6-3无交互作用双因素方差分析

合集下载

双因素试验的方差分析

双因素试验的方差分析

i 1
j 1
要判断因素A,B及交互作用AB对试验结果是否 有显著影响,即为检验如下假设是否成立:
H01 :1 2 a 0
H02 : 1 2 b 0
H03 : ij 0 i 1, 2, , a; j 1, 2, ,b
➢ 总离差平方和的分解定理 仿单因素方差分析的方法,考察总离差平方和
a
Ti.2
b,
i1
p T 2 ab ,
DB
b
T.
2 j
a,
j1
ab
R
X
2 ij
i1 j1
例1 设甲、乙、丙、丁四个工人操作机器Ⅰ、Ⅱ、Ⅲ各一天, 其产品产量如下表,问工人和机器对产品产量是否有显著 影响?
机器 B 工人 A
ⅠⅡ


50 63 52

47 54 42

47 57 41
F值
F 值临介值
因素A 因素B
SS A SSB
df A
MS A
SS A df A
FA
MS A MSE
df B
MSB
Байду номын сангаас
SSB df B
FB
MSB MSE
F (a 1 ,
ab n 1) F (b 1 ,
ab n 1)
A B
误差 总和
SS AB
SSE SST
df AB df E dfT
MS AB SS AB
F0.01 3,6 9.78 F0.05 3,6 4.76 F0.01 2,6 10.92
FB F0.01 2,6
结论:工人对产品的产量有显著影响, 机器对产品的产量有极显著影响。

补充:双因素方差分析

补充:双因素方差分析
总体的简单随机样本
2. 各个总体的方差必须相同 对于各组观察数据,是从具有相同方差的总体中抽
取的
3. 观察值是独立的
无交互作用的双因素方差分析 (无重复双因素分析)
【例】有4个品牌的彩电在5个地区销售,为分析彩电的品牌( 品牌因素)和销售地区 (地区因素)对销售量的影响,对每显著 个品牌在各地区的销售量取得以下数据。试分析品牌和销售 地区对彩电的销售量是否有显著影响?(=0.05)
结论:
SS 13004.6 2011.7 2872.7 17889
df 3 4 12 19
MS
F
P-value
F crit 3.2592
4334.85 18.1078 9.46E-05 3.4903 502.925 2.10085 0.14367 239.392
FR=18.10777>F=3.4903,拒绝原假设H0,说明彩
SSR SSC
SSRC SSE SST
k-1 r-1
MSR MSC
FR FC
FRC
列因素
交互作用 误差 总和
(k-1)(r-1) MSRC kr(m-1)
MSE
m为样本的行数
n-1Biblioteka 练习:一家管理咨询公司为不同的客户进行人力资源管理讲座。 每次讲座的内容基本上是一样的,但听课者有时是高级管理者, 有时是中级管理者,有时是低级管理者。取水平0.05,检验管 理者的水平不同是否会导致评分的显著性差异。
电的品牌对销售量有显著影响
FC=2.100846< F=3.2592,不拒绝原假设H0,无证
据表明销售地区对彩电的销售量有显著影响
有交互作用的双因素方差分析
(可重复双因素分析)

无交互影响的双因素方差分析

无交互影响的双因素方差分析

1、无交互影响的双因素方差分析如果某一试验结果受到A和B两个因素的影响,这两个因素分别可取K和M个水平,则双因素分析实际上就是要比较因素A的K个水平的均值之间是否存在显著差异,因素B 的M个水平的均值之间是否存在显著差异。

假定试验的结果如下表所示(在假定两个因素无交互影响的情形下,通常采用不重复试验)。

表9-8 无交互影响的双因素分析试验观察值无交互影响的双因素方差分析结果如下表:表9-9 无交互影响的双因素分析表在显著性水平α下,如果F > 临界值Fα,则拒绝原假设,认为差异显著。

小案例9-1:有4个品牌的彩电在5个地区销售,为分析彩电的品牌(品牌因素)和销售地区(地区因素)对销售量的影响,对每个品牌在各地区的销售量取得表9-10的数据。

试分析品牌和销售地区对彩电的销售量是否有显著影响?(α=0.05)表9-10 不同品牌的彩电在5个地区的销售量数据提出假设:对品牌因素提出的假设为:H0:m1=m2=m3=m4 (品牌对销售量无显著影响)H1:mi (i =1,2, …, 4) 不全相等(有显著影响)对地区因素提出的假设为:H0:m1=m2=m3=m4=m5 (地区对销售量无显著影响)H1:mj (j =1,2,…,5) 不全相等(有显著影响)表9-11 方差分析表结论:F品牌=18.10777>Fα=3.4903,拒绝原假设H0,说明彩电的品牌对销售量有显著影响。

