矩阵分析第四章
第四章 矩阵分析及矩阵函数
4.1 矩阵分析 4.2 矩阵函数 4.3 线性常系数微分方程 4.4 变系数微分方程组
4.1 矩阵分析
4.1.1基本概念 4.1.1基本概念 定义4 定义 4.1.1 令 A 1 , A 2 , L 是 m× n的矩阵序 × 列 , 假 如 存 在 一 个 ×n m×
k →∞
令 A 1 , A 2 , L是 m× n 矩阵序列 , × 矩阵序列,
构造部分和序列 A 1 , A1 + A 2 , A 1 + A 2 + A 3 ,L 假如其收敛到 A , 记
∞
∑A
∞
k
= A
k =1
则级数∑ A k ,收敛到 A .
k =1
定理4 (Cauchy收敛准则 收敛准则) 定理4.1.3 (Cauchy收敛准则) 收敛, ∑ A 收敛,当且仅当矩阵序列
∞
Ak
收敛, 收敛,则矩
k =1
特别地,对于方阵 A ,如果级数 ∑ 特别地, 收敛, 收敛,则矩阵幂级数 收敛. ∑ A 收敛.
k
∞
Ak
∞
k =1
k =1
定理4 定理 4.1.5
设幂级数
∑
∞
a k λk
的收敛半径 时 , 矩阵
k =0
是 R , 则当方阵 A 的范数 幂级数 ∑ a k A k 收敛。 收敛。
于是矩阵幂级数
1 1 2 1 3 I + A + A + A + LL 1! 2! 3!
1 2 1 4 I − A + A − LL 2! 4! 1 3 1 5 A − A + A − LL 3! 5!
矩阵分析
⎤⎞ 0 ⎥⎟ ⎥ ⎟ P −1 ∞ k k ⎥⎟ 5 ⎥⎟ ∑ k k =0 5 ⎦⎠Biblioteka 由于∑ k发散, 所以原级数发散.
k =0
1 k 解:(3)相应的幂级数为∑ (−1) z , k +1 k =0 的收敛半径为 1,
k
∞
1 k (−1) 所以,当ρ ( A) < 1时, A 收敛。 ∑ k +1 k =0
(3) lim PA Q = PAQ
(k ) k →∞
(4)设 lim A
k →∞ ( k ) −1 k →∞
(k )
= A,若A ,A均可逆,则
(k ) −1
lim( A ) = A
例:设A( k )
⎡ k +1 ⎢ 3k =⎢ ⎢ r 1k ⎢ ⎣
⎤ r ⎥ 1 + 1 1⎤ ⎡ (k ) k ⎥ ,B = ⎢ ⎥ 2 k −k⎥ ⎣ 1 1⎦ k2 + k ⎥ ⎦
1 所以,矩阵幂级数∑ 2 k =0 k
∞
∞
⎡1 7⎤ ⎢ −1 −3⎥ 发散。 ⎣ ⎦
k
⎡ 1 -8⎤ 的特征值为 − 3, (2) A = ⎢ 5 ⎥ ⎣ −2 1 ⎦
ρ ( A) = 5,
k k 级数∑ k z 的收敛半径为b, k =0 b
∞
所以,当5 < b时, 原矩阵级数收敛,
当5 > b时, 原矩阵级数发散,
b = 5时,
k ∞ ⎛ k ⎡ 1 −8⎤ k ⎡ −3 0 ⎤ ⎞ −1 ⎟P = P⎜∑ k ⎢ ∑ ⎥ ⎥ k ⎢ ⎜ k =0 5 ⎣ 0 5⎦ ⎟ 1⎦ k = 0 5 ⎣ −2 ⎝ ⎠ ∞ k
⎛ ⎡∞ k k − ( 3) ⎜ ∞ ⎢∑ k k =0 5 ⎜ ⎢ =P ∑ ⎜ k =0 ⎢ 0 ⎜ ⎢ ⎝ ⎣
矩阵分析引论第四版课后练习题含答案
矩阵分析引论第四版课后练习题含答案简介《矩阵分析引论》是矩阵分析领域的经典教材之一,已经发行了四个版本。
该书主要以线性代数、矩阵理论和应用为主要内容,重点介绍了矩阵分析的基本概念、原理和应用。
本文主要介绍该书第四版中的课后练习题及其答案。
提供的资料本文为矩阵分析引论第四版课后练习题及其答案,包含了第一章到第五章的所有习题和答案。
其中,习题从简单到复杂,大部分习题都有详细的解答过程和答案。
内容概述第一章引言第一章主要介绍了矩阵分析的历史和基本概念、性质、符号等。
本章习题主要涉及了矩阵、向量、矩阵运算等基本概念和性质。
第二章基本概念和变换第二章主要介绍了线性变换的基本概念和性质,以及线性代数中的一些重要定理和定理的证明。
本章习题主要涉及了线性变换、矩阵的秩和标准型、特征值和特征向量等内容。
第三章矩阵运算第三章主要介绍了矩阵运算的基本概念和性质,包括矩阵乘法、逆矩阵、行列式等。
本章习题主要涉及矩阵运算的基本操作和应用。
第四章矩阵分解第四章主要介绍了矩阵分解的基本概念和应用,包括特征值分解、奇异值分解、QR分解等。
本章习题主要涉及了矩阵特征值和特征向量、矩阵的奇异值分解等内容。
第五章线性方程组和特征值问题第五章主要介绍了解线性方程组和求特征值的方法,包括高斯消元法、LU分解、带状矩阵、雅可比迭代等。
本章习题主要涉及了线性方程组的解法、矩阵的特征值问题等内容。
结语本文介绍了矩阵分析引论第四版课后练习题及其答案。
对于学习矩阵分析的同学,课后习题是一个非常重要的练习和提升自己能力的途径。
本文所提供的习题和答案可以帮助读者巩固和提高自己的矩阵分析能力。
同时,本文也希望能够帮助更多的人学习矩阵分析,并成为矩阵分析领域的专家。
数值分析第四章矩阵特征值与特征向量的计算
192.9996. 973
12
➢ 幂法的加速—原点移位法
应用幂法计算矩阵A的主特征值的收敛速度主要
由比值 r=|2/1|来决定, 但当r接近于1时, 收敛可能
很慢. 这时可以采用加速收敛的方法.
引进矩阵
B=A-0I
其中0为代选择参数. 设A的特征值为1, 2, …, n, 则B的特征值为1-0, 2-0, …, n-0, 而且A, B
10
2 1 0 例 用幂法求矩阵 A 0 2 1
0 1 2
的按模最大的特征值和相应的特征向量.
