次根式中的x的取值范围是()A.x<﹣2 B.x≤﹣2 C.x>﹣2 D.x≥﹣2【分析】根据被开方数是非负数.可得答案.【解答】解:由题意.得2x+4≥0.解得x≥﹣2.故选:D.【点评】本题考查了二次根式有意义的条件.利用被开方数是非负数得出不等式是解题关键.8. (2018•杭州•3分)下列计算正确的是()A.B.C.D.【答案】A【考点】二次根式的性质与化简【解析】【解答】解:AB.∵.因此A符合题意;B不符合题意;CD.∵.因此C.D不符合题意;故答案为:A【分析】根据二次根式的性质.对各选项逐一判断即可。
初二数学二次根式试题答案及解析
初二数学二次根式试题答案及解析1.计算(1)(2)【答案】(1);(2)2.【解析】(1)根据二次根式的乘除法则运算;(2)根据二次根式有意义的条件得到-(a+2)2≥0,得到a=-2,然后把a=-2代入原式进行计算.试题解析:(1)原式===(2)∵-(a+2)2≥0,∴a=-2,原式==3-5+4=2.【考点】二次根式的混合运算.2.计算:【答案】.【解析】先进行二次根式的乘法运算得到原式=3﹣3+2+2+1,然后合并即可.试题解析:原式=3﹣3+2+2+1=.【考点】二次根式的混合运算.3.化简的结果是()A.-3B.3C.±3D.【答案】B.【解析】.故选B.【考点】二次根式化简.4.下列变形中,正确的是………()A.(2)2=2×3=6B.C.D.【答案】D.【解析】A、(2)2=4×3=12,故本选项错误;B、,故本选项错误;C、,故本选项错误;D、,正确.故选D.【考点】二次根式的化简与计算.5.当1≤x≤5时,【答案】4.【解析】根据x的取值范围,可判断出x-1和x-5的符号,然后再根据二次根式的性质和绝对值的性质进行化简.试题解析:∵1≤x≤5,∴x-1≥0,x-5≤0.故原式=(x-1)-(x-5)=x-1-x+5=4.考点: 二次根式的性质与化简.6.有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A.2B.8C.D.【答案】D.【解析】由图表得,64的算术平方根是8,8的算术平方根是.故选D.【考点】算术平方根.7.下列计算正确的是()A.B.C.D.【答案】A.【解析】根据根式运算法则.不是同类项不能合并同类项【考点】根式运算.8.=________________.【答案】6【解析】由题, .,由题, .【考点】二次根式的化简.9.函数中自变量x的取值范围是.【答案】x≥4【解析】二次根式有意义的条件:二次根号下的数为非负数,二次根式才有意义.由题意得,.【考点】二次根式有意义的条件点评:本题属于基础应用题,只需学生熟练掌握二次根式有意义的条件,即可完成.10.的平方根是()A.4B.±4C.±2D.2【答案】C【解析】一个正数有两个平方根,且它们互为相反数,其中正的平方根叫它的算术平方根.,平方根是±2,故选C.【考点】平方根点评:本题属于基础应用题,只需学生熟练掌握平方根的定义,即可完成.11.函数y=中,自变量x的取值范围是。
初三数学二次根式试题答案及解析
初三数学二次根式试题答案及解析1.二次根式中字母x的取值范围是()A.x<1B.x≤1C.x>1D.x≥1【答案】D.【解析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须. 因此,二次根式中字母x的取值范围是x≥1. 故选D.【考点】二次根式有意义的条件.2.函数中,自变量x的取值范围是.【答案】.【解析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.【考点】1.函数自变量的取值范围;2.二次根式有意义的条件.3.实数-8的立方根是【答案】-2.【解析】利用立方根的定义即可求解.试题解析:∵(-2)3=-8,∴-8的立方根是-2.【考点】立方根.4.计算:+(﹣1)0=.【答案】3【解析】原式=2+1=3故答案为:3.【考点】1、立方根;2、零指数幂;3、实数的运算5.若二次根式有意义,则x的取值范围是.【答案】.【解析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.【考点】二次根式有意义的条件.6.已知实数x,y满足x+y=-2a,xy=a(a≥1),则的值为A.a B.2a C.a D.2【答案】D.【解析】解:∵x+y=-2a,xy=a(a≥1),∴x,y均为负数,∵∴===2.故选:D.【考点】二次根式的化简求值.7.计算:.【答案】.【解析】根据二次根式、负整数指数幂以及零次幂的意义进行计算即可求出答案.原式=.【考点】实数的混合运算.8.方程的根是.【答案】.【解析】∵,∴.∴.【考点】解方程.9.观察分析下列数据,寻找规律:0,,,3,2,…,那么第10个数据应是________.【答案】3【解析】观察可知规律:被开数依次是0,3,6,9,12,…,按规律可知,第10个数据应该是=3,填3.10.。
【答案】【解析】根据二次根式的乘法法则计算.试题解析:.考点: 二次根式的乘除法.11.计算:.【答案】.【解析】先化成最简二次根式,再合并同类二次根式即可得出答案.试题解析:.考点: 二次根式的加减法.12.下列属于最简二次根式的是()A.B.C.D.【答案】B.【解析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.A、,被开方数含能开得尽方的因数,不是最简二次根式;B、是最简二次根式;C、,被开方数含能开得尽方的因数,不是最简二次根式;D、,被开方数含能开得尽方的因数,不是最简二次根式.故选B.【考点】最简二次根式.13.计算:【答案】0.【解析】根据二次根式运算法则计算即可.试题解析:.【考点】二次根式计算.14.下列计算正确的是()A.B.C.D.【答案】A.【解析】二次根式的加减,首先要把各项化为最简二次根式,是同类二次根式的才能合并,不是同类二次根式的不合并;二次根式的乘除法公式,,需要说明的是公式从左到右是计算,从右到左是二次根式的化简,并且二次根式的计算要对结果有要求,能开方的要开方,根式中不含分母,分母中不含根式,由题,,A正确,不能合并,,不能合并,B错误,C不能合并,错误,,D错误,故选A.【考点】根式的计算.15.的值是()A.4B.2C.±2D.【答案】B.【解析】首先应弄清所表示的意义:求的算术平方根.根据一个正数的平方等于,那么这个正数就叫做的算术平方根.因为,所以的算术平方根为,故应选B.【考点】算术平方根的定义.16.计算【答案】.【解析】原式=.【考点】 1.实数的运算;2.零指数幂;3.负整数指数幂.17.下列根式中属最简二次根式的是()A.B.C.D.【答案】A【解析】最简二次根式的是满足两个条件:1.被开方数中不含分母.2.被开方数中不能含有开得方的因数或因式.故符合条件的只有A.故选A【考点】最简二次根式18.若x,y为实数,且,则的值为A.1B.C.2D.【答案】B.【解析】∵,∴根据绝对值和二次根式的非负数性质,得.∴.故选B.【考点】1.绝对值和二次根式的非负数性质;2.乘方.19.若,则m-n的值为.【答案】4.【解析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.试题解析:根据题意得:,解得:,则m+n=3-(-1)=4.考点: (1)算术平方根;(2)绝对值.20.已知,则有()A.B.C.D.【答案】A.【解析】,∵,∴,即.故选A.【考点】1.估算无理数的大小;2.实数的运算.21.若使二次根式在实数范围内有意义,则x的取值范围是()A.B.C.D.【答案】B【解析】根据题意,a-1…0,a…1.当被开方数为非负数时,二次根式有意义,根据题意,得到a的不等式.【考点】二次根式有意义的条件(被开方数为非负数).22.计算:.【答案】或者.【解析】此题是二次根式的加减乘除运算和化简,首先要弄明白二次根式加减的法则和乘除的公式,对于二次根式的加减来说,首先要把各项化为最简二次根式,然后是同类二次根式的才能合并,不是同类二次根式的不合并;二次根式的乘除法公式,,需要说明的是公式从左到右是计算,从右到左是二次根式的化简,并且二次根式的计算要对结果有要求,能开方的要开方,根式中不含分母,分母中不含根式.试题解析:解:原式=.【考点】二次根式的加减乘除运算和化简.23.如图,矩形ABCD中,点E、F分别是AB、CD的中点,连接DE和BF,分别取DE、BF的中点M、N,连接AM,CN,MN,若AB=2,BC=2,则图中阴影部分的面积为.【答案】.【解析】如图,经过等积转换:平行四边形BNME与平行四边形NFDM等积;△AHM与△CGN 等积.∴阴影部分的面积其实就是原矩形ABCD面积的一半.∴阴影部分的面积=.【考点】1.矩形的性质;2.面积割补法的应用,3.全等图形的判定;4.二次根式的运算;5.转换思想和整体思想的应用.24.计算与化简(1)(2)【答案】(1);(2).【解析】(1)将前两项化为最简二次根式,第三项根据0指数幂定义计算,再合并同类二次根式即可;(2)应用完全平方公式和平方差公式展开后合并同类二次根式即可.试题解析:(1).(2).【考点】1.二次根式化简;2.0指数幂;3.完全平方公式和平方差公式.25.要使二次根式有意义,字母x必须满足的条件是.【答案】【解析】二次根式有意义的条件:二次根号下的式子为非负数,即,.【考点】二次根式有意义的条件26.若x3=8,则x=.【答案】2【解析】根据立方根的定义,求数a的立方根,也就是求一个数x,使得x3=a,则x就是a的一个立方根:∵23=8,∴8的立方根是2。
初中数学二次根式基础测试题附答案
B 、 a3 a2 a5 ,故本选项错误;
C 、 ( 5 1)( 5 1) 5 1 4 ,故本选项正确;
D 、 a2 2 a4 ,故本选项错误;
故选: C .
