最新教科版高中物理必修二测试题全套及答案
物理必修二测试题及答案
物理必修二测试题及答案一、选择题(每题2分,共20分)1. 根据牛顿第二定律,物体所受的合力等于物体质量与加速度的乘积。
如果一个物体的质量为5kg,受到的合力为20N,那么它的加速度是多少?A. 4m/s²B. 2m/s²C. 0.4m/s²D. 0.2m/s²答案:B2. 光在真空中的传播速度是:A. 2.998×10⁸ m/sB. 3.00×10⁸ m/sC. 3.00×10⁵ km/sD. 3.00×10⁵ m/s答案:A3. 一个物体从静止开始做匀加速直线运动,经过4秒后的速度达到16m/s,那么它的加速度是:A. 4m/s²B. 2m/s²C. 3m/s²D. 1m/s²答案:B4. 根据能量守恒定律,能量既不能被创造也不能被消灭,只能从一种形式转换为另一种形式。
以下哪项描述是错误的?A. 机械能可以转化为内能B. 电能可以转化为光能C. 内能可以转化为机械能D. 能量可以被创造答案:D5. 在静电场中,电荷的电场力的方向与电场线的方向:A. 相同B. 相反C. 垂直D. 不确定答案:A6. 一个物体在水平面上受到一个恒定的外力作用,其运动状态为:A. 静止B. 匀速直线运动C. 匀加速直线运动D. 曲线运动答案:C7. 根据热力学第一定律,系统内能的变化等于系统吸收的热量与对外做的功的代数和。
以下哪项描述是正确的?A. 系统吸收热量,内能一定增加B. 系统对外做功,内能一定减少C. 系统吸收热量且对外做功,内能可能增加也可能减少D. 系统不吸收热量也不对外做功,内能不变答案:C8. 在理想气体状态方程PV=nRT中,P代表压力,V代表体积,n代表摩尔数,R代表气体常数,T代表温度。
当温度不变时,气体的体积与压力的关系是:A. 成正比B. 成反比C. 不变D. 无法确定答案:B9. 根据电磁感应定律,当导体在磁场中运动时,会在导体两端产生感应电动势。
物理必修二测试题及答案
物理必修二测试题及答案一、选择题(每题3分,共30分)1. 以下哪个选项是光的波动性的表现?A. 光的反射B. 光的折射C. 光的干涉D. 光的衍射答案:C2. 根据牛顿第二定律,以下哪个说法是正确的?A. 力是维持物体运动的原因B. 力是改变物体运动状态的原因C. 力的大小与物体速度成正比D. 力的大小与物体加速度成反比答案:B3. 电磁波的传播速度在真空中是恒定的,其值为:A. 299,792,458 m/sB. 300,000,000 m/sC. 3.0×10^8 m/sD. 3.0×10^5 km/s答案:C4. 以下哪种力是保守力?A. 摩擦力B. 重力C. 阻力D. 浮力答案:B5. 根据能量守恒定律,以下哪种情况是可能的?A. 能量可以被创造B. 能量可以被消灭C. 能量可以从一种形式转化为另一种形式D. 能量的总量可以增加答案:C6. 以下哪个选项是电磁感应现象的描述?A. 磁场中电流的产生B. 电流中磁场的产生C. 磁场中电场的产生D. 电场中磁场的产生答案:A7. 以下哪个选项是描述热力学第一定律的?A. 能量守恒定律B. 热力学第二定律C. 熵增原理D. 热力学第三定律答案:A8. 以下哪个选项是描述理想气体状态方程的?A. PV = nRTB. P = ρRT/VC. PV = nMRTD. PV = nRT/M答案:A9. 以下哪个选项是描述光电效应的?A. 光照射在金属表面时,金属会吸收光能并转化为热能B. 光照射在金属表面时,金属会吸收光能并产生电流C. 光照射在金属表面时,金属会发射电子D. 光照射在金属表面时,金属会反射光答案:C10. 根据相对论,以下哪个说法是正确的?A. 时间是绝对的B. 质量是绝对的C. 长度是相对的D. 速度是相对的答案:D二、填空题(每题4分,共20分)1. 根据库仑定律,两个点电荷之间的静电力与它们电荷量的乘积成正比,与它们之间距离的平方成______。
教科版高中物理必修二章末测试题及答案全套
教科版高中物理必修二章末测试题及答案全套章末综合测评(一)(时间:60分钟满分:100分)一、选择题(本题共8小题,共48分,在每小题给出的四个选项中,第1~5题只有一项符合题目要求,第6~8题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得零分)1.游泳运动员以恒定的速率垂直于河岸渡河,当水速突然变大时,对运动员渡河时间和经历的路程产生的影响是()A.路程变大,时间延长B.路程变大,时间缩短C.路程变大,时间不变D.路程和时间均不变【解析】运动员渡河可以看成是两个运动的合运动:垂直河岸的运动和沿河岸的运动.运动员以恒定的速率垂直河岸渡河,在垂直河岸方向的分速度恒定,由分运动的独立性原理可知,渡河时间不变;但是水速变大,沿河岸方向的运动速度变大,因时间不变,则沿河岸方向的分位移变大,总路程变大,故选项C 正确.【答案】 C2.如图1所示,在不计滑轮摩擦和绳子质量的条件下,当小车以速度v匀速向右运动到如图1所示位置时,物体P的速度为()图1A.v B.v cos θC.vcos θD.v cos2θ【解析】如图所示,绳子与水平方向的夹角为θ,将小车的速度沿绳子方向和垂直于绳子方向分解,沿绳子方向的速度等于P的速度,根据平行四边形定则得,v P=v cos θ,故B正确,A、C、D错误.【答案】 B3.甲、乙两球位于同一竖直线上的不同位置,甲比乙高h,如图2所示,甲、乙两球分别以v1、v2的初速度沿同一水平方向抛出,且不计空气阻力,则下列条件中有可能使乙球击中甲球的是()图2A.同时抛出,且v1<v2B.甲比乙后抛出,且v1>v2C.甲比乙早抛出,且v1>v2D.甲比乙早抛出,且v1<v2【解析】两球在竖直方向均做自由落体运动,要相遇,则甲竖直位移需比乙大,那么甲应早抛,乙应晚抛;要使两球水平位移相等,则乙的初速度应该大于甲的初速度,故D选项正确.【答案】 D4.弹道导弹是指在火箭发动机推力作用下按预定轨道飞行,关闭发动机后按自由抛体轨迹飞行的导弹,若关闭发动机时导弹的速度是水平的,不计空气阻力,则导弹从此时起水平方向的位移()A.只由水平速度决定B.只由离地高度决定C.由水平速度、离地高度共同决定D.与水平速度、离地高度都没有关系【解析】不计空气阻力,关闭发动机后导弹水平方向的位移x=v0t=v02hg,可以看出水平位移由水平速度、离地高度共同决定,选项C正确.【答案】 C5.以初速度v0水平抛出一个物体,经过时间t物体的速度大小为v,则经过时间2t,物体速度大小的表达式正确的是()A.v0+2gt B.v+gtC.v20+(2gt)2D.v2+2(gt)2【解析】物体做平抛运动,v x=v0,v y=g·2t,故2t时刻物体的速度v′=v2x+v2y=v20+(2gt)2,C正确,A错误;t时刻有v2=v20+(gt)2,故v′=v2+3(gt)2,B、D错误.【答案】 C6.(多选)有一物体在离水平地面高h处以初速度v0水平抛出,落地时的速度为v,竖直分速度为v y,水平射程为l,不计空气阻力,则物体在空中飞行的时间为()A.lv0 B.h2gC.v2-v20g D.2hv y【解析】由l=v0t得物体在空中飞行的时间为lv0,故A正确;由h=12gt2,得t=2hg,故B错误;由v y=v2-v2以及v y=gt,得t=v2-v20g,故C正确;由于竖直方向为初速度为0的匀变速直线运动,故h=v y2·t,所以t=2hy,故D正确.【答案】ACD7.如图3所示,一个小球从楼梯的某一级台阶边缘正上方的O点水平抛出,当抛出时的速度为v 1时,小球经过时间t a 正好落在a 点,当抛出时的速度为v 2时,小球经过时间t b 正好落在b 点,则( )图3A .v 2<2v 1B .v 2=2v 1C .v 2>2v 1D .t a >t b【解析】 根据h =12gt 2,由于h a >h b ,故t a >t b ,D 正确.由于xb =2x a ,而t a >t b ,故v 2>2v 1,C 正确.【答案】 CD8.如图4所示,一小球以初速度v 0沿水平方向射出,恰好垂直地射到一倾角为30°的固定斜面上,并立即反方向弹回.已知反弹速度的大小是入射速度大小的34,则下列说法中正确的是( )图4A .在碰撞中小球的速度变化大小为72v 0 B .在碰撞中小球的速度变化大小为12v 0C .小球在竖直方向下落的距离与在水平方向通过的距离的比为 3D .小球在竖直方向下落的距离与在水平方向通过的距离之比为32 【解析】 小球垂直落到斜面上,根据平行四边形定则将速度分解,如图所示,则v=v0sin 30°=2v0,反弹后的速度大小为v′=34v=32v0,碰撞中小球的速度变化大小为Δv=|v′-v|=72v0,选项A正确,选项B错误;小球在竖直方向下落的距离为y=v2y2g=(v cos 30°)22g=3v202g,水平方向通过的距离为x=v0t=v0·v cos 30°g=3v20g,位移之比为yx=32,选项D正确,选项C错误.【答案】AD二、非选择题(共4小题,共52分,按题目要求作答)9.(10分)在研究平抛运动的实验中,用一张印有小方格的纸记录轨迹,小方格的边长L=1.25 cm,若小球在平抛运动途中的几个位置如图5中a、b、c、d所示,则小球平抛的初速度v0=______(用L、g表示),其值是______.(g取9.8 m/s2).图5【解析】根据题意,仔细审查图中a、b、c、d四点的相对位置,发现相邻的两点间的水平距离均为2L,则物体在相邻的两点间运动时间相等,设这个相等时间为T0,由于竖直方向是加速度为g的匀加速运动,由Δy=aT2可得L=gT20,再由水平方向是匀速运动得2L=v0T0,联立上述两式解得v0=2Lg=0.70 m/s.【答案】2Lg0.70 m/s10.(12分)河宽d=60 m,水流速度v1=6 m/s,小船在静水中速度v2=3 m/s,则:(1)小船渡河的最短时间是多少;(2)小船渡河的最短航程是多少.【解析】(1)当船头垂直河岸前进时,渡河时间最短,有:t min=dv2=603s=20 s.(2)由于v2<v1,无论船的航向如何,合速度均不可能垂直于河岸,船不可能到达正对岸,而应到达其下游某点.由于v1、v2和v之间满足平行四边形定则,其中v1确定,v2大小确定,方向可调,画出v2所有可能的方向,从中选择v与河岸夹角最大的方向,即为最短位移.如图所示,先作出OA表示水流速度v1,然后以A为圆心,以v2的大小为半径作圆,过O作圆的切线OC与圆相切于C,连接AC,再过O作AC的平行线OB,过C作OA的平行线交OB于B,则OB表示船对水的速度v2和船对水的航向,从图中不难看出,船沿OCD行驶到对岸航程最短.此时v2与河岸的夹角θ满足cos θ=v2v1=12,故最短位移x=dcos θ=120 m.【答案】20 s120 m11. (14分)某同学在某砖墙前的高处水平抛出一个石子,石子在空中运动的部分轨迹照片如图6所示.从照片可看出石子恰好垂直打在一倾角为37°的斜坡上的A点.已知每块砖的平均厚度为10 cm,抛出点到A点竖直方向刚好相距200块砖,g取10 m/s2.(sin 37°=0.6,cos 37°=0.8)求:图6(1)石子在空中运动的时间t;(2)石子水平抛出的速度v0.【解析】(1)由题意可知:石子落到A点的竖直位移y=200×10×10-2 m=20 m由y=gt2 2得t=2 s.(2)由A点的速度分解可得v0=v y tan 37°又因v y=gt,解得v y=20 m/s故v0=15 m/s.【答案】(1)2 s(2)15 m/s12.(16分)如图7所示,在粗糙水平台阶上静止放置一质量m=1.0 kg的小物块,它与水平台阶表面的动摩擦因数μ=0.25,且与台阶边缘O点的距离s=5 m.在台阶右侧固定了一个1/4圆弧挡板,圆弧半径R=5 2 m,今以O点为原点建立平面直角坐标系.现用F=5 N的水平恒力拉动小物块,已知重力加速度g取10 m/s2.图7(1)为使小物块不能击中挡板,求拉力F作用的最长时间;(2)若小物块在水平台阶上运动时,水平恒力一直作用在小物块上,当小物块过O点时撤去拉力,求小物块击中挡板上的位置的坐标.【解析】(1)为使小物块不会击中挡板,设拉力F作用最长时间t1时,小物块刚好运动到O点.由牛顿第二定律得:F-μmg=ma1解得:a1=2.5 m/s2减速运动时的加速度大小为:a2=μg=2.5 m/s2由运动学公式得:s=12a1t21+12a2t22而a1t1=a2t2解得:t1=t2= 2 s.(2)水平恒力一直作用在小物块上,由运动学公式有:v20=2a1s解得小物块到达O点时的速度为:v0=5 m/s小物块过O点后做平抛运动.水平方向:x=v0t竖直方向:y=12gt2又x2+y2=R2解得位置坐标为:x=5 m,y=5 m.【答案】(1) 2 s(2)x=5 m,y=5 m章末综合测评(二)(时间:60分钟满分:100分)一、选择题(本题共10小题,共60分,在每小题给出的四个选项中,第1~7题只有一项符合题目要求,第8~10题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得零分)1.对于物体做匀速圆周运动,下列说法中正确的是()A.其转速与角速度成反比,其周期与角速度成正比B.运动的快慢可用线速度描述,也可用角速度来描述C.匀速圆周运动的速度保持不变D.做匀速圆周运动的物体,其加速度保持不变【解析】由公式ω=2πn可知,转速和角速度成正比,由ω=2πT可知,其周期与角速度成反比,故A错误;运动的快慢可用线速度描述,也可用角速度来描述,所以B正确;匀速圆周运动的速度大小不变,但速度方向在变,所以C 错误;匀速圆周运动的加速度大小不变,方向在变,所以D错误.【答案】 B2.如图1所示,一偏心轮绕垂直纸面的轴O匀速转动,a和b是轮上质量相等的两个质点,则偏心轮转动过程中a、b两质点()图1A.角速度大小相同B.向心力大小相同C.线速度大小相同D.向心加速度大小相同【解析】O点为圆心,a和b两质点与O点的距离不相等,即圆周运动的半径不相等,但两质点与圆心连线在相等时间内转过的圆心角相等,因此,两质点的角速度大小相同,线速度大小不相同,选项A正确,选项C错误;向心力为F=mRω2,两质点的质量与角速度都相等,半径不相等,则向心力与向心加速度不相同,选项B、D均错误.【答案】 A3.荡秋千是儿童喜爱的一项体育运动,当秋千荡到最高点时,小孩的加速度方向是图2中的()图2A.竖直向下a方向B.沿切线b方向C.水平向左c方向D.沿绳向上d方向【解析】如图,将重力分解,沿绳子方向T-G cos θ=m v2R,当在最高点时,v=0,故T=G cos θ,故合力方向沿G2方向,即沿切线b方向,由牛顿第二定律,加速度方向沿切线b方向.【答案】 B4.一小球沿半径为2 m的轨道做匀速圆周运动,若周期T=4 s,则() A.小球的线速度大小是0.5 m/sB.经过4 s,小球的位移大小为4π mC.经过1 s,小球的位移大小为2 2 mD.若小球的速度方向改变了π2rad,经过时间一定为1 s【解析】小球的周期为T=4 s,则小球运动的线速度为v=2πrT=π,选项A错误;经过4 s后,小球完成一个圆周运动后回到初始位置,位移为零,选项B错误;经过1 s后,小球完成14个圆周,小球的位移大小为s=2R=2 2 m,选项C正确;圆周运动是周期性运动,若方向改变π2弧度,经历的时间不一定为1 s,选项D错误.【答案】 C5.如图3所示,一圆盘可绕通过圆心且垂直于盘面的竖直轴转动,在圆盘上放一块橡皮,橡皮块随圆盘一起转动(俯视为逆时针).某段时间内圆盘转速不断增大,但橡皮块仍相对圆盘静止,在这段时间内,关于橡皮块所受合力F的方向的四种表示(俯视图)中,正确的是()图3【解析】橡皮块做加速圆周运动,合力不指向圆心,但一定指向圆周的内侧.由于做加速圆周运动,速度不断增加,故合力与速度的夹角小于90°,故选C.【答案】 C6.长度L=0.50 m的轻杆OA,A端有一质量m=3.0 kg的小球,如图4所示,小球以O点为圆心在竖直平面内做圆周运动,通过最高点时小球的速率为 2 m/s(g取10 m/s2),则此时细杆OA受到()图4A.6 N的拉力B.6 N的压力C.24 N的拉力D.24 N的压力【解析】设小球以速率v通过最高点时,球对杆的作用力恰好为零,即:mg=m v2L,v=gL=10×0.5 m/s= 5 m/s.