F地区=2.100846<Fα=3.2592,不拒绝原假设H0,无证据表明销售地区对彩电的销售量有显著影响。

资料来源:贾俊平、何晓群、金勇进,《统计学》[M].北京: 中国人民大学出版社,2004.10第2版。

交互作用双因子方差分析

交互作用双因子方差分析
第16页/共35页
若H01 成立,即1 2 r 0 ,那么,虽然 不能苛求做为诸i 的估计值之平方和的若干倍的S A2
rst
r
( xi•• x 2 st xi•• x 2 )恰好等于零,
i1 j1 k 1
i 1
但相对于SE 2
来说一定不应太大,倘若S A2 SE2
超过某个界
限值k1 ,我们就有理由拒绝H01 ,故
后的剩余部分,称为水平组合 Ai , B j 的交互效应。
第7页/共35页
于是 X ij ~ N uij , 2 可以等价的表示为:
X ij uij ij u i j ij ij
ij ~ N 0, 2
, i 1,2,, r; j 1,2,, s
这表明,在因素 A, B 的不同水平组合下,试验结果的相对差异
1 rs
r i1
s
uij ——理论总均值
j 1
记:ui•
1 s
s
uij —因素A在i水平下的理论平均
j 1
记:u• j
1 r
r i 1
uij —因素B在j水平下的理论平均
第6页/共35页
显然
uij u ui• u u• j u uij ui• u• j u 记:i =ui• u
SE2 就基本上刻划了整个试验中随机因素作用的强 度,以它为尺度来比较各种效应的大小应该说是合理
的。
第15页/共35页
从矩估计的角度看, x 、xi•• 、x• j• 、 xij• 分别是 u 、ui• 、u• j 、uij 的估计值,因此, xi•• x 可作为i ui• u 的估计值; x• j• x 可作为 j u• j u 的估计值; xij• xi•• x• j• x 可作为rij uij ui• u• j u 的 估计值。

(整理)53双因素方差分析.

(整理)53双因素方差分析.

§5.3 双因素方差分析I 无交互作用的双因素方差分析(1) 数学模型 现在考虑影响试验指标的因素有两个:A, B 。

因素A 有水平r 个;有水平s 个;因素A, B 的各种组合水平均只作一次试验;两因素之间无交互作用。

数据结构表假设:(1*) {:1;1}ij Y i r j s ≤≤≤≤独立;(2*) 2~(,)ij ij Y N μσ,即具有相同的方差;(3*)ij ij ij Y e μ=+,其中 2~(0,)ij e N σ,且{}ij e 独立; 数学模型: i j i j ij i jY e μαβγ=++++ , 其中:111()r s ij i j rs μμ-===∑∑—总平均值; 11si i j j s μμ-⋅==∑;11rj iji r μμ-⋅==∑;i i αμμ⋅=-—因素A 在水平Ai 下对试验指标的效应值;j j βμμ⋅=-—因素B 在水平Bj 下对试验指标的效应值;10r i i α==∑; 10s j j β==∑;rA1212s s r r rs Y Y Y Yr Y ⋅12..s Y Y Y ⋅⋅⋅i j i j i i γμμαβ=---—因素A, B 的交互效应值;{}ij e —随机部分,假定:独立同正态分布;注: “无交互作用”等价于:0ij γ=,即ij i i μμαβ=++;(2) 方差分析(i) 假设检验问题 两种因素分别进行检验:0112:0r H ααα====即因素A 对试验指标影响不显著;0212:0s H βββ====即因素B 对试验指标影响不显著;注:当01H 和02H 成立时,,(1;1)ij i r j s μμ=≤≤≤≤.(ii) 构造F-统计量及否定域 设()111r siji j Y rs Y-===∑∑;11si ij j Y s Y -⋅==∑;11rj ij i Y r Y -⋅==∑;2211()rsT ij i j S Y Y ===-∑∑;221()rA i i S s Y Y ⋅==-∑;221()sB j j S r Y Y ⋅==-∑;2211()rsE ij i j i j S Y Y Y Y ⋅⋅===--+∑∑;注:注意,2211()rsE ij i j i j S Y Y Y Y ⋅⋅===--+∑∑211()r sij ij i i j j i j e e e e μμμμ⋅⋅⋅⋅===+----++∑∑ 211[()()]rsij i j ij i j i j e e e e μμμμ⋅⋅⋅⋅===--++--+∑∑211()rsij i j i j e e e e ⋅⋅===--+∑∑.这里利用了“无交互效应”的假设条件:0i j i j i jγμμμμ⋅⋅=--+=.由此可见,2E S 与α⋅及β⋅无关,即与假设01H 和02H 是否成立无关。