取 x(0)=(0, 0, 1)T, 要求误差不超过103.
解 y 0 x 0 0 ,0 ,1 T ,
x 1 A 0 0 y , 1 , 2 T , 1 m x ( 1 ) ) a 2 , x
y(1)
x(1)
1
(0,0.5,1)T
x ( 2 ) A ( 1 ) 0 . 5 y , 2 , 2 . 5 T ,2 m x ( 2 ) ) 12 1a . 5 ,
y(2)
x(2) 2
(0.2,0.8,1)T
x ( 3 ) A ( 2 ) 1 . 2 y , 2 . 6 , 2 . 8 T ,3 m x ( 3 ) ) 2 a . 8 ,
x
(
k
1
)
Ax
(k )
A k1 x (0)
在一定条件下, 当k充分大时:
1
x ( k 1) i
x
( i
k
)
相应的特征向量为: x(k1) 4
➢ 幂法的理论依据
n
对任意向量x(0), 有 x(0) tiui ,
i1
x(k1) Ax(k) Ak1x(0)
矩阵分析(1)32页PPT
dim(V1 V2 ) dimV1 dim V2
3 子空间与维数定理
第一章 线性空间与线性变换
子空间的交集 WV1 V2 是子空间
零向量属于W
任取 x, yW,则 x, yVi ,所以
xy V i, i1,2
又 P, xW
x Vi
xW
3 子空间与维数定理
第一章 线性空间与线性变换
V1 a b 0 0 a,bR V2 0 0 c 0 cR V3 0 d e 0 a,bR
第一章 线性空间与线性变换
回顾几个预备概念
集合
数集
Q
有理数集 Q 实数集 R 复数集 C
QRC
C
数域
Q
复数集合中的任意非空子集合P含有 非零的数,且其中任意两数的和、差、 积、商仍属于该集合P,则称数集P 为一个数域。(注意0和1)
有理数域 Q
1 线性空间的概念
实数域 R
复数域 C
第一章 线性空间与线性变换
如果这两个运算满足如下八条规则,就称集合 V 为数 域 P上的线性空间或向量空间。 元素称为向量。
任 意 , P ,任 意 x ,y ,z V ,及 零 元 素 V
1 线性空间的概念
第一章 线性空间与线性变换
八条规则
附带性质
交换律 结合律 零元素 负元素 单位元 交换律 分配律 分配律
x y y x;
第一章 线性空间与线性变换 第二章 内积空间 第三章 矩阵的标准形与若干分解形式 第四章 矩阵函数及其应用
第五章 特征值的估计与广义逆矩阵 第六章 非负矩阵
第一章 线性空间与线性变换
第一章 线性空间与线性变换
§1 线性空间的概念 §2 基变换与坐标变换 §3 子空间与维数定理 §4 线性空间的同构 §5 线性变换的概念 §6 线性变换的矩阵表示 §7 不变子空间
关于矩阵分析第4章
拟讲满秩分解,正交三角分解,奇异值分解和极分解.
初等变换与初等矩阵(p73)
三类初等变换: (行(列)变换←→左(右)乘) ①将矩阵A的两行互换等价 于用第一类初等矩阵P(i,j)=
1 1 0 1 1 1 0 1 1
引理4.3.1:对任意矩阵ACrmn有 rank(AA*)=rank(A*A)=rank A*=rank A=r. 证:因方程组Ax=0的解空间维数等于n-rank A,故 为了证明 rank(A*A)=rank A (*) 只须证明下列两个方程组 Ax=0 ⑴ A*Ax=0 ⑵ 有相同的解空间即可. 显然,x满足⑴ x满足⑵. 反之,x满足⑵ x*A*Ax=0, 即 (Ax,Ax)=0 Ax=0, 即x满足⑴. 注:利用A的任意性以A*代A由(*)得 rank A=rank A*=rank((A*)*A*)=rank(AA*)
m=3,n=4,r=2. 注:可能存在不仅是常数差别的两个实质不同的 满秩分解.
矩阵满秩分解的存在定理
定理4.1.1:任意矩阵ACrmn,都有满秩分解: A=BC,BCrmr,CCrrn. 证:由初等矩阵性质知:存在可逆阵PCmmm和 Er 0 Er nn 使 QCn PAQ= 0 0 0 Er 0 从而
证:因前r列线性无关,故用第一类初等矩阵左乘 可使A的(1,1)元0.再用第二类初等矩阵左 乘可使a11=1;最后用若干第三类初等矩阵左 乘可使A的第一列=e1.因前2列线性无关,故 新的第2列与e1不线性相关且0,故用第一类 行变换可使(2,2)元0,…可使A的第2列=e2. ….可使A的第r列=er.此时空白处必为0元。
矩阵分析引论--第四章--矩阵的奇异值分解-向量范数、向量范数
n
定义 E
xi2 .
证明
a,
都与
b
E 等价.
i 1
利用 a
x11 xn n
( x1 ,, xn )连续,
在单位球面
S
y
(
y1 ,,
yn
n
)
i 1
yi2
1
上
取得最大值M与最小值m.
目录 上页 下页 返回 结束
第四章第一二节 向量范数、矩阵范数
第二节 矩阵范数
定义4-2 设A P nn ,定义非负实数 A, 满足下列条件: (1) 正定性:当A 0时,A 0; (2) 齐次性:kA k A (k P); (3) 三角不等式: A B A B . (4) AB A B . 则称非负实数||A||为n×n方阵的范数.
则称非负实数||||为向量 的范数.
此时称线性空间V 为线性赋范空间.
目录 上页 下页 返回 结束
第四章第一二节 向量范数、矩阵范数
设V是内积空间, V ,定义: ( , ),
则 • 是V上的一个范数,称为由内积引出的范数.
向量范数的性质:
P124, 1
(1) 0 0 ;
(2) 0时, 1 1 ;
A F
n
2
aij
tr( AH A)
i , j1
是与 2相容的方阵范数. 称为 F 范数.
注:当U为酉矩阵时,有
F范数的优点
A的酉相似矩阵的F 范数相同.