由于v0=2 m/s< 5 m/s,小球过最高点时对细杆产生压力,如图所示由牛顿第二定律:mg-F N=m v20/L得F N=mg-m v20/L=3×10 N-3×220.5N=6 N.【答案】 B7.如图5所示,乘坐游乐园的翻滚过山车时,质量为m的人随车在竖直平面内旋转,下列说法正确的是()图5A .车在最高点时人处于倒坐状态,全靠保险带拉住,没有保险带,人就会掉下来B .人在最高点时对座位不可能产生大小为mg 的压力C .人在最低点时对座位的压力等于mgD .人在最低点时对座位的压力大于mg【解析】 过山车是竖直面内杆系小球圆周运动模型的应用.人在最低点时,由向心力公式可得:F -mg =m v 2R ,即F =mg +m v 2R >mg ,故选项C 错误,选项D 正确;人在最高点,若v >gR 时,向心力由座位对人的压力和人的重力的合力提供,若v =gR 时,向心力由人的重力提供,若v <gR 时,人才靠保险带拉住,选项A 错误;F >0,人对座位产生压力,压力大小F =m v 2R -mg ,当v 2=2Rg 时F =mg ,选项B 错误.【答案】 D8.在云南省某些地方到现在还要依靠滑铁索过江(如图6甲),若把滑铁索过江简化成图乙的模型,铁索的两个固定点A 、B 在同一水平面内,AB 间的距离为L =80 m ,绳索的最低点离AB 间的垂直距离为h =8 m ,若把绳索看做是圆弧,已知一质量m =52 kg 的人借助滑轮(滑轮质量不计)滑到最低点的速度为10 m/s(g 取10 m/s 2),那么( )图6A .人在整个绳索上运动可看成是匀速圆周运动B.可求得绳索的圆弧半径为104 mC.人在滑到最低点时对绳索的压力为570 N D.在滑到最低点时人处于失重状态【解析】根据题意,R2=402+(R-8)2得R=104 m在最低点F-mg=m v2 R得F=570 N此时人处于超重状态,B、C选项正确.【答案】BC9.有一种杂技表演叫“飞车走壁”,由杂技演员驾驶摩托车沿圆台形表演台的侧壁高速行驶,做匀速圆周运动.如图7所示,图中虚线表示摩托车的行驶轨迹,轨迹离地面的高度为h,下列说法中正确的是()图7A.h越高,摩托车对侧壁的压力将越大B.h越高,摩托车做圆周运动的线速度将越大C.h越高,摩托车做圆周运动的周期将越大D.h越高,摩托车做圆周运动的向心力将越大【解析】摩托车受力如图所示.由于N=mg cos θ所以摩托车受到侧壁的压力与高度无关,保持不变,摩托车对侧壁的压力F也不变,A 错误;由F =mg tan θ=m v 2r =mω2r 知h 变化时,向心力F 不变,但高度升高,r 变大,所以线速度变大,角速度变小,周期变大,选项B 、C 正确,D 错误.【答案】 BC10.如图8所示,有一个半径为R 的光滑圆轨道,现给小球一个初速度,使小球在竖直面内做圆周运动,则关于小球在过最高点的速度v ,下列叙述中正确的是( )图8A .v 的极小值为gRB .v 由零逐渐增大,轨道对球的弹力逐渐增大C .当v 由gR 值逐渐增大时,轨道对小球的弹力也逐渐增大D .当v 由gR 值逐渐减小时,轨道对小球的弹力逐渐增大【解析】 因为轨道内壁下侧可以提供支持力,故最高点的最小速度可以为零,A 错误.若在最高点v >0且较小时,球做圆周运动所需的向心力由球的重力跟轨道内壁下侧对球向上的力N 1的合力共同提供,即mg -N 1=m v 2R ,当N 1=0时,v =gR ,此时只有重力提供向心力.由此知,速度在0<v <gR 时,轨道内壁下侧的弹力随速度的增大(减小)而减小(增大),故B 错误、D 正确.当v >gR 时,球的向心力由重力跟轨道内壁上侧对球的向下的弹力N 2共同提供,即mg +N 2=m v 2R ,当v 由gR 逐渐增大时,轨道内壁上侧对小球的弹力逐渐增大,故C 正确.【答案】 CD二、非选择题(共3小题,共40分,按题目要求作答)11.(12分)一水平放置的圆盘,可以绕中心O点旋转,盘上放一个质量是0.4 kg的铁块(可视为质点),铁块与中间位置的转轴处的圆盘用轻质弹簧连接,如图9所示.铁块随圆盘一起匀速转动,角速度是10 rad/s时,铁块距中心O点30 cm,这时弹簧对铁块的拉力大小为11 N,g取10 m/s2,求:图9(1)圆盘对铁块的摩擦力大小.(2)若此情况下铁块恰好不向外滑动(视最大静摩擦力等于滑动摩擦力),则铁块与圆盘间的动摩擦因数为多大?【解析】(1)弹簧弹力与铁块受到的静摩擦力的合力提供向心力,根据牛顿第二定律得:F+f=mω2r代入数值解得:f=1 N.(2)此时铁块恰好不向外侧滑动,则所受到的静摩擦力就是最大静摩擦力,则有f=μmg故μ=fmg=0.25.【答案】(1)1 N(2)0.2512.(12分)图10甲为游乐场的悬空旋转椅,我们把这种情况抽象为图乙的模型:一质量m=40 kg的球通过长L=12.5 m的轻绳悬于竖直平面内的直角杆上,水平杆长L′=7.5 m.整个装置绕竖直杆转动,绳子与竖直方向成θ角.当θ=37°时,(取sin 37°=0.6,cos 37°=0.8)求:图10(1)绳子的拉力大小;(2)该装置转动的角速度.【解析】(1)对球受力分析如图所示,则F T=mgcos 37°=490 N.(2)球做圆周运动的向心力由重力和绳子的拉力的合力提供,即mg tan 37°=mω2(L sin 37°+L′),得ω=g tan 37°L sin 37°+L′=0.7 rad/s.【答案】(1)490 N(2)0.7 rad/s13.(16分)如图11所示,半径为R,内径很小的光滑半圆管竖直放置,两个质量均为m的小球A、B以不同速率进入管内,A通过最高点C时,对管壁上部的压力为3mg,B通过最高点C时,对管壁下部的压力为0.75mg.求A、B两球落地点间的距离.图11【解析】 两个小球在最高点时,受重力和管壁的作用力,这两个力的合力作为向心力,离开轨道后两球均做平抛运动,A 、B 两球落地点间的距离等于它们平抛运动的水平位移之差.对A 球:3mg +mg =m v 2A R v A =4gR对B 球:mg -0.75mg =m v 2B R v B =14gR s A =v A t =v A 4R g =4R s B =v B t =v B 4R g =R所以s A -s B =3R .【答案】 3R章末综合测评(三)(时间:60分钟 满分:100分)一、选择题(本题共10小题,共60分,在每小题给出的四个选项中,第1~7题只有一项符合题目要求,第8~10题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得零分)1.在物理学建立、发展的过程中,许多物理学家的科学发现推动了人类历史的进步.关于科学家和他们的贡献,下列说法中错误的是( )A .德国天文学家开普勒对他的导师——第谷观测的行星数据进行了多年研究,得出了开普勒三大行星运动定律B .英国物理学家卡文迪许利用“卡文迪许扭秤”首先较准确的测定了万有引力常量C .伽利略用“月—地检验”证实了万有引力定律的正确性D .牛顿认为在足够高的高山上以足够大的水平速度抛出一物体,物体就不会再落在地球上【解析】 根据物理学史可知C 错,A 、B 、D 正确.【答案】 C2.宇航员王亚平在“天宫一号”飞船内进行了我国首次太空授课,演示了一些完全失重状态下的物理现象.若飞船质量为m ,距地面高度为h ,地球质量为M ,半径为R ,引力常量为G ,则飞船所在处的重力加速度大小为( )A .0 B.GM (R +h )2 C.GMm (R +h )2 D.GM h 2【解析】 飞船受的万有引力等于在该处所受的重力,即GMm(R +h )2=mg ,得g =GM(R +h )2,选项B 正确.【答案】 B3.(多选)通过观察冥王星的卫星,可以推算出冥王星的质量.假设卫星绕冥王星做匀速圆周运动,除了引力常量外,至少还需要两个物理量才能计算出冥王星的质量.这两个物理量可以是( )A .卫星的速度和角速度B .卫星的质量和轨道半径C .卫星的质量和角速度D .卫星的运行周期和轨道半径【解析】 根据线速度和角速度可以求出半径r =v ω,根据万有引力提供向心力则:GMm r 2=m v 2r ,整理可以得到:M =v 2r G =v 3Gω,故选项A 正确,B 、C 错误;若知道卫星的周期和半径,则GMm r 2=m ⎝ ⎛⎭⎪⎫2πT 2r ,整理得到:M =4π2r 3GT 2,故选项D 正确.【答案】 AD4.如图1所示,A 为静止于地球赤道上的物体,B 为绕地球沿椭圆轨道运行的卫星,C 为绕地球做圆周运动的卫星,P 为B 、C 两卫星轨道的交点.已知A、B、C绕地心运动的周期相同,相对于地心,下列说法中正确的是()图1A.物体A和卫星C具有相同大小的线速度B.物体A和卫星C具有相同大小的加速度C.卫星B在P点的加速度与卫星C在该点的加速度一定不相同D.可能出现在每天的某一时刻卫星B在A的正上方【解析】物体A和卫星B、C周期相同,故物体A和卫星C角速度相同,但半径不同,根据v=ωR可知二者线速度不同,A项错;根据a=Rω2可知,物体A和卫星C向心加速度不同,B项错;根据牛顿第二定律,卫星B和卫星C在P点的加速度a=GMr2,故两卫星在P点的加速度相同,C项错误;对于D选项,物体A是匀速圆周运动,线速度大小不变,角速度不变,而卫星B的线速度是变化的,近地点最大,远地点最小,即角速度发生变化,而周期相等,所以如图所示开始转动一周的过程中,会出现A先追上B,后又被B落下,一个周期后A和B都回到自己的起点.所以可能出现:在每天的某一时刻卫星B在A的正上方,则D正确.【答案】D5.同步卫星位于赤道上方,相对地面静止不动.如果地球半径为R,自转角速度为ω,地球表面的重力加速度为g.那么,同步卫星绕地球的运行速度为()A.RgB.RωgC. R2ωg D.3R2ωg【解析】 同步卫星的向心力等于地球对它的万有引力G Mmr 2=mω2r ,故卫星的轨道半径r =3GMω2.物体在地球表面的重力约等于所受地球的万有引力G Mm R 2=mg ,即GM =gR 2.所以同步卫星的运行速度v =rω=ω·3gR 2ω2=3gR 2ω,D 正确.【答案】 D6.若在某行星和地球上相对于各自水平地面附近相同的高度处、以相同的速率平抛一物体,它们在水平方向运动的距离之比为2∶7.已知该行星质量约为地球的7倍,地球的半径为R ,由此可知,该行星的半径约为( )A.12R B.72R C .2RD.72R【解析】 物体平抛时水平方向满足x =v 0t ,所以t 1t 2=x 1x 2=27;竖直方向由h =12 gt 2得g =2h t 2,因此g 1g 2=t 22t 21=74.在星球表面物体所受的重力等于万有引力,由g =GM R 2得R 1R 2=M 1g 2M 2g 1=2,又因为R 2=R ,所以R 1=2R ,故选C.【答案】 C7.恒星演化发展到一定阶段,可能成为恒星世界的“侏儒”——中子星.中子星的半径较小,一般在7~20 km ,但它的密度大得惊人.若某中子星的半径为10 km ,密度为1.2×1017 kg/m 3,那么该中子星上的第一宇宙速度约为( )A .7.9 km/sB .16.7 km/sC .2.9×104 km/sD .5.8×104 km/s【解析】 中子星上的第一宇宙速度即为它表面处的卫星的环绕速度,此时卫星的轨道半径近似地认为是该中子星的球半径,且中子星对卫星的万有引力充当向心力,由G Mmr 2=m v 2r ,得v=GMr,又M=ρV=ρ4πr33,得v=r4πGρ3=1×104×4×3.14×6.67×10-11×1.2×10173m/s=5.8×107 m/s=5.8×104 km/s.【答案】 D8.火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知()A.太阳位于木星运行轨道的一个焦点上B.火星和木星绕太阳运行速度的大小始终相等C.火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积【解析】太阳位于木星运行椭圆轨道的一个焦点上,A正确;由于火星和木星沿各自的椭圆轨道绕太阳运行,火星和木星绕太阳运行速度的大小变化,B 错误;根据开普勒行星运动定律可知,火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方,C正确;相同时间内,火星与太阳连线扫过的面积不等于木星与太阳连线扫过的面积,D错误.【答案】AC9.设宇航员测出自己绕地球做匀速圆周运动的周期为T,离地高度为H,地球半径为R,则根据T、H、R和引力常量G,能计算出的物理量是() A.地球的质量B.地球的平均密度C.飞船所需的向心力D.飞船线速度的大小【解析】由GMm(R+H)2=m4π2T2(R+H),可得:M=4π2(R+H)3GT2,选项A可求出;又根据ρ=M43πR3,选项B可求出;根据v=2π(R+H)T,选项D可求出;由于飞船的质量未知,所以无法确定飞船的向心力.【答案】ABD10.宇宙中两个星球可以组成双星,它们只在相互间的万有引力作用下,绕两星球球心连线的某点做周期相同的匀速圆周运动.根据宇宙大爆炸理论,双星间的距离在不断缓慢增加,设双星仍做匀速圆周运动,则下列说法正确的是()A.双星相互间的万有引力减小B.双星做圆周运动的角速度不变C.双星做圆周运动的周期增大D.双星做圆周运动的速度增大【解析】双星间的距离在不断缓慢增加,根据万有引力定律,F=G m1m2 L2,知万有引力减小,故A正确.根据G m1m2L2=m1r1ω2,G m1m2L2=m2r2ω2,知m1r1=m2r2,v1=ωr1,v2=ωr2,轨道半径之比等于质量的反比,双星间的距离变大,则双星的轨道半径都变大,根据万有引力提供向心力,知角速度变小,周期变大,线速度变小,故B、D错误,C正确.【答案】AC二、非选择题(共3小题,共40分.按题目要求作答)11.(12分) 已知太阳的质量为M,地球的质量为m1,月球的质量为m2,当发生日全食时,太阳、月球、地球几乎在同一直线上,且月球位于太阳与地球之间,如图2所示.设月球到太阳的距离为a,地球到月球的距离为b,则太阳对地球的引力F1和对月球的吸引力F2的大小之比为多少?图2【解析】 由太阳对行星的引力满足 F ∝mr 2知, 太阳对地球的引力 F 1=GMm 1(a +b )2,太阳对月球的引力 F 2=G Mm 2a 2, 故F 1/F 2=m 1a 2m 2(a +b )2.【答案】 m 1a 2m 2(a +b )212.(12分)我国探月工程已规划至“嫦娥四号”,并计划在2017年将“嫦娥四号”探月卫星发射升空,到时将实现在月球上自动巡视机器人勘测.已知万有引力常量为G ,月球表面的重力加速度为g ,月球的平均密度为ρ,月球可视为球体,球体积计算公式V =43πR 3.求:(1)月球质量M ;(2)“嫦娥四号”探月卫星在近月球表面做匀速圆周运动的环绕速度v . 【解析】 (1)设月球半径为R ,则 G MmR 2=mg 月球的质量为: M =ρ43πR 3联立得:M =9g 316π2ρ2G 3,R =3g4πρG . (2)万有引力提供向心力: G MmR 2=m v 2R。
教科版高中物理必修第二册课后习题 第五章 经典力学的局限性与相对论初步 第四、五章测评
第四、五章测评(时间:75分钟满分:100分)一、单项选择题(本题共7小题,每小题4分,共28分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列描述的运动,牛顿运动定律不适用的是( A )A.研究原子中电子的运动B.研究“神舟十四号”飞船的高速发射C.研究地球绕太阳的运动D.研究飞机从北京飞往纽约的航线,并注意到低速和高速的标准是相对于光速,可判定牛顿运动定律适用于B、C、D中描述的运动,故选A。
2.(山东德州高一期末)如图所示,一质量为m的小滑块(可视为质点)从斜面上的P点由静止下滑,在水平面上滑行至Q点停止运动。
已知P点离水平面高度为h,小滑块经过斜面与水平面连接处时无机械能损失,重力加速度为g。
