信号与系统期末复习作业4及详细答案

合集下载

信号与系统期末考试试题(有答案的)

信号与系统期末考试试题(有答案的)

信号与系统期末考试试题一、选择题(共10题,每题3分 ,共30分,每题给出四个答案,其中只有一个正确的)1、 卷积f 1(k+5)*f 2(k-3) 等于 。

(A )f 1(k)*f 2(k) (B )f 1(k)*f 2(k-8)(C )f 1(k)*f 2(k+8)(D )f 1(k+3)*f 2(k-3)2、 积分dt t t ⎰∞∞--+)21()2(δ等于 。

(A )1.25(B )2.5(C )3(D )53、 序列f(k)=-u(-k)的z 变换等于 。

(A )1-z z (B )-1-z z (C )11-z (D )11--z 4、 若y(t)=f(t)*h(t),则f(2t)*h(2t)等于 。

(A ))2(41t y (B ))2(21t y (C ))4(41t y (D ))4(21t y 5、 已知一个线性时不变系统的阶跃相应g(t)=2e -2t u(t)+)(t δ,当输入f(t)=3e —t u(t)时,系统的零状态响应y f (t)等于(A )(-9e -t +12e -2t )u(t) (B )(3-9e -t +12e -2t )u(t)(C ))(t δ+(-6e -t +8e -2t )u(t) (D )3)(t δ +(-9e -t +12e -2t )u(t)6、 连续周期信号的频谱具有(A ) 连续性、周期性 (B )连续性、收敛性(C )离散性、周期性 (D )离散性、收敛性7、 周期序列2)455.1(0+k COS π的 周期N 等于(A ) 1(B )2(C )3(D )48、序列和()∑∞-∞=-k k 1δ等于 (A )1 (B) ∞ (C) ()1-k u (D) ()1-k ku9、单边拉普拉斯变换()s e ss s F 2212-+=的愿函数等于 10、信号()()23-=-t u te t f t 的单边拉氏变换()s F 等于二、填空题(共9小题,每空3分,共30分)1、卷积和[(0.5)k+1u(k+1)]*)1(k -δ=________________________2、单边z 变换F(z)=12-z z 的原序列f(k)=______________________3、已知函数f(t)的单边拉普拉斯变换F(s)=1+s s ,则函数y(t)=3e -2t ·f(3t)的单边拉普拉斯变换Y(s)=_________________________4、频谱函数F(j ω)=2u(1-ω)的傅里叶逆变换f(t)=__________________5、单边拉普拉斯变换s s s s s F +++=2213)(的原函数f(t)=__________________________6、已知某离散系统的差分方程为)1(2)()2()1()(2-+=----k f k f k y k y k y ,则系统的单位序列响应h(k)=_______________________7、已知信号f(t)的单边拉氏变换是F(s),则信号⎰-=20)()(t dx x f t y 的单边拉氏变换Y(s)=______________________________8、描述某连续系统方程为该系统的冲激响应h(t)=9、写出拉氏变换的结果()=t u 66 ,=k t 22三、(8分)四、(10分)如图所示信号()t f ,其傅里叶变换 ()()[]t f jw F F =,求(1) ()0F (2)()⎰∞∞-dw jw F 六、(10分)某LTI 系统的系统函数()1222++=s s s s H ,已知初始状态()(),20,00=='=--y y 激励()(),t u t f =求该系统的完全响应。

信号与系统期末考试复习题及答案(共8套)

信号与系统期末考试复习题及答案(共8套)

信号与系统考试题及答案(一)1. 系统的激励是)t (e ,响应为)t (r ,若满足dt)t (de )t (r =,则该系统为 线性、时不变、因果。

(是否线性、时不变、因果?) 2. 求积分dt )t ()t (212-+⎰∞∞-δ的值为 5 。

3. 当信号是脉冲信号f(t)时,其 低频分量 主要影响脉冲的顶部,其 高频分量 主要影响脉冲的跳变沿。

4. 若信号f(t)的最高频率是2kHz ,则t)f(2的乃奎斯特抽样频率为 8kHz 。

5. 信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为 一常数相频特性为_一过原点的直线(群时延)。

6. 系统阶跃响应的上升时间和系统的 截止频率 成反比。

7. 若信号的3s F(s)=(s+4)(s+2),求该信号的=)j (F ωj 3(j +4)(j +2)ωωω。

8. 为使LTI 连续系统是稳定的,其系统函数)s (H 的极点必须在S 平面的 左半平面 。

9. 已知信号的频谱函数是))00(()j (F ωωδωωδω--+=,则其时间信号f(t)为01sin()t j ωπ。

10. 若信号f(t)的211)s (s )s (F +-=,则其初始值=+)(f 0 1 。

二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。

(每小题2分,共10分)1.单位冲激函数总是满足)()(t t -=δδ ( √ )2.满足绝对可积条件∞<⎰∞∞-dt t f )(的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。

( × ) 3.非周期信号的脉冲宽度越小,其频带宽度越宽。

( √ )4.连续LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。

( √ )5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。

( × )三、计算分析题(1、3、4、5题每题10分,2题5分, 6题15分,共60分)1.信号)t (u e )t (f t-=21,信号⎩⎨⎧<<=其他,01012t )t (f ,试求)t (f *)t (f 21。

信号与系统复习题(答案全)

信号与系统复习题(答案全)

1、 若系统的输入f (t)、输出y (t) 满足()3()4t y t e ft -=,则系统为 线性的 (线性的、非线性的)、 时变的 (时变的、时不变)、 稳定的 (稳定的、非稳定的)。

2、 非周期、连续时间信号具有 连续 、非周期频谱;周期、连续时间信号具有离散、非周期 频谱;非周期、离散时间信号具有 连续 、周期频谱;周期、离散时间信号具有离散、 周期 频谱。