交互作用双因子方差分析

交互作用双因子方差分析

H 03 的 拒 绝 域 为
W 03
S A SE
B 2
2
k3
(6.35)
为 了 确 定 界 限 值 k1 、k 2 、k3 , 按 照 显 著 性 检 验 的 一 般
步骤,我们需要知道当相应的原假设成立时各检验统
计量的分布,
可以证明,
在 H 01 成 立 时
S A 2 r 1 ~ F r 1, rs t 1 S E 2 rs t 1
后的剩余部分,称为水平组合
Ai,Bj 的交互效应。
于 是 X ij ~ N u ij , 2 可 以 等 价 的 表 示 为 :
X ij u ij ij u i j ij ij
ij ~ N 0, 2

i 1,2, , r ; j 1,2, , s
这 表 明 , 在 因 素 A, B 的 不 同 水 平 组 合 下 , 试 验 结 果 的 相 对 差 异 u ij u ( 视 为 总 效 应 ) 是 由 如 下 四 部 分 组 成 :
i 1 j 1 k 1
S
2 A
r
s
t
x i•• x 2
A
称为因素 的主效应偏差平方和。
i 1 j 1 k 1
S
2 B
r
s
t
x • j• x 2
B
称为因素 的主效应偏差平方和。
i 1 j 1 k 1
S 2 A B
rst
A B
x ij • x i • • x • j • x 2 称 为
的交互效应
i1 j1 k 1
偏差平方和。
则得到总变差平方和的分解式:
ST 2
SE2
SA2
SB2

商务统计学 8.6 无交互作用双因素方差分析问题描述

商务统计学  8.6 无交互作用双因素方差分析问题描述
和列因素对试验数据的影响,这时的双因素方差分析称为无交互 作用的双因素方差分析。 3. 如果除了行因素和列因素对试验数据的单独影响外,两个因素的 搭配还会对结果产生一种新的影响,这时的双因素方差分析称为 有交互作用的双因素方差分析。
无交互作用双因素方差分析应用实例
【例】企业订单的多少直接反映了企业生产的产品畅销程度,因此 企业订单数目的增减是企业经营者所关心的。一家企业经营者为了研 究产品的销售地区及外观设计对月订单数目的影响,记录了一月中不 同外观设计的一种产品在不同地区的订单数据。以此为基础,该经营 者想检验下这种产品的销售地区与外观设计是否对订单的数量有所影 响?
bj j
k
ai 0
i 1
j 1, 2,..., r
r
bj 0
j 1
无交互作用双因素方差分析问题描述
定义 ij ai bj (ij i j )
i 1, 2,..., k
水平 Ai 和水平 Bj 的交互效应
j 1, 2,..., r
(ab)ij ij i j
无交互作用双因素方差分析应用实例
因素
表 不同外观设计的产品在不同地区的订单数 (张)
外观设计 销售地区
北京 上海 深圳 西安 成都 兰州
设计方案I 700 597 697 543 600 618
设计方案II 516 450 357 552 302 389
设计方案III 720 567 515 560 420 502
无交互作用双因素方差分析问题描述
1.无交互作用双因素方差分析应用实例 2.无交互作用双因素方差分析问题描述
双因素方差分析
双因素方差分析(Two-way Analysis of Variance) 用来研究两个因素对因变量取值是否会产生显著影响。