目录 上页 下页 返回 结束
第四章第一二节 向量范数、矩阵范数
常用的矩阵范数
n
(1)
A
1
max
1 jn i 1
aij
矩阵分析 史荣昌 魏丰 第三版 第一章-第四章 期末复习总结
定义:若v1 ∩ v =0,则称v1与v 2 的和空间v1 + v 2 是直和,用记号v1 ⊕ v 2 表示
交
定理:设v1与v 2 是线性空间 v 的两个子空间,则下列命题是等价的
与
和
1) v1 + v 2 是直和
直和
2) dim(v1 + v 2 )= dim v1 + dim v 2
3)
设
α1, αn1
α α α 定理:(1) R(T)=span{T( 1 ),T( 2 ),……T( n )} (2)rank(T)=rank(A)(A 为线性映射在基下的矩阵表示)
值
域
性质:
设 A 是 n 维线性空间V1 到 m 维线性空间V2 的线性映射,α1,α2, αn
是V1
的一组基,β1,
β
2
,
,βm
是V2 的一组基。线性映射 A 在这组基下的矩阵表示是 m*n 矩阵 A=( A1,A2, An
特征子
空间
V 性质:特征子空间 λi 是线性变换 T 的不变子空间。
定义:设v1和v 2 是数域 F 上的两个线性空间,映射 A:v1 → v 2 ,如果对任何两个向量 α1,α2 ∈ v1和任何数λ ∈ F
有 A( α1 + α2 )=A( α1 )+A( α2 ),A( λα1 )= λ A( α1 ),便称 映射 A 是由v 1到v 2 的线性映射
α1,α
2
,
αr
生成的子空间为
T
的不变子空间。
0 0 an,r +1 ann
λ α λ λ λ 定义:设 T 是数域 F 上 n 维线性空间 V 的线性变换,如果 V 中存在非零向量α,使得 T(α)= 0 , 0 ∈F.那么称 0 是 T 的一个特征值,称α是 T 的属于 0 的一个特征向量。
矩阵分析第四章.
B1(θ1θ2)C1 = B1C1
因此有:
B1HB1(θ1θ2)C1C1H = B1HB1C1C1H
其中B1HB1, C1C1H都是可逆矩阵, 因此
θ1θ2 = E ⇒ θ2 = θ1−1
(2) 将(1)的结果代入CH(CCH)−1(BHB)−1BH即可得到.
第二节 矩阵的正交三角分解(UR, QR分解)
0 0 0 0 0
0 0 0 0 0
1 3 0 −1/ 3 10 / 3
r1←r1 −2r2 → 0 0 1 2 / 3 1/ 3
0 0 0 0
0
取第1列和第3列构成E2, 则B由A的第1列和第3列构成, 即
1 2 B = 2 1,
3 3
而C就是变换后的前2行,即
C
=
1 0
3 0
β1 k β 21 1
+
β
2
Lα3L=Lk31β1 + k32β2 + β3
α r = kr1β1 + kr2 β2 + L + kr,r−1βr−1 + βr
并设 ν1 =|| β1 ||−1 β1,ν 2 =|| β2 ||−1 β2 , L,ν r =|| βr ||−1 βr , 则:
α1 = k1′1ν1 α 2 = k2′1ν1 + k2′2ν 2 α3 = k3′1ν1 + k3′2ν 2 + k3′3ν 3
A = U1RLU2.
证明: 自己练习
− 2 1 − 2
例1:求矩阵A的UR分解, 其中
1 1 1
A=
1 1
−1 −1
0 1
解:设A = (α1, α2, α3), 用Schmidt方法将α1, α2, α3标准正交
2024年度矩阵分析课件精品PPT
2024/3/24
6
矩阵性质总结
01
结合律
02
交换律
03 分配律
04
数乘结合律
数乘分配律
05
2024/3/24
(A+B)+C=A+(B+C),(AB)C=A(BC)。 A+B=B+A,但AB≠BA。 (A+B)C=AC+BC,C(A+B)=CA+CB。 λ(μA)=(λμ)A,(λ+μ)A=λA+μA。 λ(A+B)=λA+λB。
12
03
线性方程组与矩阵解法
2024/3/24
13
线性方程组表示形式
80%
一般形式
Ax = b,其中A为系数矩阵,x为 未知数列向量,b为常数列向量 。
100%
增广矩阵形式
[A|b],将系数矩阵A和常数列向 量b合并为一个增广矩阵。
80%
向量形式
x = Ab,表示通过矩阵A的逆求 解未知数列向量x。
04
典型例题解析
10
秩及其求法
2024/3/24
01
矩阵秩的定义与性质
02
利用初等变换求矩阵秩的方法
03
利用向量组的极大无关组求矩阵秩的方法
04
典型例题解析
11
典型例题解析
01 02 03 04
2024/3/24
初等变换与初等矩阵相关例题 矩阵等价性判断相关例题 秩及其求法相关例题 综合应用相关例题
矩阵分析课件精品PPT
2024/3/24
1
目
CONTENCT
录
2024/3/24
• 矩阵基本概念与性质 • 矩阵变换与等价性 • 线性方程组与矩阵解法 • 特征值与特征向量 • 相似对角化与二次型 • 矩阵函数与微分方程求解
《矩阵分析》(第3版)史荣昌,魏丰.第四章课后习题答案
第四章 矩阵分析4-1.(1)对矩阵A 只做初等行变换得到行简化阶梯形矩阵82100-55212311125141010551312114001-5582100-5521211251,0105513114001-55A B C A BC ⎡⎤⎢⎥-⎡⎤⎢⎥⎢⎥⎢⎥=-→⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥-⎡⎤⎢⎥⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦=取于是即为其满秩分解表达式(2)对矩阵A 只做初等行变换得到行简化阶梯形矩阵1101010-10-1011110111123131000001110-10-101,0111123A B C A BC ⎡⎤⎡⎤⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦=取于是即为其满秩分解表达式(3)对矩阵A 只做初等行变换得到行简化阶梯形矩阵12101212101212213300112124314500000048628100000001112121012,2300112146A B C A BC ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦=取于是即为其满秩分解表达式(4)对矩阵A 只做初等行变换得到行简化阶梯形矩阵120111012011036142360011-1024022270000016121757300000010101201103136,0011-1020270000016173A B C A BC ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦=取于是即为其满秩分解表达式4-2.解:首先注意到A 的秩为1,同时计算出HAA 的特征值12=6=0λλ,,所以A 的奇异值1=6.σ然后分别计算出属于12λλ,的标准正交特征向量.]] []121211112121,1-1,1,.3111111=[,]T TH HU UV A UVV V VAηηηηη-====⎡⎤⎢⎥=∆==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎡⎢⎢⎢⎢⎢⎢⎥⎢⎥⎣⎦⎤⎥==⎢⎥⎥⎣⎦,记,现在计算取于是r000003333HrA U V⎤⎥⎤=⎥⎥⎢⎣⎦⎥⎦⎥⎢⎥⎣⎦=∆=⎦⎥⎦或者4-3.解:(1)容易验证H H H HAA A A BB B B==,所以A,B是正规矩阵.(2)下面求A的谱分解:[][]21231123232323111(+1)(-2)=2==-1.=2=.