3、 信号f(t)的占有频带为0-10KHz,被均匀采样后,能恢复原信号的最大采样周期为 5×10-5 s . 4、 )100()(2t Sa t f =是 能量信号 (功率信号、能量信号、既非功率亦非能量信号)。

5、 ()2cos()f t t =+是 功率信号 (功率信号、能量信号、既非功率亦非能量信号)。

6、 连续信号f(t)=sint 的周期T 0= 2π ,若对f(t)以fs=1Hz 进行取样,所得离散序列f(k)=sin(k) ,该离散序列是周期序列? 否 。

7、 周期信号2sin(/2)()j n tn n f t e n ππ+∞=-∞=∑,此信号的周期为 1s 、直流分量为 2/π 、频率为5Hz 的谐波分量的幅值为 2/5 。

8、 f (t) 的周期为0.1s 、傅立叶级数系数**03355532F F F F F j --=====、其余为0。

试写出此信号的时域表达式f (t) = 5 + 6 cos ( 60 π t ) - 4 sin (100 π t ) 。

9、 f (k) 为周期N=5的实数序列,若其傅立叶级数系数()205=F ()52511,πjeF -+=()54512πjeF -+=、 则F 5 (3 )= ()54512πjeF +=- 、F 5 (4 )= ()52511πj eF +=- 、F 5 (5 )= 2 ;f(k) =())1.7254cos(62.052)9.3552cos(62.152525140525︒-⨯+︒-⨯+=∑=k k e n F n k jn πππ。

信号与系统复习题(含答案)

信号与系统复习题(含答案)

试题一一. 选择题(共10题,20分) 1、n j n j een x )34()32(][ππ+=,该序列是 。

A.非周期序列 B 。

周期3=N C 。

周期8/3=N D 。

周期24=N2、一连续时间系统y (t)= x (sint),该系统是 。

A 。

因果时不变B 。

因果时变C 。

非因果时不变 D.非因果时变 3、一连续时间LTI 系统的单位冲激响应)2()(4-=-t u e t h t ,该系统是 。

A 。

因果稳定 B.因果不稳定 C.非因果稳定 D 。

非因果不稳定4、若周期信号x[n]是实信号和奇信号,则其傅立叶级数系数a k 是 .A 。

实且偶 B.实且为奇 C 。

纯虚且偶 D. 纯虚且奇 5、一信号x(t)的傅立叶变换⎩⎨⎧><=2||02||1)(ωωω,,j X ,则x (t)为 。

A 。

t t 22sinB 。

tt π2sin C 。

t t 44sin D 。

t t π4sin6、一周期信号∑∞-∞=-=n n t t x )5()(δ,其傅立叶变换)(ωj X 为 。

A. ∑∞-∞=-k k )52(52πωδπ B 。

∑∞-∞=-k k )52(25πωδπC 。

∑∞-∞=-k k )10(10πωδπD 。

∑∞-∞=-k k)10(101πωδπ7、一实信号x [n ]的傅立叶变换为)(ωj e X ,则x[n]奇部的傅立叶变换为 。

A.)}(Re{ωj e X j B 。

)}(Re{ωj e XC 。

)}(Im{ωj e X j D. )}(Im{ωj e X8、一信号x(t )的最高频率为500Hz ,则利用冲激串采样得到的采样信号x (nT )能唯一表示出原信号的最大采样周期为 .A 。

500 B. 1000 C. 0。

05D 。

0。

0019、一信号x(t)的有理拉普拉斯共有两个极点s=-3和s=-5,若)()(4t x e t g t=,其傅立叶变换)(ωj G 收敛,则x (t)是 。

信号与系统复习题含答案完整版

信号与系统复习题含答案完整版

信号与系统复习题含答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】(C ))(t δ+(-6e -t +8e -2t)u(t) (D )3)(t δ +(-9e -t +12e -2t)u(t)6、 连续周期信号的频谱具有(A ) 连续性、周期性 (B )连续性、收敛性 (C )离散性、周期性 (D )离散性、收敛性7、 周期序列2)455.1(0+k COS π的 周期N 等于(A) 1 (B )2 (C )3 (D ) 48、序列和()∑∞-∞=-k k 1δ等于(A )1 (B) ∞ (C) ()1-k u (D) ()1-k ku9、单边拉普拉斯变换()se s s s F 2212-+=的愿函数等于10、信号()()23-=-t u te t f t的单边拉氏变换()s F 等于二、填空题(共9小题,每空3分,共30分) 1、 卷积和[()k+1u(k+1)]*)1(k -δ=________________________2、 单边z 变换F(z)= 12-z z的原序列f(k)=______________________ 3、 已知函数f(t)的单边拉普拉斯变换F(s)=1+s s,则函数y(t)=3e -2t·f(3t)的单边拉普拉斯变换Y(s)=_________________________4、 频谱函数F(j ω)=2u(1-ω)的傅里叶逆变换f(t)=__________________5、 单边拉普拉斯变换s s s s s F +++=2213)(的原函数 f(t)=__________________________6、 已知某离散系统的差分方程为)1(2)()2()1()(2-+=----kf k f k y k y k y ,则系统的单位序列响应h(k)=_______________________7、 已知信号f(t)的单边拉氏变换是F(s),则信号⎰-=2)()(t dxx f t y 的单边拉氏变换Y(s)=______________________________ 8、描述某连续系统方程为 该系统的冲激响应h(t)=9、写出拉氏变换的结果()=t u 66 ,=k t 22三(8分)已知信号()()()⎪⎩⎪⎨⎧><==↔./1,0,/1,1s rad s rad jw F j F t f ωωω设有函数()(),dtt df t s =求⎪⎭⎫ ⎝⎛2ωs 的傅里叶逆变换。

