清华大学断裂力学讲义ch3讲解
断裂力学第三讲断裂力学理论
![断裂力学第三讲断裂力学理论](https://img.taocdn.com/s3/m/e42ceb947c1cfad6185fa722.png)
27
应力强度因子
应力强度因子一般写为:
K Y a
——名义应力,即裂纹位置上按无裂纹计算的应力
a ——裂纹尺寸,即裂纹长或深
Y——形状系数,与裂纹大小、位置有关
应力强度因子单位:N.m-3/2
28
应力强度因子
3
k
Hale Waihona Puke 1平面应力3 4 平面应变
14
Ⅲ型裂纹求解
对于I型和II型裂纹来说,是属于平面问题。但对于III型裂纹, 由于裂纹面是沿z方向错开,因此平行于xy平面的位移为零, 只有z方向的位移不等于零 对于此类反平面问题,前面给出的平面问题的基本方程已不 适用,因此不能沿用Airy应力函数求解,需要从弹性力学的 一般(空间)问题出发,推导公式。弹性力学一般问题的基 本方程,可以仿照平面问题的方法导出
同。选取应力函数
=yReZII
II x
yReZII z
yII ReZIIzyImZIIz
因为
ReZzReZz
x
ReZzImZz
y
ImZz ReZz
y
所以
2II x2
yReZII
z
2 y2II 2ImZIIzyReZIIz 2 xyII ReZIIzyImZIIz
8
Ⅱ型裂纹求解
得到II型裂纹问题各应力分量表达式为
用解析函数求解III型裂纹尖端 应力强度因子的定义式
19
Ⅲ型裂纹求解
应力强度因子是在裂尖时 0存在极限,若考虑裂尖附近 的一个微小区域,则有:
KI 2ZΙΙI()
ZΙI ( )
断裂力学导论讲诉课件
![断裂力学导论讲诉课件](https://img.taocdn.com/s3/m/b6d93fb8760bf78a6529647d27284b73f3423611.png)
THANKS
感谢观看
对未来学习和研究者的建议和展望
总结:随着科学技术的发展,断裂力学仍然是一个充 满挑战和机遇的领域。对于未来的学习和研究者来说 ,深入理解断裂力学的原理和方法,结合实际工程问 题,开展创新性的研究是至关重要的。
首先,建议学习和研究者具备扎实的力学基础和一定 的工程背景知识。其次,通过参加学术会议、研讨会 等活动,与同行交流,了解最新的研究动态和趋势。 此外,积极拓展相关领域的知识和技术,例如数值模 拟和实验研究等。最后,结合实际工程问题开展研究 ,不仅可以提高研究的意义和实用性,还可以促进学 科之间的交叉和融合。
03
包括应力、应变、弹性模量、泊松比等,是理解弹性
力学的基础。
塑性力学基础知识
01
塑性力学简介
塑性力学是研究物体在塑性范围 内的应力、应变和位移关系的学 科。
02
塑性力学的基本方 程
包括屈服条件、流动法则、强化 准则等,用于描述塑性物体的力 学行为。
03
塑性力学的基本概 念
包括塑性应变、塑性应力、加工 硬化等,是理解塑性力学的基础 。
研究材料在高温高压条件下的相变过程与断裂行为之间的关联,探索相变对材料从微观结构角度出发,研究高温高压条件下材料的晶体结构、化学键合、缺陷等与断裂行为之间的关系 。
多场耦合作用下断裂力学的研究
01
多物理场耦合模型
建立多物理场(如温度场、应力场、 电场、磁场等)耦合作用的数学模型 ,研究多场耦合对材料断裂行为的影 响机制。
金属材料抗疲劳性能评估
运用断裂力学的理论和方法,评估金属材料的抗疲劳性能,为提高 工程结构的安全性和可靠性提供依据。
断裂力学在复合材料中的应用
复合材料的层间断裂
断裂力学导论讲诉课件
![断裂力学导论讲诉课件](https://img.taocdn.com/s3/m/2ccb11506ad97f192279168884868762cbaebb5f.png)
弹塑性材料在受到外力作用时,会同 时发生弹性变形和塑性变形。在裂纹 尖端附近,由于应力集中,材料会发 生屈服并进入塑性区。
能量释放率
能量释放率是描述裂纹扩展所需最小 能量的物理量。在弹塑性断裂力学中 ,当能量释放率达到材料的临界值时 ,裂纹将发生失稳扩展。
断裂韧性测试方法
紧凑拉伸试样法
压力容器的断裂分析
压力容器的断裂分析
压力容器的断裂分析主要关注压力容器在各种工况下的强度和稳定性。由于压力容器内部储存着高压气体或液体,一旦发生 破裂,后果将非常严重。因此,对压力容器的断裂分析需要采用严格的测试和评估方法,以确保压力容器的安全性和可靠性 。
压力容器的断裂分析
压力容器的断裂分析
在压力容器的断裂分析中,需要考虑压力容器的结构形式、 材料特性以及各种工况下的应力分布。通过断裂力学的理论 和方法,可以评估压力容器的强度和稳定性,为压力容器的 设计、制造和使用提供重要的安全保障。
高层建筑抗震设计
利用断裂力学原理,可以评估高层建 筑在地震作用下的抗震性能,优化抗 震设计。
机械工程
转子动力学分析
在机械工程中,断裂力学可用于转子动 力学的分析,研究转子裂纹的形成和扩 展,提高旋转机械的稳定性和可靠性。
VS
焊接结构完整性评估
焊接是机械工程中常用的连接方式,断裂 力学可以用于焊接结构的完整性评估,确 保焊接结构的可靠性和安全性。
课程目标
掌握断裂力学的基本 原理和方法。
培养学生对断裂力学 研究的兴趣和独立思 考能力。
了解断裂力学在工程 实践中的应用和案例 分析。
02
断裂力学基础知识
断裂力学的定义
总结词
断裂力学是一门研究材料断裂行为的学科。
断裂力学与断裂韧度
![断裂力学与断裂韧度](https://img.taocdn.com/s3/m/f8772b624b73f242336c5f51.png)
就会突然破裂
传统力学或经典的强
度理论解决不了带裂 纹构件的断裂问题
断裂力学应运而生
断裂力学就是研究带裂纹体的力学,它给出了含 裂纹体的断裂判据,并提出一个材料固有性能的 指标——断裂韧性,用它来比较各种材料的抗断 能力。
§3.2 格里菲斯(Griffith)断裂理论 3.2.1 理论断裂强度 金属的理论断裂强度可由原子间结合力的图形算出
某点的位移则有
平面应力情况下 位移
平面应力情况时
3. 应力强度因子K1 由上述裂纹尖端应力场可知,如给定裂纹尖端某点
§3.3 材料的断裂韧度
3.3.1 裂纹尖端的应力场
1.三种断裂类型 根据裂纹体的受载和变形情况,可将裂纹分为三种类 型:
张开型(或称拉伸型)裂纹 滑开型(或称剪切型)裂纹 撕开型裂纹
张开型(或称拉伸型)裂纹
外加正应力垂直于裂纹面,在应力作用下裂纹尖端 张开,扩展方向和正应力垂直。这种张开型裂纹通 常简称I型裂纹。
对于大多数金属材料,虽然裂纹尖端由于应力集中 作用,局部应力很高,但是一旦超过材料的屈服强 度,就会发生塑性变形。在裂纹尖端有一塑性区, 材料的塑性越好强度越低,产生的塑性区尺寸就越 大。裂纹扩展必须首先通过塑性区,裂纹扩展功主 要耗费在塑性变形上,金属材料和陶瓷的断裂过程 不同,主要区别也在这里。
设裂纹扩展单位面积所耗费的能量为R,则
R 2( s p )
而裂纹扩展的动力,对于上述的Griffith试验情况来说, 只来自系统弹性应变能的释放
定义
也就是G表示弹性应变能的释放率或者为裂纹扩展力。 因为G是裂纹扩展的动力,当G达到怎样的数值时, 裂纹就开始失稳扩展呢?