6-3无交互作用双因素方差分析-精选文档

6-3无交互作用双因素方差分析-精选文档

F值 Fcale
4.34 0.36
F临界值 Fcrif
6.94 6.94
11
6)查F0.05(2,4)对应的F分布表,得Fcrit=6.94
7)比较FA和Fcrit,因为FA<Fcrit,因此无法拒绝零假设H0; 比较FB和Fcrit,因为FB<Fcrit,因此无法拒绝零假设H0;
射出压力不同水平设置对应的成形品尺寸均值无 显著差异,模腔温度不同水平设置对应的成形品 尺寸均值无显著差异。 8)计算各因素及残差对输出的影响-----贡献率分析 通过计算各因素及残差对因变量y的影响,可以 更直观理解因素对输出影响的重要度
7
1、将实际问题转化为统计问题。 转化的统计问题为:射出压力不同设置水平 时成形品尺寸是否相同:模腔温度不同水平设置对 成形品尺寸均值是否相同。 2、建立假设。 H0:μA1=μA2=μA3;μB1=μB2=μB3 Hα:至少有一个μAi与其它不等;至少一个μBi 与其他不等 3、确定可接受的α风险系数 α=0.05 4、进行方差分析 根据本节所讲的双因素无交互作用方差公 式,我们首先需计算SST、SSA、SSB、SSe, 然后用方差分析表进行分析即可。
12
SS SS A B R ( ) 100% 64.7% R ( ) 100% 5.4% A B SS SS T T SS e R ( ) 100% 64.7% e SS T R 为 A, B 因素和残差占总体平方 和的比率
13
2)将影响作饼图表示如下: 更能直观的观察各个因素及残差对输出的影响。
r s
2 SS ( x x ) 1 . 051 ij T i 1j 1
10
4)计算SSe。
SSe=SST-SSA-SSB=0.314

单因素方差分析与双因素方差分析 原理的相同点与不同点?

单因素方差分析与双因素方差分析 原理的相同点与不同点?
各离差平方和对应的自由度:
总离差平方和SST的自由度为r×k-1=n-1; 因素A的离差平方和SSA的自由度为r-1; 因素B的离差平方和的自由度为k-1; 随机误差SSE的自由度为(r-1)×(k-1)
第八章 方差分析
地区消费者不同的特殊偏爱,这就是两个因素结合 后产生的新效应,属于有交互作用的背景;
否则,就是无交互作用的背景。有交互作用的 双因素方差分析已超出本书的范围,这里介绍无交 互作用的双因素方差分析。
第八章 方差分析
6.3.2 数据结构
双因素方差分析的数据结构如表所示:
表 8-7 双因素方差分析数据结构
第八章 方差分析
方差分析解决的主要问题是什么? 单因素方差分析与双因素方差分析 原理的相同点与不同点? 正交实验设计的基本原理是什么?
第八章 方差分析
8.1 方差分析的基本问题
[例题] 某公司计划引进一条生产线.为了选择一
条质量优良的生产线以减少日后的维修问题, 他们对6种型号的生产线作了初步调查,每种型 号调查4条,结果列于表8-1。这些结果表示每 个型号的生产线上个月维修的小时数。试问由 此结果能否判定由于生产线型号不同而造成它 们在维修时间方面有显著差异?
在实际问题的研究中,有时需要考虑两个因素 对实验结果的影响。
例如饮料销售,除了关心饮料颜色之外,我们 还想了解销售地区是否影响销售量,如果在不同的 地区,销售量存在显著的差异,就需要分析原因。 采用不同的销售策略,使该饮料品牌在市场占有率 高的地区继续深入人心,保持领先地位;在市场占 有率低的地区,进一步扩大宣传,让更多的消费者 了解、接受该生产线。
第八章 方差分析
6.3.1 双因素方差分析的类型
若把饮料的颜色看作影响销售量的因素A,饮料 的销售地区则是影响因素B。对因素A和因素B同时进 行分析,就属于双因素方差分析。

双因素试验方差分析

双因素试验方差分析

SS E df E
SST
注意
df E dfT df A f B , SSE SST SSA SSB
各因素离差平方和的自由度为水平数减一,总平方 和的自由度为试验总次数减一。
双因素(无交互作用)试验的方差分析表
简便计算式:
SS A DA p, SSB DB p
双因素试验的方差分析
在实际应用中,一个试验结果(试验指标)往往 受多个因素的影响。不仅这些因素会影响试验结果, 而且这些因素的不同水平的搭配也会影响试验结果。 例如:某些合金,当单独加入元素A或元素B时, 性能变化不大,但当同时加入元素A和B时,合金性 能的变化就特别显著。 统计学上把多因素不同水平搭配对试验指标的 影响称为交互作用。交互作用在多因素的方差分析 中,把它当成一个新因素来处理。 我们只学习两个因素的方差分析,更多因素的 问题,用正交试验法比较方便。
双因素无重复(无交互作用)试验资料表
因素 B 因素 A
B1
X 11 ... X a1
B2
X 12 ... X a2
... Bb
... ... ... X 1b ... X ab
Ti. X ij X i. T b i.
j 1
b
A1 ... Aa
a b i 1 j 1
1 b i ij i 水平Ai对试验结果的效应 a j 1 1 a j ij j 水平Bj对试验结果的效应 b i 1 试验误差 ij X ij ij
特性:

i 1
a
i
0;

j 1
b
j
0; ij ~ N 0,

双因素试验方差分析课件

双因素试验方差分析课件
结合其他统计方法
未来将结合其他统计方法,如回归 分析、聚类分析等,以更全面地揭 示多因素对试验结果的影响。
THANKS
感谢您的观看
重复原则
在相同条件下重复进行试 验,提高试验的可靠性和 准确性。
对照原则
设置对照组,以消除非试 验因素的影响,突出试验 因素的作用。
试验的分类
STEP 02
STEP 03
多因素试验
同时考虑多个因素对试验 结果的影响。
STEP 01
双侧双因素试验
同时考虑两个因素对试验 结果的影响。
单侧双因素试验
只考虑两个因素中的一个 因素对试验结果的影响。
结果解释
根据方差分析的结果,解释各因素 对观测值的影响程度和显著性,得 出结论。
双因素试验方差分析的注意事项
数据的正态性和同方差性
样本量和试验精度
在进行方差分析之前,需要检验数据 是否符合正态分布和同方差性,以确 保分析结果的准确性。
适当增加样本量可以提高试验精度和 降低误差,对方差分析的结果产生积 极影响。
方差分析的步 骤
01
02
03
04
计算平均值和方差
计算各组的平均值和方差。
检验假设条件Βιβλιοθήκη 检查是否满足方差分析的假设 条件。
进行方差分析
使用适当的统计软件或公式进 行方差分析,并解释结果。
结论与建议
根据分析结果得出结论,并提 出相应的建议。
双因素试验方差分析
双因素试验方差分析的步骤
确定试验因素
明确试验的两个因素,并确定每个 因素的取值水平。
试验设计
根据试验目的和因素水平进行试验 设计,确保每个因素的每个水平都 被充分考虑。
数据收集

双因素方差分析

双因素方差分析

双因素方差分析一、无交互作用下的方差分析设A 与B 是可能对试验结果有影响的两个因素,相互独立,无交互作用。

设在双因素各种水平的组合下进行试验或抽样,得数据结构如下表:表中每行的均值.i X (i=1,2,…r )是在因素A 的各个水平上试验结果的平均数;每列的均值jX .(j=1,2,…,n)是在因素B 的各种水平上试验的平均数。

以上数据的离差平方和分解形式为:SST=SSA+SSB+SSE (6.13) 上式中:∑∑-=2)(X X SST ij(6.14)∑-=∑∑-=2.2.)()(X X n X XSSA i i (6.15)∑-=∑∑-=2.2)()(X Xr X XSSB j j(6.16)∑+-∑-=2..)(X X X X SSE ji ij(6.17)SSA 表示的是因素A 的组间方差总和,SSB 是因素B 的组间方差总和,都是各因素在不同水平下各自均值差异引起的;SSE 仍是组内方差部分,由随机误差产生。

各个方差的自由度是:SST 的自由度为nr-1,SSA 的自由度为r-1,SSB 的自由度为n-1,SSE 的自由度为nr-r-n-1=(r-1)(n-1)。

各个方差对应的均方差是:对因素A 而言: 1-=r SSA MSA (6.18) 对因素B 而言: 1-=n SSB MSB (6.19)对随机误差项而言:1---=n r nr SSEMSE (6.20)我们得到检验因素A 与B 影响是否显著的统计量分别是:)]1)(1(,1[~---=n r r F MSE MSA F A (6.21))]1)(1(,1[~---=n r n F MSE MSBF B (6.22)【例6-2】某企业有三台不同型号的设备,生产同一产品,现有五名工人轮流在此三台设备上操作,记录下他们的日产量如下表。