期末信号与系统试题及答案

期末信号与系统试题及答案

湖南理工学院成教期末考试试卷课 程 名 称《信号与系统》2018年度第 I 学期题号 一 二 三 四 五 六 七 八 九 十 总 分得分一、填空题:(30分,每小题3分)1. 已知 f (t )的傅里叶变换为F (j ω), 则f (2t -3)的傅里叶变换为 。

2、()dtt et12-⎰+∞∞--δ 。

3=-⎰∞∞-dt t t )()5cos 2(δ= 。

4. 已知 651)(2+++=s s s s F ,则=+)0(f ; =∞)(f 。

5. 已知 ωωπδεj t FT 1)()]([+=,则=)]([t t FT ε 。

6. 已知周期信号)4sin()2cos()(t t t f +=,其基波频率为 rad/s ;周期为 s 。

7. 已知)5(2)2(3)(-+-=n n k f δδ,其Z 变换=)(Z F ;收敛域为 。

8. 已知连续系统函数13423)(23+--+=s s s s s H ,试判断系统的稳定性: 。

9.已知离散系统函数1.07.02)(2+-+=z z z z H ,试判断系统的稳定性: 。

10.如图所示是离散系统的Z 域框图,该系统的系统函数H(z)= 。

二.(15分)如下方程和非零起始条件表示的连续时间因果LTI 系统,⎪⎩⎪⎨⎧==+=++--5)0(',2)0()(52)(4522y y t f dt dft y dt dy dty d 已知输入)()(2t e t f t ε-=时,试用拉普拉斯变换的方法求系统的零状态响应)(t y zs 和零输入响应)(t y zi ,0≥t 以及系统的全响应),(t y 0≥t 。

班级: 学生学号: 学生姓名: 适用专业年级:2007 物理 出题教师: 试卷类别:A (√)、B ()、C ( ) 考试形式:开卷( √)、闭卷( ) 印题份数:三.(14分)① 已知23662)(22++++=s s s s s F ,2]Re[->s ,试求其拉氏逆变换f (t );② 已知)2(235)(2>+-=z z z zz X ,试求其逆Z 变换)(n x 。

(完整版)《信号与系统》期末试卷与答案

(完整版)《信号与系统》期末试卷与答案

《信号与系统》期末试卷A 卷班级: 学号:__________ 姓名:________ _ 成绩:_____________一. 选择题(共10题,20分) 1、n j n j een x )34()32(][ππ+=,该序列是 D 。

A.非周期序列B.周期3=NC.周期8/3=ND. 周期24=N2、一连续时间系统y(t)= x(sint),该系统是 C 。

A.因果时不变B.因果时变C.非因果时不变D. 非因果时变3、一连续时间LTI 系统的单位冲激响应)2()(4-=-t u et h t,该系统是 A 。

A.因果稳定B.因果不稳定C.非因果稳定D. 非因果不稳定4、若周期信号x[n]是实信号和奇信号,则其傅立叶级数系数a k 是 D 。

A.实且偶B.实且为奇C.纯虚且偶D. 纯虚且奇5、一信号x(t)的傅立叶变换⎩⎨⎧><=2||02||1)(ωωω,,j X ,则x(t)为 B 。

A.tt22sin B.t t π2sin C. t t 44sin D. ttπ4sin 6、一周期信号∑∞-∞=-=n n t t x )5()(δ,其傅立叶变换)(ωj X 为 A 。

A.∑∞-∞=-k k )52(52πωδπB. ∑∞-∞=-k k)52(25πωδπ C. ∑∞-∞=-k k )10(10πωδπD.∑∞-∞=-k k)10(101πωδπ7、一实信号x[n]的傅立叶变换为)(ωj e X ,则x[n]奇部的傅立叶变换为C 。

A. )}(Re{ωj eX j B. )}(Re{ωj e X C. )}(Im{ωj e X j D. )}(Im{ωj e X8、一信号x(t)的最高频率为500Hz ,则利用冲激串采样得到的采样信号x(nT)能唯一表示出原信号的最大采样周期为 D 。

A. 500 B. 1000 C. 0.05D. 0.0019、一信号x(t)的有理拉普拉斯共有两个极点s=-3和s=-5,若)()(4t x e t g t=,其傅立叶变换)(ωj G 收敛,则x(t)是 C 。

信号与系统期末考试试卷(有详细答案).doc

信号与系统期末考试试卷(有详细答案).doc

格式《信号与系统》考试试卷(时间 120 分钟)院 / 系专业姓名学号题号一二三四五六七总分得分一、填空题(每小题 2 分,共 20 分)得分1.系统的激励是 e(t) ,响应为 r(t) ,若满足de(t)r ( t) ,则该系统为线性、时不变、因果。

dt(是否线性、时不变、因果?)2 的值为 5。

2.求积分 (t1)(t2)dt3.当信号是脉冲信号f(t)时,其低频分量主要影响脉冲的顶部,其高频分量主要影响脉冲的跳变沿。

4.若信号f(t)的最高频率是2kHz,则 f(2t)的乃奎斯特抽样频率为8kHz。

5.信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为一常数相频特性为 _一过原点的直线(群时延)。

6.系统阶跃响应的上升时间和系统的截止频率成反比。

.若信号的F(s)=3s j37。

,求该信号的 F ( j)(s+4)(s+2) (j+4)(j+2)8.为使LTI 连续系统是稳定的,其系统函数H(s ) 的极点必须在S 平面的左半平面。

1。

9.已知信号的频谱函数是0)()F(( ,则其时间信号f(t)为0j)sin(t)js110.若信号 f(t)的F ( s ) ,则其初始值f(0)1。

2(s1 )得分二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。

(每小题 2 分,共 10 分)《信号与系统》试卷第1页共 7页专业资料整理格式1.单位冲激函数总是满足 ( t )( t ) (√)2.满足绝对可积条件 f ( t ) dt 的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。