为使小滑块由Q点静止出发沿原路返回到达P点,需对小滑块施加一个始终与运动方向相同的拉力,则拉力至少对小滑块做功为( B )A.mghB.2mghC.2.5mghD.3mgh,设小滑块由P点到Q点,摩擦力做功为W,由动能定理有mgh+W=0,设小滑块由Q点到P点,拉力做功为W1,由动能定理有W1+W-mgh=0,联立解得W1=2mgh,故选B。
3.有一把长为L的尺子竖直放置,现让这把尺子沿水平方向以接近光的速度运行,运行过程中尺子始终保持竖直,那么我们此时再测量该尺子的长度将( C )A.大于LB.小于LC.等于LD.无法测量的,现在尺子在竖直方向没发生高速运动,由此可知它的长度将不变,故选项C正确。
4.(江苏淮安高一期末)如图所示,两个完全相同的小球P、Q分别与轻弹簧两端固定连接,开始时弹簧处于压缩状态。
某时刻将P、Q从距地面高h 处同时释放,下落到地面时P、Q间的距离等于释放时的距离,不计空气阻力,重力加速度为g,则( D )A.下落过程中P的机械能保持不变B.下落过程中P、Q的总机械能保持不变C.小球P落至地面时的速度v<√2ghD.当小球P的加速度最大时,P、Q的总机械能最小,P、Q组成的系统仅受到竖直向下的重力和弹力作用,系统机械能守恒;小球P除受重力外,还受弹簧弹力作用,所以下落过程中P的机械能不守恒,故A错误。
高中物理选择性必修第二册综合复习与测试试卷及答案_教科版_2024-2025学年
综合复习与测试试卷(答案在后面)一、单项选择题(本大题有7小题,每小题4分,共28分)1、在下列关于简谐运动的描述中,正确的是()A、简谐运动中,质点的速度总是与加速度方向相同B、简谐运动中,质点的加速度总是与位移大小成正比,方向相反C、简谐运动中,质点的加速度最大时,速度一定为零D、简谐运动中,质点的回复力总是与位移大小成正比,方向相反2、一个物体在水平面上做匀速直线运动,下列哪个物理量在运动过程中保持不变?()A、加速度B、动能C、势能D、动量3、一物体沿着光滑的斜面匀加速下滑,下滑过程中,下列说法正确的是()A、物体所受重力不变B、物体所受斜面的支持力不做功C、物体的机械能减少D、物体所受重力与支持力的合力不做功4、一质点做简谐振动时,何时加速度和位移间的夹角最大()A、在最大位移处B、在平衡位置C、在接近最大位移的一半位置D、在接近平衡位置的一半位置5、题目:在单摆摆动过程中,以下哪个物理量在摆角很小的情况下接近原来的值?A. 角动能B. 动能C. 势能D. 线速度6、题目:在理想变压器中,初级线圈匝数为N1,次级线圈匝数为N2,初级线圈接在其上的交流电压为V1,次级线圈的输出电压为V2。
以下哪个关系是正确的?A. V1 = N2 / N1 * V2B. V1 = N1 / N2 * V2C. V2 = N1 / N2 * V1D. V2 = N2 / N1 * V17、一个物体从静止开始沿直线运动,在前3秒内加速度恒定为2m/s²,之后以该时刻的速度做匀速直线运动。
求该物体在前6秒内的总位移是多少?A. 9mB. 12mC. 18mD. 24m二、多项选择题(本大题有3小题,每小题6分,共18分)1、题目:以下哪些是牛顿运动定律的内容?A、物体在没有外力作用下,保持静止或匀速直线运动状态B、物体的加速度与所受外力成正比,与物体的质量成反比C、力是物体对物体的作用,物体间力的作用是相互的D、物体的运动状态改变时,必然伴随着速度的变化2、题目:以下哪些物理量属于矢量?A、速度B、时间C、位移D、质量3、在电磁感应现象中,下列说法正确的是()。
物理必修二试题及答案
物理必修二试题及答案一、选择题(每题3分,共30分)1. 以下哪个选项是描述物体运动状态的物理量?A. 速度B. 加速度C. 位移D. 以上都是答案:D2. 根据牛顿第一定律,以下哪个选项是正确的?A. 物体在没有外力作用下会保持静止B. 物体在没有外力作用下会保持匀速直线运动C. 物体在没有外力作用下会做加速运动D. 物体在没有外力作用下会做减速运动答案:B3. 以下哪个公式是描述动量守恒定律的?A. F=maB. W=FdC. Δp=0D. p=mv答案:C4. 光的折射定律中,入射角和折射角的关系是?A. 入射角大于折射角B. 入射角等于折射角C. 入射角小于折射角D. 无法确定答案:A5. 电磁感应现象中,感应电动势的方向由哪个定律决定?A. 欧姆定律B. 法拉第电磁感应定律C. 洛伦兹力定律D. 楞次定律答案:D6. 以下哪个选项是描述电流的物理量?A. 电荷B. 电流C. 电压D. 电阻答案:B7. 根据能量守恒定律,以下哪个选项是正确的?A. 能量可以被创造B. 能量可以被消灭C. 能量既不能被创造也不能被消灭D. 能量可以在不同形式间转化答案:C8. 以下哪个选项是描述电磁波的物理量?A. 波长B. 频率C. 速度D. 以上都是答案:D9. 以下哪个公式是描述光的反射定律的?A. n1sinθ1 = n2sinθ2B. n1sinθ1 = n1sinθ2C. n2sinθ1 = n1sinθ2D. n2sinθ2 = n1sinθ1答案:A10. 根据热力学第一定律,系统内能的变化与什么有关?A. 做功B. 热传递C. 做功和热传递D. 以上都不是答案:C二、填空题(每题2分,共20分)1. 牛顿第二定律的公式是_______。
答案:F=ma2. 光在真空中传播的速度是_______。
答案:3×10^8 m/s3. 电磁波的波速、波长和频率之间的关系是_______。
答案:c=λf4. 欧姆定律的公式是_______。
物理高中必修二试题及答案
物理高中必修二试题及答案一、选择题(每题3分,共30分)1. 根据牛顿第二定律,下列说法正确的是:A. 力是维持物体运动的原因B. 力是改变物体运动状态的原因C. 物体运动不需要力D. 力与加速度无关2. 物体做匀速圆周运动时,下列说法正确的是:A. 线速度不变B. 角速度不变C. 向心加速度大小不变D. 向心力大小不变3. 根据能量守恒定律,下列说法不正确的是:A. 能量既不能被创造也不能被消灭B. 能量可以在不同形式之间转化C. 能量的总量在转化过程中会减少D. 能量的转化和转移具有方向性4. 机械波的传播速度与介质有关,与波源无关。
下列说法正确的是:A. 波速只与介质有关B. 波速只与波源有关C. 波速与介质和波源都有关D. 波速与介质和波源都无关5. 根据热力学第一定律,下列说法正确的是:A. 能量可以被创造B. 能量可以被消灭C. 能量的总量是不变的D. 能量的总量是可变的6. 根据理想气体状态方程,下列说法正确的是:A. 温度不变时,压强与体积成反比B. 体积不变时,压强与温度成正比C. 压强不变时,体积与温度成反比D. 以上说法都不正确7. 根据麦克斯韦方程组,下列说法正确的是:A. 变化的磁场可以产生电场B. 变化的电场可以产生磁场C. 恒定的磁场可以产生电场D. 恒定的电场可以产生磁场8. 根据光电效应,下列说法正确的是:A. 光子的能量与光的频率成正比B. 光子的能量与光的波长成反比C. 光子的能量与光的强度成正比D. 光子的能量与光的强度成反比9. 根据狭义相对论,下列说法不正确的是:A. 时间会随着速度的增加而变慢B. 长度会随着速度的增加而缩短C. 质量会随着速度的增加而增加D. 光速在任何惯性参考系中都是常数10. 根据量子力学,下列说法不正确的是:A. 粒子的位置和动量不能同时准确测量B. 粒子的状态可以用波函数描述C. 粒子的行为具有确定性D. 粒子的行为具有概率性答案:1. B2. C3. C4. A5. C6. B7. A8. A9. C 10. C二、填空题(每空2分,共20分)1. 牛顿第三定律指出,作用力和反作用力大小______,方向______,作用在______不同的物体上。
必修2物理测试题及答案
必修2物理测试题及答案一、选择题(每题3分,共30分)1. 光在真空中的传播速度是()。
A. 3×10^8 m/sB. 3×10^5 km/sC. 3×10^6 m/sD. 3×10^4 km/s答案:A2. 根据牛顿第二定律,力等于质量乘以加速度,其公式表示为()。
A. F = maB. F = mvC. F = m/aD. F = v/m答案:A3. 一个物体从静止开始做匀加速直线运动,其加速度为2m/s^2,那么在第3秒末的速度为()。
A. 6 m/sB. 4 m/sC. 2 m/sD. 3 m/s答案:A4. 电磁波的传播不需要介质,其传播速度为()。
A. 3×10^8 m/sB. 3×10^5 km/sC. 3×10^6 m/sD. 3×10^4 km/s答案:A5. 根据能量守恒定律,能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到另一个物体,在转化或转移的过程中,能量的总量不变。
下列说法正确的是()。
A. 能量可以被创造B. 能量可以被消灭C. 能量的总量不变D. 能量只能从高能级物体转移到低能级物体答案:C6. 电流通过导体产生的热量与电流的平方成正比,与导体的电阻成正比,与通电时间成正比,其公式为Q=I^2Rt,其中Q表示热量,I表示电流,R表示电阻,t表示时间。
根据这个公式,下列说法错误的是()。
A. 电流越大,产生的热量越多B. 电阻越大,产生的热量越多C. 通电时间越长,产生的热量越多D. 电阻为零时,不产生热量答案:D7. 一个物体在水平面上做匀速直线运动,其速度为4 m/s,受到的摩擦力为10 N。
根据牛顿第二定律,该物体受到的推力为()。
A. 10 NB. 20 NC. 5 ND. 15 N答案:A8. 根据焦耳定律,电流通过导体产生的热量与电流的平方、电阻和通电时间成正比,其公式为Q=I^2Rt,其中Q表示热量,I表示电流,R 表示电阻,t表示时间。
最新教科版高中物理必修二测试题全套及答案
最新教科版高中物理必修二测试题全套及答案重点强化卷(一)平抛运动规律的应用一、选择题1.一个物体以速度v0水平抛出,落地时速度的大小为2v0,不计空气的阻力,重力加速度为g,则物体在空中飞行的时间为()A.v0g B.2v0gC.3v0g D.2v0g【解析】如图所示,gt为物体落地时竖直方向的速度,由(2v0)2=v20+(gt)2得:t=3v0 g,C正确.【答案】 C2. (多选)如图1所示,在高空匀速飞行的轰炸机,每隔1 s投下一颗炸弹,若不计空气阻力,则()图1A.这些炸弹落地前排列在同一条竖直线上B.这些炸弹都落于地面上同一点C.这些炸弹落地时速度大小方向都相同D.相邻炸弹在空中距离保持不变【解析】这些炸弹是做平抛运动,速度的水平分量都一样,与飞机速度相同.相同时间内,水平方向上位移相同,所以这些炸弹排在同一条竖直线上.这些炸弹抛出时刻不同,落地时刻也不一样,不可能落于地面上的同一点.由于这些炸弹下落的高度相同,初速度也相同,这些炸弹落地时速度大小和方向都相同.两相邻炸弹在空中的距离为Δx =x 1-x 2=12g (t +1)2-12gt 2=gt +12g . 由此可知Δx 随时间t 增大而增大. 【答案】 AC3. (多选)某人在竖直墙壁上悬挂一镖靶,他站在离墙壁一定距离的某处,先后将两只飞镖A 、B 由同一位置水平掷出,两只飞镖插在靶上的状态如图2所示(侧视图),若不计空气阻力,下列说法正确的是( )图2A .B 镖的运动时间比A 镖的运动时间长 B .B 镖掷出时的初速度比A 镖掷出时的初速度大C .A 镖掷出时的初速度比B 镖掷出时的初速度大D .A 镖的质量一定比B 镖的质量小【解析】 飞镖A 、B 都做平抛运动,由h =12gt 2得t =2hg ,故B 镖运动时间比A 镖运动时间长,A 正确;由v 0=xt 知A 镖掷出时的初速度比B 镖掷出时的初速度大,B 错误,C 正确;无法比较A 、B 镖的质量大小,D 错误.【答案】 AC4.从O 点抛出A 、B 、C 三个物体,它们做平抛运动的轨迹分别如图3所示,则三个物体做平抛运动的初速度v A 、v B 、v C 的关系和三个物体在空中运动的时间t A 、t B 、t C 的关系分别是( )图3A .v A >vB >vC ,t A >t B >t C B .v A <v B <v C ,t A =t B =t C C .v A <v B <v C ,t A >t B >t CD .v A >v B >v C ,t A <t B <t C【解析】 三个物体抛出后均做平抛运动,竖直方向有h =12gt 2,水平方向有x =v 0t ,由于h A >h B >h C ,故t A >t B >t C ,又因为x A <x B <x C ,故v A <v B <v C ,C 正确.【答案】 C5.如图4所示,在一次空地演习中,离地H 高处的飞机以水平速度v 1发射一颗炮弹欲轰炸地面目标P ,反应灵敏的地面拦截系统同时以速度v 2竖直向上发射炮弹拦截.设拦截系统与飞机的水平距离为s ,不计空气阻力.若拦截成功,则v 1、v 2的关系应满足( )图4A .v 1=v 2B .v 1=Hs v 2 C .v 1=Hs v 2D .v 1=sH v 2【解析】 设经t 时间拦截成功,则平抛的炮弹下落h =12gt 2,水平运动s =v 1t ; 竖直上抛的炮弹上升H -h =v 2t -12gt 2,由以上各式得v 1=sH v 2,故D 正确. 【答案】 D65所示,以9.8 m/s 的水平初速度 v 0 抛出的物体,飞行一段时间后,垂直地撞在倾角为30°的斜面上,这段飞行所用的时间为(g 取9.8 m/s 2)( )图5A.23 B .223 s C. 3 D .2 s【解析】 把平抛运动分解成水平的匀速直线运动和竖直的自由落体运动,抛出时只有水平方向的速度v 0,垂直地撞在斜面上时,既有水平方向分速度v 0,又有竖直方向的分速度v y .物体速度的竖直分量确定后,即可求出物体飞行的时间.如图所示,把末速度分解成水平方向分速度v 0和竖直方向的分速度v y ,则有tan 30°=v 0v yv y =gt ,解两式得t =v y g =3v 0g = 3 s , 故 C 正确.【答案】 C7.(多选)刀削面是同学们喜欢的面食之一,因其风味独特,驰名中外.刀削面全凭刀削,因此得名.如图6所示,将一锅水烧开,拿一块面团放在锅旁边较高处,用一刀片飞快地削下一片片很薄的面片儿,面片便飞向锅里,若面团到锅的上沿的竖直距离为0.8 m ,最近的水平距离为0.5 m ,锅的半径为0.5 m .要想使削出的面片落入锅中,则面片的水平速度可以是下列选项中的哪些(g =10 m/s 2)( )图6A .1 m/sB .2 m/sC .3 m/sD .4 m/s【解析】 由h =12gt 2知,面片在空中的运动时间t =2hg =0.4 s ,而水平位移x =v 0t ,故面片的初速度v 0=x t ,将x 1=0.5 m ,x 2=1.5 m 代入得面片的最小初速度v 01=x 1t =1.25 m/s ,最大初速度v 02=x 2t =3.75 m/s ,即1.25 m/s ≤v 0≤3.75 m/s ,B 、C 选项正确.【答案】 BC8.如图7所示,一物体自倾角为θ的固定斜面顶端沿水平方向抛出后落在斜面上.物体与斜面接触时速度与水平方向的夹角φ满足( )图7 A.tan φ=sin θB.tan φ=cos θC.tan φ=tan θD.tan φ=2tan θ【解析】设物体飞行时间为t,则tan φ=v y v=gtv0,tan θ=yx=12gt2v0t=gt2v0,故tan φ=2tan θ,D正确.【答案】 D9. (多选)如图8所示,x轴在水平地面内,y轴沿竖直方向.图中画出了从y轴上沿x轴正向抛出的三个小球a、b和c的运动轨迹,其中b和c是从同一点抛出的.不计空气阻力,则()图8A.a的飞行时间比b的长B.b和c的飞行时间相同C.a的水平速度比b的小D.b的初速度比c的大【解析】x=v0t,y=12gt2,所以t=2yg,由y b=y c>y a,得t b=t c>t a,选项A 错,B 对;又根据v0=xg2y,因为y b>y a,x b<x a,y b=y c,x b>x c,故v a>v b,v b>v c,选项C 错,D 对.【答案】BD10.