==-1=10-1=1-0.=0=.TTTTTH E A A G λλλλλλλξλλααααξξξξ-===故的特征值为:,对于特征值,其对应的特征向量对于特征值,其对应的特征向量,,,,1,将,正交化和单位化得,,于是2223311133311133311133300111110636221210003331110226H H G ξξξξ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢=+=+⎢⎥⎢⎢⎥⎢⎢⎢⎥⎢⎣⎢⎥⎣⎦-⎡⎤-⎢⎥⎢⎥=+--⎢⎥⎢⎥-⎢⎥-⎣⎦122113331213331111236333=2A G G ⎡⎤⎡⎤--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎣⎦⎣⎦-因此即为其谱分解.矩阵B 的谱分解参照矩阵A 的谱分解方法. 4-4. 解:已知矩阵024102211042A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦[][][]21231212331231231(+1)(+2),==-1=-2==-1=-2,1,0,4,0,1=-2=4,2,1.244[,,]102011T TTE A A A P P AP λλλλλλλλααλααααααα--==---⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦-=求得所以其对应的特征值为:,对应于特征值,其对应的特征向量对应于特征值,其对应的特征向量为:,,线性无关,所以矩阵可对角化,所以矩阵是单纯矩阵于是而且有:11231112223311161212100211010,()366002221333122112111=--=-=6331263126322433312263311212632T TTTT TT P G G βββαβαβαβ-⎡⎤-⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥-⎢⎥⎣⎦⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎡⎤-⎢⎥⎢⎥⎢⎥=+=--⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦==取:,,,,,,,,令122433312263311212632A G G A ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦=-+故即为矩阵的谱分解表达式.4-5.解:[][][]12312i 20000-i 0000500000,=5==0000=51,0,02001,0,0,=1,0,0-i 00100H H H H TT T H HHA A AA AA AA U V A U A V λλλδληηη-⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥⎡⎤⎢⎥==∆⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎡⎤⎢=∆=⎢⎢⎣⎦,求出的特征值为,所以的奇异值为:求出对应于的特征根:==H⎡⎤⎥⎥⎥⎥⎢⎥⎣⎦4-6.解:()()()1231212112204002000i ,0100-i 000000(-1)(-4)=4,=1,=02=2,=1,14=1,0,04=0,1,010,0100H H H H T H TH A A AA E AA AA AA AA U λλλλλλλααμμμμ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦-=⇒⎡⎤∆=⎢⎥⎣⎦⎡⎤⎢⎥==⎢⎢⎣⎦,所以的奇异值为:特征值为的单位特征向量为:特征值为的单位特征向量为:于是1111100-i 102100110-i 00H H H HV A U A U V -⎥⎥⎡⎤=∆=⎢⎥⎣⎦⎡⎤⎡⎤⎡⎤⎢⎥=∆=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦因此所以4-7.解:(1) 首先求出矩阵A 的特征多项式212322082(+2)(-6)06=-2==6A (6E-A)=14204206E-A=8400000000E A aa a λλλλλλλλλ---=--=---⎡⎤⎡⎤⎢⎥⎢⎥--→-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦所以其特征值为:,由于是单纯矩阵,从而r 有此可知:a=0;(2) 由上知a=0;()21231212331112223220=820-(+2)(-6)006==6;=-2,==6=0 =001=-2=0125524551TT T H H A E A A G G λλλλλλλλααλαααααα⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⇒⎫⎪⎭⎫⎪⎭⎛⎫ ⎪ ⎪⎪=+== ⎪ ⎪ ⎪ ⎪⎝⎭所以,求出对应于的单位正交特征向量为:,,,求出对应于的单位特征向量为:因此,的投影矩阵,31212552455062H A G G α⎛⎫- ⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪⎝⎭=-4-8.解: (1)3i -13i -1-i 0i -i 0i -1-i 0-1-i 0,.HH H A A AA A A A ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦=,所以是正规矩阵 (2)()()())()()()212311223312312314122 1.2==-1=0,-i,1,,=0.8801,0.3251i,0.3251,=0.4597,0.6280i 0.6280,=TTTTTE A λλλλλλλλαλαλααααηηη-=+-+=+==-===求出与求出与求出与对应的特征向量为:将单位化得到单位特征向量为:,111222333112233,,=TH H HG G G A G G G ηηηηηηλλλ⎛ ⎝⎭===++所以4-9.解:对矩阵A 只作初等行变换100071415610290102000147712401525001772655700000310007141102901020077,1245250017726500000.A ABC BC A -⎡⎤⎢⎥-⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=→→⎢⎥⎢⎥--⎢⎥⎢⎥--⎢⎥⎣⎦⎢⎥⎣⎦-⎡⎤⎢⎥-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦= 的秩为,且前三个列向量线性无关,故容易验证:4-10.解: 对矩阵A 只作初等行变换110130-331321421=261070013339311100000211012130-3321,210013333.2113210-361,93A A B C BC A A B C ⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥→→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦=⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦ 的秩为,且第一,第三个列向量线性无关,故容易验证:的秩为,且第二,第三个列向量线性无关,故10992100133.BC A ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦=容易验证:4-11.