按照Griffith断裂条件G≥R R=s 按照Orowan修正公式G≥R R=2( s+ p)
第12讲 断裂力学培训讲义
![第12讲 断裂力学培训讲义](https://img.taocdn.com/s3/m/358a9ce67c1cfad6195fa777.png)
结构可靠性评价及失效分析第12讲断裂力学培训讲义1、概述1.1载荷的分类与破坏形式结构承受载荷的性质(拉、压、扭转、剪切)、大小、方向、作用位置中一项或多项不断变化(疲劳)或变化过大、过速(冲击)的情况都属于动载。
疲劳是结构失效的基本形式,约占结构失效总量的80~90%。
冲击载荷容易造成结构的脆性破坏。
造成脆性破坏,或加速疲劳破坏的原因可能是结构形式不佳(如应力集中严重)或结构工作环境的恶化(如环境温度变得过低,使材料材质变脆;或环境介质腐蚀性强,使结构缺陷加深增大)等。
疲劳破坏和脆性破坏都属于低应力破坏,发生破坏时的工作应力可能只有结构材料屈服极限的1/2,1/5,1/10,甚至没有外载荷。
例如,历史上曾经发生的破坏事件:海面上本来风平浪静,船舶却突然开裂破坏;火车尚未到达大桥,大桥却突然先行倒塌。
人类已经为突发性的低应力破坏付出了太多、太沉重的代价。
科研工作者为研究低应力破坏的机理、规律、预防措施等,做出了巨大贡献,我们应当认真学习研究这些知识,预防低应力破坏事件的发生。
1.2结构脆性断裂的特点⑴名义工作应力低: 只有材料s的1/3~1/10,甚至外载荷等于零(如图1宽板焊接接头的实验结果)。
⑵断裂之前无明显塑性变形,无征兆,突发断裂。
⑶低应力脆性破坏多发生在低温阴冷的时刻。
以上三个特点,让人猝不及防,容易造成严重危害。
⑷ 发生低应力脆性断裂的结构内,多半存在着较大的内应力,有较高的内能。
⑸ 发生低应力脆性断裂的结构上,必有裂源或应力集中点存在。
脆性断裂对缺陷和应力集中很敏感。
后两个特点,反映了低应力脆性断裂的必然性,并非无缘无故发生。
1.3结构发生脆性断裂的原因和条件(金属结构脆性断裂的能量理论)固体内部的裂纹和缺陷,导致其发生低应力脆性断裂。
使材料的实际断裂强度只有其理论强度的1/10 ~ 1/1000。
对这一现象作如下分析:⑴ 一个L B ⋅⋅δ的微裂纹体(图2),1=δ,在平均力F 的作用下,伸长了L ∆长,两端固定起来(相当于被均匀拉伸的弹性体的一个局部)。
断裂力学讲义(学生讲义)
![断裂力学讲义(学生讲义)](https://img.taocdn.com/s3/m/2c118a29ed630b1c59eeb5fa.png)
第一章 绪论§1.1 断裂力学的概念任何一门科学都是应一定的需要而产生的,断裂力学也是如此。
一提到断裂,人们自然而然地就会联想到各种工程断裂事故。
在断裂力学产生之前,人们根据强度条件来设计构件,其基本思想就是保证构件的工作应力不超过材料的许用应力,即σ≤[σ]~安全设计安全设计对确保构件安全工作也确实起到了重大的作用,至今也仍然是必不可少的。
但是人们在长期的生产实践中,逐步认识到,在某些情况下,根据强度条件设计出的构件并不安全,断裂事故仍然不断发生,特别是高强度材料构件,焊接结构,处在低温或腐蚀环境中的结构等,断裂事故就更加频繁。
例如,1943~1947年二次世界大战期间,美国的5000余艘焊接船竟然连续发生了一千多起断裂事故,其中238艘完全毁坏。
1949年美国东俄亥俄州煤气公司的圆柱形液态天然气罐爆炸使周围很大一片街市变成了废墟。
五十年代初,美国北极星导弹固体燃料发动机壳体在试验时发生爆炸。
这些接连不断的工程断裂事故终于引起了人们的高度警觉。
特别值得注意的是,有些断裂事故竟然发生在σ<<[σ]的条件下,用传统的安全设计观点是无法解释的。
于是人们认识到了传统的设计思想是有缺欠的,并且开始寻求更合理的设计途径。
人们从大量的断裂事故分析中发现,断裂都是起源于构件中有缺陷的地方。
传统的设计思想把材料视为无缺陷的均匀连续体,而实际构件中总是存在着各种不同形式的缺陷。
因此实际材料的强度大大低于理论模型的强度。
断裂力学恰恰是为了弥补传统设计思想这一严重的缺陷而产生的。
因此,给断裂力学下的定义就是断裂力学是研究有裂纹(缺陷)构件断裂强度的一门学科。
或者说是研究含裂纹构件裂纹的平衡、扩展和失稳规律,以保证构件安全工作的一门科学。
断裂力学在航空、机械、化工、造船、交通和军工等领域里都有广泛的应用前景。
它能解决抗断设计、合理选材、制定适当的热处理制度和加工工艺、预测构件的疲劳寿命、制定合理的质量验收标准和检修制度以及防止断裂事故等多方面的问题,因此是一门具有高度实用价值的学科。
清华大学断裂力学讲义ch3
![清华大学断裂力学讲义ch3](https://img.taocdn.com/s3/m/27cf4513eff9aef8951e0608.png)
4 F 0
应力函数
F Re z z z dz
11 Re 2 z
应力场
22 Re 2 z 12 Im z
2 2 K I2 K II K III G 【作业题3-5】 E 2
ui ui a x1 , ui a x1 , 2ui a x1 ,
G lim
1 a i 2 x1 , 0 ui dx1 a 0 2a 0 1 a lim x , 0 u a x1 , dx1 i 2 1 i a 0 a 0
lim 22 r , 0 lim
r 0 r 0
x1
x1 a x1 a
a
r 2a
a
2r
K I lim 2 r 22 r , 0 a
r 0
KI a
K I lim Z I z 2 z a
裂尖位移场
裂尖温度场
基于应力强度因子的断裂准则
安全 K I K IC 临界状态
实验测量KIC
KIC 材料的断裂韧性 (Fracture toughness) Compact tension (CT)
ASTM Single edge notch bend (SENB)
Crack mouth opening displacement (CMOD)
利用了对称性
2 F F,
Imz z z x
Imz z z x
断裂力学课件
![断裂力学课件](https://img.taocdn.com/s3/m/c91c40482bf90242a8956bec0975f46527d3a729.png)
从带裂纹物体的载荷——变形量关系来看,脆性断裂时的载荷与变形量一般呈线性关系,如图(1-4)。在接近最大载荷时才有很小一段非线性关系。脆性断裂的发生是比较突然的,即裂纹开始扩展的启裂点与裂纹扩展失去控制的失稳断裂点非常接近。裂纹扩展后,载荷即迅速下降,断裂过程很快就结束了。韧性断裂的载荷——变形量关系如图(1-5)所示,有较长的非线性阶段,启裂后,裂纹可以缓慢地扩展一段时间。除非载荷增加到失稳断裂点,否则就不会发生失稳断裂。对于金银等延展性相当好的材料,受载时可以发生很大的变形,但承载能力较低,不易立即发生失稳断裂,这不属于断裂力学研究的范围。
断裂力学中的三种裂纹形式
根据外力的作用方式,断裂力学按照裂纹扩展形式将介质中存在的裂纹分为三种基本形式:张开型:裂纹上下表面位移是对称的,由于法向位移的间断造成裂纹上下表面拉开;滑开型:上下表面的切向位移是反对称的,由于上表面切向位移间断,从而引起上下表面滑开,而法向位移则不间断,因而形成面内剪切;撕开型:上下表面的位移间断,沿Z方向扭剪。
断裂力学的相关概念
脆性断裂和韧性断裂
韧度(toughness)是指材料在断裂前的弹塑性变形中吸收能量的能力。高韧度材料比较不容易断裂,在断裂前往往有大量的塑性变形。例如低强度钢,在断裂前必定伸长并颈缩,是塑性大、韧度高的金属。玻璃和粉笔低韧度、低塑性材料,断裂前几乎没有变形,表形为脆性断裂。例如图(1-3)所示的一个带环形尖锐切口的圆棒,受到轴向拉伸载荷的作用,在拉断时,没有明显的塑性变形,断裂面比较平坦,而且基本与轴向垂直,这是典型的脆性断裂。若断裂前的切口根部发生了塑性变形,剩余截面的面积缩小(即发生颈缩),断口可能呈锯齿状,这种断裂一般是韧性断裂。低强度钢的断裂就属于韧性断裂。象金银的圆棒试样,破坏前可颈缩至一条线那样细,这种破坏是大塑性破坏,不能称为韧性断裂。同时,同一种材料在不同的温度或不同的截面积时,也会显出不同的断裂特征。同一种材料一般是随裂纹的存在和长度的增加,以及温度降低和零构件截面积的增大,而增加脆性断裂的倾向。
断裂力学讲义(第三章)PPT课件
![断裂力学讲义(第三章)PPT课件](https://img.taocdn.com/s3/m/ee03458b52ea551810a687a7.png)
r 21 2 rc o s 2 [K Ⅰ sin K Ⅱ (3 c o s 1 )]
因 r 0 ,各项均趋于无穷大
取 r r0 圆周上各点的
r r
0
2 2
G0 G0
起始裂纹方向取于 2 3 |0|00
根不是解
周向应力取平稳值的方向与能量释放率取平稳值的方向
又当
r | 0 0 K Ⅱ 0 1 2 c o s 2 0 [ K Ⅰ s i n 0 K Ⅱ ( 3 c o s0 1 ) ] 0
13
G 0 1 E 2K Ⅰ 0 2 lr i m 01 E 2[(2r)1 20]2
KⅠlri m0 2ry
KⅡlim r0
2rxy
21 2 rc o s 2 [K Ⅰ (1 c o s) 3 K Ⅱ sin ]
r 21 2 rc o s 2 [K Ⅰ sin K Ⅱ (3 c o s 1 )]
11
K Ⅰ 0 l a r i m 0 K Ⅰ 1 2 c o s 2 0 [ K Ⅰ ( 1 c o s0 ) 3 K Ⅱ s i n 0 ]
确定临界应力
9
§3.3 能量释放率理论
G 判据,由帕立.尼斯威米(K.Palaniswamy)提出. 假设: 裂纹沿产生最大能量释放率的方向扩展. 当在上述确定的方向上,能量释放率达到临界值时,裂纹
开始扩展. 纽斯曼(Nuismer)利用连续性假设研究了能量释放率 与最大周向正应力之间的关系.