(×)3.非周期信号的脉冲宽度越小,其频带宽度越宽。

(√)4.连续 LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。

(√)5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。

(×)得分三、计算分析题(1、 3、 4、 5 题每题 10 分, 2 题 5 分,6 题15 分,共 60 分)t 10t11.信号f(t)2eu(t) ,1,信号 f ,试求 f 1 (t)*f 2 (t)。

【信号与系统期末试题附答案】填空题

【信号与系统期末试题附答案】填空题

信号与系统复习期末练习题二、填空题1.=-*-)()(21t t t t f δ________________。

2.从信号频谱的连续性和离散性来考虑,周期信号的频谱是_______________。

3。

符号函数)42sgn(-t 的频谱函数F(jω)=________________。

4。

频谱函数F (jω)=δ(ω-2)+δ(ω+2)的傅里叶逆变换f (t) = ________________。

5。

已知一线性时不变系统,在激励信号为)(t f 时的零状态响应为)(t y zs ,则该系统的系统 函数H(s)为_______。

6。

对于一个三阶常系数线性微分方程描述的连续时间系统进行系统的时域模拟时,所需积分器数目最少是_______个。

7。

一线性时不变连续因果系统是稳定系统的充分且必要条件是系统函数的极点位于S 平面的__________。

8.如果一线性时不变系统的单位冲激响应为)(t h ,则该系统的阶跃响应g(t)为_________。

9.如果一线性时不变系统的输入为)(t f ,零状态响应为)(2)(0t t f t y zs -=, 则该系统的单位冲激响应)(t h 为_________________。

10.如果一LTI 系统的单位冲激响应)()(t t h ε=,则当该系统的输入信号)(t f =)(t t ε时,其零状态响应为_________________。

11.已知x(t)的傅里叶变换为X (jω),那么)(0t t x -的傅里叶变换为_________________。

12.已知)()(01t t t x -=δ,)(2t x 的频谱为π[δ(ω+ω0)+δ(ω-ω0)],且)()()(21t x t x t y *=,那么y(t 0)= _________________。

13.若已知f 1(t)的拉氏变换F 1(s )=1/s ,则)(t f =f 1(t)*f 1(t)的拉氏变换F (s )= _________________。

信号与系统 第4章-作业参考答案

信号与系统 第4章-作业参考答案

题图 4-3-1 解:
11
第四章 傅立叶分析
第 4 章 习题参考答案
4-3-7
1)x(t)是实周期信号,且周期为 6; 3)x(t) = −x(t − 3)
1 3
设某信号x(t)满足下述条件:
2)x(t)的傅里叶系数为ak ,且当k = 0 和 k > 2时,有ak = 0;
1
4) ∫−3 |x(t)|2dt = 6 2 5)a1是正实数。
第四章 傅立叶分析
第 4 章 习题参考答案
第 4 章 习题参考答案
4-1 思考题 答案暂略 4-1 练习题 4-2-2 已知三个离散时间序列分别为 x1 ( n) = cos
2πn 2πn , x3 (n) = e , x 2 (n) = sin 25 10
π x (t ) = sin 4π t + cos 6π t + 时,试求系统输出 y (t ) 的傅立叶级数。 4
解:
3
第四章 傅立叶分析
第 4 章 习题参考答案
4因果系统: y(t) + 4y(t) = x(t)
式中x(t) 为系统输入,y(t)是系统输出。在下面两种输入条件下,求输出y(t)的傅里叶级数 展开: 1)x(t) = cos2πt ;
2
2
= 3 ) f ( t ) Sa (100t ) + Sa
解:
( 60t ) 4)
sin(4π t ) , −∞ < t < ∞ πt
9
第四章 傅立叶分析
第 4 章 习题参考答案
4)T=1/4 4-2-27 设 x(t ) 是一实值信号,在采样频率 ω s = 10000π 时, x(t ) 可用其样本值唯一确定

《信号与系统复习题(有答案)》

《信号与系统复习题(有答案)》

《信号与系统复习题(有答案)》信号与系统复习题说明: 以下给出了绝⼤多数题⽬的答案, 答案是我个⼈做的,不保证正确性,仅供参考.请务必把复习题弄明⽩并结合复习题看书.请务必转发给每个同学补充要点(务必搞明⽩):1 教材p.185例6-12 已知离散时间LTI 系统的单位冲激响应为h(n)=…,⼜已知输⼊信号x(n)=…,则系统此时的零状态响应为h(n)和x(n)的卷积.3 已知连续时间LTI 系统在输⼊信号为f(t)时的零状态响应为y(t),则输⼊信号为f(t)的导函数时对应的零状态响应为y(t)的导函数(即输⼊求导,对应的零状态响应也求导)4 教材p.138倒数第3⾏到139页上半页,请理解并记忆,必考.⼀、单项选择题1.信号5sin 410cos3t t ππ+为( A )A.周期、功率信号B.周期、能量信号C.⾮周期、功率信号D.⾮周期、能量信号2.某连续系统的输⼊-输出关系为2()()y t f t =,此系统为( C )A.线性、时不变系统B.线性、时变系统C.⾮线性、时不变系统D.⾮线性、时变系统3.某离散系统的输⼊-输出关系为()()2(1)y n f n f n =+-,此系统为( A )A.线性、时不变、因果系统B.线性、时变、因果系统C.⾮线性、时不变、因果系统D.⾮线性、时变、⾮因果系统4.积分(t t dt t--?20)()δ等于( B )A.-2δ()tB.2()u t -C.(2)u t -D.22δ()t - 5. 积分(3)t e t dt δ∞--∞-?等于( C )(此类题⽬务必做对)A.t e -B.(3)t e t δ--t t δδ= C. (2)()t t δδ= D. (2)2()t t δδ= 7.信号)(),(21t f t f 波形如图所⽰,设12()()*()f t f t f t =,则(1)f 为( D )A .1B .2C .3D .48.已知f(t)的波形如图所⽰,则f(5-2t)的波形为( C )9.描述某线性时不变连续系统的微分⽅程为()3()()y t y t x t '+=。