试根据方差分析说明这三台设备之间和五名工人之间对日产量的影响是否显著?(α=0.05)。

6-3无交互作用双因素方差分析

6-3无交互作用双因素方差分析

对因素B:
H : 0
1 2 3 4 5
地区之间无差别
H1: 1, 2 , 3, 4 , 5 不全相等 地区之间有差别
16
② 计算F值





因素A的列均值分别为:x1 21.6, x2 12.4, x3 16.4, x4 13.2, x5 11.6
s
= s (xi - x )2 + r
2
r
xj- x +
s
2
xij - xi - x j + x
i= 1
j= 1
i=1 j=1
邋 ( ) 邋 ( ) r
s
= s (xi - x )2 + r
2
r
xj- x +
s
2
xij - xi - x j + x
i= 1
j= 1
i=1 j=1
= SSA+ SSB + SSE
现欲检验包装方式和销售地区对该商品销售是否有显著性影响。(a=0.05)15
解:
若五种包装方式的销售的均值相等,则表明不同的 包装方式在销售上没有差别。
① 建立假设
对因素A: H0: 1 2 3 4 5 , 包装方式之间无差别
H1: 1, 2 , 3 , 4 , 5 不全相等, 包装方式之间有差别
方差来源
SOV
A因素影响 B因素影响 误差影响
总和
平方和 自由度 均方和
SS
df
MS
0.681
2028
0.314
4
0.078
1.052
8
F值 Fcale

双因素方差分析方法

双因素方差分析方法

(
)
dfT , df A , df B , df E ,则
SS A df A MS A = ~ F ( ( a 1) , ( a 1)( b 1) ) FA = SS E df E MS E
SS B df B MS B = ~ F ( ( b 1) , ( a 1)( b 1) ) FB = SS E df E MS E
结论:工人对产品的产量有显著影响, 结论:工人对产品的产量有显著影响, 机器对产品的产量有极显著影响. 机器对产品的产量有极显著影响.
例1的上机操作 的上机操作
原始数据,行因素水平, 原始数据,行因素水平,列因素水平
对应例1 对应例 的数据输入方式
工人对产品产量有显著影响,而机器对产品产量的影响极显著. 工人对产品产量有显著影响,而机器对产品产量的影响极显著.
1 b 水平A α i = ∑ ij = i i 水平 i对试验结果的效应 a j =1 1 a 水平 β j = ∑ ij = i j 水平Bj对试验结果的效应 b i =1 试验误差 ε ij = X ij ij
特性: 特性:
∑ α i = 0;
i =1
a
β j = 0; ε ij ~ N ( 0, σ 2 ) ∑
SST = ∑∑ X ij X
i =1 j =1
a
b
(
)
2
可分解为: 可分解为:SST = SS A + SS B + SS E
SS A = b∑ X i. X
SS B = a ∑ X . j X
j =1 a b
a
i =1 b
(
)
2
称为因素A的离差平方和, 称为因素 的离差平方和, 的离差平方和 对试验指标的影响. 反映因素 A 对试验指标的影响. 称为因素B的离差平方和, 称为因素 的离差平方和, 的离差平方和 对试验指标的影响. 反映因素 B 对试验指标的影响.

双因素方差分析

双因素方差分析

1)(m
1))
在H0B 成立时, 检验统计量
FB
SSMB (m 1) SSE (l 1)(m 1)
H0B真
~ F(m
1,(l
1)(m
1))
概率论与数理统计
❖ 1.无交互作用的双因素方差分析
➢ 要说明因素A有无显著影响, 就是要检验如下假设:
H0A:1 = 2 = … = l = 0, H1A:1, 2, …,l 不全为零
lm
➢ 误差平方和: SSE
( xij xi. x. j x )2
i1 j1
lm
➢ 总离差平方和: SST
( xij x )2
i1 j1
➢ 可以证明: SST = SSMA + SSMB + SSE
概率论与数理统计
❖ 1.无交互作用的双因素方差分析
➢ 可以证明: 构造检验统计量
ij~N(0, 2), 且相互独立, 1 ≤ i ≤ l, 1 ≤ j ≤ m,
l
ai 0,
i 1
m
j 0
j1
其中表示平均的效应, i和j分别表示因素A的第i个水 平和因素B的第j个水平的附加效应, ij为随机误差,假定ij
相互独立并且服从等方差的正态分布.
概率论与数理统计
❖1. 无交互作用的双因素方差分析
SSMA SSMB SSE
SSMA / (l – 1) MSA / MSE PA SSMB / (m – 1) MSB / MSE PB SSE / (l – 1)(m – 1)
全部
lm – 1
SSMA + SSMB +SSE
其中MSA = SSMA/(l – 1), MSB = SSMB/(m – 1),