解:()()1231231231231===0=00=0004400TTTH A Schmidt U R U A R ααααααυυυυυυ-⎛ ⎝⎛⎝⎛⎝⎡⎢⎢⎢==⎢⎢⎢⎢⎣⎡⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎣⎦将,,的列向量,,用方法标准正交化得,命,,,则111335---1444420111==-=--2222-1131=.H x R U b Ax b -⎥⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦不难验证4-12.解:5000000005,0,0A H H AA AA ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦因为的特征值为,故4-13.解:2123111111202000202(-4),=4==0A=2=2.=4==,10111012HH HT T HHHAAE AA AAAA UV A Uλλλλλλαλ-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦-=∆=⎡⎤=∆=∙=⎢⎥⎢⎥⎣⎦⎢⎥所以的特征值,,的奇异值为,的特征值的单位特征向量u u因此:不难验1122124.3.443301001HHHHH HA U VAAUA AU A A VU=∆=⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎡⎢⎢=⎢⎥⎢⎥⎣⎦=证这是定理表达形式.下面介绍定理..表述形式.又的零特征值所对应的次酉矩阵的零特征值所对应的次酉矩阵V于是AA的酉矩阵与的酉矩阵分别为V⎤⎥⎥=⎢⎥⎥⎢⎥⎥⎥⎦⎥⎦,且2000000HD A UDV ⎡⎤∆⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦=不难验证4-14. 解:()()()12312111121111400010(1)(4),000=4=1=02=2=1=14=1001=01010==010010010=U V 010H HH H H H H H AA E AA AA A AA u AA u U u u V A U i A λλλλλλλαα-⎡⎤⎢⎥=-=--⎢⎥⎢⎥⎣⎦⎡⎤∆⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⎡⎤=∆=⎢⎥⎣⎦∆=,的特征值,,所以的奇异值,,的特征值为的单位特征向量的特征值为的单位特征向量于是因此所以3222121010043300=0=110010(,)=010,V=V 0001100201001001000100HH Hi AA u U U U U i A UDV i ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦若要写成定理..形式还得计算U,V.特征值为的单位特征向量故所以4-15.解:242-24-2422-4-2-2-2252-2-5H i i A i i i i A i i i i -⎡⎤⎡⎤⎢⎥⎢⎥==-=⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦由于所以A 是反Hermite 矩阵.2123121233111222-424+22==(+6i)(-3i)-22A ==-6i =3i.==-6i =0==3i 221=i -33354i2i -999-TTT H H iE A i i iA G λλλλλλλλλλλααλααααα+-=⎛ ⎝⎛⎫ ⎪⎝⎭=+= 的特征值,属于特征值的正交单位特征向量,属于特征值的正交单位特征向量,,因此的正交投影矩阵为233124i529992i 2899944i 2i 9994i 429992i 219996i 3i H G A A G G αα⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎡⎤-⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦=-所以的谱分解式为:+4-16..解:130i 2202031-i 022HA A ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦由于所以A 是Hermite 矩阵.()21231212331112213--i 220-20==(-2)(+1)31-i 0-22A ==2=-1.==2=010=0=-1=01i 022010i 1-022TTTH H E A A G G λλλλλλλλλλλααλααααα-=⎡⎤⎢⎥⎢⎥=+=⎢⎥⎢⎥⎢⎥⎣⎦ 的特征值,属于特征值的正交单位特征向量,,,属于特征值的正交单位特征向量因此的正交投影矩阵为233121i 0-22010i 10222-H A A G G αα⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦=所以的谱分解式为:4-17. . .解:先求A 的特征值和特征向量,由21234-603+50=(-1)(+2)36-1==1=-2.E A A λλλλλλλλλ--=故的特征值为:,()()()()1231212331123=1-3-60360=0360=2-1,0=0,0,1=-2-3-60360=0360=-11,1201111,,101()=122011010TTT Tx x x x x x P P λααλαααα-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦--⎡⎤⎡⎢⎥==--⎢⎥⎢⎥⎣⎦⎣当时,由方程组求得特征向量为:,,当时,由方程组求得特征向量为:,所以,()()()1231112223312=1,1,0,=-1,-2,1,=1,2,022*******,1201211202TTTT TT G G A A G G βββαβαβαβ⎤⎢⎥⎢⎥⎢⎥⎦--⎡⎤⎡⎤⎢⎥⎢⎥=+=--==⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦=-因此于是所求投影矩阵为的谱分解表达式为4-18.解: 因为()()1122r r 1122r 20112012012r 11122r r 1122r r 220111011201=+++=++++=++++=(G +G ++G )+()++()=(++++)G +(++++)G ++(+k k k k r s s ss s s s s s A G G G A G G G f a a a a f A a E a A a A a A a a G G G a G G G a a a a a a a a a a λλλλλλλλλλλλλλλλλλλλλλλ=+++++++++ 若则()()()211122+++)=G +G ++s s r ra a f f f G λλλλλ 4-19.解:方法一:A 是单纯矩阵()()()()()31234123123441234-1-11-11-1=(-1)(+3)-11-11-1-1===1=-3.