【点睛】 本题考查的是实数的计算,熟练掌握合并同类项,单项式相乘,平方差公式和幂的乘方法 是解题的关键.
8.下列计算或运算中,正确的是()
A. 2 a a 2
B. 18 8 2
C. 6 15 2 3 3 45
D. 3 3 27
【答案】B
【解析】
【分析】
根据二次根性质和运算法则逐一判断即可得.
【详解】
A、2 a =2× a 2a ,此选项错误;
2
2
B、 18 8 =3 2 -2 2 = 2 ,此选项正确; C、 6 15 2 3 3 5 ,此选项错误;
B、 1 2 , 2 与 1 是同类二次根式;
22
2
C、 4ab 2 ab, ab4 b2 a , 4ab 与 ab4 不是同类二次根式;
D、 a 1 与 a 1 不是同类二次根式;
故选:B. 【点睛】 本题考查的是同类二次根式的概念、二次根式的化简,把几个二次根式化为最简二次根式 后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.
【点睛】
此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.
16.下列各式中是二次根式的是( )
A. 3 8
【答案】C 【解析】 【分析】
B. 1
C. 2
根据二次根式的定义逐一判断即可. 【详解】
A、 3 8 的根指数为 3,不是二次根式;
B、 1 的被开方数﹣1<0,无意义;
初二数学二次根式试题答案及解析
初二数学二次根式试题答案及解析1.(6分)化简:(+)-(+6)÷.【答案】.【解析】分别利用二次根式的乘除运算法则化简,进而合并得出即可.试题解析:(+)-(+6)÷=2+3﹣3﹣=.【考点】二次根式的混合运算.2.规定用符号[m]表示一个实数m的整数部分. 例如:[]="0" ,[3.14]="3" ,按此规定[]的值为_________ .【答案】4.【解析】∵9<10<16,∴. ∴.试题解析:【考点】1.新定义;2.估计无理数的大小.3.当时,二次根式的值为【答案】5.【解析】当时,.【考点】二次根式求值.4.下列变形中,正确的是………()A.(2)2=2×3=6B.C.D.【答案】D.【解析】A、(2)2=4×3=12,故本选项错误;B、,故本选项错误;C、,故本选项错误;D、,正确.故选D.【考点】二次根式的化简与计算.5.计算:【答案】3【解析】先进行乘方、分母有理化及负整数指数幂,最后合并同类二次根式即可求解.原式=【考点】实数的混合运算.6.若,则。
A.B.C.0D.2【答案】A.【解析】∵∴x+y=2,x-y=2∴原式=(x+y)(x-y)=2×2=4.故选A.考点: 二次根式的化简求值.7.若,则的取值范围是。
【答案】x≥0.【解析】根据(a≥0),可得答案.试题解析:解;∵,∴2x≥0,∴x≥0.考点: 二次根式的性质与化简.8.计算()(+++…+)【答案】2013.【解析】根据分母有理化的计算,把括号内各项分母有理化,计算后再利用平方差公式进行计算即可得解.试题解析:()(+++…+)=()(-1+-+-+…+-)=()()=2014-1=2013.考点: 分母有理化.9.已知+,那么 .【答案】8【解析】由+,得,所以.10.已知、b为两个连续的整数,且,则= .【答案】11【解析】∵,、b为两个连续的整数,又<<,∴ =6,b=5,∴.11.的平方根是.【答案】±2.【解析】的算术平方根是4,4的平方根是±2.【考点】1.算术平方根;2. 平方根.12.下列说法正确的是……()A.0的平方根是0B.1的平方根是1C.-1的平方根是-1D.的平方根是-1【答案】A.【解析】根据平方根的定义即可判定A.0的平方根是0,故说法正确;B.1的平方根是±1,故说法错误;C.-1的平方根是-1,负数没有平方根,故说法错误;D.(-1)2=1,1的平方根为±1,故说法错误【考点】平方根.13.设S=+++…+,则不大于S的最大整数[S]等于()A.98B.99C.100D.101【答案】B.【解析】,,…,所以所以不大于S的最大整数[S]等于99.【考点】规律型.14.计算:【答案】5【解析】解:原式【考点】实数运算点评:本题难度较低,主要考查学生对实数运算知识点的额掌握,为中考常考题型,要求学生牢固掌握。
初二数学二次根式试题答案及解析
初二数学二次根式试题答案及解析1.要使代数式有意义,则x的取值范围是( )A.x≥2B.x≥-2C.x≤-2D.x≤2【答案】A.【解析】根据题意,得x-2≥0,解得,x≥2;故选A.【考点】二次根式有意义的条件.2.下列计算正确的是()A.B.C.D.【答案】B.【解析】A. 不能计算,故A选项错误;B. ,故B选项正确;C. ,故C选项错误;D. ,故D选项错误.故选B.【考点】二次根式的混合运算.3.下列各式是最简二次根式的是()A.B.C.D.【答案】B.【解析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件:(1)被开方数的因数是整数,因式是整式; (2)被开方数中不含能开得尽方的因数或因式是否同时满足,同时满足的就是最简二次根式,否则就不是.因此,A、=3,不是最简二次根式,故A选项错误;B、是最简二次根式,符合题意,故B选项正确;C、,不是最简二次根式,故C选项错误;D、,不是最简二次根式,故D选项错误;故选B.【考点】最简二次根式.4.化简的结果是()A.-3B.3C.±3D.【答案】B.【解析】.故选B.【考点】二次根式化简.5.下列说法正确的是()A.带根号的数都是无理数B.无理数都是无限小数C.是无理数D.无限小数都是无理数【答案】B.【解析】A、如,是有理数不是无理数,故本选项错误;B、无理数都是无限小数,故本选项正确;C、是有理数,故本选项错误;D、无限不循环小数是无理数,故本选项错误.故选B.考点: 无理数.6.(1)计算: (2)解方程组:【答案】(1);(2)方程组的解为:.【解析】(1)根据二次根式混合运算的运算顺序计算即可;(2)先用加减消元法求出x的值,再用代入消元法求出y的值即可.试题解析:(1);(2)②-①×3得x=5,把x=5代入①得,10﹣y=5,解得y=5,故此方程组的解为:.【考点】1.二次根式的运算,2.解方程组.7.已知实数满足,则代数式的值为()A.B.C.D.【答案】B【解析】由,知所以8.有一个数值转换器,原理如图所示:当输入的=64时,输出的y等于()A.2B.8C.3D.2【答案】D【解析】由图表得,64的算术平方根是8,8的算术平方根是2.故选D.9.下列计算中,正确的有()①=±2 ②=2 ③=±25 ④a=-A.0个B.1个C.2个D.3个【答案】C.【解析】A、任何数的立方根只有一个;B、负数的奇次幂是负数,负数的立方根也是负数;C、非负数的平方根有两个,且互为相反数;D、二次根式的意义可知a<0,再根据二次根式的性质求解据此作答,进行判断.A、=2,此选项错误;B、=-2,此选项错误;C、=±25,此选项正确;D、a=-故选C.【考点】1.立方根;2.平方根;3.算术平方根.10.若,则的值为()A.6B.2C.-2D.8【答案】B【解析】由题,得(x-2)2="0," =0,x=2,y=4,故==2,选B.非负数和等于零,要求每一项都要等于零,由题,得(x-2)2="0," =0,x=2,y=4,故==2,选B.【考点】非负数和等于零.11.计算:(1);(2)sin30°+cos30°•tan60°.【答案】(1);(2)2【解析】(1)根据二次根式的乘除法法则计算即可;(2)根据特殊角的锐角三角函数值计算即可.解:(1)原式;(2)原式.【考点】实数的运算点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.12.若x、y为正实数,且x+y=12那么的最小值为 .【答案】13【解析】若x、y为正实数,且x+y=12,那么y=12-x;因此=;设S=,则==;所以S【考点】最值点评:本题考查最值,解答本题的关键是掌握求代数式最值的方法,本题难度较大,计算量比较13.计算:3÷的结果是()A.B.C.D.【答案】A【解析】,选A【考点】实数运算点评:本题难度较低,主要考查学生对实数运算知识点的掌握。
初三数学二次根式试题答案及解析