0
6
c o s2 0[K Ⅰ sin0 K Ⅱ (3 c o s0 1 )] 0
无实际意义 K Ⅰ s in0 K Ⅱ ( 3 c o s0 1 ) 0
断裂力学讲义第八章非线性断裂力学
![断裂力学讲义第八章非线性断裂力学](https://img.taocdn.com/s3/m/ee67a40b4a7302768e993993.png)
第八章 非线性断裂力学§8.1 引 言线弹性断裂力学使我们对理想连续、均匀线弹性介质中单个裂纹的行为有了初步的认识. 但是,这些理论描述和岩石的实际行为显然有很大差距. 从§1.3我们知道, 岩石的应力应变行为仅仅在某一应力大小范围内是近似线弹性的,而且还只能针对一定尺度,这个尺度要远远大于岩石的颗粒尺度. 当我们的考察尺度小到接近颗粒尺度,或当应力超出一定范围时,岩石就表现出越来越严重的非线性. 另外,岩石的行为不是由单一裂纹决定的,而且不是由单一尺度的裂纹群体决定的. 无论是考察岩体的整体行为,还是考察岩体中某条断层的行为,都不能用现有的线弹性模型.另外,线弹性断裂力学理论本身也存在严重的缺陷. 这个理论虽然成功地解释了裂纹端部应力集中的现象,和材料的低应力脆断问题. 但是,对于介质的本构关系采取线弹性假定, 使得裂纹前缘的应力出现了奇异性,这在物理上是不可接受的. 为了克服这种物理上的不合理性, 人们提出了几种修正理论, 其中包括Dugdale(1960)的塑性区理论, 或曰带状屈服模型, Barenblatt(1962)的内聚力模型. 这些模型使得裂纹端部的本构关系出现了非线性, 而人们对于这种非线性的具体细节依然难以知晓, 因而出现了Williams 和Ewing(1972) 的重整化方法. 此外,地壳介质在长期载荷作用下,表现出流变性质,在这方面,尹祥础和郑天愉(1982)的工作是值得注意的. 本章对这些修正理论略加介绍.§8.2裂纹端部塑性区大小的估算及Irwin 修正8.2.1塑性理论的基本概念迄今为止,我们讨论的对象还局限在理想脆性材料. 所谓理想脆性材料,即材料直到断裂前其应力应变关系一直服从虎克定律. 但是,许多实际材料不能应用理想脆性体这样过于简单的模型. 岩石介质的性质在高温高压条件下会向塑性转化. 另外由于岩石其本身性质的极端复杂性(不完整性、多相性、非弹性及非均匀性等),再加上环境因素(高温、高压、长时期作用、化学腐蚀, 特别是超临界流体的应力腐蚀等)的影响,在一定差应力条件下,也会像金属类似表现为延性, 在本构关系上与塑性的表现类似. 塑性屈服的判据主要有Mises 条件和Tresca 条件.1. Mises 屈服条件当应力条件达到一定数值时,材料开始屈服,即s i σσ= (8.1)其中)(3222222zx yz xy xx zz zz yy yyxx zz yy xx i σσσσσσσσσσσσσ+++---++=用主应力表示就是22132322212)()()(s σσσσσσσ=-+-+- (8.2)在单轴拉伸实验中,032==σσ,屈服极限记为y σσ=1. 代入上式可知y s σσ= (8.3)Hencky 的解释是:Mises 条件相当于弹性形状应变能F W 等于常数. 由(2.102b)[])12/()()()(213232221μσσσσσσ-+-+-=F W因此屈服条件是)6/(2μσs F W = (8.4)Nadai 的解释是:当正八面体上剪应力0τ达到一定数值时,材料屈服. 由(2.39)和(8.2),s σσσσσσστ32)()()(312132322210=-+-+-=(8.5)而由(2.39),2032J =τ, 其中2J 是应力偏量的第二不变量. 因此Mises 屈服条件还可以表示为3/22s J σ= (8.6)2. Tresca 屈服条件当最大剪应力达到一定数值时,材料开始屈服. 如规定321σσσ≥≥,则m 31max 2τσστ=-=其中k 为材料常数. 当在应力空间讨论屈服条件时,我们不能采用321σσσ≥≥这个规定,在主应力空间中,是Tresca 屈服条件表示为一个正六边形柱体, 由下列六个平面构成:⎪⎭⎪⎬⎫=-=-=-m 13m 32m 212||2||2||τσστσστσσ (8.7)在单向拉伸时,s σσ=1, 032==σσ,所以σ1=2τm =σs ,2/ m s στ= (8.8)此外,有些材料即使其宏观性质接近弹性体,但是,由于裂纹端部的应力集中程度很高,因此势必产生或多或少的塑性变形,存在着或大或小的塑性区. 不过由于材料性质不同,工作环境各异,裂纹端部塑性区的大小差别很大. 如果令r p 表示塑性区的特征尺寸,则比值r p /a 表征着塑性区的相对大小. 当r p /a <<1时,称之为小规模屈服. 在这种情况下,除了裂纹端部极小的区域内产生塑性变形以外,大部分区域仍处于弹性范围. 对于这种情况,我们可以在线弹性断裂力学的基础上进行适当修正.8.2.2 塑性区尺寸的一级估算先介绍一种估算裂纹端部塑性区大小的简单方法. 1. I 型裂纹,由(5.25)、(6.11)可以得出裂纹端部的三个主应力为:⎪⎪⎭⎪⎪⎬⎫⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛+=2sin 12cos 22sin 12cos2I 2I1θθπσθθπσr K rK⎪⎩⎪⎨⎧=+=)( 2cos 22)()( 0I 213平面应变平面应力θπνσσνσr K (8.9) 设材料服从Mises 屈服条件, 由(8.2)和(8.3),()()()22132322212y σσσσσσσ=-+-+- (8.10)将式(8.9)、代入式(8.10)中,可得到塑性区边界的极坐标形式的曲线方程. 方程为:⎪⎪⎩⎪⎪⎨⎧⎥⎦⎤⎢⎣⎡-+⎪⎭⎫⎝⎛+=)( 2cos )21(sin 432)( 2sin312cos222222I 2222I 1平面应变平面应力θνθπσθθπσy yK K r (8.11)平面应力曲线的形状如图8.1中的实线所示. 其中以裂纹端点为极坐标原点,坐标r 1以无量纲r 1/r 01表示. r 01为θ=0(即裂纹延长线上)时平面应力的塑性区尺寸. 由式(8.11)第一式得22I 012yK r πσ=(8.12)平面应变所表示的曲线如图8.1中虚线所示,坐标1'r 也以无量纲011/'r r 表示. 可见,在其他条件相同的前提下,平面应变情况下的塑性区,明显地小于平面应力情况下的塑性区. 以θ=0时的塑性区尺寸01'r 作为. 则以θ=0代入式(8.11)可得:222I 01)21(2'νπσ-=yK r (8.13)比较式(8.12),(8.13)可得20101)21(1'ν-=r r .2. II 型裂纹由(5.38)、(6.11)可以得出裂纹端部的三个主应力为⎪⎪⎭⎫⎝⎛++-=θθπσ2II1sin 4312sin 2r K⎪⎪⎭⎫ ⎝⎛+--=θθπσ2II2sin 4312sin 2r K⎪⎩⎪⎨⎧-=)( 2sin 22)( 0II 3平面应变平面应力θπνσr K (8.14) 代入(8.10)得到塑性区尺寸为⎪⎪⎩⎪⎪⎨⎧⎥⎦⎤⎢⎣⎡+-++⎪⎭⎫⎝⎛++=)( 2sin )441(sin 4932)( 2sin sin 493222222II 2222II2平面应变平面应力θννθπσθθπσyyK K r (8.15)塑性区边界线如图8.2所示. 坐标2r 以无量纲r 2/r 02表示. r 02为θ= 0(即裂纹延长线上)时平面应力的塑性区尺寸.