===1=1100=101,0=-100,1=-3=1-1-1,111-11100-1,,,=010-10011T T TTE A A P λλλλλλλλλλλλλλαααλααααα-=⎡⎤⎢⎢=⎢⎢⎣故的特征值为:,属于特征值的正交单位特征向量,,,,,,,,,属于特征值的正交单位特征向量,,所以1123411122331111-44443111--4444,()=1311--44441131444413111131=-=-4444444411131111=-=--44444444314+T TTT TT TT P A G ββββαβαβαβ-⎡⎤⎢⎥⎢⎥⎢⎥⎥⎢⎥⎥⎢⎥⎥⎢⎥⎥⎢⎥⎦⎢⎥⎢⎥⎣⎦⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭=+=因此,,,,,,,,,,,,,,因此的正交投影矩阵为11444131144441131444411134444⎡⎤-⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥--⎢⎥⎣⎦244121111-4444111144441111--444411114444-3H G A A G G αβ⎡⎤-⎢⎥⎢⎥⎢⎥--⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎣⎦=所以的谱分解式为:方法二:A 是正规矩阵.由方法一中已知A 的特征值1234===1=-3λλλλ,,把1234αααα,,,Schmidt 方法标准正交化得123441112233244=00=0=1111=--22223111444413114444+113144441113444411-44T T TTT T TH G G υυυαυυυυυυυυυ⎫⎫⎛⎪⎪ ⎭⎝⎭⎛⎫⎪⎝⎭⎡⎤-⎢⎥⎢⎥⎢⎥-⎢⎥=+=⎢⎥⎢⎥-⎢⎥⎢⎥--⎢⎥⎣⎦-==,,,把单位化得 ,,,正交投影矩阵121144111144441111--444411114444-3A A G G ⎡⎤⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎣⎦=所以的谱分解式为:。
矩阵分析4ppt课件
矩阵函数f ( At),类似,我们可以得到
f ( t)1
定理1 若对任一方阵X,幂级数
C m
X
m0
f ( At) P
f (2t)
P1
f
(nt
)
5. 矩阵函数
第四章 矩阵函数及其应用
2)当A不能与对角形矩阵相似,这时,A必可与约当
标准形相似
J1(1)
第四章 矩阵函数及其应用
定理1
若对任方阵X,幂级数 Cm X m都收敛,和为定f (X ) Cm X m,
m0
m0
X1
则当X为分块对角形矩阵X
X2
时,即有
X
k
f (X1)
定理1 若对任一方阵X,幂级数
C m
X
m0
f ( X ) f ( X )2
Am
m0
和也不改变。
1)若方阵级数
A 绝对收敛,则他它一定 收敛敛,且任意交换各 的次序所得的新 级次序收敛敛,和也不改变 m
m0
4. 矩阵幂级数
第四章 矩阵函数及其应用
方阵级数的收敛性质:
2)方阵级数 Am绝对收敛的充要条件, m0
是对任意一种方阵范数 ,
正项级数 Am收敛。 m0
f ( X k )
5. 矩阵函数
第四章 矩阵函数及其应用
定理2
若 f(z)
m
Cm z (
z
矩阵分析理论的基础知识
前言 1、自我介绍2、矩阵分析理论是在线性代数的基础上推广的3、矩阵分析理论的组成:四部分:基础知识(包括书上的前三章内容)难点:约当标准形与移项式矩阵矩阵分析(第四章:矩阵函数及其应用) 矩阵特征值的估算(第五章) 非负矩阵(第六章)第一部:矩阵分析理论的基础知识§1 线性空间与度量空间一、线性空间:1.数域:Df 1:若复数的一个非空集合P 含有非零的数,且其中任意两数的和、差、积商(除数不为0)仍在这个集合中,则称数集P 为一个数域eg 1:Q (有理数),R (实数),C (复数),Z (整数),N (自然数)中哪些是数域?哪些不是数域?2.线性空间—设P 是一个数域,V 是一个非空集合,若满足:<1> 可加性—指在V 上定义了一个二元运算(加法)即:V ∈∀βα, 经该运算总存在唯一的元素V ∈γ与之对应,称γ为α与β的和,记βαγ+= 并满足:① αββα+=+② )()(γβαγβα++=++ ③ 零元素—=有θαθααθ+∈∀∈∃Vt s V .④ αβαβθβααβ-+∈∀∈∃=记的负元素为=有对V V<2> 数积:(数乘运算)—在P 与V 之间定义了另一种运算。
即V P k ∈∈∀α,经该运算后所得结果,仍为V 中一个唯一确定的元素。
存在唯一确定的元素V ∈δ与之对应,称δ为k 与α的乘积。
记为αδk = 并满足:①αα=⋅1② P l k ∈∀, αα)()(kl l k = ③ P l k ∈∀, αααl k l k +=+)( ④ γβα∈∀, βαβαk k k +=+)(则称V 为数域P 上的线性空间(向量空间)记为)...(∙+P V 习惯上V 中的元素—向量, θ—零向量, 负元素—负向量结论:可以证明,线性空间中的零向量是唯一的,负元素也是唯一的,且有:θα=⋅0 θθ=⋅k αα-=⋅-)1( )(βαβα-+=-eg2:}{阶矩阵是n m A A V ⨯= P —实数域R按照矩阵的加法和数与矩阵的乘法,就构成实数域R 上的线性空间,记为:n m R ⨯ 同样,若V 为n 维向量,则可构成R 上的n 维向量空间n R —线性空间。
第4章 矩阵分解-1
3 1 2
H2H1A
0
1
1
R
0
0
0
矩阵分析简明教程
Q
H
H 1
21
1 3
1
2 2
2 1 2
2
2 1
所求的QR分解为
A QR
8
0 1 1
矩阵分析简明教程
1 5
x1 2x2 x3 5x2 3x3
0 1
12 5
x3
4 5
(
5 12
)
3 5
x1
2x2 x2
1 3 0
x3
1 3
(2)
x1 x2
1 3 0
x3 1 3
(II )
矩阵分析简明教程
用矩阵形式表示,系数矩阵
1 2 1 r12 (3) 1 2 1
角方阵 R ,使得
A QR
当 m = n 时 ,Q 就 是 酉 矩 阵 或 正 交 矩 阵 。
矩阵分析简明教程
例 1 将下列矩阵进行QR分解:
1 2 2
A
1 0
0 1
2 1
4
矩阵分析简明教程
解: 1 (1,1,0, )T, 1 1 (1,1,0)T
1
||
1 1
||
1 (1,1, 0)T 2
定理4.2.3 设 e1 1, 0,, 0T C n ,
x1 , x2 ,, xn T C n , 0
令
x1
x1 ,
,
x1
0 ,u
e1
x1 0
e1
H E 2uuH是n 阶Householder矩阵,且
H -e1
矩阵分析简明教程
定理4.2.4(QR分解)设 A为 任 一 n 阶 矩 阵 则必存在 n 阶酉矩阵 Q 和 n 阶上三角方
《矩阵分析》课件
Gauss消元法原理
LU分解求解线性方程组
通过行变换将矩阵化为上三角矩阵, 从而解线性方程组。
将Ax=b转化为LUx=b,通过前向替 换和后向替换求解。
LU分解定义
将矩阵分解为一个下三角矩阵L和一个 上三角矩阵U的乘积。
QR分解原理及实现
QR分解定义
将矩阵分解为一个正交矩阵Q和 一个上三角矩阵R的乘积。
Jordan标准型及其性质
Jordan标准型定义: 设A是n阶方阵,如果 存在一个可逆矩阵P, 使得P^(-1)AP为 Jordan矩阵,则称A 可以相似对角化为 Jordan标准型。
Jordan标准型的性质
Jordan标准型是唯一 的,即对于给定的方 阵A,其Jordan标准 型是唯一的。
Jordan标准型中的每 个Jordan块对应A的 一个特征值。
非零行的首非零元所在列在上一行的 首非零元所在列的右边。
同一行的所有非零元均在首非零元的 右边。
线性无关组与基础解系