初三数学二次根式试题答案及解析1.在0.1,﹣3,和这四个实数中,无理数是()A.0.1B.﹣3C.D.【答案】C【解析】在0.1,﹣3,和这四个实数中,无理数有:【考点】无理数2.读取表格中的信息,解决问题.a=b+2c b=c+2a c=a+2b满足的n可以取得的最小整数是.【答案】7.【解析】由,,,….∵,∴.∴.∵36<2014<37,∴n最小整数是7.【考点】1.探索规律题(数字的变化类);2.二次根式化简;3.不等式的应用.3.计算sin245°+cos30°•tan60°,其结果是()A.2B.1C.D.【答案】A【解析】原式=()2+×=+=2.故选:A.【考点】1、特殊角的三角函数值;2、实数的计算4.若式子在实数范围内有意义,则x的取值范围是()A.x<2B.x≤2C.x>2D.x≥2【答案】D【解析】根据题意得:x﹣2≥0,解得:x≥2.故选D.【考点】二次根式有意义的条件5.在下列实数中,无理数是()A.2B.3.14C.D.【答案】D.【解析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项:A、是整数,是有理数,选项错误;B、是小数,是有理数,选项错误;C、是分数,是有理数,选项错误;D、是无理数,选项正确析.故选D.【考点】无理数.6.二次根式在实数范围内有意义,则x的取值范围是()A.x<1B.x≥1C.x≤-1D.x<-1【答案】B.【解析】根据题意得:x-1≥0,解得:x≥1.故选B.考点: 二次根式有意义的条件.7.下列计算正确的是 ()A.-=B.=-=1C.÷(-)=-1D.=3【答案】A【解析】∵-=2-=∴A对.∵==∴B错.∵÷(-)===+1∴C错∵===3-1∴D错.选A.8.计算:·-=________.【答案】2【解析】原式=-=3-=2.9.下列各式中,正确的是 ()A.=-3B.-=-3C.=±3D.=±3【答案】B【解析】因为-=-=-3,所以选B.10. 9的算术平方根是( )A.3B.±3C.81D.±81【答案】A.【解析】9的算术平方根是.故选A.考点: 算术平方根.11.已知则.【答案】【解析】因为所以所以,故.12.下列运算正确的是()A.B.C.D.【答案】B.【解析】A.与不是同类二次根式,不能合并,故本选项错误;B.,故本选项正确;C.3与不是同类二次根式,不能合并,故本选项错误;D. ,,故本选项错误.故选B.考点: 二次根式的运算与化简.13.的值等于()A.4B.-4C.±4D.【答案】A.【解析】根据42=16,可得.故选A.【考点】算术平方根.14.的算术平方根是()A.4B.C.2D.【答案】C.【解析】根据算术平方根的定义解答即可.∵∴4的算术平方根是2.故选C.考点:算术平方根.15.观察分析下列数据,按规律填空:(第n个数).【答案】.【解析】寻找规律:可写为.【考点】探索规律题(数字的变化类).16.下列计算正确的是()A.B.C.D.【答案】D【解析】A、与不是同类二次根式,无法合并,B、,C、,均错误;D、,本选项正确.【考点】二次根式的混合运算17.下列计算,正确的是A.B.C.D.【答案】C.【解析】A、与不是同类二次根式,不能合并,故A错误;B、与不是同类二次根式,不能合并,故B错误;C、,该选项正确;D、,故本选项错误.故选C.考点: 二次根式的混合运算.18.计算【答案】.【解析】先化简二次根式,再合并同类二次根式,最后算除法即可求出答案.试题解析:考点: 二次根式的混合运算.19.计算:=.【答案】7.【解析】直接根据二次根式的性质与化简进行计算即可..故填7.【考点】二次根式的性质与化简.20.已知:a.b.c满足,求:(1)a,b,c的值;(2)试问以a,b,c为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.【答案】(1)a=2,b=5,c=3;(2)能构成三角形,周长=.【解析】(1)几个非负数的和为零,要求每一项为零,由题,a-2=0,b-5=0,c-3=0,a=2 ,b=5,c=3;(2)能构成三角形的条件是两边之和大于第三边,由题,,而,所以能构成三角形,周长=. 试题解析:(1)由题,∴a-2=0,b-5=0,c-3=0,∴a=2,b=5,c=3;(2)∵,,∴能构成三角形,三角形的周长=.【考点】1.非负数的性质;2.三角形三边的关系.21.下列二次根式中,取值范围是的是()A.B.C.D.【答案】C.【解析】根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须;要使在实数范围内有意义,必须;要使在实数范围内有意义,必须;要使在实数范围内有意义,必须,因此,取值范围是的是. 故选C.【考点】二次根式和分式有意义的条件.22.若,,求.的值【答案】4【解析】本题考查的是二次根式的混合运算,同时考查了因式分解,把a2b+ab2的因式分解为ab(a-b),再代入计算即求解为4.试题解析:解:∵,∴∴【考点】1、二次根式的混合运算.2、因式分解.23.如果,那么= .【答案】-2【解析】根据题意,可得=0,∣b-2∣=0,从而得到a+1=0,a=-1,b-2=0,b=2,ab=-2.因为二次根式为非负数,一个数的绝对值为非负数,由几个非负数的和为零,要求每一项都为零,即=0,∣b-2∣=0,而零的二次根式为0,0的绝对值为0,从而得到a+1=0,b-2=0,解得a=-1,b=2,ab=-2.【考点】几个非负数的和为零,要求每一项都为零.24.若平行四边形的一边长为2,面积为,则此边上的高介于A.3与4之间B.4与5之间C.5与6之间D.6与7之间【答案】B【解析】先根据四边形的面积公式列出算式,求出高的值,再估算出无理数,即可得出答案:根据四边形的面积公式可得:此边上的高=。
数学数学二次根式试题附解析
一、选择题1.若01x <<=( ). A .2xB .2x -C .2x -D .2x 2.下列二次根式中,是最简二次根式的是( )AB C . D 3.下列各式中,无意义的是( )A B C D .310-4.x 的取值范围是( )A .13x ≥B .13x >C .13x ≤D .13x <5.下列算式:(1=2)3)=7;(4)+= ) A .(1)和(3) B .(2)和(4) C .(3)和(4) D .(1)和(4)6.x 的取值范围是( ) A .x≥2020 B .x≤2020 C .x> 2020D .x< 2020 7.“分母有理化”是我们常用的一种化简的方法,如:7==+x =>,故0x >,由22332x ==-=,解得x=结果为( )A .5+B .5+C .5D .5- 8.下列各式计算正确的是( )A B .C .D9.若|x 2﹣4x+4|与23x y --互为相反数,则x+y 的值为( ) A .3 B .4 C .6 D .910.古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a ,b ,c ,记2a b c p ++=,那么三角形的面积为()()()S p p a p b p c =---如图,在ABC ∆中,A ∠,B ,C ∠所对的边分别记为a ,b ,c ,若5a =,6b =,7c =,则ABC ∆的面积为( )A .66B .3C .18D .192二、填空题11.已知实数,x y 满足(22200820082008x x y y --=,则2232332007x y x y -+--的值为______.12.当x 3x 2﹣4x +2017=________.13.甲容器中装有浓度为a 40kg ,乙容器中装有浓度为b 90kg ,两个容器都倒出m kg ,把甲容器倒出的果汁混入乙容器,把乙容器倒出的果汁混入甲容器,混合后,两容器内的果汁浓度相同,则m 的值为_________.14.若实数x ,y ,m 满足等式()23532322x y m x y m x y x y +--+-=+---m+4的算术平方根为 ________.15.已知整数x ,y 满足20172019y x x =+--,则y =__________. 16.化简:321x 17.若a 、b 为实数,且b =22117a a a --++4,则a+b =_____. 18.2121=-+3232=+4343=+++……=___________.19.能合并成一项,则a =______.20.古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦—秦九韶公式:如果一个三角形的三边长分别是a ,b ,c ,记2a b c p ++=,那么三角形的面积S =ABC 中,A ∠,B ,C ∠所对的边分别记为a ,b ,c ,若4a =,5b =,7c =,则ABC 面积是_______. 三、解答题21.x 的值,代入后,求式子的值. 【答案】答案见解析.【解析】试题分析:先把除式化为最简二次根式,再用二次根式的乘法法则化简,选取的x 的值需要使原式有意义.试题解析:原式==== 要使原式有意义,则x >2.所以本题答案不唯一,如取x =4.则原式=222.在学习了二次根式后,小明同学发现有的二次根式可以写成另一个二次根式的平方的形式.比如:2224312111-=-=-+=).善于动脑的小明继续探究:当a b m n 、、、为正整数时,若2a n +=+),则有22(2a m n =+,所以222a m n =+,2b mn =.请模仿小明的方法探索并解决下列问题:(1)当a b m n 、、、为正整数时,若2a n =+),请用含有mn 、的式子分别表示a b 、,得:a = ,b = ;(2)填空:13-( - 2;(3)若2a m +=(),且a m n 、、为正整数,求a 的值.【答案】(1)223a m n =+,2b mn =;(2)213--;(3)14a =或46.【解析】试题分析:(1)把等式)2a n +=+右边展开,参考范例中的方法即可求得本题答案; (2)由(1)中结论可得:2231324a m nb mn ⎧=+=⎨==⎩ ,结合a b m n 、、、都为正整数可得:m=2,n=1,这样就可得到:213(1-=-;(3)将()2a m +=+右边展开,整理可得:225a m n =+,62mn =结合a m n 、、为正整数,即可先求得m n 、的值,再求a 的值即可.