双因素方差分析

双因素方差分析
(7-13)
三、双因素方差分析
在上述误差平方和的基础上计算均方,也就是将各平方和除 以相应的自由度。与各误差平方和相对应的自由度分别为:
SST的自由度为kr-1,SSR的自由度为k-1,SSC的自由度 为r-1,SSE的自由度为(k-1)(r-1)。
为构造检验统计量,需要计算下列各均方: ①行因素的均方,记为MSR。 ②列因素的均方,记为MSC。 ③随机误差的均方,记为MSE。
三、双因素方差分析
二、 无交互作用的双因素方差分析
1. 数据结构
在无交互作用的双因素方差分析中,由于有两个 因素,因而在获取数据时,需要将一个因素安排在“ 行”的位置,称为行因素;另一个因素安排在“列” 的位置,称为列因素。设行因素有k个水平,列因素 有r个水平,行因素和列因素的每一个水平都可以搭配 成一组,观察它们对试验指标的影响,共抽取kr个观 察数据,其数据结构见表7-8。
三、双因素方差分析
“全因子”单选按钮为系统默认项,用 来建立全模型。全模型中包括因素之间的交 互作用。如果选择分析两个因素的交互作用 ,则必须在每种水平组合下取得两个以上的 试验数据,才能实现两个因素的交互作用的 分析。如果不考虑因素间的交互作用,则应 当选择自定义模型。
三、双因素方差分析
“设定”单选按钮用来自定义模型,本例选择此项并激活下面的各项操 作,如图7-12所示。
三、双因素方差分析
2. 分析步骤
与单因素方差分析类似,双因素方差分析也包括提出假设、构造检验 统计量和决策分析等步骤。
(1)提出假设。
为了检验两个因素的影响,需要对两个因素分别提出如下假设:
①对行因素提出假设。
H0∶μ1=μ2=…=μk=μ
行因素(自变量)对因变量没有显著影响
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