如图9所示,P是水平面上的圆弧凹槽,从高台边B点以某速度v0水平飞出的小球,恰能从固定在某位置的凹槽的圆弧轨道的左端A点沿圆弧切线方向进入轨道.O是圆弧的圆心,θ1是OA与竖直方向的夹角,θ2是BA与竖直方向的夹角,则()图9A.tan θ2tan θ1=2 B.tan θ1 tan θ2=2C.1tan θ1 tan θ2=2 D.tan θ1tan θ2=2【解析】OA方向即小球末速度垂线的方向,θ1是末速度与水平方向的夹角;BA方向即小球合位移的方向,θ2是位移方向与竖直方向的夹角.由题意知:tan θ1=v yv0=gtv0,tan θ2=xy=v0t12gt2=2v0gt由以上两式得:tan θ1 tan θ2=2.故B项正确.【答案】 B二、计算题11.从离地高80 m 处水平抛出一个物体,3 s 末物体的速度大小为50 m/s,g取10 m/s2.求:(1)物体抛出时的初速度大小;(2)物体在空中运动的时间;(3)物体落地时的水平位移.【解析】(1)由平抛运动的规律知v=v2x+v2y3 s 末v=50 m/s ,v y=gt=30 m/s解得v x=40 m/s,即v0=40 m/s.(2)物体在空中运动的时间t=2hg=2×8010s =4 s.(3)物体落地时的水平位移x=v0t=40×4 m=160 m.【答案】(1)40 m/s(2)4 s(3)160 m12.如图10所示,跳台滑雪运动员经过一段加速滑行后从O点水平飞出,经过3.0 s落到斜坡上的A点.已知O点是斜坡的起点,斜坡与水平面的夹角θ=37°,运动员的质量m=50 kg.不计空气阻力.(取sin 37°=0.60,cos 37°=0.80,g=10 m/s2)求:图10(1)A点与O点的距离;(2)运动员离开O点时的速度大小.【解析】(1)设A点与O点的距离为L,运动员在竖直方向做自由落体运动,有L sin 37°=12gt2L=gt22sin 37°=75 m.(2)设运动员离开O点的速度为v0,运动员在水平方向做匀速直线运动,即L cos 37°=v0t 解得v0=L cos 37°t=20 m/s.【答案】(1)75 m(2)20 m/s重点强化卷(二)圆周运动及综合应用一、选择题1.如图1所示为一种早期的自行车,这种带链条传动的自行车前轮的直径很大,这样的设计在当时主要是为了()图1A.提高速度B.提高稳定性C.骑行方便D.减小阻力【解析】在骑车人脚蹬车轮转速一定的情况下,据公式v=ωr知,轮子半径越大,车轮边缘的线速度越大,车行驶得也就越快,故A选项正确.【答案】 A2.两个小球固定在一根长为L 的杆的两端,绕杆的O 点做圆周运动,如图2所示,当小球1的速度为v 1时,小球2的速度为v 2,则转轴O 到小球2的距离是( )图2A.L v 1v 1+v 2 B .L v 2v 1+v 2C.L (v 1+v 2)v 1D .L (v 1+v 2)v 2【解析】 两小球角速度相等,即ω1=ω2.设两球到O 点的距离分别为r 1、r 2,即v 1r 1=v 2r 2;又由于r 1+r 2=L ,所以r 2=L v 2v 1+v 2,故选B.【答案】 B3.汽车在转弯时容易打滑出事故,为了减少事故发生,除了控制车速外,一般会把弯道做成斜面.如图3所示,斜面的倾角为θ,汽车的转弯半径为r ,则汽车安全转弯速度大小为(图3A.gr sin θ B .gr cos θ C.gr tan θD .gr cot θ【解析】 高速行驶的汽车完全不依靠摩擦力转弯时所需的向心力由重力和路面的支持力的合力提供,如图.根据牛顿第二定律得: mg tan θ=m v 2r解得:v =gr tan θ 故选C. 【答案】 C4.一质量为m 的物体,沿半径为R 的向下凹的圆形轨道滑行,如图4所示,经过最低点的速度为v ,物体与轨道之间的动摩擦因数为μ,则它在最低点时受到的摩擦力为 ( )图4A .μmgB .μm v 2R C .μm (g -v 2R )D .μm (g +v 2R )【解析】 小球在最低点时,轨道支持力和重力的合力提供向心力,根据牛顿第二定律得F N -mg =m v 2R ,物体受到的摩擦力为f =μF N =μm (g +v 2R ),选项D 正确.【答案】 D5. (多选)如图5所示,用细绳拴着质量为m 的小球,在竖直平面内做圆周运动,圆周半径为R ,则下列说法正确的是( )图5A .小球过最高点时,绳子张力可能为零B .小球过最高点时的最小速度为零C .小球刚好过最高点时的速度为gRD .小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相反【解析】 绳子只能提供拉力作用,其方向不可能与重力相反,D 错误;在最高点有mg +F T =m v 2R ,拉力F T 可以等于零,此时速度最小为v min =gR ,故B 错误,A 、C 正确.【答案】 AC6.如图6所示,质量为m 的小球固定在长为l 的细轻杆的一端,绕轻杆的另一端O 在竖直平面内做圆周运动.球转到最高点A 时,线速度大小为gl2,此时( )图6A .杆受到12mg 的拉力 B .杆受到12mg 的压力 C .杆受到32mg 的拉力D .杆受到32mg 的压力【解析】 以小球为研究对象,小球受重力和沿杆方向杆的弹力,设小球所受弹力方向竖直向下,则N +mg =m v 2l ,将v =gl 2代入上式得N =-12mg ,即小球在A 点受杆的弹力方向竖直向上,大小为12mg ,由牛顿第三定律知杆受到12mg 的压力.【答案】 B7. “快乐向前冲”节目中有这样一种项目,选手需要借助悬挂在高处的绳飞跃到鸿沟对面的平台上,如果已知选手的质量为m ,选手抓住绳由静止开始摆动,此时绳与竖直方向夹角为α,如图7所示,不考虑空气阻力和绳的质量(选手可看为质点),下列说法正确的是( )图7A .选手摆动到最低点时所受绳子的拉力等于mgB .选手摆动到最低点时所受绳子的拉力大于mgC .选手摆动到最低点时所受绳子的拉力大于选手对绳子的拉力D .选手摆动到最低点的运动过程为匀变速曲线运动【解析】 由于选手摆动到最低点时,绳子拉力和选手自身重力的合力提供选手做圆周运动的向心力,有T -mg =F 向,T =mg +F 向>mg ,B 正确,A 错误;选手摆到最低点时所受绳子的拉力和选手对绳子的拉力是作用力和反作用力的关系,根据牛顿第三定律,它们大小相等、方向相反且作用在同一条直线上,故C 错误;选手摆到最低点的运动过程中,是变速圆周运动,合力是变力,故D 错误.【答案】 B8.如图8所示,两个水平摩擦轮A 和B 传动时不打滑,半径R A =2R B ,A 为主动轮.当A 匀速转动时,在A 轮边缘处放置的小木块恰能与A 轮相对静止.若将小木块放在B 轮上,为让其与轮保持相对静止,则木块离B 轮转轴的最大距离为(已知同一物体在两轮上受到的最大静摩擦力相等)( )图8A.R B4 B.R B 2C .R BD .B 轮上无木块相对静止的位置【解析】 摩擦传动不打滑时,两轮边缘上线速度大小相等. 根据题意有:R A ωA =R B ωB 所以ωB =R AR BωA因为同一物体在两轮上受到的最大静摩擦力相等,设在B 轮上的转动半径最大为r ,则根据最大静摩擦力等于向心力有:mR A ω2A =mrω2B得:r =R A ω2A⎝ ⎛⎭⎪⎫R A R B ωA 2=R 2B R A =R B 2.【答案】 B9.如图9所示,滑块M 能在水平光滑杆上自由滑动,滑杆固定在转盘上,M 用绳跨过在圆心处的光滑滑轮与另一质量为m 的物体相连.当转盘以角速度ω转动时,M 离轴距离为r ,且恰能保持稳定转动.当转盘转速增到原来的2倍,调整r 使之达到新的稳定转动状态,则滑块M ( )图9A .所受向心力变为原来的4倍B .线速度变为原来的12 C .转动半径r 变为原来的12 D .角速度变为原来的12【解析】 转速增加,再次稳定时,M 做圆周运动的向心力仍由拉力提供,拉力仍然等于m 的重力,所以向心力不变,故A 错误;转速增到原来的2倍,则角速度变为原来的2倍,根据F =mrω2,向心力不变,则r 变为原来的14.根据v =rω,线速度变为原来的12,故B 正确,C 、D 错误.【答案】 B10. (多选)中央电视台《今日说法》栏目曾报道过一起发生在湖南长沙某区湘府路上的离奇交通事故.家住公路拐弯处的张先生和李先生家在三个月内连续遭遇了七次大卡车侧翻在自家门口的场面,第八次有辆卡车冲撞进李先生家,造成三死一伤和房屋严重损毁的血腥惨案.经公安部门和交通部门协力调查,画出的现场示意图如图10所示.交警根据图示作出以下判断,你认为正确的是( )现场示意图 图10A .由图可知汽车在拐弯时发生侧翻是因为车做离心运动B .由图可知汽车在拐弯时发生侧翻是因为车做向心运动C .公路在设计上可能内(东北)高外(西南)低D .公路在设计上可能外(西南)高内(东北)低【解析】 由题图可知发生事故时,卡车在做圆周运动,从图可以看出卡车冲入民宅时做离心运动,故选项A 正确,选项B 错误;如果外侧高,卡车所受重力和支持力的合力提供向心力, 则卡车不会做离心运动,也不会发生事故,故选项C 正确,D 错误.【答案】 AC二、计算题11.在用高级沥青铺设的高速公路上,汽车的设计时速是108 km/h.汽车在这种路面上行驶时,它的轮胎与地面的最大静摩擦力等于车重的0.6倍.(1)如果汽车在这种高速路的水平弯道上拐弯,假设弯道的路面是水平的,其弯道的最小半径是多少?(2)如果高速路上设计了圆弧拱桥做立交桥,要使汽车能够以设计时速安全通过圆弧拱桥,这个圆弧拱桥的半径至少是多少?【解析】 (1)汽车在水平路面上拐弯,可视为汽车做匀速圆周运动,其向心力由车与路面间的静摩擦力提供,当静摩擦力达到最大值时,由向心力公式可知这时的半径最小,有F m =0.6mg =m v 2r ,由速度v =30 m/s ,得弯道半径r =150 m.(2)汽车过拱桥,看做在竖直平面内做匀速圆周运动,到达最高点时,根据向心力公式有:mg -F N =m v 2R ,为了保证安全,车对路面间的弹力F N 必须大于等于零,有mg ≥ m v 2R ,则R ≥90 m.【答案】 (1)150 m (2)90 m12.如图11所示,一光滑的半径为0.1 m 的半圆形轨道放在水平面上,一个质量为m 的小球以某一速度冲上轨道,当小球将要从轨道口飞出时,轨道对小球的压力恰好为零,g 取10 m/s 2,求:图11(1)小球在B 点速度是多少? (2)小球落地点离轨道最低点A 多远? (3)落地时小球速度为多少?【解析】 (1)小球在B 点时只受重力作用,竖直向下的重力提供小球做圆周运动的向心力,根据牛顿第二定律可得:mg =m v 2Br代入数值解得:v B =gr =1 m/s.(2)小球离开B 点后,做平抛运动.根据平抛运动规律可得:2r =12gt 2 s =v B t ,代入数值联立解得:s =0.2 m.(3)根据运动的合成与分解规律可知,小球落地时的速度为v =v 2B +(gt )2= 5 m/s.【答案】 (1)1 m/s (2)0.2 m (3) 5 m/s重点强化卷(三) 万有引力定律的应用一、选择题1.两个密度均匀的球体,相距r ,它们之间的万有引力为10-8N ,若它们的质量、距离都增加为原来的2倍,则它们间的万有引力为( )A .10-8NB .0.25×10-8 NC .4×10-8ND .10-4N【解析】 原来的万有引力为:F =G Mm r 2 后来变为:F ′=G 2M ·2m (2r )2=GMmr 2 即:F ′=F =10-8N ,故选项A 正确.2.m A .1018C .10223A 倍B C D步卫星距地面很高,故其运行速度小于7.9 km/s ,B 错误;同步卫星只能在赤道的正上方,C 错误;由G Mm r 2=ma n 可得,同步卫星的加速度a n =G M r 2=G M (6R )2=136G M R 2=136g ,故选项D 正确.【答案】 D4.如图1所示,在同一轨道平面上的几个人造地球卫星A 、B 、C 绕地球做匀速圆周运动,某一时刻它们恰好在同一直线上,下列说法中正确的是( )图1A .根据v =gr 可知,运行速度满足v A >vB >vC B .运转角速度满足ωA >ωB >ωC C .向心加速度满足a A <a B <a CD .运动一周后,A 最先回到图示位置 【解析】 由G Mmr 2=m v 2r 得,v =GM r ,r 大,则v 小,故v A <v B <v C ,A 错误;由G Mmr2=mω2r 得,ω=GM r 3,r 大,则ω小,故ωA <ωB <ωC ,B 错误;由G Mm r 2=ma 得,a =GMr 2,r 大,则a 小,故a A <a B <a C ,C 正确;由G Mm r 2=m 4π2T 2r 得,T =2πr 3GM ,r 大,则T 大,故T A >T B >T C ,因此运动一周后,C 最先回到图示位置,D 错误.【答案】 C5.据英国《卫报》网站2015年1月6日报道,在太阳系之外,科学家发现了一颗最适宜人类居住的类地行星,绕恒星橙矮星运行,命名为“开普勒438b ”.假设该行星与地球绕恒星均做匀速圆周运动,其运行的周期为地球运行周期的p 倍,橙矮星的质量为太阳的q 倍.则该行星与地球的( )A .轨道半径之比为3p 2q B .轨道半径之比为3p 2 C .线速度之比为3qpD .线速度之比为1p【解析】 行星公转的向心力由万有引力提供,根据牛顿第二定律,有G Mm R 2=m 4π2T 2R ,解得:R =3GMT 24π2,该行星与地球绕恒星均做匀速圆周运动,其运行的周期为地球运行周期的p 倍,橙矮星的质量为太阳的q 倍,故:R 橙R 太=3(M 橙M 太)(T 行T 地)2=3qp 2,故A 正确,B 错误;根据v =2πRT ,有:v 行v 地=R 行R 地·T 地T 行=3qp 2·1p =3q p ;故C 正确,D 错误. 【答案】 AC6.银河系的恒星中大约四分之一是双星.某双星由质量不等的星体S 1和S 2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C 做匀速圆周运动.由天文观测得其周期为T ,S 1到C 点的距离为r 1,S 1和S 2的距离为r ,已知万有引力常量为G .由此可求出S 2的质量为( )S 1有7A B C D【解析】 由F =G Mm R 2和M =ρ43πR 3可得万有引力F =43G πRmρ,又由牛顿第二定律F =ma 可得,A 正确;卫星绕星球表面做匀速圆周运动时,万有引力等于向心力,因此B 错误;由F =43G πRmρ,F =m v 2R 可得,选项C 错误;由F =43G πRmρ,F =mR 4π2T 2可知,周期之比为1∶1,故D 错误.【答案】 A8.嫦娥三号探测器绕月球表面附近飞行时的速率大约为1.75 km/s(可近似当成匀速圆周运动),若已知地球质量约为月球质量的81倍 ,地球第一宇宙速度约为7.9 km/s ,则地球半径约为月球半径的多少倍?( )A .3倍B .4倍C .5倍D .6倍【解析】 根据万有引力提供向心力知,当环绕天体在中心天体表面运动时,运行速度即为中心天体的第一宇宙速度,由G MmR 2=m v 2R 解得:v =GMR ,故地球的半径与月球的半径之比为R 1R 2=M 1M 2·v 2v 21,约等于4,故B 正确,A 、C 、D 错误. 【答案】 B9.如图2所示,a 、b 、c 、d 是在地球大气层外的圆形轨道上匀速运行的四颗人造卫星.其中a 、c 的轨道相交于P ,b 、d 在同一个圆轨道上.某时刻b 卫星恰好处于c 卫星的正上方.下列说法中正确的是( )图2A .b 、d 存在相撞危险B .a 、c 的加速度大小相等,且大于b 的加速度C .b 、c 的角速度大小相等,且小于a 的角速度D .a 、c 的线速度大小相等,且小于d 的线速度【解析】 b 、d 在同一轨道,线速度大小相等,不可能相撞,A 错;由a 向=GMr 2知a 、c 的加速度大小相等且大于b 的加速度,B 对;由ω=GMr 3知,a 、c 的角速度大小相等,且大于b 的角速度,C 错;由v =GMr 知a 、c 的线速度大小相等,且大于d 的线速度,D 错.【答案】 B10.(2015·四川高考)登上火星是人类的梦想.