试题解析:(1)∵2a n =+),∴223a m n +=++,∴2232a m n b mn =+=,;(2)由(1)中结论可得:2231324a m nb mn ⎧=+=⎨==⎩ , ∵a b m n 、、、都为正整数,∴12m n =⎧⎨=⎩ 或21m n =⎧⎨=⎩ , ∵当m=1,n=2时,223713a m n =+=≠,而当m=2,n=1时,22313a m n =+=, ∴m=2,n=1,∴(2131--;(3)∵222()52a m m n +=+=++∴225a m n =+,62mn = ,又∵a m n 、、为正整数,∴=1=3m n ,, 或者=3=1m n ,,∴当=1=3m n ,时,46a =;当=3=1m n ,,14a =,即a 的值为:46或14.23.先化简再求值:4y x ⎛- ⎝,其中30x -=.【答案】(2x -【分析】先根据二次根式的混合运算顺序和运算法则化简原式,再利用非负数的性质得出x ,y 的值,继而将x 、y 的值代入计算可得答案.解:4y x ⎛- ⎝ ((=-(2x =-∵ 30x -∴ 3,4x y ==当3,4x y ==时原式(23=-==【点睛】本题主要考查了二次根式的化简求值,解题的关键是掌握非负数的性质和二次根式的混合运算顺序和法则.24.(1)计算:(2)先化简,再求值:(()8a a a a +--,其中14a =.【答案】(1)2)82-a ,【分析】(1)分别根据二次根式的除法法则、二次根式的性质、二次根式的乘法法则计算和化简各项,再合并同类二次根式即可;(2)分别根据平方差公式和单项式乘以多项式的法则计算各项,再把a 的值代入化简后的式子计算即可.【详解】(1)==;(2)(()8a a a a +--2228a a a =--+82a =-,当14a =时,原式1824⎫=⨯-=⎪⎭. 【点睛】本题考查了整式的乘法和二次根式的混合运算,属于常考题型,熟练掌握基本知识是解题25.计算(1+(2+-÷(4)((3)2b【答案】(1)234)7.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先把各二次根式化为最简二次根式,然后合并即可;(3)根据二次根式的乘除法则运算;(4)利用平方差公式计算;【详解】(1+=+22=;(2==;(3÷==;4(4)((22=-=7本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了平方差公式.26.先观察下列等式,再回答下列问题:111111112=+-=+;111112216=+-=+1111133112=+-=+(1) (2)请你按照上面各等式反映的规律,用含n 的等式表示(n 为正整数).【答案】(1)1120 (2)()111n n ++(n 为正整数) 【解析】试题分析:(1)从三个式子中可以发现,第一个加数都是1,第二个加数是个分数,设分母为n ,第三个分数的分母就是n+1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积.所以由此可计算给的式子;(2)根据(1)找的规律写出表示这个规律的式子.试题解析:(1)=1+14−141+=1120,1120(2)1 n −1 n 1+=1+()1n n 1+ (n 为正整数).a =,也考查了二次根式的运算.此题是一道阅读题目,通过阅读找出题目隐含的条件.总结:找规律的题目,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.27.计算(2)2;(4)【答案】(1)2)9-;(3)1;(4)【分析】 (1)根据二次根式的性质和绝对值的代数意义进行化简后合并即可;(2)根据完全平方公式进行计算即可;(3)根据二次根式的乘除法法则进行计算即可;(4)先进行乘法运算,再合并即可得到答案.【详解】解:==(2)2=22-=63-=9-=1;(4)===【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.28.先化简再求值:(a ﹣22ab b a -)÷22a b a-,其中,b=1.【答案】原式=a b a b-=+【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,最后将数个代入进行计算即可.【详解】原式=()()222a ab b a a a b a b -+⨯+- =()()()2·a b a aa b a b -+- =a b a b-+,当,b=1时,原式【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据二次根式的意义先化简各项,再进行分式的加减运算可得出解.【详解】解:∵0<x <1,∴0<x <1<1x , ∴10x x +>,10x x-<.原式=11x x x x +-- =11x x x x++- =2x .故选D .点睛:本题考查了二次根式的性质和绝对值化简,也考查了分式的加减.2.D解析:D【分析】根据最简二次根式的特点解答即可.【详解】A ,故该选项不符合题意;B =C 、D 不能化简,即为最简二次根式,故选:D .【点睛】此题考查最简二次根式,掌握最简二次根式的特点:①被开方数中不含分母;②被开方数中不含能再开方的因式或因数,牢记特点是解题的关键.3.A解析:A【分析】直接利用二次根式有意义的条件、负整数指数幂的性质分析得出答案.【详解】AB ,有意义,不合题意;C D 、33110=10-,有意义,不合题意; 故选A.【点睛】 此题主要考查了二次根式有意义的条件、负整数指数幂的性质,正确把握二次根式的定义是解题关键.4.C解析:C【分析】根据二次根式的性质:被开方数大于或等于0,列不等式求解.【详解】解:依题意有当130x -≥时,原二次根式有意义;解得:13x≤;故选:C.【点睛】本题考查了二次根式的基本性质(被开方数大于或等于0);解一元一次不等式,在解一元一次不等式的过程中要用到不等式的基本性质(1.不等式两边同时加上或同时减去一个数,不等号的方向不变;2.不等式两边同时乘以或同时除以一个正数,不等号的方向不变;3.不等式两边同时乘以或同时除以一个负数,不等号的方向改变.)熟记并灵活运用不等式的基本性质是解本题的关键.5.B解析:B【分析】根据二次根式的性质和二次根式的加法运算,分别进行判断,即可得到答案.【详解】(1(2),正确;(3,错误;(4)==故选:B.【点睛】本题考查了二次根式的加法运算,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.6.A解析:A【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【详解】∴x-2020≥0,解得:x≥2020;故选:A.【点睛】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.7.D解析:D【分析】进行化简,然后再进行合并即可.【详解】设x=<x<,∴0∴266x=-+,∴212236x=-⨯=,∴x=∵5=-,∴原式5=-5=-故选D.【点睛】本题考查了二次根式的混合运算,涉及了分母有理化等方法,弄清题意,理解和掌握题中介绍的方法是解题的关键.8.D解析:D【解析】不是同类二次根式,因此不能计算,故不正确.根据同类二次根式,可知,故不正确;根据二次根式的性质,可知,故不正确;==,故正确.3故选D.9.A解析:A【解析】根据题意得:|x2–4x,所以|x2–4x+4|=0,即(x–2)2=0,2x–y–3=0,所以x=2,y=1,所以x+y=3.故选A.10.A解析:A【分析】∆的面积;利用阅读材料,先计算出p的值,然后根据海伦公式计算ABC【详解】7a=,5b=,6c=.∴56792p++==,∴ABC∆的面积S==故选A.【点睛】考查了二次根式的应用,解题的关键是代入后正确的运算,难度不大.二、填空题11.1【分析】设a=,b=,得出x,y及a,b的关系,再代入代数式求值.【详解】解:设a=,b=,则x2−a2=y2−b2=2008,∴(x+a)(x−a)=(y+b)(y−b)=2008……解析:1【分析】设x,y及a,b的关系,再代入代数式求值.【详解】解:设x2−a2=y2−b2=2008,∴(x+a)(x−a)=(y+b)(y−b)=2008……①∵(x−a)(y−b)=2008……②∴由①②得:x+a=y−b,x−a=y+b∴x=y,a+b=0,∴,∴x2=y2=2008,∴3x2﹣2y2+3x﹣3y﹣2007=3×2008−2×2008+3(x−y)−2007=2008+3×0−2007=1.故答案为1.【点睛】本题主要考查了二次根式的化简求值,解题的关键是求出x,y及a,b的关系. 12.2016【解析】把所求的式子化成(x﹣2)2+2013然后代入式子计算,即可得到:x2﹣4x+2017=(x﹣2)2+2013 =()2+2013=3+2013=2016.故答案是:2016.解析:2016【解析】把所求的式子化成(x﹣2)2+2013然后代入式子计算,即可得到:x2﹣4x+2017=(x﹣2)2+2013 =2+2013=3+2013=2016.