12
SS A SS B RA ( ) 100% 64.7% R B ( ) 100% 5.4% SS T SS T SS e Re ( ) 100% 64.7% SS T R 为 A,B因素和残差占总体平方 和的比率
13
2)将影响作饼图表示如下: 更能直观的观察各个因素及残差对输出的影响。
6
4.双因素无交互作用方差分析案例 在注塑成形过程中,成形品尺寸与射出压力和模 腔温度有关,某工程师根据不同水平设置的射出 压力和模腔温度式样得出某成形品的关键尺寸如 下表,用方差分析两个因素对成形品关键尺寸是 否存在重要影响。
因素A:射出压力 水平1 水平2 水平3 水平1 30.51 30.47 30.84 因素B 水平2 30.97 30.29 30.79 模腔温度 水平3 30.99 29.86 30.62
SS T (x ij x) 2 1.051
i 1 j1
r
s
10
4)计算SSe。
SSe=SST-SSA-SSB=0.314
5)讲计算结果填入方差分析表格。
方差来源 SOV
A因素影响 B因素影响 误差影响 总和
平方和 自由度 均方和 SS df MS
0.681 0.057 0.314 1.052 2 2 4 8 0.34 0.028 0.078
7.3.1 无交互作用双因素方差分析
1
1.数据结构
如果知道因素A 与因素B不存在交互作用,或交互 作用不明显,可以忽略不计,此时仅仅分析因素A 与因素B各自对试验的影响是否显著 安排在试验时,对因素A与因素B的每一种水平组 合,就只需要安排一次试验,这样就可以大大减 少试验的次数,相应的数据结构如下:
16
2
3
在无交互作用的双因素方差分析模型中因 变量的取值受四个因素的影响:总体的平 均值;因素A导致的差异;因素B导致的差 异;以及误差项。写成模型的形式就是:
ìï x = m+ a + b + e (可加性假定) ïï ij i j ij ïï r s ï bj = 0 (约束条件) í 邋a i = 0 , ïï i= 1 j= 1 ïï ïï eij N (0, s 2 ) i = 1,2,, r; j = 1,2,, s (独立性、正态性、方差齐性假定) ïî
因素A 因素B 残差
14
小结 (1)
1、方差分析(ANOVA),一般用来分析一个定 量因变量与一个或几个定性自变量(因素)之间 的关系,它可以同时对多个总体的均值是否相等 进行整体检验。 2、根据研究所涉及的因素的多少,方差分析可分 为单因素方差分析和多因素方差分析(包括双因 素方差分析)。
2 i= 1 r s
r
s
2
( xj - x) + 邋 ( xij i= 1 j = 1
2
r
s
xi - x j + x) xi - x j + x)
2
j= 1 2 s 2
= s 邋( xi - x) + r
i= 1
r
( xj - x) + 邋 ( xij i= 1 j = 1
4
2.离差平方和的分解 SS = 邋 ( x - x )
r s 2 T ij i= 1 j = 1
= 邋 轾i - x) + ( x j - x) + ( xij - xi - x j + x) (x 犏 臌 i= 1 j = 1 = s 邋( xi - x) + r
F值 Fcale
4.34 0.36
F临界值 Fcrif
6.94 6.94
11
6)查F0.05(2,4)对应的F分布表,得Fcrit=6.94
7)比较FA和Fcrit,因为FA<Fcrit,因此无法拒绝零假设H0; 比较FB和Fcrit,因为FB<Fcrit,因此无法拒绝零假设H0;
射出压力不同水平设置对应的成形品尺寸均值无 显著差异,模腔温度不同水平设置对应的成形品 尺寸均值无显著差异。 8)计算各因素及残差对输出的影响-----贡献率分析 通过计算各因素及残差对因变量y的影响,可以 更直观理解因素对输出影响的重要度
r
s
2
j= 1
= SSA + SSB + SSE
SSA SSB SST SSE
5
3.无交互作用的双因素方差分析表
变差 来源 A因素 B因素 误 差 离差平方 和 SS SSA SSB SSE 自由度 df 均方 MS F值
合 计
SST
MSA=S FA=MSA/MS r-1 SA/(r-1) E MSB=S FB=MSB/MS s-1 SB/(s-1) E MSE=S (r-1)(s-1) SE/(r1)(s-1) rs-1
8
1)计算SSA。SSB
SS A Q1 s ( x i x)
i 1 r 2
SS B r ( x j x) 2
j1
s
x 总平均值
r 因素 A 的水平数
s 因素 B的水平数
本例中:s 3;r 3;x 30.59 x i 计算如下:
A因素水平 xi Xi平均值 1 2 3 B因素水平 Yj Yj=平均值 1 2 3
7
1、将实际问题转化为统计问题。 转化的统计问题为:射出压力不同设置水平 时成形品尺寸是否相同:模腔温度不同水平设置对 成形品尺寸均值是否相同。 2、建立假设。 H0:μA1=μA2=μA3;μB1=μB2=μB3 Hα:至少有一个μAi与其它不等;至少一个μBi 与其他不等 3、确定可接受的α风险系数 α=0.05 4、进行方差分析 根据本节所讲的双因素无交互作用方差公 式,我们首先需计算SST、SSA、SSB、SSe, 然后用方差分析表进行分析即可。
30.51 30.47 30.84
30.97 30.29 30.79 30.99 29.86 30.62 30.82 30.21 30.75
30.51 30.97 30.99
30.47 30.29 29.86 30.84 30.79 30.62 30.61 30.68 30.49
9
1)代入SSA计算式,得 SSA=3*[(30.82-30.59)2+ (30.2130.59)2+ (30.75-30.59)2]=0.681 2)计算SSB。 SSB= 3*[(30.61-30.59)2+ (30.68-30.59)2+ (30.49-30.59)2]=0.057 3)计算SST。
3、方差分析中的基本假设是,来自各个总体的数 据都服从正态分布,相互独立,且有相同的方差。
15
小结 (2)
4、方差分析的基本思想是,将观察值之间的总变 差分解为由所研究的因素引起的变差和由随机误差 项引起的变差,通过对这两类变差的比较做出接受 或拒绝原假设的判断的。 5、方差分析的主要步骤包括:建立假设;计算F检 验值;根据实际值与临界值的比较做出决策。 6、在方差分析中,当拒绝H0时表示至少有两个均 值有显著差异。但要知道哪些均值之间有显著差异 还需要借助于多重比较的方法,例如LSD方法。
相关文档
最新文档