信号与系统习题解答 (4)

信号与系统习题解答 (4)

(h) 由1 Re{s} 0, x(t)应为双边信号
x(t )
L -1 X
(s)
L
-1
s(s
s 1 1)( s
2)
L
-1
1/2
s
1/2 s2
1 2
u (t )
1 2
e 2t u (t )
7.11 已知因果系统的系统函数 入x(t)的零状态响应。
H
(s)
s2
s,1求系统对于下列输
(e) (f)
L {teatu(t)}sin
0 (t
)u(t)}
e e e e j0 j0t
j0 j0t
L{
2j
u(t)}
e e j0 j0t
e e j0 j0t
L{
u(t)} L {
u(t)}
2j
2j
e j0
1
e j0
1
s sin 0 0 cos0
X (s) (s 3) y(0) y`(0)
Y (s) s2 3s 2
s2 3s 2
Yx (s)
s2
X (s) 3s
2
s2
1 3s
2
2 s
1 s
2 s 1
s
1
2
yx (t) 1 2et e2t u(t)
1) 5s
6
L
-1
(s
(s 1) 2)(s
3)
L
-1
(
1 s 2)
(s
2
3)
e 2t u (t )
2e 3t u (t )
(f) 由0 Re{s} 1, x(t)应为双边信号
x(t )

信号与系统(第二版) (曾禹村 著) 北京理工大学出版社 第四章作业参考答案

信号与系统(第二版) (曾禹村 著) 北京理工大学出版社 第四章作业参考答案

8 T /2 Asin( 2t / T0 )dt T 0 4A / k , k 1,3,5, x2 (t) A,0 t T / 4
ቤተ መጻሕፍቲ ባይዱ
则 x2 (t)
频谱:
4A

2k 1sin(2k 1) t ,
k 1 0

1
0 10
X ( ) F {sin t ( 1 / 3 ) sin 3 t } 1
X ( ) F { x ( t ) x ( t ) cos 20 t } 6 1 1
X ( ) X ( ) ( 20 ) ( 20 ) / 2 1 1
X ( ) X ( 20 ) / 2 X ( 20 ) / 2 1 1 1
信号与系统第二版曾禹村著北京理工大学出版社第四章作业参考答案由会员分享可在线阅读更多相关信号与系统第二版曾禹村著北京理工大学出版62.
4.2在全波整流电路中,如输入交流电压x(t),则输出电压y(t)=|x(t)|. (a)当 x(t)=cost,概略地画出输出y(t)的波形并求傅里叶系数。 (b)输入信号中直流分量振幅为多少,输出信号中直流分量振幅为多少? 解 : (a) y(t)=| cost |,T=π ,ω =2π /T=2. 1 … 0
9
-9Ω -7Ω -13Ω -11Ω 0
2 Aj /
7 Ω 9Ω
11Ω 13Ω
2 Aj 3
31Ω 33Ω 27Ω 29Ω ω
2 Aj 3

2 Aj /
2 Aj 9
1 H1(ω )
-15Ω -5Ω 0 5Ω 15Ω ω
X ( 10 ) 1

信号与系统期末考试题库及答案

信号与系统期末考试题库及答案

信号与系统期末考试题库及答案1.下列信号的分类方法不正确的是( A ):A 、数字信号和离散信号B 、确定信号和随机信号C 、周期信号和非周期信号D 、因果信号与反因果信号2。

下列说法正确的是( D ):A 、两个周期信号x (t ),y (t )的和x (t )+y (t )一定是周期信号。

B 、两个周期信号x (t ),y (t )的周期分别为2和2,则其和信号x (t )+y (t ) 是周期信号。

C 、两个周期信号x (t ),y (t )的周期分别为2和π,其和信号x (t )+y (t )是周期信号.D 、两个周期信号x (t ),y (t )的周期分别为2和3,其和信号x (t )+y (t )是周期信号.3。

下列说法不正确的是( D ). A 、一般周期信号为功率信号。

B 、 时限信号(仅在有限时间区间不为零的非周期信号)为能量信号。

C 、ε(t )是功率信号;D 、e t 为能量信号;4。

将信号f (t )变换为( A )称为对信号f (t )的平移或移位。

A 、f (t –t 0) B 、f (k–k 0) C 、f (at ) D 、f (—t )5.将信号f (t )变换为( A )称为对信号f (t )的尺度变换. A 、f (at ) B 、f (t –k 0) C 、f (t –t 0) D 、f (-t )6。

下列关于冲激函数性质的表达式不正确的是( B )。

A 、)()0()()(t f t t f δδ=B 、()t aat δδ1)(=C 、)(d )(t tεττδ=⎰∞- D 、)()-(t t δδ=7.下列关于冲激函数性质的表达式不正确的是( D ).A 、⎰∞∞-='0d )(t t δ B 、)0(d )()(f t t t f =⎰+∞∞-δC 、)(d )(t tεττδ=⎰∞- D 、⎰∞∞-=')(d )(t t t δδ8.下列关于冲激函数性质的表达式不正确的是( B )。

(完整版)信号与系统复习试题(含答案)

(完整版)信号与系统复习试题(含答案)

电气《信号与系统》复习参考练习题一、单项选择题:14、已知连续时间信号,)2(100)2(50sin )(--=t t t f 则信号t t f 410cos ·)(所占有的频带宽度为() A .400rad /s B 。