故答案是:2016.点睛:此题主要考查了配方法的应用,解题关键是把式子配成完全平方,然后整体代入即可求解,考查了学生对整体思想的认识和应用,学生对整体思想不熟时出错的主要原因. 13.【分析】分别求出甲,乙容器中原溶液中纯果汁的含量,再求出mkg溶液中纯果汁的含量,最后利用混合后果汁的浓度相等列出关系式,求出m即可.【详解】解:根据题意,甲容器中纯果汁含量为akg,乙容器解析:5【分析】分别求出甲,乙容器中原溶液中纯果汁的含量,再求出mkg溶液中纯果汁的含量,最后利=,求出m即可.【详解】,甲容器倒出mkg果汁中含有纯果汁makg,乙容器倒出mkg果汁中含有纯果汁mbkg,,=,整理得,-6b=5ma-5mb,∴(a-b)=5m(a-b),.∴m=5故答案为:5【点睛】本题考查二次根式的应用,能够正确理解题意,化简二次根式是解题的关键.14.3【解析】【分析】先根据二次根式有意义的条件得出x+y的值,再根据非负数的性质列出关于x,y,m的方程组,求出m的值,进而可得出结论.【详解】依题意得:,解得:x=1,y=1,m=5,∴3解析:3【解析】【分析】先根据二次根式有意义的条件得出x+y的值,再根据非负数的性质列出关于x,y,m的方程组,求出m的值,进而可得出结论.【详解】依题意得:35302302x y mx y mx y+--=⎧⎪+-=⎨⎪+=⎩,解得:x=1,y=1,m=5,∴==3.故答案为3.【点睛】本题考查了二次根式有意义得条件及非负数的性质,熟知二次根式具有非负性是解答此题的关键.15.2018【解析】试题解析:,令,,显然,∴,∴,∵与奇偶数相同,∴,∴,∴.故答案为:2018.解析:2018【解析】试题解析:y ===令a =b = 显然0a b >≥,∴224036a b -=,∴()()4036a b a b +-=,∵()a b +与()-a b 奇偶数相同,∴20182a b a b +=⎧⎨-=⎩, ∴10101008a b =⎧⎨=⎩, ∴2018y a b =+=.故答案为:2018.16.【解析】根据二次根式的性质,化简为:-=-=-4;==.故答案为 ; .解析: 【解析】根据二次根式的性质,化简为:故答案为 ; 17.5或3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得,解得a =1,或a =﹣解析:5或3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得221010a a ⎧-≥⎨-≥⎩, 解得a =1,或a =﹣1,b =4,当a =1时,a +b =1+4=5,当a =﹣1时,a +b =﹣1+4=3,故答案为5或3.【点睛】本题考查了函数表达式有意义的条件,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.18.2018【分析】先根据已知等式归纳类推出一般规律,再根据二次根式的加减法与乘法运算法则即可得.【详解】第1个等式为:,第2个等式为:,第3个等式为:,归纳类推得:第n 个等式为:(其中,解析:2018【分析】先根据已知等式归纳类推出一般规律,再根据二次根式的加减法与乘法运算法则即可得.【详解】第11=,第2=,第3=归纳类推得:第n 1=-n 为正整数),则2020++,2020=+,=,20202=-,=,2018故答案为:2018.【点睛】本题考查了二次根式的加减法与乘法运算,依据已知等式,正确归纳出一般规律是解题关键.19.4【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.【详解】解:=2,由最简二次根式与能合并成一项,得a-1=3.解解析:4【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.【详解】能合并成一项,得a-1=3.解得a=4.故答案为:4.【点睛】本题考查同类二次根式和最简二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式.20.【分析】根据a,b,c的值求得p=,然后将其代入三角形的面积S=求值即可.【详解】解:由a=4,b=5,c=7,得p===8.所以三角形的面积S===4.故答案为:4.【点睛】本题主解析:【分析】根据a ,b ,c 的值求得p =2a b c ++,然后将其代入三角形的面积S =【详解】解:由a =4,b =5,c =7,得p =2a b c ++=4572++=8.所以三角形的面积S .故答案为:.【点睛】本题主要考查了二次根式的应用和数学常识,解题的关键是读懂题意,利用材料中提供的公式解答,难度不大. 三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。
初二数学二次根式试题答案及解析
初二数学二次根式试题答案及解析1.化简的结果是()A.-3B.3C.±3D.【答案】B.【解析】.故选B.【考点】二次根式化简.2.当a<0时,化简|2a- |的结果是………()A.a B.-a C.3a D.-3a【答案】D.【解析】∵a<0,∴|a|=-a,则原式=|2a-|a||=|2a+a|=-3a.故选D【考点】二次根式的性质与化简.3.下列计算错误的是 ( )A.B.C.D.【答案】D.【解析】A.,计算正确;B.,计算正确;C.,计算正确;D.,计算错误.故选D.考点: 二次根式的运算.4.下列说法正确的是()A.一个数的立方根有两个,它们互为相反数B.一个数的立方根与这个数同号C.如果一个数有立方根,那么它一定有平方根D.一个数的立方根是非负数【答案】B【解析】一个数的立方根只有一个,A错误;一个数有立方根,但这个数不一定有平方根,如,C错误;一个正数的立方根是正数,一个负数的立方根是负数,0的立方根是0,所以D是错误的,故选B5.已知,求的值.【答案】2005【解析】解:因为,所以,即,所以.故,从而,所以,所以.6.下列说法错误的是()A.5是25的算术平方根B.1是1的一个平方根C.的平方根是-4D.0的平方根与算术平方根都是0【答案】C【解析】A.因为=5,所以A正确;B.因为±=±1,所以1是1的一个平方根说法正确;C.因为±=±=±4,所以C错误;D.因为=0, =0,所以D正确.故选C.7.的平方根是,的算术平方根是 .【答案】3【解析】;,所以的算术平方根是3.8.的平方根是.【答案】±2.【解析】的算术平方根是4,4的平方根是±2.【考点】1.算术平方根;2. 平方根.9.下列计算正确的是()A.B.C.D.【答案】A.【解析】根据根式运算法则.不是同类项不能合并同类项根式运算.10.若有意义,则________.【答案】1.【解析】由题意,得:,解得,则=1.故答案是:1.【考点】二次根式有意义的条件.11.设S=+++…+,则不大于S的最大整数[S]等于()A.98B.99C.100D.101【答案】B.【解析】,,…,所以所以不大于S的最大整数[S]等于99.【考点】规律型.12. 16的算术平方根是()A.4B.-4C.D.256【答案】A【解析】16的算术平方根是=4,选A.一个非负数a有两个平方根±,它们互为相反数, 称为a的算术平方根,由题,16的算术平方根是=4,选A.【考点】算术平方根.13.已知,那么= .【答案】4【解析】由题意分析可知,在满足本题的条件下,,代入得y=1,所以=4【考点】二次根号的意义点评:本题属于对二次根号的基本性质和代数式有意义的条件的基本考查和运算14.函数y=中自变量x的取值范围是________.【答案】x≥-1【解析】易知根号下为非负数。
初一数学二次根式试题答案及解析
初一数学二次根式试题答案及解析1.一个数的算术平方根是,则这个数是_____ _____.【答案】2.【解析】∵一个数的算术平方根是,∴这个数为()2=2.故答案是2.【考点】算术平方根.2. 49的算术平方根是.【答案】7【解析】根据算术平方根的意义可求.【考点】算术平方根3.下列运算中, 正确的个数是( )①②= -2③④⑤A.0个B.1个C.2个D.3个【答案】B.【解析】①,故本选项错误;②,没有意义,故本选项错误;③,故本选项错误;④,故本选项错误;⑤,故本选项正确.正确的个数是1个.故选B.【考点】1.立方根2.算术平方根.4.的值等于()A.4B.-4C.±4D.【答案】A【解析】就是求16的算术平方根,即是4,负数没有平方根和算术平方根,0的算术平方根和平方根都是0,正数有两个平方根,其中正的一个平方根是算术平方根。
本题涉及了实数的算术平方根,该题较为简单,主要考查学生对实数平方根和算术平方根的求取,另外的常考题还有求某正数算数平方根的平方根,注意不要混淆。