图8.1 I 型裂纹塑性区的一级估算22I 0223yK r πσ=(8.16)3. III 型裂纹III 型裂纹不是平面问题. 这一点可以从 III 型裂纹的应力场推导过程(§5.6)直接看出. 利用(2.18)-(2.25)的方法,由(5.53), (6.11)可以求出裂纹端部的三个主应力为rK πσ2III 1=, 02=σ, rK πσ2III 3-= (8.17)而三个主方向均不和xoy 平面平行. 将上式代入(8.10), 得到塑性区边界的方程为:22III 323yK r πσ=(8.18)所得到的塑性区外缘是一个圆柱,中心轴即为z 轴,在xoy 平面的投影是一个圆(图8.1c). 和以往的参考文献看法不同,这个结果不分平面应变和平面应力.图8.2 II 型裂纹塑性区的一级估算 图8.3 III 型裂纹塑性区的一级估算8.2.3 塑性区应力松驰的影响—塑性区尺寸的二级估算以I 型裂纹为例进行分析. 如图8.4所示,虚线AB 为无塑性区时裂纹端部的弹性应力场. I 型裂纹的主要应力分量r K yy ⋅=πσ2/I .但是,在r <r 0范围内发生塑性屈服, y yyσσ=塑性区(r <r 0)内的应力松驰还必然影响弹性区(r >r 0)内的应力分布. 由y 轴方向上力的平衡要求,近似地假定,曲线ADB 下面的面积与CFE 下面的面积相等,同时EF 下面的面积与DB 下面的面积也相等,即下下ADB CEF S S = (a) 下下DB EF S S = (b)(b)-(a), 就得到CE 下的面积(矩形)应等于曲线AD 下的面积,即:下下AD CE S S = 于是有图8.4 塑性区尺度的二级估算ππσσ0II 0220r K dr rK dr r r r yy p y ⎰⎰===将式(8.12)代入上式得:012I21r K r yp =⎪⎪⎭⎫⎝⎛=σπ (8.19) 对于无限远处垂直裂纹面作用均布拉力σ的情况, 根据(5.26)式, a K πσ=I , 由(8.19)式还可以得出()2y /σσa r p =, 上述结果与实验结果符合得相当好.8.2.4 Irwin 的等效裂纹修正从式(8.12)、(8.13)、(8.16)及(8.18)可得出结论:塑性区特征尺寸22I01~⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛yyi a K r σσσπ (8.20) 对于高强度钢及某些脆性材料,其K I C 较小,而σy 很高,因而塑性区尺寸<<a . 这种情况称为小规模屈服. Irwin 提出,只需在计算应力强度因子K 时,以等效裂纹长度2c 代替原裂纹长度2a ,则线弹性断裂力学的结论仍然有效. 等效裂纹长度2c 选取如下:0r a c += (8.21)因此)(0r a Y K +=πσ(8.22)§8.3 Dugdale(D-M)模型Dugdale(1960)提出的模型,可以用来计算塑性区的尺度. Dugdale 也认为,裂纹端部产生塑性区后,可以用一个等效裂纹所代替,如图8.5所示. 裂纹AB 长为2a ,等效裂纹A’B’的长度为2c ,而ρ+=a c其中ρ为塑性区尺度.在塑性区内裂纹实际上没有张开,这一段内的σyy =σy . 由于AA’、BB’段实际并未裂开,所以等效裂纹端点A’及B’处的应力强度因子K I 应该为零.在塑性区内等效裂纹面间相互作用着均匀的拉应力σy . σy 产生的应力强度因子K’为负值,因为它的作用是使裂纹闭合. K’的绝对值等于外载作用下的应力强度因子K’’.由5.10.4,⎰-⋅-=cay x c dx c K )(2'22πσ积分后得⎪⎪⎭⎫⎝⎛++-=-ρπρσa a a K y1cos2' 而 )("ρπσ+=a K 令 "|'|K K =得:ya a σπσρ2cos=+ (8.23)如果y σσ/<< 1,则可将⋅⋅⋅+⎪⎪⎭⎫⎝⎛-=222112cosy yσπσσπσ按级数展开后的高次项略去. 从而得: 2I 8⎪⎪⎭⎫⎝⎛=yK σπρ (8.24)将上式与式(8.20)比较可知,二者非常接近(1/π≈0.3183, π/8≈0.3927), D-M 模型得到的塑性区略大.图8.5中塑性区呈狭长条形,所以有人称之为带状屈服模型. 此外,Dugdale 分析这种模型的数学方法,主要是根据Muskhelishvili 所建立的方法,所以有时又简称为D-M 模型.§8.4 Barenblatt 内聚力模型Barenblatt(1962)从1959年起,发表了一组论文,提出了内聚力模型. 这一模型在有些方面与D-M 模型有些相似,但物理思想更深刻,应用范围也更广泛. 下面将会看到,可以把D-M 模型看作内娶力模型的一种特殊情形.Barenblatt 从分析裂纹端点的应力奇异性出发. 他认为,从物理上考虑,应力奇异性的出现是不合理的. 应力奇异性的出现,是人们所采用的模型的不完善所引起的,不是不可避免的. 为了消除裂纹端点的应力奇异性,他提出了如图8.6所示的内聚力模型. 在裂纹端部的小区域内,二裂纹面间距离很近,所以二表面原子或分子间的内聚力g (x )是不能忽略的.内聚力g(x)所对应的应力强度因子K I ’, 按式(5.89)为:⎰---=aa xa dx x p aK ρπ22I )(2' (8.25)上式中 ))((22x a x a xa -+=-, )()(x g x p =. 但g(x)只在端部很小的局域ρ里存在,且ρ<< a , 因此a r <<<<ρ,a r a x a 22≈-=+, r x a =-, ar x a x a 2))((=-+. 将上述公式代入式(8.25),并变换积分变量得:⎰-=ρπI )(2'rdrR g K (8.26)图8.5 Dugdale 带状屈服模型为了消除应力奇异性,外载荷所产生的应力强度因子"I K 与'I K 之和(代数和)必须为零. 因此得0"'I I I =+=K K K , 由此得:⎰=-=ρπI I )(2'"rdrr g K K (8.27)当g (r ) =σy (常数)时,就得到Dugdale 模型.Barenblatt 还研究了裂纹端部的位移,并且得到裂纹端部结构与应力强度因子K I 的关系,如图8.7所示.因此,对于处于平衡状态的裂纹,K I 必须为零. 而裂纹端部的构造如图8.7(c)所示,上下二裂纹面在端点处相切.(a)0I >K (b) 0I <K (c) 0I =K图8.7 裂纹端部位移、应力yyσ及I K 之间的关系§8.5 裂纹扩展阻力R 和亚临界扩展在前面几节中,我们讨论了裂纹端部塑性区的尺度. 现在转而讨论在塑性条件下的断裂准则. 首先从能量观点来讨论这个问题. 在§5.11中,我们曾经介绍过能量释放率G 及扩展阻力R 的概念. 对于理想脆性体,其断裂准则为R G ≥ (8.28)其中常数==ΓR . (8.29)而能量释放率G (以I 型裂纹为例)则为''22IE a E K G σπ⋅⋅==(8.30)所以一旦加载至G = R . 裂纹开始扩展. 此后,随着裂纹的扩展,G 不断增大,而R 保持不变. 因此必然发生失稳断裂. 用这样的材料进行断裂实验时,其P (载荷)-a (裂纹半长)曲线如图8.8(a)所示. 当载荷P 小于某一临界值P c 时,裂纹不扩展;而当P 到达P c 时,裂纹即失稳扩展.图8.6 Barenblatt 的内聚力模型但是,对于通常的韧性材料(如中低碳结构钢),特别是试件厚度很薄,成为平面应力状态时(在§8.1中已经讨论过,在其它条件相同的前提下,平面应力状态下的裂纹端部塑性区比平面应变状态下的塑性区要大得多,参看图8.1),用这样的试件进行断裂实验,其P-a 曲线如图8.8(b)所示(在实际实验中,更常用的是P -△曲线,△为位移,这里为概念清楚起见,改用P-a 曲线进行说明). 