“嫦娥之父”欧阳自远透露:中国计划于2020年登陆火星.地球和火星公转视为匀速圆周运动,忽略行星自转影响.根据下表,火星和地球相比( )A.B .火星做圆周运动的加速度较小 C .火星表面的重力加速度较大 D .火星的第一宇宙速度较大【解析】 火星和地球都绕太阳做圆周运动,万有引力提供向心力,由GMm r 2=m 4π2T 2r =ma 知,因r 火地,故选项B 火=GM 火R 火,【答案】11.为3×104【解析】周期为TG Mm r 2=m 4π2T 2r故这些星体的总质量为M =4π2r 3GT 2=4×(3.14)2×(2.8×1020)36.67×10-11×(6.3×1015)2kg≈3.3×1041kg. 【答案】 3.3×1041kg12.质量分别为m 和M 的两个星球A 和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 两者中心之间距离为L .已知A 、B 的中心和O 三点始终共线,A 和B 分别在O 的两侧.引力常量为G .图3(1)求两星球做圆周运动的周期.(2)在地月系统中,若忽略其他星球的影响,可以将月球和地球看成上述星球A 和B ,月球绕其轨道中心运行的周期记为T 1.但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期记为T 2.已知地球和月球的质量分别为5.98×1024 kg 和7.35×1022kg.求T 2与T 1两者平方之比.(结果保留三位小数)【解析】 (1)两星球围绕同一点O 做匀速圆周运动,其角速度相同,周期也相同,其所需向心力由两者间的万有引力提供,设OB 为r 1,OA 为r 2,则对于星球B :G Mm L 2=M 4π2T 2r 1 对于星球A :G Mm L 2=m 4π2T 2r 2 其中r 1+r 2=L 由以上三式可得T =2πL 3G (M +m ).(2)对于地月系统,若认为地球和月球都围绕中心连线某点O 做匀速圆周运动,由(1)可知地球和月球的运行周期T 1=2πL 3G (M +m )若认为月球围绕地心做匀速圆周运动,由万有引力与天体运动的关系:G Mm L 2=m 4π2T 22L解得T2=4π2L3 GM则T22T21=M+mM=1.012.【答案】(1)2πL3G(M+m)(2)1.012重点强化卷(四)功和功率一、选择题1.下列关于力做功的说法中正确的是()A.人用力F=300 N将足球踢出,球在空中飞行40 m,人对足球做功12 000 JB.人用力推物体,但物体未被推动,人对物体做功为零C.物体竖直上升时,重力不做功D.只有恒力才能做功,变力不能做功【解析】球在空中飞行40 m不是人踢足球的力伴随的位移,A错;物体没有被推动,位移为零,人对物体做功为零,B对;物体竖直上升时,重力做负功,C错;任何力都有可能做功,D错.【答案】 B2.(多选)如图1所示,用力F拉一质量为m的物体,使它沿水平地面匀速向右移动距离s.若物体和地面间的动摩擦因数为μ,则此力F对物体做功的表达式正确的有()图1A.Fs cos αB.Fs sin αC.μmgs D.μmgs·sin αsin α+μcos α【解析】由功的公式得F做功W=F·s cos(90°-α)=Fs·sin α,故A错,B正确;由于物体受力平衡,可将物体受力正交分解,如图所示.则:水平方向:F sin α=f①竖直方向:F cos α+N=mg②f=μN③联立①②③得F=μmgμcos α+sin α由功的公式得W F=F·s sin α=μmgs·sin αsin α+μcos α,故C错,D正确.【答案】BD3.如图2所示,物块A、B在外力F的作用下一起沿水平地面做匀速直线运动的过程中,关于A与地面间的滑动摩擦力和A、B间的静摩擦力做功的说法,正确的是()图2A.静摩擦力都做正功,滑动摩擦力都做负功B.静摩擦力都不做功,滑动摩擦力都做负功C.有静摩擦力做正功,有滑动摩擦力不做功D.有静摩擦力做负功,有滑动摩擦力做正功【解析】物块A、B在外力F的作用下一起沿水平地面做匀速直线运动,根据平衡条件得知,A对B的静摩擦力与拉力F平衡,地面对A的滑动摩擦力与B对A的静摩擦力平衡,则地面对A的滑动摩擦力方向向左,对A做负功,物块A对地面的滑动摩擦力不做功,A对B的静摩擦力做负功,B对A的静摩擦力做正功,因此,选项C正确,其他选项均错.【答案】 C4.(多选)如图3所示,质量为m的物块在倾角为θ的斜面上,始终与斜面保持相对静止,下列说法中正确的是()图3A.若斜面向右匀速移动距离s,斜面对物块没有做功B.若斜面向上匀速移动距离s,斜面对物块做功mgsC.若斜面向左以加速度a移动距离s,斜面对物块做功masD.若斜面向下以加速度a移动距离s,斜面对物块做功m(g+a)s【解析】若斜面匀速移动,由平衡条件可知,斜面对物体的作用力与重力大小相等方向相反,即竖直向上,向右平移时,作用力方向与位移方向垂直,斜面对物体的作用力不做功;向上时,作用力方向与位移方向相同,做功为W=Fs=mgs,A、B均正确;若斜面向左以加速度a移动时,物体所受合外力F=ma,因为重力不做功,合外力做功即为斜面对物合s=mas,C正确;若斜面向下以加速度a移动时,斜面对物体的作用力为F,体做的功W=F合由牛顿第二定律得mg-F=ma,所以F=mg-ma,斜面对物体做的功为W=-Fs=-(mg-ma)s,D错误.【答案】ABC5.(多选)质量为2 kg的物体置于水平面上,在运动方向上受到水平拉力F的作用,沿水平方向做匀变速运动,拉力F作用2 s后撤去,物体运动的速度图象如图4所示,则下列说法正确的是(g取10 m/s2)()图4A.拉力F做功150 JB.拉力F做功350 JC.物体克服摩擦力做功100 JD.物体克服摩擦力做功175 J【解析】由题图可以求出0~2 s内的加速度a1=2.5 m/s2,2~6 s内的加速度a2=-2.5 m/s2,由F+F f=ma1,F f=ma2联立,得F=10 N,F f=-5 N,由题图还可求出前2 s内的位移l1=15 m,2~6 s内的位移l2=20 m.所以拉力做功W F=Fl1=10×15 J=150 J,摩擦力做功W Ff=F f(l1+l2)=-5×(15+20)J=-175 J,即物体克服摩擦力做功175 J,故A、D正确.【答案】AD6.将质量为m的物体置于光滑的水平面上,用水平恒力F作用于m上,使之在光滑的水平面上沿力F的方向移动距离s,此过程中恒力F做功为W1,平均功率为P1,再将另一质量为M(M>m)的物体静置于粗糙水平面上,用该水平恒力F作用其上,使之在粗糙的水平面上沿力F的方向移动同样距离s,此过程中恒力F做功为W2,平均功率为P2.则两次恒力F 做功和平均功率的关系是()A.W1>W2P1>P2B.W1<W2P1<P2C.W1=W2P1>P2D.W1=W2P1<P2【解析】两次水平恒力相等,位移相等,根据W=Fs知,恒力F所做的功相等.在光滑水平面上运动的加速度大,根据位移时间公式知,在光滑水平面上的运动时间短,根据P=Wt知,P1>P2,故C正确,A、B、D错误.【答案】 C7.(多选)如图5所示,四个相同的小球在距地面相同的高度以相同的速率分别竖直下抛、竖直上抛、平抛和斜抛,不计空气阻力,则下列关于这四个小球从抛出到落地过程的说法中正确的是()图5A.小球飞行过程中单位时间内的速度变化相同B.小球落地时,重力的瞬时功率均相同C.从开始运动至落地,重力对小球做功相同D.从开始运动至落地,重力对小球做功的平均功率相同【解析】因为抛体运动的加速度恒为g,所以选项A正确;小球落地时竖直方向速度大小不同,B错误;W G=mgh,选项C正确;从抛出到落地所用时间不等,所以D错误.【答案】AC8.质量为m的汽车启动后沿平直路面行驶,如果发动机的功率恒为P,且行驶过程中受到的阻力大小一定.当汽车速度为v时,汽车做匀速运动;当汽车速度为v4时,汽车的瞬时加速度的大小为()A.Pm v B.2Pm vC.3Pm v D.4Pm v。
教科版高中物理必修二全册同步练习(共41套附解析)
教科版高中物理必修二全册同步练习(共41套附解析)(答题时间:20分钟) 1. 如图所示,光滑水平桌面上,一小球以速度v向右匀速运动,当它经过靠近桌边的竖直木板ad边正前方时,木板开始做自由落体运动。
若木板开始运动时,cd边与桌面相齐,则小球在木板上的投影轨迹是() 2. 如图,这是物体做匀变速曲线运动的轨迹示意图。
已知物体在B点的加速度方向与速度方向垂直,则下列说法中正确的是() A. C点的速率小于B点的速率 B. A点的加速度比C点的加速度大 C. C点的速率大于B点的速率 D. 从A点到C点加速度与速度的夹角先增大后减小,速率是先减小后增大 3. 关于曲线运动,有下列说法①曲线运动一定是变速运动②曲线运动一定是匀速运动③在平衡力作用下,物体可以做曲线运动④在恒力作用下,物体可以做曲线运动其中正确的是()A. ①③ B. ①④ C.②③ D. ②④ 4. 一辆赛车在水平公路上转弯,从俯视图中可以看到,赛车沿曲线由P向Q行驶且速度逐渐减小。
图中画出了赛车转弯经过M点时所受合力F方向的四种可能性,其中正确的是() 5. 某质点在一段时间内做曲线运动,则在此段时间内() A. 速度可以不变,加速度一定在不断变化 B. 速度可以不变,加速度也可以不变 C. 速度一定在不断变化,加速度也一定在不断变化 D. 速度一定在不断变化,加速度可以不变 6. 如图所示,红蜡块可以在竖直玻璃管内的水中匀速上升,若在红蜡块从A点开始匀速上升的同时,玻璃管水平向右做匀减速直线运动,则红蜡块的实际运动轨迹可能是图中的() A. 直线P B. 曲线Q C. 曲线R D. 三条轨迹都有可能 7. 质量m=4 kg的质点静止在光滑水平面上的直角坐标系的原点O,先用沿+x轴方向的力F1=8N 作用了2s,然后撤去F1;再用沿+y方向的力F2=24N 作用了1s,则质点在这3s内的轨迹为() 8. 塔式起重机模型如图(a),小车P沿吊臂向末端M水平匀速运动,同时将物体Q从地面竖直向上匀加速吊起,图(b)中能大致反映Q运动轨迹的是() 9. 一物体由静止开始自由下落,一小段时间后突然受一恒定水平向右的风力的影响,但着地前一段时间风突然停止,则其运动的轨迹可能是下列图中的哪一个?() 1. B解析:据题意,小球在水平方向做匀速直线运动,木板在竖直方向做自由落体运动,则球在板上的轨迹投影为抛物线,则选项B正确。
必修二物理试题及答案
必修二物理试题及答案在物理学的学习过程中,通过试题练习是检验和巩固知识点的有效方式。
以下是一份必修二物理试题及答案,供同学们参考和练习。
试题部分:一、选择题(每题3分,共30分)1. 以下哪种情况不属于光的折射现象?A. 看水里的鱼比实际位置浅B. 从水中看岸上的物体,物体位置偏高C. 光从空气斜射入水中D. 光从水中斜射入空气2. 一个物体以初速度v0沿直线运动,加速度a保持不变,那么该物体在第3秒内的平均速度为:A. v0 + aB. v0 + 2aC. v0 + 3aD. v0 + 4a3. 以下关于动量守恒定律的描述,正确的是:A. 动量守恒定律只适用于宏观物体B. 动量守恒定律只适用于碰撞过程C. 动量守恒定律适用于所有物体D. 动量守恒定律只适用于弹性碰撞4. 一个质量为m的物体从高度为h的斜面顶端无初速度滑下,斜面与水平面的夹角为θ,不计摩擦,物体到达斜面底端时的动能为:A. mghB. mg(h-sinθh)C. mg(h-cosθh)D. mg(h-tanθh)5. 以下关于波的描述,不正确的是:A. 横波的振动方向与波的传播方向垂直B. 纵波的振动方向与波的传播方向平行C. 波的传播速度与介质的密度有关D. 波的传播速度与介质的弹性有关6. 以下关于电磁感应的描述,正确的是:A. 只有变化的磁场才能产生感应电动势B. 只有变化的电场才能产生感应电流C. 只有闭合电路中的部分导体在磁场中运动才能产生感应电流D. 只有闭合电路中的导体在磁场中做切割磁感线运动才能产生感应电流7. 以下关于电场的描述,不正确的是:A. 电场强度是矢量,其方向与正电荷所受电场力的方向相同B. 电场强度是标量,其大小与试探电荷的电量无关C. 电场线是不存在的,是为了形象描述电场而引入的D. 电场线的方向是正电荷所受电场力的方向8. 以下关于磁场的描述,正确的是:A. 磁感线是闭合曲线,且不相交B. 磁感线的方向与磁场的方向相同C. 磁感线的密度与磁场的强度成正比D. 磁感线的方向与磁场的方向相反9. 以下关于原子核的描述,不正确的是:A. 原子核由质子和中子组成B. 原子核的体积很小,但质量很大C. 原子核的电荷数等于质子数D. 原子核的电荷数等于电子数10. 以下关于相对论的描述,不正确的是:A. 相对论否定了经典力学的绝对时空观B. 相对论认为时间和空间是相对的C. 相对论认为光速在所有惯性系中都是相同的D. 相对论认为光速可以被超越答案部分:一、选择题1. D2. B3. C4. A5. D6. D7. B8. A9. D10. D以上试题及答案涵盖了必修二物理的多个重要知识点,包括光的折射、运动学、动量守恒定律、能量守恒定律、波动理论、电磁感应、电场、磁场、原子核以及相对论等。
高中物理必修2期末试卷及答案_教科版_2024-2025学年
期末试卷(答案在后面)一、单项选择题(本大题有7小题,每小题4分,共28分)1、一质点在拉力作用下,从某一位置沿直线移动至另一位置。
若该质点直线移动的距离为5米,拉力的大小为10牛顿,且质点沿力的方向移动。
则拉力对质点所做的功为多少焦耳?A)50 JB) 2 JC)10 JD) 5 J2、有一个平行板电容器,两极板间距离为d,极板面积为A,且极板间电压为U。
如果保持极板间距不变,将极板面积A增大一倍,请问新的电容C是多少?A)2CB)CC)0.5CD)4C3、题干:一个物体从静止开始在水平面上做匀加速直线运动,如果它的加速度是2 m/s²,那么在3秒内它的速度将增加多少?选项:A、6 m/sB、9 m/sC、12 m/sD、15 m/s4、题干:一个物体进行平抛运动,不计空气阻力,其水平初速度为10 m/s,当物体下落1.5秒后,其竖直方向的速度是多少?选项:A、4.5 m/sB、9 m/sC、14.14 m/sD、15 m/s5、一个物体从静止开始沿水平方向做匀加速直线运动,加速度为a,在t时间内物体的位移为s,那么物体在2t时间内的位移与s的关系是:A. s = 2at²B. s = 4at²C. s = 2atD. s = 4at²6、一个质点做匀速圆周运动,半径为R,角速度为ω,那么质点在t时间内通过的路程s为:A. s = RωtB. s = Rωt²C. s = R²ωtD. s = R²ω²t7、质量为m的物体,在水平面内受到三个力的共同作用而处于平衡状态。
若将其中一个力F的方向沿逆时针旋转60°,物体将 runnersA、 Static equilibrium; the three forces will be rearranged to balance each other again.B、static equilibrium; the other two forces would need to provide additional force to counteract the change in F.C、unstable equilibrium; the object will start to rotate away from the initial position due to the changed force F.D、dynamic equilibrium; the object will gain kinetic energy in the opposite direction of the rotation of F.二、多项选择题(本大题有3小题,每小题6分,共18分)1、以下关于牛顿运动定律的描述中,正确的是()A、牛顿第一定律表明,一个物体如果不受外力作用,将保持静止状态或匀速直线运动状态B、牛顿第二定律给出了力和加速度之间的定量关系,即F=maC、牛顿第三定律说明了作用力和反作用力总是大小相等、方向相反,但作用在不同的物体上D、牛顿运动定律适用于所有运动状态,包括超光速运动2、以下关于简谐运动的描述中,正确的是()A、简谐运动是一种加速度随时间呈正弦或余弦函数变化的周期性运动B、简谐运动中,物体在平衡位置附近的速度最大,位移为零C、简谐运动的周期与振幅无关,仅由系统本身的特性决定D、简谐运动的回复力与位移成正比,方向总是指向平衡位置3、()一物体沿直线运动,若其加速度逐渐减小,则物体的速度和位移可能会发生以下哪种情况?A、速度始终保持不变,位移逐渐增大B、速度逐渐减小,位移逐渐增大C、速度先增大后减小,位移逐渐增大D、速度先增大后减小,位移先增大后减小三、非选择题(前4题每题10分,最后一题14分,总分54分)第一题题目:一个质量为(m)的物体静止在光滑水平面上,受到一个恒定的水平力(F)的作用。