线性无关组:一组向量线性无关当且仅当它们不 能由其中的部分向量线性表示出来。换句话说, 只有当这组向量中任何一个向量都不能由其余向 量线性表示时,这组向量才是线性无关的。
基础解系中的解向量线性无关。
初等变换和行阶梯形式
初等变换:对矩阵进行以下三种变换称为初等变 换 对调两行(列)。
以数k≠0乘某一行(列)中的所有元。
初等变换和到另一行(列)的对应元上去。
02
行阶梯形式:一个矩阵经过初等行变换可以化为行阶梯形式,
其特点是
非零行在零行的上面。
03
初等变换和行阶梯形式
方阵
行数和列数相等的矩阵称为方阵。
01
对角矩阵
除主对角线外的元素全为零的方阵称 为对角矩阵。
《矩阵分析》PPT课件
握时机,以寻求更大的发展。
2.抑制性(机会+劣势)
抑制性意味着妨碍、阻止、影响与控制。当环境提
供的机会与企业内部资源优势不相适合,或者不能相互
重叠时,企业的优势再大也将得不到发挥。在这种情形
下,企业就需要提供和追加某种资源,以促进内部资源
劣势向优势方面转化,从而迎合或适应外部机会。
3.脆弱性(优势+威胁)
(2)现金牛产品(cash cow), 又称厚利产品。它是指处于低增 长率、高市场占有率象限内的产 品群,已进入成熟期。其财务特 点是销售量大,产品利润率高、 负债比率低,可以为企业提供资 金,而且由于增长率低,也无需 增大投资。因而成为企业回收资 金,支持其它产品,尤其明星产 品投资的后盾。收获战略;适合 于事业部制组织结构;选拔市场 营销型人物来负责。
说明 相对市场份额
以公司在某个领域的市场份额除以该领域最大竞争对手的 市场份额
通常以1.0把相对市场份额分为高低两部分。
市场增长率
可以用经济增长率作为标准,或者用10%。
圆圈反映了一个领域的份额和增长情况,面积反映了企业 从这个领域得到的销售收入占全部收入的比例。
各象限产品的定义及战略对 策 (1)明星类产品 增长较快速,略显资金不足; 一般水平的利润率和负债比 率。 扩大投资战略;采用事业部 形式的组织结构;选拔对生 产技术和销售都很内行的人 负责 。
缺乏具有竞争意义的技能技术。
缺乏有竞争力的有形资产、无形资产、人力资源、组织 资产。
关键领域里的竞争能力正在丧失。
机会 公司面临的潜在机会(O):潜在的发展机会可能是: 客户群的扩大趋势或产品细分市场。
技能技术向新产品新业务转移,为更大客户群服务。
前向或后向整合。 市场进入壁垒降低。 获得购并竞争对手的能力。 市场需求增长强劲,可快速扩张。 出现向其他地理区域扩张,扩大市场份额的机会。
矩阵分析课件
x , x , , x
n
例 3
实数域
R 上的线性空间 R 中,函数组 1,cos x,cos 2 x, ,cos nx
R
也是线性无关的。
例 4 实数域
R 上的线性空间空间 R R 中,函数组
1,cos x,cos2 x
2
是线性相关 函数组
cos 2 x 2cos 2 x 1
sin x,cos x,sin x,cos x, ,
最大(线性)无关向量组
定义3 设有向量组A,如果在A中能选出r个向量
A0 : 1 , 2 ,, r,满足 (1)向量组 A0 : 1 , 2 ,, r 线性无关; (2)向量组A中任意r 1个向量(如果 A中有
r 1个向量的话)都线性相 关, 那末称向量组 A0是
向量组A的一个 最大线性无关向量组 (简称 最大 数r称为向量组 无关组) ; 最大无关组所含向量个 的秩 . 只含零向量的向量组没 有最大无关组,规定
第一章
线性空间和线性映射
第一节 线性空间
实数域R 复数域C
一: 线性空间的定义与例子
定义 设 V 是一个非空的集合, F 是一个数域, 在集和 V 中定义两种代数运算, 一种是加法运算, 用 来表示; 另一种是数乘运算, 用 来表示, 并且 这两种运算满足下列八条运算律:
运算的结果是 V中的元素
a
n 1
R 上的线性空间。Hilbert条件是:
2
n
收敛
例8 在
R
中有界的无限序列组成的子集也构成
R 上的线性空间。一个无限序列 [a1, a2 , a3, ]
称为有界的,如果存在一个实数
r , 使得
矩阵分析PPT
有关性质:
1)零向量的范数是零。
2)当
时,有
实际上,我们还可以通过已知的向量范 数来构造新的向量范数。
定理4.1 设
是
上的一种已知向量范数
(不一定是P-范数),A是n阶满秩方阵,
,定义 ,则 是
上的一种向量范数。
证明:
所以
是
上的一种向量范数。 是 中向量 是 的n元连续
定理4.2 设
的一种范数,则 函数。
p i 1
n
1/ p
( i )
p i 1
1/ p
( i )
p i 1
n
1/ p
其中
y (1 ,2 ,,n ) C n
注:这里要用到 Holder不等式:
其中 因为
1 1 1, p 1, q 1. p q
1 p 1 ( p 1) p p 1
2
因为 Re(x, y ) ( x, y ) ( x, x)( y, y ) x y
证明 x max i 是Cn 上的一种范数, 例4.2
这里x 1 , 2 , n C
i
n
x y max i i max i max i x y
定义4.2 满足上述不等式 的两种范数称为是 等价的.由此可见任意两种向量范数是等价的。
定理4.4
( ( C n 中的 x ( k ) 1( k ) , 2 k ) ,, n k )
收敛到向量 x 1 , 2 ,, n ,序列
的充要条件是对任一种范数
x
二. 向量范数的等价性 定理4.3 设 x 和 x 为有限维线性空间V 的 任意两种向量范数,则存在两个与向量无关的 正常数 c1和 c2 使下面不等式成立
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∑x
k =1
n
k
y k ≤ ( ∑ xk ) ( ∑ y k )
k =1 k =1
n
(4.6)
其中 p , q 为 共轭指数 .
证 ①当xk 或 yk (k = 1,...,n)全为0 时,结论显然成立.
②设xk 不全为 0, yk 也不全为 0,.以下证明式(4.6)的 等价式.由引理 Young不等式得
k =1 k =1 1 p p n n
n
1 p p
n
1 ( p−1)q q
)
= (∑ xk ) (∑ xk + yk ) + (∑ yk ) (∑ xk + yk )
k =1 k =1 k =1 k =1
(∑ yk ) ](∑ xk + yk )
k =1 k =1 k =1
1 p
n
1 p
这正是 x+ y
p
≤ x
p
+ y p.
即三角不等式成立. 范数). ■ 故 x p 是C n上的一种向量范数 (向量 p
数 ; 对于 x p , p = 1, 即为向量的 1范 数. p = 2 即为向量的 2范
19
定理 4.3 设 x ∈ C , 则
p →∞
n
lim x
n
范数的酉不变性. 上述的结果称为向量 2
8
向量∞ 向量∞范数
例 4.3 设 x = ( x1 ,..., xk ,..., xn )T ∈ C n , 定义 x 则 x
∞ ∞
max xk
k
(4.4)
是向量 x 的一种范数, 称为向量 ∞ 范数.
证 (1). 正定性 显然; (2).齐次性 显然;
13
∑ =
(∑ xk
k =1 n p
n
n
xk y k ) (∑ yk )
q k =1 1 p n 1 q
k 1
= ∑[
k =1
xk (∑ xk )
k =1 n 1 p p
][
yk ( ∑ yk )
k =1 n 1 q q
]
( a b )
1 1 ] = + =1 p q
≤ ∑[
k =1
n
xk
n k =1
9
(3). 三角不等式:∀y = ( y1 ,..., yk ,..., yn ) ∈ C , 有
T
n
x+ y
∞
= max xk + yk ≤ max xk + max yk
k k k
= x
即三角不等式成立.