它与图8.8(a)显然不同. 当载荷达到某一载荷P i 时,裂纹开始扩展. 当裂纹扩展很小一段长度△a 后,如果不进一步增大载荷P ,裂纹就不再继续扩展. 只有不断增大P ,裂纹才随之不断扩展,这种扩展属于亚临界扩展. 当载荷P 达到临界载荷P c 时,裂纹才开始失稳扩展.(a)(b)图8.8 不同断裂类型的P -a 曲线在亚临界扩展阶段,必定有关系:R G = (8.31)因为如果G < R ,则裂纹不可能扩展(包括亚临界扩展);如果G > R ,则裂纹将加速扩展. 随着裂纹扩展,a 不断增大,因而K 及G 也不断增大[式(8.30)]. 因此,由式(8.31)可知,在亚临界扩展阶段,阻力R 必定随a 不断增大,也就是说,在亚临界扩展时,R 不是常数,而是a 的函数.R 随着裂纹长度增大的主要原因,在于裂纹端部塑性区的尺度随着a 的增加而增大[见(8.9)]. 根据热力学第一定律,在裂纹扩展面积△S c 的过程中,d s E U U U A ∆∆∆∆++= (8.32)其中△A 为外力功,△U E 为弹性应变能增量,△U s 为裂纹表面能增量,△U d 为在此过程中所耗损的机械能(主要是塑性功△A p ).对于平面情形,a B S c ∆∆⋅=. B 为试件厚度. 以△S c 除式(8.32)中各项,并引入A U E ∆∆∆∏-=, 得aB U aB U aB U aB AaB dsE∆∆∆∆∆∆∆∆∆∆∏+=-=-将上式取极限(△a →0)得:⎪⎭⎫ ⎝⎛+==-=→→a B U a B U R a B G d sa a ∆∆∆∆∆∆∏∆∆00lim lim(8.33) 由上式可知,R 由两项组成,第一项为: Γ∆∆∆=→aB U sa 0lim(材料常数)第二项主要是裂纹扩展单位面积时所消耗的塑性功. 塑性功的大小主要与塑性区的体积有关(此外还和材料的加工硬化有关). 塑性区体积2p r ∝,而a r p ∝[式(8.31)],所以,R 随着a 的增加而增加. 有人从理论上探讨过R (a )的解析表达式, 但还不够成熟. 所以到目前为止,主要还是从实验方法测定材料的R (a ), 称之为阻力曲线. 典型的阻力曲线的形状, 如图8.9中实线所示.图8.9中三条通过原点的虚线,代表不同应力水平下的能量释放率(或裂纹扩展力)G 随a 的变化情况. 按式(8.30),a E G )/(2πσ=,所以它是通过原点的直线. 但是,这个公式是线弹性断裂力学的结论. 当裂纹端部产生塑性区后,严格说来,它可能不适用. 不过对于小规模屈服的情形,应该仍然近似适用. 所以在图中我们仍然画成直线. 由图中可见,当应力不够大时[如图中的G (σ1), G (σ2)], 虽然裂纹可能扩展,但只能是亚临界扩展. 因为裂纹扩展△a 后,G < R . 当应力增大至某一临界值c σ时,它所对应的G (a )曲线与R (a )曲线相切. 除切点外,G > R ,所以裂纹将发生失稳扩展.综上所述,裂纹失稳扩展的条件为:⎪⎭⎪⎬⎫∂∂≥∂∂≥a R a G RG (8.34)§8.6 裂纹端部张开位移δ(CTOD)8.6.1 COD 判据裂纹端部张开位移(Crack Tip Opening Displacement )简称CTOD ,是指裂纹端部二裂纹面间张开的距离. 现常常叫做裂纹张开位移(COD ),通常以符号δ表示.Wells 提出,每种材料存在一个COD 的临界值δc . 当裂纹的COD 达到这一临界值时,裂纹将失稳扩展. 所以,按照他的提法,裂纹断裂判据为c δδ= (8.35)COD 或CTOD 到底指裂纹端部哪一点的位移,至今还有争议. 本书中采用Irwin 弹塑性区交界点上裂纹面间的张开距离作为CTOD ,以后简称COD.图8.9 阻力(R)曲线图8.10 裂纹端部张开位移CTOD在§8.2中已经介绍过,按Irwin 的方法,引入长为2c 的等效裂纹后,裂纹前缘坐标的端点也从O 点(原裂纹端点)移至等效裂纹端点O’处,裂纹面上沿y 轴方向产生位移0v (图8.10). 定义02v =δ (8.36) 为CTOD. 由式(5.29)()⎥⎦⎤⎢⎣⎡-+=23sin 2sin 1224I 0θθκπμr K v 令,212I0⎪⎪⎭⎫ ⎝⎛==yK r r σπ πθ=及⎪⎭⎫⎝⎛+-=ννκ13(平面应力)代入上式得 yyG E K v σπσπδI2I0442⋅=== (8.37)由此可见,δ与K I 及G I 有非常密切的关系. 因此,在小规模屈服的条件下,下述断裂准则C K K I I =, C G G I I = 与 c δδ=是一致的. 因此,δc 也和K I C 与G I C 一样,是表征材料抗断裂能力的材料常数.需要注意的是,原裂纹端部外的屈服段落'OO 实际是没有张开位移的,但在按Irwin 的方法引入的等效裂纹后,就解除了这个位移约束,该屈服区的上下表面可存在相对位移,造成位移的间断. 因此这段位移是由图8.10的计算模型化引起的. 在实际测试中,多在裂纹自由表面点测试张开位移,并采用如下经验性办法:扣去弹性张开位移以后裂纹自由表面各点的实测张开位移曲线中近似为直线部分(弹性区部分应近似为直线)线性外推到裂纹顶端所得到的张开位移. 具体操作,可参见陈篪等(1977).当塑性区尺度接近或超过裂纹长度时,称之为大规模屈服. 在这种情况下,线弹性断裂判据已不再适用. 威尔斯认为,COD 判据式(8.23)仍然适用.在大规模屈服条件下,Irwin 的塑性区修正理论已不再适用了,以下采用D-M 模型作一些分析.8.6.2 帕里斯(Paris)位移公式如图8.11所示的含裂纹板,假定板的厚度为单位1, 受力P 作用,现在要求裂纹面上下两点D 1、D 2沿其联线方向的相对位移δ.根据卡斯提杨诺定理(见§2.10),外力作用点沿作用力方向的位移等于应变能对外力的偏导数,故A 点沿P 方向的位移δ为PU ∂∂=δ (8.38)图8.11 虚力对和相对位移A如在A 点作用着一对大小相等方向相反和偶力,则上式就表示A 点沿P 方向的相对位移. 为了求D 1、D 2点之间的相对位移,可以设想沿D 1、D 2联线方向引入一对虚力F . 这时系统应变能U 就不仅和P 、a 有关,也和F 有关. 即)(F a P U U ⋅⋅=虚力对引起的相对位移为aP F F U ⋅→⎪⎭⎫⎝⎛∂∂=0lim δ (8.39) 按上式先求出偏导数F U ∂∂/(它和F 有关),再让虚力F 趋于零,这样就可获得没有虚力,仅是力P 在D 1、D 2间的相对位移.由(5.111))式,在恒载荷条件下,有Pa U G ⎪⎭⎫⎝⎛∂∂=I ,积分得 ⎰+⋅=⋅⋅ada G F P U a F P U 0I 0)()( (8.40)其中),(0F P U 是无裂纹体(0=a )的应变能.用K I P 、K I F 分别代表力P 和力F 所提供的应力强度因子. 则总的应力强度因子是二者之和,即K I =K I P +K I F由(5.125)式知,'2II E K G =,由(3.7), ⎩⎨⎧-=)( )( )1/('2平面应力平面应变E E E ν把2I I I )'1F P K K EG +=(代入(8.40)式,再代入(8.39)式,得⎥⎦⎤⎢⎣⎡∂∂⋅++∂∂=⎰→a IF IF IP F da F K K K E F U 000)(2'1lim δ 因为F a Y K IF ⋅∝, 故在F →0的极限过程中K IF =0. 