200 rad /s C 。

100 rad /s D 。

50 rad /sf如下图(a)所示,其反转右移的信号f1(t) 是( d )15、已知信号)(tf如下图所示,其表达式是()16、已知信号)(1tA、ε(t)+2ε(t-2)-ε(t-3)B、ε(t-1)+ε(t-2)-2ε(t-3)C、ε(t)+ε(t-2)-ε(t-3)D、ε(t-1)+ε(t-2)-ε(t-3)17、如图所示:f(t)为原始信号,f1(t)为变换信号,则f1(t)的表达式是()A、f(-t+1)B、f(t+1)C、f(-2t+1)D、f(-t/2+1)18、若系统的冲激响应为h(t),输入信号为f(t),系统的零状态响应是( c )19。

信号)2(4sin 3)2(4cos 2)(++-=t t t f ππ与冲激函数)2(-t δ之积为( )A 、2B 、2)2(-t δC 、3)2(-t δD 、5)2(-t δ,则该系统是()>-系统的系统函数.已知2]Re[,651)(LTI 202s s s s s H +++= A 、因果不稳定系统 B 、非因果稳定系统C 、因果稳定系统D 、非因果不稳定系统21、线性时不变系统的冲激响应曲线如图所示,该系统微分方程的特征根是( )A 、常数B 、 实数C 、复数D 、实数+复数22、线性时不变系统零状态响应曲线如图所示,则系统的输入应当是( )A 、阶跃信号B 、正弦信号C 、冲激信号D 、斜升信号23. 积分⎰∞∞-dt t t f )()(δ的结果为( ) A )0(f B )(t f C.)()(t t f δ D.)()0(t f δ24. 卷积)()()(t t f t δδ**的结果为( )A.)(t δB.)2(t δC. )(t fD.)2(t f25. 零输入响应是( )A.全部自由响应B.部分自由响应C.部分零状态响应 D .全响应与强迫响应之差2A 、1-eB 、3eC 、3-e D 、1 27.信号〔ε(t)-ε(t -2)〕的拉氏变换的收敛域为 ( )A.Re[s]>0B.Re[s]>2C.全S 平面D.不存在28.已知连续系统二阶微分方程的零输入响应)(t y zi 的形式为t t Be Ae 2--+,则其2个特征根为( )A 。

信号与系统期末复习试题附答案

信号与系统期末复习试题附答案

一、单项选择题:14、已知连续时间信号,)2(100)2(50sin )(--=t t t f 则信号t t f 410cos ·)(所占有的频带宽度为() A .400rad /s B 。

200 rad /s C 。

100 rad /s D 。

50 rad /s15、已知信号)(t f 如下图(a )所示,其反转右移的信号f 1(t) 是( )16、已知信号)(1t f 如下图所示,其表达式是( )A 、ε(t )+2ε(t -2)-ε(t -3)B 、ε(t -1)+ε(t -2)-2ε(t -3)C 、ε(t)+ε(t -2)-ε(t -3)D 、ε(t -1)+ε(t -2)-ε(t -3)17、如图所示:f (t )为原始信号,f 1(t)为变换信号,则f 1(t)的表达式是( )A 、f(-t+1)B 、f(t+1)C 、f(-2t+1)D 、f(-t/2+1)18、若系统的冲激响应为h(t),输入信号为f(t),系统的零状态响应是( )19。

信号)2(4sin 3)2(4cos 2)(++-=t t t f ππ与冲激函数)2(-t δ之积为( )A 、2B 、2)2(-t δC 、3)2(-t δD 、5)2(-t δ,则该系统是()>-系统的系统函数.已知2]Re[,651)(LTI 202s s s s s H +++= A 、因果不稳定系统 B 、非因果稳定系统C 、因果稳定系统D 、非因果不稳定系统21、线性时不变系统的冲激响应曲线如图所示,该系统微分方程的特征根是( )A 、常数B 、 实数C 、复数D 、实数+复数22、线性时不变系统零状态响应曲线如图所示,则系统的输入应当是( )A 、阶跃信号B 、正弦信号C 、冲激信号D 、斜升信号23. 积分⎰∞∞-dt t t f )()(δ的结果为( )A )0(fB )(t f C.)()(t t f δ D.)()0(t f δ24. 卷积)()()(t t f t δδ**的结果为( ) A.)(t δ B.)2(t δ C. )(t f D.)2(t f25. 零输入响应是( )A.全部自由响应B.部分自由响应C.部分零状态响应D.全响应与强迫响应之差2A 、1-eB 、3eC 、3-e D 、127.信号〔ε(t)-ε(t -2)〕的拉氏变换的收敛域为 ( )A.Re[s]>0B.Re[s]>2C.全S 平面D.不存在28.已知连续系统二阶微分方程的零输入响应)(t y zi 的形式为t t Be Ae2--+,则其2个特征根为( ) A 。

信号与系统期末考试试题

信号与系统期末考试试题

期末试题一、选择题(每小题可能有一个或几个正确答案,将正确的题号填入[ ]内) 1.f (5-2t )是如下运算的结果————————( ) (A )f (-2t )右移5 (B )f (-2t )左移5 (C )f (-2t )右移25 (D )f (-2t )左移252.已知)()(),()(21t u e t f t u t f at -==,可以求得=)(*)(21t f t f —————() (A )1-at e - (B )at e -(C ))1(1at e a -- (D )at e a-13.线性系统响应满足以下规律————————————( )(A )若起始状态为零,则零输入响应为零。