教科版必修2-物理全章节测试题
单元素养评价(一)(第一章)(60分钟·60分)一、选择题(本题共9小题,每小题3分,共27分)1.(2020·扬州高一检测)物体做曲线运动,在其运动轨迹上某一点的加速度方向( )A.为通过该点的曲线的切线方向B.与物体在这一点时所受的合外力方向垂直C.与物体在这一点的速度方向一致D.与物体在这一点的速度方向的夹角一定不为零【解析】选D。
加速度的方向就是合外力的方向,由物体做曲线运动的条件可知,加速度的方向与速度的方向一定不在同一直线上。
2.(2020·青岛高一检测)各种大型的货运站中少不了悬臂式起重机,如图所示,该起重机的悬臂保持不动,可沿悬臂“行走”的天车有两个功能,一是吊着货物沿竖直方向运动,二是吊着货物沿悬臂水平方向运动。
现天车吊着货物正在沿水平方向向右匀速行驶,同时又使货物沿竖直方向向上做匀减速运动。
此时,我们站在地面上观察到货物运动的轨迹可能是图中的( )【解析】选D。
由于货物在水平方向做匀速运动,在竖直方向做匀减速运动,故货物所受的合外力竖直向下,由曲线运动的特点:所受的合外力要指向圆弧内侧可知,对应的运动轨迹可能为D。
3.(2020·泰州高一检测)如图所示,一艘炮艇沿河由西向东快速顺水行驶,要使炮艇上发射的炮弹击中北岸的目标,射击方向应( )A.偏向目标的西侧B.偏向目标的东侧C.对准目标D.无论对准哪个方向都无法击中目标【解析】选A。
炮弹的实际速度方向沿目标方向,该速度是炮艇的速度与射击速度的合速度,根据平行四边形定则,知射击的方向偏向目标的西侧,故A正确,B、C、D错误。
4.在平坦的垒球运动场上,击球手挥动球棒将垒球水平击出,垒球飞行一段时间后落地。
若不计空气阻力,则( )A.垒球落地时瞬时速度的大小仅由初速度决定B.垒球落地时瞬时速度的方向仅由击球点离地面的高度决定C.垒球在空中运动的水平位移仅由初速度决定D.垒球在空中运动的时间仅由击球点离地面的高度决定【解析】选D。
【教科版】高中物理必修2:同步测试卷(15份,Word版,含答案)
高中同步测试卷(一)第一单元平抛运动(时间:90分钟,满分:100分)一、单项选择题(本题共7小题,每小题5分,共35分.在每小题给出的四个选项中,只有一个选项正确.)1.物体做平抛运动,速度v、加速度a、水平位移x、竖直位移y,这些物理量随时间t的变化情况是()A.v与t成正比B.a随t逐渐增大C.比值yx与t成正比D.比值yx与t2成正比2.在平坦的垒球运动场上,击球手挥动球棒将垒球水平击出,垒球飞行一段时间后落地.若不计空气阻力,则()A.垒球落地时瞬时速度的大小仅由初速度决定B.垒球落地时瞬时速度的方向仅由击球点离地面的高度决定C.垒球在空中运动的水平位移仅由初速度决定D.垒球在空中运动的时间仅由击球点离地面的高度决定3.如图所示,蹲在树枝上的一只松鼠看到一个猎人正在用枪水平对准它,就在子弹出枪口时,松鼠开始运动,下列各种运动方式中,松鼠能逃脱被击中厄运的是(设树枝足够高,不计空气阻力)()A.自由落下B.竖直上跳C.迎着枪口,沿AB方向水平跳离树枝D.背着枪口,沿AC方向水平跳离树枝4.雅安大地震,牵动了全国人民的心.一架装载救灾物资的直升飞机,以10 m/s的速度水平飞行,在距地面180 m的高度处,欲将救灾物资准确投放至地面目标,若不计空气阻力,g取10 m/s2,则()A.物资投出后经过6 s到达地面目标B.物资投出后经过18 s到达地面目标C.应在距地面目标水平距离90 m处投出物资D.应在距地面目标水平距离180 m处投出物资5.在同一点O抛出的三个物体做平抛运动的轨迹如图所示,则三个物体做平抛运动的初速度v A、v B、v C的关系和三个物体做平抛运动的时间t A、t B、t C的关系分别是()A.v A>v B>v C,t A>t B>t CB.v A=v B=v C,t A=t B=t CC.v A<v B<v C,t A>t B>t CD.v A>v B>v C,t A<t B<t C6.如图所示,相对的两个斜面,倾角分别为37°和53°,在顶点,两个小球A、B以同样大小的初速度分别向左、右水平抛出,小球都落在斜面上,若不计空气阻力,则A、B两个小球运动时间之比为()A.1∶1 B.4∶3C.16∶9 D.9∶167.如图所示,从倾角为θ的斜面上某点先后将同一小球以不同的初速度水平抛出,小球均落在斜面上,当抛出的速度为v1时,小球到达斜面时速度方向与斜面的夹角为α1;当抛出速度为v2时,小球到达斜面时速度方向与斜面的夹角为α2,则()A.当v1>v2时,α1>α2B.当v1>v2时,α1<α2C.无论v1、v2关系如何,均有α1=α2D.α1、α2的关系与斜面倾角θ有关二、多项选择题(本题共5小题,每小题5分,共25分.在每小题给出的四个选项中,有多个选项正确,全部选对的得5分,选对但不全的得3分,有错选的得0分.)8.有一物体在离水平地面高h处以初速度v0水平抛出,落地时速度为v,竖直分速度为v y,水平射程为l,不计空气阻力,则物体在空中飞行的时间为()A.lv0 B.h2gC.v2-v20g D.2hv y9.以初速度v0水平抛出一物体,当它的竖直分位移与水平分位移相等时() A.竖直分速度等于水平速度B.瞬时速度等于5v0C.运动的时间为2v0g D.位移大小是22v20g10.甲、乙、丙三个小球分别位于如图所示的竖直平面内,甲乙在同一条竖直线上,甲丙在同一条水平线上,水平面上的P点在丙的正下方,在同一时刻甲乙丙开始运动,甲以水平速度v0做平抛运动,乙以水平速度v0沿光滑水平面向右做匀速直线运动,丙做自由落体运动,则()A.若甲乙丙三球同时相遇,一定发生在P点B .若只有甲丙两球在水平面上相遇,此时乙球一定在P 点C .若只有甲乙两球在水平面上相遇,此时丙球还没落地D .无论初速度v 0大小如何,甲乙丙三球一定会同时在P 点相遇11. 平抛运动可以分解为水平和竖直方向的两个直线运动,在同一坐标系中作出这两个分运动的v -t 图线,如图所示.若平抛运动的时间大于2t 1,下列说法中正确的是( )A .图线2表示竖直分运动的v -t 图线B .t 1时刻的速度方向与初速度方向夹角为30°C .t 1时间内的位移方向与初速度方向夹角的正切值为12D .2t 1时间内的位移方向与初速度方向夹角为60°12. 如图所示,A 、B 两个质点以相同的水平速度v 抛出,A 在竖直平面内运动,落地点在P 1;B 在光滑的斜面上运动,落地点在P 2,不计空气阻力,则下列说法中正确的是( )A .A 、B 的运动时间相同 B .B 运动的时间长C .A 、B 沿x 轴方向的位移相同D .B 沿x 轴方向的位移大三、实验题(本题共1小题,共10分.按题目要求作答.)13.某同学根据平抛运动原理设计粗测玩具手枪弹丸的发射速度v 0的实验方案,实验示意图如图所示,已知没有计时仪器.(1)用玩具手枪发射弹丸时应注意______________________;(2)用一张印有小方格的纸记录手枪弹丸的轨迹,小方格的边长L =2.5 cm.若弹丸在平抛运动途中的几个位置如图中的a、b、c、d所示,则其平抛的初速度v0=________m/s.(取g=10 m/s2,结果保留两位有效数字)四、计算题(本题共3小题,共30分.解答时应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位.)14. (8分)如图所示,一质点做平抛运动先后经过A、B两点,到达A点时速度方向与水平方向的夹角为30°,到达B点时速度方向与水平方向的夹角为60°.(1)求质点在A、B位置的竖直分速度大小之比;(2)设质点的位移l AB与水平方向的夹角为θ,求tan θ的值.15. (10分)如图所示,水平屋顶高H=5 m,墙高h=3.2 m,墙到房子的距离L=3 m,墙外马路宽D=10 m,小球从屋顶水平飞出落在墙外的马路上,求小球离开屋顶时的速度v应该满足什么条件?(g=10 m/s2)16.(12分)跳台滑雪是一种极为壮观的运动,它是在依山势建造的跳台上进行的运动.运动员穿着专用滑雪板,不带雪杖在助滑路上获得较大速度后从跳台水平飞出,在空中飞行一段距离后着陆.如图所示,设某运动员从倾角为θ=37°的坡顶A点以速度v0=20 m/s沿水平方向飞出,到山坡上的B点着陆,山坡可以看成一个斜面.(g=10 m/s2,sin 37°=0.6,cos 37°=0.8)求:(1)运动员在空中飞行的时间t;(2)AB间的距离s.参考答案与解析1.导学号17750001]【解析】选C.设初速度为v0,则v=v20+(gt)2,a=g,yx=12gt2v0t=g2v0t,只有选项C正确.2.导学号17750002]【解析】选D.球击出后做平抛运动,落地速度大小由初速度和高度共同决定,A错误;落地速度方向是由水平方向和竖直方向速度共同决定,B错误;垒球的水平位移x=v0t=v02yg,由初速度和高度决定,C错误;垒球在空中的运动时间由高度决定,D正确.3.导学号17750003]【解析】选B.子弹在竖直方向上是自由落体运动,若松鼠做自由落体运动,那么松鼠和子弹在竖直方向上的运动是一样的,它们始终在一个高度上,所以松鼠一定会被击中,A错误;竖直上跳时,在竖直方向上和子弹的运动过程不一样,能逃过厄运,B正确. 迎着枪口,沿AB方向水平跳离树枝和背着枪口,沿AC方向水平跳离树枝这两种运动在竖直方向上也是自由落体运动,松鼠同样会被击中,都不能逃脱厄运,故C、D错误;故选B.4.导学号17750004]【解析】选A.物资投出后做平抛运动,其落地所用时间由高度决定,t=2hg=6 s,A项正确,B项错误;抛出后至落地的水平位移为x=v t=60 m,C、D项错误.5.导学号17750005]【解析】选C.三个物体都做平抛运动,取一个相同的高度,此时物体下降的时间相同,水平位移大的物体的初速度较大,如图所示,由图可知:v A <v B <v C .由h =12gt 2可知,物体下降的高度决定物体运动的时间,t A >t B >t C ,所以C 正确.6.导学号17750006] 【解析】选D.结合平抛运动知识,A 球满足tan 37°=12gt 21v 0t 1,B 球满足tan 53°=12gt 220t 2,那么t 1∶t 2=tan 37°∶tan 53°=9∶16.7.导学号17750007] 【解析】选C.物体从斜面某点水平抛出后落到斜面上,物体的位移与水平方向的夹角等于斜面倾角θ,即tan θ=y x =12gt 2v 0t =gt2v 0,物体落到斜面上时速度方向与水平方向的夹角的正切值tan φ=v y v x =gtv 0,故可得tan φ=2tan θ,只要小球落到斜面上,位移方向与水平方向夹角就总是θ,则小球的速度方向与水平方向的夹角也总是φ,故速度方向与斜面的夹角就总是相等,与v 1、v 2的关系无关,C 选项正确.8.导学号17750008] 【解析】选ACD.由l =v 0t 得物体在空中飞行的时间为lv 0,故A 正确;由h =12gt 2得t =2h g ,故B 错误;由v y =v 2-v 20以及v y =gt 得t =v 2-v 20g,故C 正确;由于竖直方向为匀变速直线运动,故h =v y 2t ,所以t =2hv y,D 正确.9.导学号17750009] 【解析】选BCD.由题意得v 0t =12gt 2,则t =2v 0g ,所以v y =gt =g ·2v 0g =2v 0.则v =v 20+v 2y =5v 0,通过的位移l =2x =2v 0t =22v 20g.10.导学号17750010] 【解析】选AB.甲做平抛运动,在水平方向上做匀速直线运动,所以在未落地前任何时刻,甲乙两球都在一竖直线上,最后在地面上相遇,可能在P 点前,也可能在P 点后;甲在竖直方向上做自由落体运动,所以在未落地前的任何时刻,两球在同一水平线上,两球相遇点可能在空中,可能在P 点.所以,若三球同时相遇,则一定在P 点,故A 正确,D 错误.若甲丙两球在水平面相遇,由于甲乙两球始终在同一竖直线上,所以乙球一定在P 点,故B 正确.若甲乙两球在水平面上相遇,由于甲丙两球始终在同一水平线上,所以丙球一定落地,故C 错误.故选AB.11.导学号17750011] 【解析】选AC.平抛运动可分解为水平方向的匀速运动和竖直方向的自由落体运动,A 对;t 1时刻水平分速度v 0和竖直分速度v y 相等,此时速度方向与初速度方向间夹角的正切值为tan θ=v yv 0=1,θ=45°,故B 错;此时,位移方向与初速度方向间夹角的正切值为tan α=y x =v y 2t 1v 0t 1=12,C 对;同理可知2t 1时间内位移方向与初速度方向夹角的正切值为tanα′=12g (2t 1)2v 0·2t 1=1,α′=45°,D 错.答案为A 、C.12.导学号17750012] 【解析】选BD.A 质点做平抛运动,由平抛运动规律知,x 1=v t 1,h =12gt 21,而B 质点在斜面上做类平抛运动,其运动可分解为沿x 轴方向的匀速直线运动和沿斜面向下的匀加速直线运动,设斜面与水平面的夹角为θ,h sin θ=12g sin θt 22,x 2=v t 2,t 1<t 2,x 1<x 2,所以B 、D 正确.13.导学号17750013] 【解析】(1)为保证弹丸做平抛运动,用玩具手枪发射弹丸时应使子弹水平飞出;(2)子弹水平分运动是匀速运动,由图知a 、b 、c 、d 间水平距离相等,则相邻两点间的时间间隔相等,设为T ,竖直分运动是自由落体运动,满足Δy =gT 2,得L =gT 2,2L =v 0T ,所以v 0=2LT =2Lg =1.0 m/s.【答案】(1)使子弹水平飞出 (2)1.014.导学号17750014] 【解析】(1)设质点平抛的初速度为v 0,在A 、B 点的竖直分速度分别为v Ay 、v By ,则v Ay =v 0tan 30°,v By =v 0tan 60°,解得v Ay v By =13.(4分) (2)设从A 到B 的时间为t ,竖直位移和水平位移分别为y 、x ,则 tan θ=yx ,x =v 0t ,y =v Ay +v By 2t ,联立解得tan θ=233.(4分) 【答案】见解析 15.导学号17750015]【解析】小球速度很小,则不能越过墙;小球速度很大,则飞到马路外面.两临界状态就是刚好越过墙和落在马路右侧边缘.设小球刚好越过墙如图中Ⅰ所示,此时小球的水平初速度为v 1,则H -h =12gt 21,t 1=2(H -h )g(3分) 由L =v 1t 1得v 1=5 m/s.(1分)设小球越过墙刚好落在马路的右边缘如图中Ⅱ所示,此时小球的水平速度为v 2,则 H =12gt 22,t 2=2Hg(3分) 由L +D =v 2t 2得v 2=13 m/s.(1分)所以小球离开屋顶时的速度满足5 m/s ≤v ≤13 m/s 时,小球落在墙外的马路上.(2分) 【答案】5 m/s ≤v ≤13 m/s16.导学号17750016] 【解析】(1)运动员由A 到B 做平抛运动 水平方向的位移为x =v 0t ①(1分) 竖直方向的位移为y =12gt 2②(1分)tan 37°=yx③(2分)由①②③解得:t=2v0tan 37°g=3 s.(2分)(2)由题意可知sin 37°=ys④(2分)联立②④得s=g2sin 37°t2(2分)将t=3 s代入上式得s=75 m.(2分) 【答案】(1)3 s(2)75 m高中同步测试卷(二)第二单元 圆周运动 (时间:90分钟,满分:100分)一、单项选择题(本题共7小题,每小题5分,共35分.