上式变为da F K K E F U a IF IP F ⎰∂∂⋅+⎪⎭⎫⎝⎛∂∂==000'2δ (8.41) 这就是帕里斯(Paries)位移公式. 其中第一项是无裂纹时, D 1、D 2点在力P 作用下沿其联线方向的相对位移. 如D 1、D 2点是裂纹面上下表面的对应点,无裂纹时,D 1、D 2点重合,没有相对位移,即()0/000=∂∂==F F U δ,这时da FK K E aIF IP ⎰∂∂⋅='2δ (8.42)应当指出,在应用这个位移公式时,力P 以及D 1、D 2点的位置是不变的. 裂纹长度(或面积)是变量,积分过程就相当裂纹长度不断增大的过程.8.6.3 无限远处均匀应力σ产生的张开位移如图8.12,无限大板中心贯穿裂纹,长2c ,在无限远处作用着均匀的拉应力σ. 求距离裂纹图8.12 中心贯穿裂纹,受均匀拉应力中心为x 处的裂纹张开位移(即D 1、D 2点相对位移δ1). 为此在D 1、D 2处各引入一对虚力F ,根据(5.87)式知,该对称的虚力对引起的应力强度因子为222xc c cFK IF -⋅=π (8.43)如以2ξ代表裂纹在增大时的瞬间长度,则用ξ代替c ,就得222xFK IF -=ξξπξ(8.44)由(5.26)式,无限远处均匀应力σ在裂纹前端产生的应力场强度因子为c K IP πσ=, 对长为2ξ的瞬时裂纹,πξσ=P K I (8.45)由(8.42)式⎥⎦⎤⎢⎣⎡∂∂+∂∂=∂∂=⎰⎰⎰ξξξδd FK K d F K K E d F K K E cxIF IPxIF IP cIFIP001'2'2 因为当裂纹瞬时长度ξ<x 时,点力对F 并不作用在裂纹上下界面上. 这时作用在同一点上的点力对(大小相等,方向相反)互相抵消,对K I 无贡献,故上式第一个积分为零. 即⎰∂∂=cxIF IPd FK K E ξδ'21 (8.46)把(8.44),(8.45)代入得⎰-⋅⋅=cxd xE ξξξπξπξσδ22121'222'4x c E -=σ (8.47)这个结果和用应力函数得到的(5.31)式是相同的.8.6.4 点力对引起的张开位移如图8.13,距裂纹中心b ±处的裂纹上下表面,各作用有一对压力-P . 求距裂纹中心x 处D 1、D 2点的相对位移δ2.一对压力-P 产生的K I 也由(5.87)式给出,如裂纹瞬时长为2ξ,则222bPK IP --=ξξπξ(8.48)把(8.44)、(8.48)代入(8.46)式就得 ξξπξξξπξξξδd xbP E d FK K E cxcxIF IP222221212'2'2-⋅⋅-⋅-=∂∂=⎰⎰=()()⎰---cxd xbE P ξξξξπ2222'8 (8.49)图8.13 中心贯穿裂纹受集中力作用如果压力-P 作用在D 1、D 2点的右边,即b>x . 这时当ξ<b 时,外力对-P 不作用在裂纹面上,互相抵消,K IP =0,故积分下限应为b . 即()()ξξξξπδd xbE Pcb⎰---=22222'8由于ξ<x 时K IF 没有贡献,x<ξ<b 时K IP 没有贡献,故⎰=∂∂bxIF IPd FK K E 0'2ξ, 即()()ξξξξπd xbE P bx⎰---2222'8=0把它加在上式,就得()()⎰---=+cxxbd E P 22222'80ξξξξπδ这就表明,在作用力左边或右边,裂纹面上下的张开位移都可用(8.49)式来表示.8.6.5 分布力引起的张开位移如图8.14,在(-c, -a )以及(a, c )区间内作用着分布应力db b ⋅-)(σ. 按(8.48), 分布压力对引起的应力场强度因子为db bb K caIP 22)(2-⋅-=⎰ξσπξξ(8.50)当裂纹扩展到ξ<c 时,在(ξ, c )区间内的分布压力对由于并不作用在裂纹面上,互相抵消,对K IP 没有贡献,故上式在(ξ, c )区间内的积分为零,即积分上限为ξ.db bb K aIP 22)(2-⋅-=⎰ξσπξξξ(8.51)把(8.51)式,(8.44)式代入(8.46)式,就得分布力引起的位移为 ξδd K FK E IP cxIF ⎰∂∂='22=db bb d xE acx22222)(2'2-⋅--⎰⎰ξξπξσξξπξξξ=db bb xd E acx⎰⎰-⋅--ξξσξξξπ2222)('8(8.52)8.6.6 D-M 模型的裂纹顶端张开位移如图8.2.1所示的D-M 模型,求裂纹顶端(即±a 处)的张开位移δ. 在x=a 的D 1、D 2点引入虚力对F ,就可用前面的方法求出D 1、D 2点的相对位移(即裂纹顶端张开位移). 它由两部分构成,一是无限远处均匀应力σ在x=a 处产生的张开位移δ1,二是(-c, -a ), (a, c )之间的分布应力sσ-图8.15 受分布力作用的中心贯穿裂纹在处产生的位移2δ. 即21δδδ+= (8.53)1δ由(8.47)式给出,但a 要用c 代替, x 要用a 代替,即221'4a c E -=σδ (8.54)2δ由(8.52)式给出,但x 用a 代替,)(b σ用s σ代替,即db bad E as ca⎰⎰---=ξξσξξξπδ22222'8=⎥⎦⎤⎢⎣⎡-⋅---⎰ξπξξξπσa ad E cas122sin 2'8 (第二项分部积分) ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧----⎥⎦⎤⎢⎣⎡⋅-+--=⎰-222212222sin '8'4a ad aa a E ac E cacas sξξξξξξπσσ a cE a c aa c E ac E sssln'8sin'8'412222⋅+-⋅+--=-πσπσσ (8.55)由(8.53)式知,对D-M 模型,s c a σπσ2cos 1=-, s a c σπσ2sec =. 又c a c a 11cos 2sin ---=π 把它们代入(8.55)式就得ssE a a c E σπσπσσδ2secln '8'4222+-⋅-= (8.56)故裂纹顶端张开位移(即COD )δ为ssE a σπσπσδδδ2secln '821⋅=+= (8.57)由于D-M 模型对薄板较合适,故是平面应力状态,上式中的E’就是E . 即sEsa σπσπσδ2secln 8=(8.58)当1/<<y σσ时,将上式按级数展开,并略去高次项后可得:yyyG E K E aσσσπσδI2I 2===(8.59)比较式(8.37)与(8.59)式,可见二者的因子很接近(前者为4/π,后者为1).按照上述CTOD 的定义,显然它只适用于I 型裂纹. 但经过修正后,这一方法也能用之于II 、III 型裂纹. 这时δ的定义应分别为:⎭⎬⎫==型)。
断裂力学课件
![断裂力学课件](https://img.taocdn.com/s3/m/80000ff37c1cfad6195fa7eb.png)
裂纹处于准静止状态(例如裂纹是静止的或是以稳 定速度扩展),则动能不变化即 dT/dt=0
▪ At为裂纹总面积, 为表面能 ,即形成单位 裂纹所需要的能量。若没有塑性变形, = 若有塑性变形, > 大两个到三个数量级。
此式即为裂纹扩展的临界条件,即为此带裂纹物 体的裂纹扩展判据。脆性材料塑性变形消耗的能 量忽略不计。此时将成为脆性断裂判据。
离增加 所做的功为
当平面间距由
平衡时的间距增加到形成裂纹的间距时,总功>=
表面自由能。
0