5.若式子x-1在实数范围内有意义,则x的取值范围是()A.x=1B.x≥1C.x>1D.x<1【答案】B【解析】考查了二次根式的意义和性质.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.二次根式有意义:被开方数是非负数.解:由题意,得解得,x≥1.【考点】二次根式有意义的条件.6.下列各数中,3.14159,,0.131131113……,-π,,,无理数的个数有()A.1个B.2个C.3个D.4个【答案】B.【解析】根据无理数是无限不循环小数,可知0.131131113…,-π是无理数,故选B.考点:无理数.7.下列说法中正确的是()A.立方根是它本身的数只有1和0B.算术平方根是它本身的数只有1和0C.平方根是它本身的数只有1和0D.绝对值是它本身的数只有1和0【答案】B.【解析】A.立方根是它本身的数除去1和0外,还有-1,故该选项错误;B.算术平方根是它本身的数只有1和0,故该选项正确;C.平方根是它本身的数只有1和0,故该选项错误;D.绝对值是它本身的数只有正数和0,故该选项错误.故选B.【考点】1.立方根;2.平方根;3.算术平方根;4.绝对值.8.下列实数中是无理数的是( )A.B.C.D.【答案】D.【解析】A.是有理数,不符合题意;B.是有理数,不符合题意;C.是有理数,不符合题意;D.是无理数.故选D.【考点】无理数.9.下列各式正确的是()A.B.C.D.【答案】A.【解析】A选项正确,B、C、D选项错误.故选A.【考点】二次根式的化简.10.下列各数中,是无理数的是()A.﹣2B.0C.D.【解析】无理数包括三方面的数:①含π的,②开方开不尽的根式,③一些有规律的数,根据以上内容判断即可.解:A、﹣2是有理数,不是无理数,故本选项错误;B、0是有理数,不是无理数,故本选项错误;C、是无理数,故本选项正确;D、是有理数,不是无理数,故本选项错误;故选C.点评:本题考查了对无理数的应用,注意:无理数包括三方面的数:①含π的,②开方开不尽的根式,③一些有规律的数.11.下列命题中正确的是()A.两个无理数的和一定是无理数B.正数的平方根一定是正数C.开立方等于它本身的实数只有1D.负数的立方根是负数【答案】D【解析】根据立方根以及平方根的定义和无理数的加减运算分别判断得出即可.解:A、当两个无理数互为相反数时,和为0,故此选项错误;B、正数的平方根有两个,故此选项错误;C、开立方等于它本身的实数有1,﹣1,0,故此选项错误;D、负数的立方根是负数,此选项正确.故选:D.点评:此题主要考查了命题与定理,熟练掌握相关的法则是解题关键.12.已知a2=1,|a|=﹣a,求的值.【答案】2【解析】根据已知求出a的值,代入求出即可.解:∵a2=1,∴a=±1,∵|a|=﹣a,∴a=﹣1,∴===2.点评:本题考查了算术平方根和二次根式的化简求值的应用,主要考查学生的计算能力.13. a-1与3-2a是某正数的两个平方根,则实数a的值是A.4B.-C.2D.-2【答案】C【解析】一个正数有两个平方根,且它们互为相反数;互为相反数的两个数的和为0.解:由题意得,解得,故选C.【考点】平方根,相反数的性质点评:本题属于基础应用题,只需学生熟练掌握平方根的定义,即可完成.14.的平方根是__________。
初一数学二次根式试题答案及解析
初一数学二次根式试题答案及解析1.在实数4,,,,0.010 010 001 000 01中,无理数有 ( )A.1个B.2个C.3个D.4个【答案】C【解析】无理数就是无限不循环小数.根据无理数定义可判断.【考点】无理数2.下列说法正确的是()A.是无理数B.是有理数C.是无理数D.有无理数【答案】A.【解析】根据有理数,无理数的相关概念知:、是无理数,=2,=﹣2是有理数.故选A.【考点】1.有理数2.无理数.3. 4的平方根是()A.2B.C.D.【答案】C.【解析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的一个平方根:∵(±2)2=4,∴4的平方根是±2.故选C.【考点】平方根.4.下列各数中,3.14159265,,﹣8,,0.6,0,,,无理数的个数有()A.3B.4C.5D.6【答案】A.【解析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.无理数有:,,共有3个.故选A.【考点】无理数.5.下列运算中, 正确的个数是( )①②= -2③④⑤A.0个B.1个C.2个D.3个【答案】B.【解析】①,故本选项错误;②,没有意义,故本选项错误;③,故本选项错误;④,故本选项错误;⑤,故本选项正确.正确的个数是1个.故选B.【考点】1.立方根2.算术平方根.6.估算的值是在().A.和之间B.和之间C.和之间D.和之间【答案】B.【解析】因为,所以6<<7.故选B.【考点】无理数的估算.7.观察下列计算过程:…,由此猜想= .【答案】111111111.【解析】观察给出的等式,算术平方根的1的个数是被开方数的位数加1后的一半.【考点】1算术平方根;2找规律.8.的值等于()A.4B.-4C.±4D.【答案】A【解析】就是求16的算术平方根,即是4,负数没有平方根和算术平方根,0的算术平方根和平方根都是0,正数有两个平方根,其中正的一个平方根是算术平方根。
八年级数学二次根式32道典型题(含答案和解析)
八年级数学二次根式32道典型题(含答案和解析)1.如果式子√x+1在实数范围内有意义,那么x的取值范围是.答案:x≥-1.解析:二次根式有意义的条件是根号内的式子不小于零,所以x+1≥0,即x≥-1. 考点:式——二次根式——二次根式的基础——二次根式有意义的条件.2.当x 时,√3x+2有意义..答案:x≥−23解析:由题意得:3x+2≥0.解得:x≥−2.3考点:式——二次根式——二次根式的基础——二次根式有意义的条件.3.已知化简√12−n的结果是正整数,则实数n的最大值为().A.12B.11C.8D.3答案:B.解析:当√12−n等于最小的正整数1时,n取最大值,则n=11.考点:式——二次根式.4.如果式子√x+3有意义,那么x的取值范围在数轴上表示出来,正确的是().答案:C.解析:如果式子√x+3有意义,则x+3≥0,即x≥-3,数轴表示为C图.考点:式——二次根式——二次根式的基础——二次根式有意义的条件.5.二次根式√3−x在实数范围内有意义,则x的取值范围是.答案:x≤3.解析:二次根式√3−x在实数范围内有意义,则需满足3-x≥0,即x≤3. 考点:式——二次根式——二次根式的基础——二次根式有意义的条件.6.下列等式成立的是().A.√32=±3B.√172−82=9C.(√−7)2=7D.√(−7)2=7答案:D.解析:√32=3,故A选项错误.√172−82=√225=15,故B选项错误.√−7无意义,故C选项错误.√(−7)2=7,故D选项正确.考点:式——二次根式——二次根式的基础——二次根式化简.7.若x<2,则化简√(x−2)2的结果是().A.2-xB.x-2C.x+2D.x-2√x+2答案:A.解析:∵x<2.∴x-2<0.∴√(x−2)2=|x−2|=2−x.考点:式——二次根式——二次根式的基础——二次根式化简.8.计算√(−2)2的结果是.答案:2.解析:√(−2)2=|−2|=2.考点:式——二次根式——二次根式的基础——二次根式化简.9.若a<1,化简√(a−1)2−1等于.答案:-a.解析:当a<1时,a-1<0.∴√(a−1)2−1=1-a-1=-a.考点:式——二次根式——二次根式的化简求值.10.已知x<1,那么化简√x2−2x+1的结果是().A.x-1B.1-xC.-x-1D.x+1 答案:B.解析:∵x<1.∴x-1<0.∴√x2−2x+1=√(x−1)2=|x−1|=1−x.考点:式——二次根式——二次根式的化简求值.11.结合数轴上的两点a、b,化简√a2−√(a−b)2的结果是.答案:b.解析:由数轴可知,b<0<a.∴a-b>0.∴√a2−√(a−b)2=a−a+b=b.考点:式——二次根式——二次根式的化简求值.12.下列二次根式中,是最简二次根式的是().A.√5abB.√4a2C.√8aD.√a2答案:A.解析:√5ab是最简二次根式,故选项A正确.√4a2=2|a|,不是最简二次根式,故选项B错误.√8a=2√2a,不是最简二次根式,故选项C错误.√a中含有分母,即不是最简二次根式,故选项D错误.2考点:式——二次根式——二次根式的基础——最简二次根式.13.下列各式中,最简二次根式是().A.√0.2B.√18C.√x2+1D.√x2答案:C.,不是最简二次根式,故选项A错误.解析:√0.2=√55√18=3√2,不是最简二次根式,故选项B错误.√x2=|x|,不是最简二次根式,故选项D错误.√x2+1是最简二次根式,故选项C正确.考点:式——二次根式——二次根式的基础——最简二次根式.14. 若m =√13,估计m 的值所在的范围是( ).A.0<m <1B.1<m <2C.2<m <3D.3<m <4 答案:D.解析:3=√9<√13<√16=4.所以3<m <4.考点:数——实数——估算无理数的大小.15. 已知a 、b 为两个连续的整数,且a <√28<b ,则a +b = . 答案:11.解析:∵52=25,62=36.∴a =5,b =6.∴a +b =11.考点:数——实数——估算无理数的大小.16. 已知:x 2−3x +1=0,求√x √x 的值.答案:√5.解析:∵x 2−3x +1=0. ∴x +1x =3.∴(√x √x )2=x +1x +2=5.∴√x √x =√5.考点:式——二次根式——二次根式的化简求值.17. 若实数a ,b 满足(a +√2)2+√b −4=0,则a 2b = .