(B )若起始状态为零,则零状态响应为零。

(C )若系统的零状态响应为零,则强迫响应也为零。

(D )若激励信号为零,零输入响应就是自由响应。

4.若对f (t )进行理想取样,其奈奎斯特取样频率为f s ,则对)231(-t f 进行取样,其奈奎斯特取样频率为————————( )(A )3f s (B )s f 31 (C )3(f s -2) (D ))2(31-s f 5.理想不失真传输系统的传输函数H (j ω)是 ————————( )(A )0j tKe ω- (B )0t j Keω- (C )0t j Keω-[]()()c c u u ωωωω+--(D )00j t Keω- (00,,,c t k ωω为常数)6.已知Z 变换Z 1311)]([--=zn x ,收敛域3z >,则逆变换x (n )为——( ) (A ))(3n u n (C )3(1)nu n -(B ))(3n u n -- (D ))1(3----n u n二.(15分)已知f(t)和h(t)波形如下图所示,请计算卷积f(t)*h(t),并画出f(t)*h(t)波形。

三、(15分)四.(20分)已知连续时间系统函数H(s),请画出三种系统模拟框图(直接型/级联型/并联型)。

信号与系统期末试卷及答案

信号与系统期末试卷及答案

读书破万卷下笔如有神实验二利用DFT分析离散信号频谱一、实验目的应用离散傅里叶变换(DFT),分析离散信号的频谱。

深刻理解DFT分析离散信号频谱的原理,掌握改善分析过程中产生的误差的方法。

二、实验原理根据信号傅里叶变换建立的时域与频域之间的对应关系,可以得到有限长序列的离散傅里叶变换(DFT)与四种确定信号傅里叶变换之间的关系(见教材),实现由DFT分析其频谱。

三、实验内容?3的频谱;1.利用FFT分析信号x(310),nn?,1,...,n)?cos(8(1)、确定DFT计算的参数;N=32;n=0:N-1;x=cos(3*pi/8*n);X=fft(x,N);subplot(2,1,1);stem(n,abs(fftshift(X)));ylabel('Magnitude');xlabel('Frequency (rad)');title('朱艺星杨婕婕'); subplot(2,1,2);stem(n,angle(fftshift(X)));ylabel('Phase');xlabel('Frequency(rad)');读书破万卷下笔如有神进行理论值与计算值比较,讨论信号频谱分析过程中误差原因及改善2)(方法。

在频谱分析过程中由于取样频率过低或者由于信号的截取长度不当将会答:产生误差。

可以适当提高取样率,增加样点数,可能会产生混频现象,取样频率过低,来减少混叠对频谱分析所造成的误差。

对于连续周期信号,其时域取样必须kfo,即(其中K≥2*N+1N为最高谐波分量)其取样点数满足时域取样定理:2fm+fo。

≥≥2Nfo+fo;fs截取信号长度不当,会产生功率泄露,对周期序列进行频谱分析时,为避免泄露应做到:截取的长度应取一个基本周期或基本周期的整数倍,若待分析的周期信号事先不知道其确切的周期,则可截取较长时间长度的样点进行分析,以减少功率泄露误差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 答案4-1.拉氏变换法和算子符号法在求解微分方程时的区别和联系?解:拉氏变换法和算子符号法都能求解微分方程。

拉氏变换法可以把初始条件的作用计入,这就避免了算子法分析过程中的一些禁忌,便于把微分方程转为代数方程,简化求解过程。

但拉氏变换法得到的系统函数可能丢失零输入响应的极点故无法用来求零输入响应,而算子符号法得到的传输算子则能反映出所有零输入响应极点。

4-2.判断下列说法的正误。

(1)非周期信号的拉氏变换一定存在; 错 (2)有界周期信号的收敛域为整个右半平面; 对 (3)能量信号的收敛域为整个s 平面; 错 (4)信号2t e 的拉氏变换不存在。

错4-3.求如下信号的拉氏变换。

(1))sinh(at ;(2))cosh(at ;(3)t t ωcos ;(4)t t ωsin 。

解:(1)22111sinh()22at at e e a at s a s a s a --⎛⎫=↔-= ⎪-+-⎝⎭ (2)22111cosh()22at at e e sat s a s a s a -+⎛⎫=↔+= ⎪-+-⎝⎭(3)2222222cos ()d s s t t ds s s ωωωω-⎡⎤↔-=⎢⎥++⎣⎦ (4)222222sin ()d s t t ds s s ωωωωω⎡⎤↔-=⎢⎥++⎣⎦4-4.求图示信号)(t f 的拉氏变换)(s F 。

标明其零点和极点。

解:22242(2)()()(2)()(2)t t t t f t e u t e u t e u t e e u t ------=--=--所以2(2)42111()222s s e f t e e s s s -+---↔-=+++ 23111(1)23!!x ne x x x x n =++++++表面上一阶零点2-=z 和一阶极点2-=p ,实际上零极点相消(分子用泰勒级数展开即可),因为有限能量信号的拉氏变换在整个s 平面上收敛,故无零极点。

4-5.求图示两信号的拉氏变换。

解:(1)0()[()((21))]2n T f t u t nT u t n ∞==---+∑所以(21)2211()[](1)Tn snsTT s n f t e es s e∞-+--=↔-=+∑(2)2(21)0()[(2)((21))][]1ns n s sn n Ef t E t n t n E e e eδδ∞∞--+-===---+↔-=+∑∑ 4-6.试求下列信号的拉氏变换。

(1))]1()()[sin(--t u t u t π;(2))()42sin(t u t π-;(3))24(-t δ;(4)⎰t x x 0d )sin(π;(5))12(-t tu 。

解:(1)sin()[()(1)]sin()()sin[(1)](1)t u t u t t u t t u t ππππ--=--+-22(1)sin()()sin[(1)](1)s e t u t t u ts ππππ-+=+--↔+(2)222sin(2)()2cos 2)())444s t u t t t u t s s π-=--=++ (3)121(42)4s t e δ--↔(4)0()()sin()d sin()()(0)t df t f t x x t sF s f dtππ=⇒=↔-⎰而(0)0f =所以()sF s =£[sin()t π]2222()()F s s s s ππππ=⇒=++(5)£[)12(-t tu ]d ds=-£[(21)u t -]11222111[]()2s s d e e ds s s s --=-=+4-7.求下列函数的拉氏变换。