对 理论估计值进行分析
1.对于钢材来说大约和实验测量值是同一个数量级
2.对于非常脆的材料例如玻璃,理论值就偏高不少。 释放的能量只用来形成新裂纹面积和贡献给扩展 时的动能,用在塑性变形部分很少。表面能偏低。 对于大试件表面自由能不是一材料常数。
当a增加da时位移由l增加到l+dl
l/2
失稳扩展
由
Hale Waihona Puke 得:带入数值即可求出临界的拉力。
4.内聚应力理论 ▪ 断裂的结果是造成新的裂纹面积,从原子间距的
观点来看,就是把平面间的原子分离。作为物理 模型,可视为把有相互作用力而结合在一起的两 个平面分离开。
定性分析没得到实验的充分 证明。
裂纹端点内聚应力=内聚强度裂端前后小于内聚强度, 内聚应力垂直于裂纹表面。
由于所以dw为外界对系统做功的变化量因裂纹长度改变而引起的变化量du为系统本身总应变能的变化量dwu是系统因为裂纹长度改变而引起的能量变化在不考虑塑性变形和动能的情形下dwu在唯一的裂端释放出来在对称中心裂纹时每裂端释放能量仅为dwu的一半
能量平衡原理与内聚应力理论
1.Irwin(欧文)和Orowan(奥罗万)能量平衡原理 2.能量平衡原理与Griffith理论的关系 3.如何判断裂纹是否已发生失稳扩展 4.内聚应力理论 5.小结
清华大学断裂力学讲义线弹性断裂力学共37页
![清华大学断裂力学讲义线弹性断裂力学共37页](https://img.taocdn.com/s3/m/8d90851f31b765ce050814e2.png)
51、没有哪个社会可以制订一部永远 适用的 宪法, 甚至一 条永远 适用的 法律。 ——杰 斐逊 52、法律源于人的自卫本能。——英 格索尔
53、人们通常会发现,法律就是这样 一种的 网,触 犯法律 的人, 小的可 以穿网 而过, 大的可 以破网 而出, 只有中 等的才 会坠入 网中。 ——申 斯通 54、法律就是法律它是一座雄伟的大 夏,庇 护着我 们大家 ;它的 每一块 砖石都 垒在另 一块砖 石上。 ——高 尔斯华 绥 55、今天的法律未必明天、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特
55、 为 中 华 之 崛起而 读书。 ——周 恩来
断裂力学理论基础全解PPT课件
![断裂力学理论基础全解PPT课件](https://img.taocdn.com/s3/m/44a9741e0242a8956aece469.png)
一、断裂力学的形成与发展
20世纪40年代到60年代,发生了大量的低应力脆断的压力容器事故, 容器破坏时应力低于屈服极限、甚至低于许用应力。
此类事故的特点:高强度钢或者厚的中低强度钢;低温下工作;断裂发 生在焊接接头或应力集中处。直接的原因是结构中有裂纹存在,由于裂纹 的扩展而引起破坏。
三、线弹性断裂力学基本理论
2、裂纹的开裂型式 线弹性断裂分析是建立在弹性力学的基础上,研究的 对象是带有裂纹的线弹性体。 对于各种复杂的断裂形式,总可以分解成三种基本断 裂类型的组合,这三种基本类型是Ⅰ型、Ⅱ型和Ⅲ型 断裂。
第7页/共29页
第八章 压力容器缺陷安全评定
Ⅰ型断裂属于张开型断裂,外加应力σ与裂纹 垂直,在应力σ作用下,裂纹尖端张开,裂纹扩 展方向与应力σ方向垂直。
第1页/共29页
第一节 断裂力学基础
一、断裂力学的形成与发展
断裂力学是研究含裂纹物体的强度和裂纹扩展规律的科 学。根据所研究的裂纹尖端附近材料塑性区的大小,可 分为线弹性断裂力学和弹塑性断裂力学。 线弹性断裂力学的理论基础:应力强度因子理论和 Griffith能量理论。 弹塑性断裂力学的理论基础:COD理论、J积分理论。
第八章 压力容器缺陷安全评定
利用弹性力学方法,可得到裂纹尖端附近任一点
(r,q)处的正应力sx、sy和剪应力txy。
sx
K cosq 1 sin q sin 3q
2r 2
2 2
K s a
sy
K
q
cos
1
sin
q
sin
3q
2r 2
2 2
t xy
K sin q cosq cos3q 2r 2 2 2
断裂力学讲义第五章 线弹性断裂力学
![断裂力学讲义第五章 线弹性断裂力学](https://img.taocdn.com/s3/m/84cd253367ec102de2bd8992.png)
第五章 线弹性断裂力学§5.1 引 言断裂力学是从材料强度问题提出的。
随着固体物理、物理力学等学科的发展,人们已能够大致从理论上计算出某些固体材料(特别是单晶体)的理论强度t σ。
例如,Orowan(1949)得到πσ2/E t ≈, Zhurkov (1957)得到E t ≈σ。
其中E 为杨氏模量。
但试验中测得的实际材料强度远远低于计算所得的理论强度, 两者往往相差几个数量级。
这一情况吸引着不少科学家去研究现有材料的强度比理论强度低的原因。
人们很早就认识到这是由于实际固体中存在着大量缺陷所致。
但这种认识在很长一段时期里只停留在定性说明阶段。
而对于缺陷如何定量地影响材料的强度,直到断裂力学的产生,才得到较明显的进展。
§4.2介绍了含椭圆孔平板受拉伸时的弹性解。
当拉伸应力σ垂直于椭圆长轴时,长轴端点处的环向应力最大。
由§4.2可得()σσb a /21max += (5.1)又椭圆长轴端点处的曲率半径为a b /2=ρ, 因此(5.1)又可以改写成()σρσ/21max a += (5.2)因而应力集中系数α为ρα/21a += (5.3)当ρ很小时,α很大。
当0→b 时,椭圆孔就退化为长为a 2的直线裂纹。
更一般的提法是0→ρ。
按上述计算公式得到∞→α。
这样的结果不能用传统的连续介质力学的观点来解释。
Griffith 没有直接考虑裂纹尖端的应力,绕过这一矛盾,而计算由于裂纹的存在,整个弹性板所释放的弹性势能为(参看§5.4)'/22E a W c πσ= (5.4)为简便起见,设板的厚度为1. 其中E 为杨氏弹性模量。
由于裂纹的出现,增加的表面能为:Γa S 4= (5.5) 其中Γ为单位面积的表面能。
Griffith 认为当裂纹端部扩展一小段长度da (裂纹长度从2a →2a+2da )时,弹性势能的释放率dW c /da ,如果大于或等于表面能的增加率dS/da ,则裂纹处于不稳定状态,势必进一步扩展,因此而得到裂纹扩展的条件为dadSda dW c =(5.6) 将(5.4),(5.6)代入上式,得临界应力σg 为:⎪⎭⎪⎬⎫-==)( )1(/2)( /22平面应变平面应力νπΓσπΓσa E a E g g (5.7)其中E 、Γ是材料常数。
断裂力学讲解
![断裂力学讲解](https://img.taocdn.com/s3/m/818912d1336c1eb91b375d8b.png)
※ G 的实验测量—柔度标定
P
?
?T
C?a ??
CM
C?a ?:与裂纹有关的试件柔度
CM :试验机柔度
整个加载系统的总弹性能为
? ? U total e
?
1 2
P
?
T
?
1 2C
?T2
a?
CM
能量释放率:
G?
?
????
?U
total e
?A
?????T
?
?
1 B
????
?U
total e
?a
?????T
?
P2 2B
dC da
与加载方式(即 CM )无关!
※裂纹扩展的稳定性讨论
?G ?a
?T
?
P 2 ?d 2C
2B
? ?
da
2
?
2 C ? CM
?? ?
dC da
??2 ?
? ? ?
【题
2-4】
d 2C da 2
?
C
2 ? CM
?? dC ? da
??2 ?