答案:12. 解析:(a +√2)2+√b −4=0.又(a +√2)2≥0,√b −4≥0.∴{a +√2=0√b −4=0. 即a =−√2,b =4.∴a 2b =12. 考点:数——有理数——非负数的性质:偶次方.式——二次根式——二次根式的基础——二次根式化简.18. 若实数x ,y 满足√x −2+(y +√2)2=0,则代数式y x 的值是 . 答案:2.解析:由题意得,x −2=0,y +√2=0.解得x =2,y =−√2.则y x =2.考点:数——有理数——非负数的性质:偶次方.式——二次根式——二次根式的基础——二次根式化简.19. 下列各式计算正确的是( ).A.√2+√3=√5B.4√3−3√3=1C.2√2×3√3=6√3D.√27÷√3=3 答案:D.解析:√2+√3无法计算,故A 错误.4√3−3√3=√3,故B 错误.2√2×3√3=6×3=18,故C 错误.√27÷√3=√273=√9=3,D 正确.考点:式——二次根式——二次根式的乘除法——二次根式的加减法.20. 下列计算正确的是( ).A.√a 2=aB.√a +√b =√a +bC.(√a)2=aD.√ab =√a ×√b 答案:C.解析:√a 2=±a ,所以A 错误.√a +√b 中a 和b 的值未知,故不能进行加减运算,所以B 错误. (√a)2=a ,所以C 正确.√ab =√|a |×√|b |,所以D 错误.考点:式——二次根式——二次根式的混合运算.21. 计算:13√27−√6×√8+√12.答案:−√3.解析:原式=13×3√3−4√3+2√3=−√3.考点:式——二次根式——二次根式的混合运算.22. 计算:(√2−√3)2−(√2+√3)(√2−√3). 答案:6−2√6.解析:原式=2−2√6+3−2+3=6−2√6. 考点:数——实数——实数的运算.23. 计算:√18−4√18−2(√2−1).答案:2.解析:原式=3√2−4×√24−2√2+2=3√2−√2−2√2+2=2.考点:式——二次根式——二次根式的加减法.24. 计算:(12)−2−(π−√7)0+|√3−2|+4×√32.答案:5+√3.解析:原式=4−1+2−√3+2√3=5+√3. 考点:数——实数——实数的运算.25. 计算:|2−√5|−√83+(−12)−2.答案:√5.解析:原式=(√5−2)−2+1(−12)2=√5−2−2+4=√5.考点:数——实数——实数的运算.26. 计算:(√3−√2)2−√3(√2−√3). 答案:8−3√6.解析:原式=3−2√6+2−(√6−3)=5−2√6−√6+3=8−3√6.考点:式——二次根式——二次根式的混合运算.27. 计算:√4−(π−3)0−(12)−1+|−3|.答案:2.解析:原式=2−1−2+3=2.考点:数——实数——实数的运算.28. 计算:(1−√3)0+|2−√3|−√12+√643.答案:7−3√3.解析:原式=1+2−√3−2√3+4=7−3√3.考点:数——实数——实数的运算.29.计算:(√2+1)×(√6−√3).答案:√3.解析:原式=√12−√6+√6−√3=√12−√3=2√3−√3=√3.考点:式——二次根式——二次根式的混合运算.30.计算:√27+√6×√8−6√13.答案:5√3.解析:原式=3√3+4√3−2√3=5√3.考点:式——二次根式——二次根式的加减法.31.计算:√9−√83+|−√2|−(√3−√2)0.答案:√2.解析:原式=3−2+√2−1=√2.考点:数——实数——实数的运算.32.计算:(π−3.14)0+|√3−2|−√48+(13)−2.答案:12−5√3.解析:原式=1+2−√3−4√3+9=12−5√3. 考点:数——实数——实数的运算.。
数学中考试题二次根式200题(含解析)
-(cos30°)0115.已知x= +1,求x2-2x-3的值.
116. 先化简,再求值 ,其中a=,b=.
117.计算: .
118.计算: .
119. 计算:
120.计算: .
121. 计算:.
122.计算:(2-)(2+)+(-1)2010 .
25.已知实数x、y、a满足: ,
试问长度分别为x、y、a的三条线段能否组成一个三角形?如果能,请求出该三角形的面积;如果丌能,请说明理由.
26. 我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:
…①(其中 a、b、c 为三角形的三边长,s
163.计算:-(-3)=;如图所示,化简 =.
164.实数a在数轴上的位置如图所示,则化简|a-2|+ 的结果为.
165.已知a<2,则 =.
166.当x>2时,化简=.
167.计算: +| -2|+(2-π)0
168.计算: .
169.计算:-(-2009)0+( )-1+|-1|.
170.计算:
154.计算:(-1)(+1)-(sin35°- )0+(-1)2008-(-2)-2
155.计算:( +3)(3- )
156.阅读下列材料,然后回答问题.
在迚行二次根式的化简不运算时,我们有时会碰上如 一样的式子, 其实我们还可以将其迚一步化简:
=
=
= (三)
以上这种化简的步骤叫做分母有理化. 还可以用以下方法化简:
初二数学二次根式试题答案及解析
初二数学二次根式试题答案及解析1.计算:(1)(2)【答案】(1)原式=﹣6;(2)原式=2x﹣x.【解析】(1)根据二次根式的乘法法则运算;(2)先把各二次根式化为最简二次根式,然后合并即可试题解析:(1)原式==﹣6;(2)原式=2+2x﹣x﹣2=2x﹣x.【考点】二次根式的混合运算2.下列式子中,是最简二次根式的是()A.B.C.D.【答案】B.【解析】A、=3,故A选项错误;B、是最简二次根式,故B选项正确;C、=2,不是最简二次根式,故C选项错误;D、=,不是最简二次根式,故D选项错误.故选B.【考点】最简二次根式.3.化简后的结果是()A.B.C.D.【答案】B.【解析】.故选B.【考点】二次根式的化简.4.有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A.2B.8C.D.【答案】D.【解析】由图表得,64的算术平方根是8,8的算术平方根是.故选D.【考点】算术平方根.5.计算:______.【答案】13【解析】6.在实数,,,,中,无理数有()A.1个B.2个C.3个D.4个【答案】A【解析】因为所以在实数,0,,,中,有理数有,0,,,只有是无理数.7.阅读下面问题:;.试求:(1)的值;(2)(为正整数)的值.(3)的值.【答案】(1)(2)(3)9【解析】解:(1)=.(2).(3)8.在3.14、、、、、0.2020020002这六个数中,无理数有()A.1个B.2个C.3个D.4个【答案】B.【解析】无理数即无限不循环小数,显然3.14、、0.2020020002这三个数是有限小数,不是无理数;而是无理数,所以也是,毫无疑问是无理数,的结果是一个无限循环小数,所以不是无理数,因此无理数有2个,即:故选B.【考点】无理数的定义.9.(1)已知:(x+5)2=16,求x;(2)计算:【答案】(1),;(2).【解析】本题考查了平方根、立方根的定义及性质和绝对值的性质.(1)根据平方根的定义,先得出:,再分别计算出的值;(2)先利用平方根、立方根的性质及绝对值的性质分别计算出每个式子的值,最后相加.试题解析:解:(1)∵∴∴,原式【考点】1、平方根的定义及性质;2、立方根的定义及性质;3、绝对值的性质.10.在数轴上与表示的点距离最近的整数点所表示的数是 .【答案】2【解析】本题主要考查了实数与数轴的对应关系,解题应看这个无理数的被开方数在哪两个能开得尽方的数的被开方数之间,比较无理数的被开方数和这两个能开得尽方的数的被开方数的距离,进而求解.先利用估算法找到与的点两边的两个最近整数点,再比较这两个点与的大小即可解决问题.因为,所以左右两边的整数点是1和2,又因为3与4的距离最近,所以与的点的距离最近的整数点所表示的数是2,故填2.【考点】实数与数轴.11.若(x-3)2+=0,则x-y= .【答案】5.【解析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可求解.解:根据题意得,x-3=0,y+2=0,解得x=3,y=-2,x-y=3-(-2)=3+2=5.故答案为:5.【考点】1.非负数的性质:2.算术平方根;3.偶次方.12.估算的值()A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间【答案】C.【解析】因为5<<6,所以3<<4.故选C.【考点】估算无理数的大小.13.若x、y为正实数,且x+y=12那么的最小值为 .【答案】13【解析】若x、y为正实数,且x+y=12,那么y=12-x;因此=;设S=,则==;所以S【考点】最值点评:本题考查最值,解答本题的关键是掌握求代数式最值的方法,本题难度较大,计算量比较大14.观察各数:,,,.其中最小数与最大数的和为(结论化简);【答案】【解析】依题意:;;;,易知最大数为,最小数为。
数学数学二次根式试题及答案
原式=
=
= ,
当a=1+ ,b=1﹣ 时,
原式= = .