在每小题给出的四个选项中,只有一个选项正确.)1.下列关于离心现象的说法正确的是( ) A .当物体所受离心力大于向心力时产生离心现象B .做匀速圆周运动的物体,当它所受的一切力都消失时,它将做背离圆心的运动C .做匀速圆周运动的物体,当它所受的一切力都消失时,它将沿切线做直线运动D .做匀速圆周运动的物体,当它所受的一切力都消失时,它将做曲线运动 2.一走时准确的时钟(设它们的指针连续均匀转动)( ) A .时针的周期是1 h ,分针的周期是60 s B .分针的角速度是秒针的12倍C .如果分针的长度是时针的1.5倍,则分针端点的向心加速度是时针端点的1.5倍D .如果分针的长度是时针的1.5倍,则分针端点的线速度是时针端点的18倍3.两个小球固定在一根长为1 m 的杆的两端,杆绕O 点逆时针旋转,如图所示,当小球A 的速度为3 m/s 时,小球B 的速度为12 m/s.则小球B 到转轴O 的距离是 ( )A .0.2 mB .0.3 mC .0.6 mD .0.8 m4.物体m 用细绳通过光滑的水平板上的小孔与装有细沙的漏斗M 相连,并且正在做匀速圆周运动,如图所示,如果缓慢减小M 的质量,则物体的轨道半径r 、角速度ω变化情况是( )A .r 不变,ω变小B .r 增大,ω减小C .r 减小,ω增大D .r 减小,ω不变5.质量为m 的飞机,以速度v 在水平面内做半径为R 的匀速圆周运动,空气对飞机的升力大小等于( )A .m g 2+⎝⎛⎭⎫v2R 2B .m v 2RC .m⎝⎛⎭⎫v 2R 2-g 2 D .mg6.火车在转弯行驶时,需要靠铁轨的支持力提供向心力.下列关于火车转弯的说法中正确的是( )A .在转弯处使外轨略高于内轨B .在转弯处使内轨略高于外轨C .在转弯处使内轨、外轨在同一水平高度D .在转弯处火车受到的支持力竖直向上7. 为了测定子弹的飞行速度,在一根水平放置的轴杆上固定两个薄圆盘A 、B ,A 、B 平行相距 2 m ,轴杆的转速为 3 600 r/min ,子弹穿过两盘留下两弹孔a 、b ,测得两弹孔半径的夹角是30°,如图所示,则该子弹的速度可能是( )A .360 m/sB .720 m/sC .1 440 m/sD .108 m/s二、多项选择题(本题共5小题,每小题5分,共25分.在每小题给出的四个选项中,有多个选项正确,全部选对的得5分,选对但不全的得3分,有错选的得0分.)8.做匀速圆周运动的物体,运动半径增大为原来的2倍,则( ) A .如果线速度大小不变,角速度变为原来的2倍 B .如果角速度不变,周期变为原来的2倍C .如果周期不变,向心加速度大小变为原来的2倍D .如果角速度不变,线速度大小变为原来的2倍 9.下列关于向心加速度的说法错误的是( ) A .向心加速度越大,物体速率变化越快 B .向心加速度越大,物体转动得越快C .物体做匀速圆周运动时的加速度方向始终指向圆心D .在匀速圆周运动中,向心加速度是恒定的10. 如图所示,皮带传动装置中,右边两轮连在一起共轴转动,图中三轮半径分别为:r 1=3r ,r 2=2r ,r 3=4r ;A 、B 、C 三点为三个轮边缘上的点,皮带不打滑.A 、B 、C 三点的线速度分别为v 1、v 2、v 3,角速度分别为ω1、ω2、ω3,向心加速度分别为a 1、a 2、a 3,则下列比例关系正确的是( )A.a 1a 2=32B.ω1ω2=23C.v 2v 3=21D.a 2a 3=1211. 如图所示,两根长度不同的细线分别系有一个小球,细线的上端都系于O 点.设法让两个小球在同一水平面上做匀速圆周运动.已知细线长度之比为L 1∶L 2=3∶1,L 1跟竖直方向成60°角.下列说法中正确的有( )A.两小球做匀速圆周运动的周期必然相等B.两小球的质量m1∶m2=3∶1C.L2跟竖直方向成30°角D.L2跟竖直方向成45°角12.如图甲所示,龙卷风是在极不稳定天气下由空气强烈对流运动而产生的一种伴随着高速旋转的漏斗状云柱的强风涡旋,其中心附近风速可达100 m/s~200 m/s,最大300 m/s,其中心的气压可以比周围气压低百分之十,一般可低至400 hPa,最低可达200 hPa.假设在龙卷风旋转的过程中,有A、B两个质量相同的物体随龙卷风一起旋转,将龙卷风模拟成如图乙所示,假设两物体做匀速圆周运动,下列说法正确的是()A.A的线速度必定大于B的线速度B.A的角速度必定大于B的角速度C.A的向心加速度必定大于B的向心加速度D.A的周期必定大于B的周期三、计算题(本题共4小题,共40分.解答时应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位.) 13.(8分)汽车行驶在半径为50 m的圆形水平跑道上,速度为10 m/s.已知汽车的质量为1 000 kg,汽车与地面的最大静摩擦力为车重的0.8倍.问:(g=10 m/s2)(1)角速度是多少?(2)其向心力是多大?(3)要使汽车不打滑,则其速度最大不能超过多少?14.(10分) 如图所示,杆长为L,杆的一端固定一质量为m的小球,杆的质量忽略不计,整个系统绕杆的另一端O在竖直平面内做圆周运动,求:(1)小球在最高点A时速度v A为多大时,才能使杆对小球的作用力为零?(2)如m=0.5 kg,L=0.5 m,v A=0.4 m/s,g=10 m/s2,则在最高点A时,杆对小球的作用力是多大?是推力还是拉力?15.(10分)如图所示,一光滑的半径为R的半圆形轨道固定在水平面上,一个质量为m的小球以某一速度冲上轨道,然后小球从轨道口B处飞出,最后落在水平面上,已知小球落地点C距B处的距离为3R.求小球对轨道口B处的压力为多大?16.(12分)如图所示,OP=PQ=R,两个小球质量都是m,a、b为水平轻绳.两小球正随水平圆盘以角速度ω匀速同步转动.小球和圆盘间的摩擦力可以不计.求:(1)绳b对小球Q的拉力大小;(2)绳a对小球P的拉力大小.参考答案与解析1.导学号17750017]【解析】选C.做匀速圆周运动的物体的向心力是效果力.产生离心现象的原因是F合<mrω2,或是F合=0(F突然消失),故A项错误;当F=0时,根据牛顿第一定律,物体从这时起沿切线做匀速直线运动,故C项正确,B、D项错误.2.导学号17750018]【解析】选D.时针的周期是12 h,分针的周期是1 h,秒针的周期为1 60h,所以角速度之比为112∶1∶60,故A、B错误;由v=rω可得,分针和时针端点线速度之比为:12×1.5∶1×1=18∶1.故选D.3.导学号17750019]【解析】选D.设小球A、B做圆周运动的半径分别为r1、r2,则v1∶v2=ωr1∶ωr2=r1∶r2=1∶4,又因r1+r2=1 m,所以小球B到转轴O的距离r2=0.8 m,D正确.4.导学号17750020]【解析】选B.细绳拉力提供物体m做圆周运动需要的向心力,当缓慢减小M时,对m的拉力减小,拉力不足以提供向心力,物体m做离心运动,运动半径r增大,由牛顿第二定律得Mg=T=mω2r,因为细绳拉力T减小,半径r增大,因此ω减小,选项B正确.5.导学号17750021] 【解析】选A.首先对飞机在水平面内的受力情况进行分析,其受力情况如图所示,飞机受到重力mg 、空气对飞机的支持力为F ,两力的合力为F 向,方向水平指向圆心.由题意可知,重力mg 与F 向垂直,故F =(mg )2+F 2向,又F 向=m v 2R,代入上式,得F =mg 2+⎝⎛⎭⎫v2R 2,故正确选项为A.6.导学号17750022] 【解析】选A.火车在转弯行驶时,支持力和重力的合力提供向心力,由于支持力与两个铁轨所在的平面垂直,故在转弯处使外轨略高于内轨,支持力并不是竖直向上的;故选A.7.导学号17750023] 【解析】选C.子弹从A 盘到B 盘,盘转动的角度θ=2πn +π6(n =0,1,2,…).盘转动的角速度ω=2πT =2πf =2πn =2π×3 60060rad/s =120π rad/s.子弹在A 、B 间运动的时间等于圆盘转动的时间,即2v =θω,所以v =2ωθ=2×120π2πn +π6,v =1 44012n +1(n =0,1,2,…). n =0时,v =1 440 m/s ; n =1时,v =110.77 m/s ; n =2时,v =57.6 m/s ; ……8.导学号17750024] 【解析】选CD.如果线速度大小不变,运动半径增大为原来的2倍,根据v =ωr 可判,角速度应变为原来的12,故A 错误; 根据T =2π可判如果角速度不变,周期不变,故B 错误;如果周期不变,运动半径增大为原来的2倍,根据a =4π2T 2r 可判向心加速度变为原来的2倍,故C 正确;如果角速度大小不变,运动半径增大为原来的2倍,根据v =ωr 可判,线速度应变为原来的2倍,故D 正确;故选CD.9.导学号17750025] 【解析】选ABD.向心加速度描述的是圆周运动速度方向的变化快慢,而非速度大小的变化快慢,A 、B 错误;匀速圆周运动的加速度即向心加速度,方向指向圆心,C 正确;在匀速圆周运动中,向心加速度大小不变,方向时刻改变,D 错误.10.导学号17750026] 【解析】选BD.因v 1=v 2,由a =v 2R 得a 1a 2=23,A 错;ω1ω2=23,B 对,v 2v 3=2ωr 4ωr =12,C 错;a 2a 3=2ω2r 4ω2r =12,D 对.11.导学号17750027] 【解析】选AC.小球所受合力的大小为mg tan θ,根据mg tan θ=mω2L sin θ,得ω=gL cos θ,两小球在同一水平面内做匀速圆周运动,则两小球的L cos θ相等,即L 1cos 60°=L 2cos θ,解得θ=30°,且角速度相等,由T =2πω知周期相等,A 、C 正确,D 错误;由mg tan θ=mω2L sin θ知,小球做匀速圆周运动与质量无关,无法求出两小球的质量比,B 错误.12.导学号17750028] 【解析】选AC.A 、B 两物体的运动可看做是同轴转动,根据v =ωr 可知,A 的线速度必定大于B 的线速度,选项A 正确;A 的角速度等于B 的角速度,选项B 错误;根据a =ω2r 可知,A 的向心加速度必定大于B 的向心加速度,选项C 正确;A 的周期等于B 的周期,选项D 错误.13.导学号17750029] 【解析】(1)由v =rω可得,角速度为 ω=v r =1050 rad/s =0.2 rad/s.(2分)(2)向心力的大小为:F 向=m v 2r =1 000×10050N =2 000 N .(2分)(3)汽车作圆周运动的向心力由车与地面的之间静摩擦力提供.随车速的增加,需要的向心力增大,静摩擦力随着一直增大到最大值为止.由牛顿第二定律得:f m =0.8mg =m v 2r(2分)汽车过弯道的允许的最大速度为:v =0.8gr =0.8×10×50 m/s =20 m/s.(2分) 【答案】(1)0.2 rad/s (2)2 000 N (3)20 m/s14.导学号17750030] 【解析】(1)若杆和小球之间相互作用力为零,那么小球做圆周运动的向心力由重力mg 提供,则有mg =m v 2AL解得:v A =Lg .(4分)(2)杆长L =0.5 m 时,临界速度 v 临=Lg =0.5×10 m/s =2.2 m/s(2分) v A =0.4 m/s<v 临,杆对小球有推力F A . 则有mg -F A =m v 2AL解得:F A =mg -m v 2AL=⎝⎛⎭⎫0.5×10-0.5×0.420.5N =4.84 N .(4分) 【答案】(1)Lg (2)4.84 N 推力15.导学号17750031] 【解析】设小球经过B 点时速度为v 0,则 小球平抛的水平位移为:x =(3R )2-(2R )2=5R (2分) v 0=x t=5R 4R g=5gR 2(2分)对小球过B 点时由牛顿第二定律得: F +mg =m v 20R,(2分)F=14mg (2分)由牛顿第三定律F′=F=14mg.(2分)【答案】14mg16.导学号17750032]【解析】(1)对球Q,受力如图甲所示,其做圆周运动的半径为2R,根据牛顿第二定律有F b=mω2·2R=2mω2R.(4分)(2)对球P,受力如图乙所示,其做圆周运动的半径为R,根据牛顿第二定律有F a-F b′=mω2R(3分)F b=F b′(1分)解得F a=F b′+mω2R=3mω2R.(4分)【答案】(1)2mω2R(2)3mω2R高中同步测试卷(三)第三单元 行星运动和万有引力定律 (时间:90分钟,满分:100分)一、单项选择题(本题共7小题,每小题5分,共35分.在每小题给出的四个选项中,只有一个选项正确.)1.苹果落向地球,而不是地球向上运动碰到苹果,发生这个现象的原因是( ) A .由于苹果质量小,对地球的引力小,而地球质量大,对苹果引力大造成的 B .由于地球对苹果有引力,而苹果对地球没有引力造成的C .苹果与地球间的相互作用力是等大的,但由于地球质量极大,不可能产生明显加速度D .以上说法都不对2.如图所示,两个半径为r 1=0.40 m ,r 2=0.60 m 且质量分布均匀的实心球质量分别为m 1=4.0 kg 、m 2=1.0 kg ,两球间距离r 0=2.0 m ,则两球间的引力的大小为(G =6.67×10-11N ·m 2/kg 2)( )A .6.67×10-11NB .大于6.67×10-11NC .小于6.67×10-11ND .不能确定3.设想把质量为m 的物体(可视为质点)放到地球的中心,地球质量为M 、半径为R .则物体与地球间的万有引力是( )A .零B .无穷大C .GMm /R 2D .无法确定4.据报道,最近在太阳系外发现了首颗“宜居”行星,其质量约为地球质量的6.4倍,一个在地球表面重量为600 N 的人在这个行星表面的重量将变为960 N .由此可推知,该行星的半径与地球半径之比约为( )A .0.5B .2C .3.2D .45.假设宇宙中有一颗未命名的星体,其质量为地球的6.4倍,一个在地球表面重力为50 N 的物体,经测定在该未知星体表面的重力为80 N ,则未知星体与地球的半径之比为( )A .0.5B .2C .3.2D .46.假设地球是一半径为R 、质量分布均匀的球体.一矿井深度为d .已知质量分布均匀的球壳对壳内物体的引力为零.矿井底部和地面处的重力加速度大小之比为( )A .1-dRB .1+dRC.⎝⎛⎭⎫R -d R 2D.⎝⎛⎭⎫R R -d 27.英国《新科学家(New Scientist)》杂志评选出了世界8项科学之最,在XTEJ1650-500双星系统中发现的最小黑洞位列其中.若某黑洞的半径R 约45 km ,质量M 和半径R 的关系满足MR=c22G(其中c为光速,G为引力常量),则该黑洞表面重力加速度的数量级为() A.108 m/s2B.1010 m/s2C.1012 m/s2D.1014 m/s2二、多项选择题(本题共5小题,每小题5分,共25分.在每小题给出的四个选项中,有多个选项正确,全部选对的得5分,选对但不全的得3分,有错选的得0分.)8.理论和实践证明,开普勒定律不仅适用于太阳系中的天体运动,而且对一切天体(包括卫星绕行星的运动)都适用.下面对于开普勒第三定律的公式a3T2=k的说法错误的是()A.公式只适用于轨道是椭圆的运动B.式中的k值,对于所有行星(或卫星)都相等C.式中的k值,只与中心天体有关,与绕中心天体旋转的行星(或卫星)无关D.若已知月球与地球之间的距离,根据公式可求出地球与太阳之间的距离9.关于物理学家所做出的贡献,下列说法中错误的是()A.总结出行星运动三条定律的科学家是牛顿B.总结出万有引力定律的物理学家是伽俐略C.提出日心说的物理学家是第谷D.第一次精确测量出万有引力常量的物理学家是卡文迪许10.下面说法中正确的是()A.F=G m1m2r2公式中,G为引力常量,它是由实验测得的,而不是人为规定的B.F=G m1m2r2公式中,当r趋近于零时,万有引力趋近于无穷大C.F=G m1m2r2公式中,m1与m2受到的引力总是大小相等的,而与m1、m2是否相等无关D.F=G m1m2r2公式中,m1与m2受到的引力总是大小相等、方向相反的,是一对平衡力11.地球绕太阳的运行轨道是椭圆,因而地球与太阳之间的距离随季节变化.冬至这天地球离太阳最近,夏至最远.下列关于地球在这两天绕太阳公转速度大小的说法中,错误的是() A.地球公转速度是不变的B.冬至这天地球公转速度大C.夏至这天地球公转速度大D.无法确定12.宇宙飞船绕地心做半径为r的匀速圆周运动,飞船舱内有一质量为m的人站在可称体重的台秤上,用R表示地球的半径,g0表示地球表面处的重力加速度,g′表示宇宙飞船所在处的重力加速度,N表示人对台秤的压力,下列说法中正确的是()A.g′=0 B.g′=R2 r2g0C.N=0 D.N=m R2 r2g0三、计算题(本题共4小题,共40分.解答时应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位.)。