∞
+ y ∞.
范数). 故 x ∞ 是C 上的一种向量范数(向量 ∞
n
■
10
三个重要的不等式 三个重要的不等式
p
= x ∞.
可以从已知的向量范数出发,构造无数新的向量范数.
定理 4.4 设 A∈ Cnm×n (列满秩), ⋅ a 是C m上的一种向量范数, 对∀x ∈ C n , 定义 xb Ax a (4.9) 则 x b 是C n中的向量范数.
例 4.5 设A是n 阶正定矩阵, 对∀x ∈ C n , 定义 x
矩阵范数的性质 性质1 性质1 性质2 性质2 −A = A ; A − B ≤ A− B .
25
例 4.9 设 A = (aij )n×n ∈ C
n n
n×n
, 定义 (4.22)
A 则 A
m1
m1
∑∑ a
i =1 j =1
ij
是C n×n上的一种矩阵范数 ,称为矩阵的 m1 范数 .
证
(1). 正定性 显然 ; (2). 齐次性 显然 ;
极限为 向量x = (x1,..., xi ,..., xn ) ,记 {x }的 为 lim x = x.
k→∞ (k)
T
(4.17)
向量 序列 不 收敛 时称为 发散 的 .
定理 4.7 C 中的向量序列{x }收敛于 x 的充分必要条件 是对于C 上的任一向量范数 ⋅ , 都有 lim x( k ) − x = 0.
故 x
2
n
2
≤ x 2+ y 2,
是 C n上 的 一 种 向 量 范 数 , 称 为
2
向量 2 范数, x
也 叫 Euclid 范 数 , 即
7
通 常 意 义 下 向 量 的 长 度.
向量 2 范 数 的 酉不变性 酉 不变性
范数的性质 向量 2 对∀x ∈ C 和任意的酉矩阵U , 有 Ux 2 = (Ux)H (Ux) = xHU HUx = xH x = x 2 . (4.3)
26
(3).三角不等式,设B = (bij ) n×n ∈ C A + B = ( aij + bij )n×n , 于是
n n
n×n
,则
A+ B
m1
= ∑∑ aij + bij
i=1 j =1 n n
T n n k =1 n
又设 ⋅ 是 C 上的 向量范数 , 定义
α
v
x
则如此定义 α v 的就是 Vn (C )上的 向量范数.
21
例 4.8 设 x = ( x1 ,..., xk ,..., xn ) ∈ C , 定义 x
p
T
n
(∑ xk )
k =1
n
1 p p
0 < p <1
由于它不满足式(4.1)中的(3), 故如此定义的 x p 不是C n上的向量范数.
矩阵分析教程
(电子版)
董增福
哈尔滨工业大学数学系
1
第四章 范数理论 核心内容
1.向量范数 2.矩阵范数 3.算子范数 4.范数的应用
2
§4.1
向量范数
定义 4.1 若对于∀x ∈ C n , 都有一个实数 x 与之对应, 且满足 : (1). 正定性:当x ≠ θ, x > 0; 当x = θ, x = 0; (2). 齐次性:∀k ∈ C, kx = k x ; (3). 三角不等式:∀x, y ∈ C n , 都有 x + y ≤ x + y .
n 和 ⋅ 是 C 上的两种向量范数, a b
若存在正数 c1 , c2 , 使∀x ∈ C n 都有
b
≤ ⋅
a
≤ c2 ⋅
b
则称向量范数 ⋅ a 与 ⋅ b 等价 .
易证向量范数的等价具有自反性, 对称性, 传递性 传递性 . 自反性, 称性,
定理 4.6 n 维线性空间Vn ( F )上的任意两个 向量范数都是等价的 .
例如若在R n中, 取 x = (1, 0,..., 0) T , y = (0,1,..., 0) T , 1 设 p = , x + y 1 = 4; x 1 = 1, y 1 = 1, 2 2 2 2 n 故 x 1 不是R 上的向量范数.
2
22
向量范数的等价性
定义 4.2 设 ⋅ c1 ⋅
A
x H Ax
(4.10)
20
则 x A 是C n中的向量范数.
注意到n 维线性空间Vn (C)与C 同构, 有如下结果:
例 4.6 设Vn (C )是复数域C上的 n 维线性空间,
n
ε1 , ε 2 ,..., ε n是Vn (C )的一组基.∀α ∈Vn (C )可惟一地
表示为α = ∑ xk ε k , 其中 x = ( x1 ,..., xk ,..., xn ) ∈ C ,
n
1 p p
n
1 p p
n
1 p q
16
若 xk + yk = 0 , k = 1, 2,..., n, 式(4.7)显然成立.
1 p q
否则 (∑ xk + yk ) > 0,
k =1
n
不等式两端同除(∑ xk + yk
k =1
1 p p n n
n
1 p q
1 1 ) , 注意到1 − = , 故 q p
则称 x 为 x 的向量范数.定义了范数的线性空间称为 赋范线性空间.上述三条称为向量范数三公理.
向量范数的性质 性质1 性质1 性 质2 −x = x ; x − y ≤ x− y .
3
三种基本的向量范数
例 4.1 设 x = ( x1,..., xk ,..., xn )T ∈C n , 定义 x1
求得惟一 驻点 b0 = a
p q
1 q −1
= a p −1 = a ,
p q
易知它为最小值点, 故0 = f (b0 ) ≤ f (b ), a b 此即 ab ≤ + . p q
■
12
定 理 4.1( Holder不 等 式 )
∀ xk , y k ∈ C , k = 1,..., n , 有
∑x
k =1
n
k
(4.1)
范数. 则 x 1 是向量 x 的一种范数, 称为向量1
证 (1). 正 定 性 显 然 ; (2).齐 次 性 显 然 ;
4
(3). 三角不等式 :
∀y = ( y1 ,..., yk ,..., yn ) ∈ C , 有 x + y 1 = ∑ xk + yk ≤ ∑ ( xk + yk )
k →∞ n n (k )
(4.18)
24
§4.2
矩阵范数
定义 4.4 若对于∀A∈ C n×n , 都有一个实数 A 与之对应, 且满足: (1). 正定性:当A ≠ O, A > 0; 当A = O, A = 0; (2). 齐次性:∀k ∈ C, kA = k A ; (3). 三角不等式:∀A, B ∈ C n×n , 都有 A + B ≤ A + B ; (4).相容性: ∀A, B ∈ C n×n , 都有 AB ≤ A B . 则称 A 为C n×n上矩阵 A的矩阵范数.(先讨论方阵)