【点睛】
本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.
26.先化简,再求值: ,其中 .
【答案】 .
【解析】
分析:先根据分式的混合运算顺序和运算法则化简原式,再将m的值代入计算可得.
详解:原式= ÷( ﹣ )
详解:A. × = ,此选项正确;
B. + ,此选项错误;
C. =2 ,此选项错误;
D. ﹣ =2- ,此选项错误.故选A.
点睛:本题考查了二次根式的混合运算,掌握二次根式的运算法则是解题的关键.
3.C
解析:C
【详解】
, ,
所以 = ,
故选:C.
【点睛】
对于形如 的式子,改变其中两个字母的位置后,并不改变代数式的值,通常将具有这个特点的代数式称为轮换对称式,如 , , 等,轮换对称式都可以用 , 来表示,所以求轮换对称式的值,一般是先将式子用 , 来表示,然后再整体代入计算.
m2+n2=()2+()2=34②.
由①得,m=2
解析:
【解析】
【分析】
用换元法代替两个带根号的式子,得出m、n的关系式,解方程组求m、n的值即可.
【详解】
设m= ,n= ,
那么m−n=2①,
m2+n2=( )2+( )2=34②.
由①得,m=2+n③,
将③代入②得:n2+2n−15=0,
解得:n=−5(舍去)或n=3,
【详解】
A. ,故选项A错误;
B.(3xy)2÷(xy)=9xy,故选项B错误;
C. 与 不是同类二次根式,不能合并,故选项C错误;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∵a= = =2﹣
∴a﹣2=﹣
∴(a﹣2)2=3,a2﹣4a+4=3
∴a2﹣4a=﹣1
∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1
请你根据小明的分析过程,解决如下问题:
(1)化简 + + +…+
(2)若a= ,求4a2﹣8a+1的值.
三、解答题
21.计算: .
【答案】
【分析】
先根据二次根式的乘除法法则计算乘除法,同时分别化简各加数中的二次根式,最后计算加减法.
【详解】
=
=
= .
【点睛】
此题考查二次根式的混合运算,二次根式的化简,正确掌握二次根式的化简法则是解题的关键.
22.观察下列各式子,并回答下面问题.
第一个:
第二个:
第三个:
【答案】(1)9;(2)5.
【解析】
试题分析:
(1)此式必须在把分母有理化后才能实现化简,即各分式分子分母同乘以一个因式,使得与分母相乘后,为平方差公式结构,如 .
(2)先对a值进行化简得 ,若就接着代入求解,计算量偏大.模仿小明做法,可先计算 的值,就能较为简单地算出结果;也可对这个二次三项式进行配方,再代入求值.后两种方法都比直接代入计算量小很多.
解:(1)原式=
(2)∵ ,
解法一:∵ ,
∴ ,即
∴原式=
解法二∴原式=
点睛:(1)把分母 有理化的方法:分子分母同乘以分母的有理化因式 ,得 ,去掉根号,实现分母有理化.
(2)当已知量为根式时,求这类二次三项式的值,直接代入求值,计算量偏大,若能巧妙利用完全平方公式或者配方法,计算要简便得多.
25.计算:
(2)根据等式的变化,找出变化规律“ n ”,再利用 开方即可证出结论成立.
【详解】
(1)∵① 1+1=2;② 2 2 ;③ 3 3 ;里面的数字分别为1、2、3,
∴④ .
(2)观察,发现规律: 1+1=2, 2 2 3 3 4 4 ,…,∴ .
证明:等式左边 =n 右边.
故 n 成立.
【点睛】
本题考查了二次根式的性质与化简以及规律型中数的变化类,解题的关键是:(1)猜测出第四个等式中变化的数字为4;(2)找出变化规律“ n ”.解决该题型题目时,根据数值的变化找出变化规律是关键.
6.下列各式中,正确的是()
A. =±4B.± =4C. D. = - 4
7.设等式 在实数范围内成立,其中a、x、y是两两不同的实数,则 的值是()
A.3B. C.2D.
8.若化简|1-x|- 的结果为2x﹣5,则x的取值范围是( )
A.x为任意实数B.1≤x≤4C.x≥1D.x≤4
9.计算 的结果是
第四个: …
(1)试写出第 个式子(用含 的表达式表示),这个式子一定是二次根式吗?为什么?
(2)你估计第16个式子的值在哪两个相邻整数之间?试说明理由.
【答案】(1) ,该式子一定是二次根式,理由见解析;(2) 在15和16之间.理由见解析.
【分析】
(1)依据规律可写出第n个式子,然后判断被开方数的正负情况,从而可做出判断;
27.已知a= + ,b= ﹣ .
(1)求a2﹣b2的值;
(2)求 + 的值.
【答案】(1)4 ;(2)10
【分析】
(1)先计算出a+b、a-b的值,然后将所求的式子因式分解后利用整体代入思想代入数值进行计算即可;
((2)
【分析】
(1)根据二次根式的加减法法则和乘除法法则进行计算,注意运算顺序与实数的混合运算顺序相同;
(2)根据二次根式的加减法法则和乘除法法则进行计算,注意运算顺序与实数的混合运算顺序相同.
【详解】
解:(1)
=
(2)
=
【点睛】
本题考查了二次根式的混合运算,二次根式的混合运算顺序与实数的混合运算顺序一样,先乘方,再乘除,最后加减,有括号时要先算括号里的或先去括号.
A.﹣3B.3C.﹣9D.9
10.下列各式成立的是()
A. B. C. D.
二、填空题
11.已知实数 满足 ,则 的值为______.
12.化简 ___________.
13.已知 ,则2x﹣18y2=_____.
14.已知实数a、b、c在数轴上的位置如图所示,化简 ﹣|a﹣c|+ ﹣|﹣b|=_______.
15.若a、b、c均为实数,且a、b、c均不为0化简 ___________
16.已知1<x<2, ,则 的值是_____.
17.已知x,y为实数,y= 求5x+6y的值________.
18.若a、b为实数,且b= +4,则a+b=_____.
19.若实数 ,则代数式 的值为___.
20.观察分析下列数据:0, , ,-3, , , ,…,根据数据排列的规律得到第10个数据应是__________.
① =1+1=2;
② =2+ =2 ;
③ =3+ =3 ;…
(1)根据上面三个等式提供的信息,请猜想第四个等式;
(2)请按照上面各等式规律,试写出用n(n为正整数)表示的等式,并用所学知识证明.
【答案】(1) ;(2) ,证明见解析.
【分析】
(1)根据“第一个等式内数字为1,第二个等式内数字为2,第三个等式内数字为3”,即可猜想出第四个等式为 4 4 ;
26.计算(1) ; (2)
【答案】(1) ;(2)8 .
【解析】
分析:先将二次根式化为最简,然后再进行二次根式的乘法运算.
详解:(1) ;
=
= ;
(2)原式= ,
=
=
=
= .
点睛:此题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.
(2)将 代入,得出第16个式子为 ,再判断即可.
【详解】
解:(1) ,
该式子一定是二次根式,
因为 为正整数, ,所以该式子一定是二次根式
(2)
∵ , ,
∴ .
∴ 在15和16之间.
【点睛】
本题考查的知识点是二次根式的定义以及估计无理数的大小,掌握用“逼近法”估算无理数的大小的方法是解此题的关键.
23.先观察下列等式,再回答问题:
一、选择题
1.下列各式计算正确的是( )
A. B. C. D.
2.已知 , ,则 的值为()
A.4B.5C.6D.7
3.计算: ( )
A. B.
C. D.
4.下列各式是二次根式的是()
A. B. C. D.
5.下列运算中,正确的是()
A. =3B.( - )÷ =-1
C. ÷ =2D.( + )× =