? ? ?
2B P2
?Gc ?a
失稳扩展 随遇平衡 稳定裂纹
平衡) ?Legendre 变换和状态函数的选择 ?存在一个特征尺度,尺寸效应
【题
2-5】利用 GBda ? ?W ? dU e ? d?
?
d?
da
da ,设
CM ? 0
?G
(i) (ii)
推导 P
给定时的 G
和
?a
;
P
以上都是针对给定位移 ? 或载荷 P 的特
殊情况,一般情况下,如果已知 P?a ?,
断裂力学讲义
![断裂力学讲义](https://img.taocdn.com/s3/m/0542694e15791711cc7931b765ce0508763275f9.png)
J
2 cr 0
Pc dcr
a a0
J c
da
J
a
T
4P2 c2
1
CM
CM
P cr
J c
静止裂纹柔度曲线
由此式可以计算裂纹扩展驱动力J积 分随裂纹扩展的变化
【习题5-7】推导并理解杨卫书上公式(2.91)-(2.98)
提示:有的公式有错。需要利用深缺口公式:
P c
c第r 24页2c/P共32页
25JQ
第Y13页/共32页
JQ J IC
如何测JR阻力曲线?试件一旦起裂按道理J积分的概念就不完全正确 了,但在实际过程中,认为在一些条件下(如裂纹少量扩展和稍后 要讲的J控制扩展情况下),仍可以在实验验证的情况下继续使用。 仍采用深缺口单试件法并采用卸载柔度来确定裂纹长度。
▪ 利用卸载柔度计算裂纹长度 ▪ 在计算J时的假设(解释)
可以记为 M c2
R
M
c
M c
2c
2
M c
J
M 0 c
d 2
第8页/共3c2页0
Md
也可以由量纲分析得到
J
0
M c
d
2 c
Md
0
量纲:
M ~ F E, ys ~ F / L2 c ~ L 和无量纲
根据定理
M
c
2
ys
;
;
E
ys
c2
~ 是无量纲函数
M c2
M c
2c
2M c
R
M
M
c
第9页/共32页
附:定理( Buckingham π theorem) E.Buckinghan,1915 量纲分析中的关键定理(key theorem in dimensional analysis)
断裂力学与断裂韧度解析PPT文档46页
![断裂力学与断裂韧度解析PPT文档46页](https://img.taocdn.com/s3/m/1afa1fdb0b4c2e3f562763d6.png)
•
26、我们像鹰一样,生来就是自由的 ,但是 为了生 存,我 们不得 不为自 己编织 一个笼 子,然 后把自 己关在 里面。 ——博 莱索
•
27、法律如果不讲道理,即使延续时 间再长 ,也还 是没有 制约力 的。— —爱·科 克
•
28、好法律是由坏风俗创造出来的。 ——马 克罗维 乌斯
END
•
29、在一切能够接受法律支配的人类 的状态 中,哪 里没有 法律, 那,也可以废除 法律。 ——塞·约翰逊
16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0
12
M.L. Williams. On the stress distribution at the base of a stationary crack. Journal of Applied Mechanics 24, 109-115 (1957).
应力强度因子KI,II,III与G之间的关系 G 与裂纹延伸时能量的变化有关
I、II型裂纹
4F 0
应力函数 F Re z z z dz
应力场
11 Re2 z 22 Re2 z 12 Imz
位移场
2u1 Re z 2u2 Im z
3 4 3
1
Plane strain Plane stress
Westergaard应力函数法( Westergaard stress function)
到的。
G
K
2 I
K
2 II
K2 III
E 2
在II型和III型加载下裂纹扩展往往会发生拐折和分叉。对很
多材料的实验观察表明,裂纹实际的扩展路径会逐渐转向为I
型断裂占优的路径。
此外,I型断裂最为危险。
G
K
2 I
E
实验测量应力强度因子
电测法 裂尖应变
光弹法
裂尖主应力
数字图像相关(Digital image correlation) 热弹性法(Thermoelastic Method)
在前面的平面问题求解中,需要确定两个解析函数(z)和(z) ,其实在对称和
反对称特例下,可利用Westergaard函数进一步简化为一个解析函数的求解。
以I型问题为例:
F Re zz zdz
12 x1,0=0 x1 , 利用了对称性
2F F,
Imzz z Imzz z 0
x2 0
a0 a
a0 2a
a
0 32
x1, 0
u3dx1
1
lim a0 a
a 0
32
x1
,
0
u3
a
x1
,
dx1
G
K2 III
2
针对I、II、III型裂纹
x2
x2
σ
u
x1
a
u
x1
a
i2
KM a
2 x1
O
x1
i 1, 2, 3 M II I III
ui
ui a x1, ui a x1, 2ui a
x2 0
zz z A A为实常数 x2 0
u v u v x y y x
解析延拓(定义见下页): z A zz
1
G lim a0 2a
a
0 i2
x1, 0
ui dx1
1 lim
a0 a
a 0
i
2
x1
,
0
ui
a
x1,
dx1
x1,a xΒιβλιοθήκη 2KMa a
1 1 4
II I III
G
K
2 I
K
2 II
K2 III
E 2
【作业题3-5】
复合型裂纹
Ga
a
0 i2
x1,
0
ui
a
x1,
dx1
wtip a
如果不是固定位移载荷加载(如固定力),是何结论?
可由能量平衡来理解
F
裂纹扩展
Gda dU Fd
逐渐放松保持力过程
wtip da dU Fd
F
这种假设裂纹闭合张开的虚拟过程的分析仍然适用。
x2
x2
σ
x1
a
u
a u
G
K
2 I
K
2 II
K2 III
x1
E 2
平面应变断裂韧性:
能量释放率和应力强度因子关系是假定裂纹呈直线延伸下得
裂尖位移场
裂尖温度场
基于应力强度因子的断裂准则
实验测量KIC
安全
KI KIC 临界状态
KIC 材料的断裂韧性 (Fracture toughness)
ASTM Single edge notch bend (SENB)
Compact tension (CT)
平面应变
2
B
2.5
K IC y
2
a
2.5
KIC y
Crack mouth opening displacement (CMOD)
KQ
PQ BW
f
a W
应力强度因子求解
此前,只讨论了裂尖的渐近解,这里将讨论如何结合几何和载 荷条件来确定应力强度因子。主要有以下一些方法: ❖ Westergaard应力函数法( Westergaard stress function) ❖ 权函数法(Weight function) ❖ 线性叠加法 (Principle of superposition)
2u3
2u3 r 2
1 r
u3 r
1 r2
2u3 2
0
u3 r1uˆ3
ui 0 as r 0
为什么有如此渐近的形式?
分离变量法 u3 r, Rruˆ3
2u3
2R r 2
uˆ3
1 r
R r
uˆ3
R r2
2uˆ3 2
0
12
r2 R
2R r 2
r R
R r
1 uˆ3
2uˆ3 2
首先假设固定位移加载
针对III型裂纹
x2
A
B
σ
x1
a
x2
u
u
x1
a
KIII
lim
x1 0
2 x1 32 x1, 0
32 x1, 0
KIII
2 x1
u3 u3+ a x1, u3- a x1, =2u3+ a x1, =
2
2KIII
1
a x1 2
G lim U A UB lim 1
第三章:线弹性断裂力学
断裂模式及对称性分析 三型裂纹裂尖场的渐近解
复变函数(回顾) 三型裂纹裂尖场的解
应力强度因子K K-G关系
计算K的常用方法 讨论
反平面剪切问题(一个相对简单的问题)
3 , 0
3
1 2 u3,
3 2 3
整理可得调和方程(或由Navier方程直接简化)
渐近解
2u3 0
U e
1 U e
G
A
B a
KI,II,III仅与裂纹尖端区域的场强度有关
KI K II
K III
lim
r0
2
r
22 12
r,0
r,
0
32
r
,
0
KI,II,III与G之间的关系?
George Rankine Irwin
G.R. Irwin. Analysis of stresses and strains near the end of a crack traversing a plate. Journal of Applied Mechanics 24, 361-364 (1957).
应力强度因子的计算:
KM
lim x1 0
2x1 2i x1,0
i 1, 2, 3 M II I III
Westergaard应力函数法( Westergaard stress function)
之前的解析函数构造时只关心裂尖处的渐近场及边界条件,Westergaard 应力函数方法将满足所有边界,并能给出全场解。