)(t ft12EE-34...(1))2sin(t et-;(2))sinh(t e atβ-;(3)())1(2---t u te t ;(4)te e tt 53---。

解:(1)22sin(2)(1)4t e t s -↔++(2)22111sinh()22()()()tt at at e e e t e s a s a s a βββββββ---⎛⎫-=↔-= ⎪+-+++-⎝⎭(3)()()1212(2)(1)(1)1(1)s s t t d e e s teu t e teu t e ds s s --+----⎧⎫⎡⎤+⎪⎪-=⋅-↔-=⎨⎬⎢⎥++⎪⎪⎣⎦⎩⎭(4)3511355[]limln ln ln35533t t s s e e s s s ds t s s s s s --∞→∞-+++↔-=+=+++++⎰4-8.求下列函数的拉氏逆变换。

(1)11+s ;(2)1112++s ;(3)2312+-s s ;(4))2()1()3(3+++s s s ;(5))2)(1(1++-s s s ; (6))2)(1(32+++s s ss ;(7)23795223+++++s s s s s 。

解:(1)1()1t e u t s -↔+(2)211sin ()()1tu t t s δ+↔++(3)22111()()3221t t e e u t s s s s =-↔--+--(4)22332(3)2111[(1)]()(1)(2)(1)(1)12t t s t t e e u t s s s s s s --+=-+-↔-+-++++++ (5)2132(32)()(1)(2)21t t s e e u t s s s s ---=-↔-++++(6)2231112()2()()(1)(2)12t ts s t e e u t s s s s δ--+⎡⎤=--↔--⎢⎥++++⎣⎦(7)3222597212()2()(2)()3212t t ss s s t t e e u t s s s s δδ--+++'=++-↔++-++++ 4-9.求下列函数的拉氏逆变换。

(1))1(42+-s s e s ;(2))1(1s e s -+;(3)⎪⎭⎫ ⎝⎛+9ln s s 。

解:(1)2211()[1cos(1)](1)4(1)414s s e e s t u t s s s s --=-↔---++ (2)23011[1][(2)(2)](1)s s ss n e e e u t nT u t nT T s e s ∞----==-+-+↔----+∑(3)999111()ln (1)()()(1)()999tt d s s d s tf t e u t f t e u t dt s s ds s s s t--+⎛⎫⎡⎤-↔=⋅=-↔-⇒=- ⎪⎢⎥+++⎝⎭⎣⎦4-10.试用拉氏变换分析法,求解下列微分方程。

(1))()(2)(3)(t e t r t r t r '=+'+'',0)0()0(=='--r r ,)()(t u t e =;(2))()()(4)(4)(t e t e t r t r t r +'=+'+'',2)0(,1)0(=='--r r ,)()(t u e t e t -=; (3))(8)(2)(6)(5)(t e t e t r t r t r +'=+'+'',3)0(,2)0(=='--r r ,)()(t u e t e t -=。

解:(1)2()(0)(0)3[()(0)]2()()(0)s R s sr r sR s r R s sE s e ----'--+-+=-0)0()0(=='--r r ,(0)0e -=,1()E s s=22111()()()()(32)12t tR s r t e e u t s s s s --==-⇒=-++++ (2)[]2()(0)(0)4()(0)4()()(0)()s R s sr r sR s r R s sE s e E s ----'--+-+=-+2)0(,1)0(=='--r r ,(0)0e -=,1()1E s s =+ []2()214()24()1s R s s sR s R s --+-+= 222221026()()(26)()(2)2(2)t t s R s r t e te u t s s s --+==+⇒=++++ (3)2()(0)(0)5[()(0)]6()2()2(0)8()s R s sr r sR s r R s sE s e E s ----'--+-+=-+3)0(,2)0(=='--r r ,1()1E s s =+ 22332225377()()(377)()(1)(2)(3)123t t t s s R s r t e e e u t s s s s s s ---++==+-⇒=+-++++++4-11.如图所示电路,开关闭合已很长时间,当0t =时开关打开,试求响应电流()i t 。

解:(0)5i A -= 在s 域列写方程为51010510133()52()2()()223()33s sI s I s sI s I s s s s s s +-++=⇒==-⋅++所以2310()(5)()3t i t e u t -=-4-12.求下列系统的传递函数)(/)()()(s E s R s H t h =↔。

(1)3232d d d d ()7()10()5()5()d d d d r t r t r t e t e t t t t t++=+;(2)()()1p r t e t p =⋅+;(3)∑∞=----*-----=0)1()2()]}2()([)]1()([{)(n t t n t t u t u e t u t u e t h δ;0t =解:(1)32()55()()()710R s s h t H s E s s s s+↔==++ (2)()()()()1R s s h t H s E s s ↔==+ (3)∑∞=----*-----=0)1()2()]}2()([)]1()([{)(n t t n t t u t u e t u t u e t h δ1(1)1(2)[()(1)()(2)](2)tt t t n e u t e eu t e e u t e eu t t n δ∞--------==-⋅--⋅+⋅-*-∑112(1)(21)221111[]1111111s s s s s se e e e e e e e s s s s e s e -----+-+----+↔--+⋅=⋅++++-+- (1)(){[()(1)][(1)(2)]}(2)tt n h t e u t u t eu t u t t n δ∞---==------*-∑112(1)(21)221111[]1111111s s s s s s s se e e e e e e e s s s s e s e ------+--+----+↔--+⋅=⋅++++-+- (1)(21)(1)(1)2111(1)(1)11111(1)(1)11s s s s s s s s s se e e e e e s e s e e s e-+--+-+--+------+---=⋅=⋅=⋅+-++-++ 4-13.图示电路,若以电压)(t u 作为输出,试求其系统函数和冲激响应。

相关文档
最新文档