必修2物理测试题及答案
必修2物理测试题及答案在本次必修2物理测试中,我们将通过一系列精心设计的题目来检验你对物理基础知识的掌握情况。
请仔细阅读题目,并在答题纸上给出你的答案。
祝你好运!1. 光在真空中的传播速度是3×10^8米/秒。
如果一束光从地球发射到月球,再从月球反射回地球,总共用时2.56秒,那么地球到月球的距离是多少?请用科学记数法表示。
2. 一个物体从静止开始做匀加速直线运动,加速度大小为5米/秒²。
求物体在第3秒末的速度以及前3秒内的位移。
3. 一个质量为2千克的物体在水平面上受到一个大小为10牛顿的拉力作用,物体与水平面之间的动摩擦因数为0.2。
求物体的加速度大小。
4. 一个质量为1千克的小球从5米高处自由下落,忽略空气阻力。
求小球落地时的速度大小。
5. 一个电荷量为-3×10^-6库仑的点电荷,距离一个正电荷量为2×10^-6库仑的点电荷5厘米。
求两点电荷之间的库仑力大小。
6. 一个半径为10厘米的均匀带电球体,其电荷总量为1×10^-6库仑。
求球心处的电场强度。
7. 一个质量为1千克的物体在水平面上做匀速圆周运动,线速度大小为2米/秒,半径为1米。
求物体所受的向心力大小。
8. 一个点电荷在电场中受到的电场力大小为2牛顿,方向水平向右。
求该点电荷所受的电场强度大小和方向。
9. 一个质量为2千克的物体从静止开始做自由落体运动。
求物体在第2秒末的速度大小和前2秒内的位移。
10. 一个半径为5厘米的均匀带电球体,其电荷总量为2×10^-6库仑。
求球心处的电场强度。
答案:1. 地球到月球的距离为3.84×10^5米。
2. 第3秒末的速度为15米/秒,前3秒内的位移为22.5米。
3. 物体的加速度大小为4米/秒²。
4. 小球落地时的速度大小为10米/秒。
5. 两点电荷之间的库仑力大小为4.8牛顿。
6. 球心处的电场强度为0。
7. 物体所受的向心力大小为4牛顿。
最新教科版高中物理必修二单元测试题全套附答案
最新教科版高中物理必修二单元测试题全套附答案章末检测试卷(第一章)(时间:90分钟满分:100分)一、选择题(本题共10小题,每小题5分,共50分.1~6题为单项选择题,7~10题为多项选择题.全部选对的得5分,选对但不全的得3分,错选和不选的得0分)1.一物体在光滑的水平桌面上运动,在相互垂直的x方向和y方向上的分运动速度随时间变化的规律如图1所示.关于物体的运动,下列说法正确的是()图1A.物体做速度逐渐增大的曲线运动B.物体运动的加速度先减小后增大C.物体运动的初速度大小是50 m/sD.物体运动的初速度大小是10 m/s答案 C解析由题图知,x方向的初速度沿x轴正方向,y方向的初速度沿y轴负方向,则合运动的初速度方向不在y轴方向上;x轴方向的分运动是匀速直线运动,加速度为零,y轴方向的分运动是匀变速直线运动,加速度沿y轴方向,所以合运动的加速度沿y轴方向,与合初速度方向不在同一直线上,因此物体做曲线运动.根据速度的合成可知,物体的速度先减小后增大,故A错误;物体运动的加速度等于y 方向的加速度,保持不变,故B错误;根据题图可知物体的初速度大小为:v0=v x02+v y02=302+402 m/s=50 m/s,故C正确,D错误.【考点】运动的合成和分解【题点】速度的合成和分解2.人站在平台上平抛一小球,球离手的速度为v1,落地时速度为v2,不计空气阻力,下图中能表示出速度矢量的演变过程的是()答案 C3.某地发生地震,一架装载救灾物资的直升飞机以10 m/s的速度水平飞行,在距地面180 m的高度处,欲将救灾物资准确投放至地面目标,若不计空气阻力,g取10 m/s2,则()A.物资投出后经过6 s到达地面目标B.物资投出后经过180 s到达地面目标C.应在距地面目标水平距离600 m处投出物资D.应在距地面目标水平距离180 m处投出物资答案 A解析物资投出后做平抛运动,其落地所用时间由高度决定,t=2hg=6 s,A项正确,B项错误;投出后至落地的水平位移为x=v t=60 m,C、D项错误.4.距地面高5 m的水平直轨道上A、B两点相距2 m,在B点用细线悬挂一小球,离地高度为h,如图2.小车始终以4 m/s的速度沿轨道匀速运动,经过A点时将随车携带的小球由轨道高度自由卸下,小车运动至B点时细线被轧断,最后两球同时落地.不计空气阻力,取重力加速度的大小g=10 m/s2.可求得h等于()图2A.1.25 m B.2.25 m C.3.75 m D.4.75 m答案 A解析由题意可知,从A处落下的小球落到地面的时间等于小车从A到B的时间与在B点悬挂的小球落地的时间之和,即2Hg=dv+2hg,代入数据解得h=1.25 m,故选项A正确.5.如图3所示,在水平面上有P、Q两点,A、B两点分别在P、Q两点的正上方,距离地面的高度分别为h1和h2.某时刻在A点以速度v1水平抛出一小球a,经时间t后又在B点以速度v2水平抛出另一小球b,结果两球同时落在P、Q连线上的O点,则有(空气阻力不计)()图3A .PO ∶OQ =v 1h 1∶v 2h 2B .PO ∶OQ =v 1h 12∶v 2h 22C .PO ∶OQ =v 1h 1∶v 2h 2D .PO ∶OQ =v 12h 1∶v 22h 2 答案 C解析 设a 球落地的时间为t 1,b 球落地的时间为t 2,有PO =v 1t 1=v 12h 1g,OQ =v 2t 2=v 22h 2gPO ∶OQ =v 1h 1∶v 2h 2,故C 正确.6.如图4所示,离地面高h 处有甲、乙两个小球,甲以初速度v 0水平射出,同时乙以大小相等的初速度v 0沿倾角为45°的光滑固定斜面下滑,若甲、乙同时到达地面,则v 0的大小是(空气阻力不计)( )图4A.gh 2 B.gh C.2gh 2D .2gh 答案 A解析 甲做平抛运动,在竖直方向有h =12gt 2,得运动时间t =2h g .乙沿斜面下滑,位移x =hsin 45°=2h ,加速度a =g sin 45°=22g ,则有x =v 0t ′+12at ′2,且甲、乙同时到达地面,则t ′=2hg,联立解得v 0=gh2,故A 项正确. 7.西班牙某小镇举行了西红柿狂欢节,其间若一名儿童站在自家的平房顶上,向距离他L 处的对面的竖直高墙上投掷西红柿,第一次水平抛出的速度是v 0,第二次水平抛出的速度是2v 0,则比较前后两次被抛出的西红柿在碰到墙时,有(不计空气阻力)( ) A .运动时间之比是2∶1 B .下落的高度之比是2∶1 C .下落的高度之比是4∶1 D .运动的加速度之比是1∶1 答案 ACD解析 由平抛运动的规律得t 1∶t 2=L v 0∶L 2v 0=2∶1,故选项A 正确.h 1∶h 2=(12gt 12)∶(12gt 22)=4∶1,选项B错误,C正确.由平抛运动的性质知,选项D正确.【考点】平抛运动规律的应用【题点】平抛运动规律的应用8.如图5所示,蹲在树枝上的一只松鼠看到一个猎人正在用枪水平瞄准它,就在子弹出枪口时,开始逃跑,松鼠可能的逃跑方式有下列四种.在这四种逃跑方式中,松鼠不能逃脱厄运而被击中的是(设树枝足够高,忽略空气阻力)()图5A.自由下落B.竖直上跳C.迎着枪口,沿AB方向水平跳离树枝D.背着枪口,沿AC方向水平跳离树枝答案ACD解析射出的子弹做平抛运动,根据平抛运动的特点,竖直方向做自由落体运动,所以无论松鼠以自由落下,迎着枪口沿AB方向水平跳离树枝,还是背着枪口沿AC方向水平跳离树枝,竖直方向的运动情况都与子弹相同,一定被击中,所以不能逃脱厄运而被击中的是A、C、D.9.如图6所示,轻质不可伸长的细绳,绕过光滑定滑轮C,与质量为m的物体A连接,A放在倾角为θ的光滑固定斜面上,绳的另一端和套在固定竖直杆上的物体B连接.现B、C间细绳恰沿水平方向,从当前位置开始,B在外力作用下以速度v0匀速下滑.设绳子的张力为T,在此后的运动过程中,下列说法正确的是()图6A.物体A做加速运动B.物体A做匀速运动C.T可能小于mg sin θD.T一定大于mg sin θ答案AD解析由题意可知,将B的实际运动分解成两个分运动,如图所示,根据平行四边形定则,可知v B sin α=v绳;因B以速度v0匀速下滑,又α增大,所以v绳增大,则物体A做加速运动,根据受力分析,结合牛顿第二定律,则有T>mg sin θ,故A、D正确.10.如图7,一小球从某固定位置以一定初速度水平抛出,已知当抛出速度为v 0时,小球落到一倾角为θ=60°的斜面上,且球发生的位移最小,不计空气阻力.则( )图7A .小球从抛出到落到斜面的时间为3v 03gB .小球从抛出到落到斜面的时间为23v 03gC .小球的抛出点到斜面的距离为4v 023gD .小球的抛出点到斜面的距离为2v 023g答案 BC解析 球平抛的位移最小,则抛出点和落点的连线与斜面垂直,分解位移,如图所示:设平抛时间为t ,结合几何关系知,tan θ=x y ,x =v 0t ,y =12gt 2,解得:t =23v 03g ,故选项A 错误,B 正确;由s =xsin θ=v 0t sin θ=4v 023g,选项C 正确,D 错误.二、填空题(本题共2小题,共10分)11.(4分)某研究性学习小组进行如下实验:如图8所示,在一端封闭的光滑细玻璃管中注满清水,水中放一个红蜡做成的小圆柱体R .将玻璃管的开口端用胶塞塞紧后竖直倒置且与y 轴重合,在R 从坐标原点以速度v 0=3 cm/s 匀速上浮的同时,玻璃管沿x 轴正方向做初速度为零的匀加速直线运动.同学们测出某时刻R 的坐标为(4,6),此时R 的速度大小为________cm/s.R 在上升过程中运动轨迹的示意图是图9中的________.(R 视为质点)图8图9答案 5 丁解析 小圆柱体R 有水平方向的加速度,所受合外力指向曲线的内侧,所以其运动轨迹应如丁图所示.因为竖直方向匀速,由y =6 cm =v 0t 知t =2 s ,水平方向x =v x 2·t =4 cm ,所以v x =4 cm/s ,因此此时R 的速度大小v =v x 2+v 02=5 cm/s.12.(6分)未来在一个未知星球上用如图10甲所示装置研究平抛运动的规律.悬点O 正下方P 点处有水平放置的炽热电热丝,当悬线摆至电热丝处时能轻易被烧断,小球由于惯性向前飞出做平抛运动.现对小球采用频闪数码照相机连续拍摄.在有坐标纸的背景屏前,拍下了小球在做平抛运动过程中的多张照片,经合成后,照片如图乙所示.a 、b 、c 、d 为连续四次拍下的小球位置,已知照相机连续拍照的时间间隔是0.10 s ,照片大小如图中坐标所示,又知该照片的长度与实际背景屏的长度之比为1∶4,则:图10(1)由以上信息,可知a 点________(选填“是”或“不是”)小球的抛出点. (2)由以上及图信息,可以推算出该星球表面的重力加速度为________m/s 2. (3)由以上及图信息可以算出小球平抛的初速度是________m/s. (4)由以上及图信息可以算出小球在b 点时的速度是________m/s. 答案 (1)是 (2)8 (3)0.8 (4)425解析 (1)由初速度为零的匀加速直线运动经过相同的时间内通过位移之比为1∶3∶5可知,a 点是抛出点.(2)由ab 、bc 、cd 水平距离相同可知,a 到b 、b 到c 运动时间相同,设为T ,在竖直方向有Δh =gT 2,T=0.10 s ,可求出g =8 m/s 2.(3)由两位置间的时间间隔为0.10 s ,水平距离为8 cm ,x =v x t ,得水平速度为0.8 m/s.(4)b 点竖直分速度为ac 间的竖直平均速度,根据速度的合成求b 点的合速度,v yb =4×4×1×10-22×0.10m/s=0.8 m/s ,所以v b =v x 2+v yb 2=425m/s. 三、计算题(本题共4小题,共40分)13.(8分)某河宽为200 m ,河水的流速与离河岸距离的变化关系如图11所示,船在静水中的航行速度恒为4 m/s ,则小船渡河的最短时间是多少?在此过程中,小船在河水中航行的最大速度是多少?速度方向与河岸夹角是多少?图11答案 50 s 5 m/s 53°解析 设水流速度为v 1,小船在静水中的速度为v 2,河宽为d . 当船头垂直河岸渡河时,时间最短:t =dv 2,代入数据可得t =50 s.小船驶至距河岸50 m 时水流速度最大,此时船的实际速度也最大,则v 1m =3 m/s , v m =v 1m 2+v 22=32+42 m /s =5 m/s ; 设此时该速度方向与河岸的夹角为θ, 则tan θ=v 2v 1m =43,所以θ=53°.14.(10分)有A 、B 、C 、三个小球,A 球距地面较高,B 球次之,C 球最低,A 、C 两球在同一竖直线上,相距10 m ,如图12所示.三球同时开始运动,A 球竖直下抛,B 球平抛,C 球竖直上抛,且三球的初速度大小相等,5 s 后三球在D 点相遇,不考虑空气阻力.则图12(1)三球的初速度大小是多少?(2)开始运动时,B 球离C 球的水平距离和竖直距离各是多少? 答案 (1)1 m/s (2)5 m 5 m解析 由题中条件可知,A 球、C 球做匀变速直线运动,B 球做平抛运动,相遇时三球在空中运动的时间相等,取竖直向下为正方向.(1)对A 球有h AD =v 0t +12gt 2,对C 球有h CD =-v 0t +12gt 2又h AD -h CD =10 m ,即2v 0t =10 m ,解得v 0=102×5m/s =1 m/s. (2)B 球与C 球的水平距离为s BC =v 0t =1×5 m =5 mB 球与C 球的竖直距离为h BC =h BD -h CD =12gt 2-(-v 0t +12gt 2)=v 0t =1×5 m =5 m.15.(10分)如图13所示,在水平地面上固定一倾角θ=37°、表面光滑的斜面体,物体A 以v 1=6 m/s 的初速度沿斜面上滑,同时在物体A 的正上方,有一物体B 以某一初速度水平抛出.当A 上滑到最高点速度为0时恰好被物体B 击中.A 、B 均可看成质点(不计空气阻力,sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2).求:图13(1)物体A 上滑到最高点所用的时间t ; (2)物体B 抛出时的初速度v 2的大小; (3)物体A 、B 间初始位置的高度差h . 答案 (1)1 s (2)2.4 m/s (3)6.8 m解析 (1)物体A 上滑过程中,由牛顿第二定律得 mg sin θ=ma 代入数据得a =6 m/s 2设物体A 滑到最高点所用时间为t ,由运动学公式知0=v 1-at 解得t =1 s(2)物体B 平抛的水平位移x =12v 1t cos 37°=2.4 m物体B 平抛的初速度v 2=xt =2.4 m/s(3)物体A 、B 间初始位置的高度差 h =12v 1t sin 37°+12gt 2=6.8 m. 【考点】平抛运动中的两物体相遇问题【题点】平抛运动和竖直(或水平)运动的相遇问题16.(12分)如图14所示,有一固定在水平桌面上的轨道ABC ,AB 段粗糙,与水平面间的夹角为θ=37°,BC 段光滑,C 点紧贴桌子边缘,桌高h =0.8 m .一小物块放在A 处(可视为质点),小物块与AB 间的动摩擦因数为μ=0.25.现在给小物块一个沿斜面向下的初速度v A =1 m/s ,小物块经过B 处前后瞬间的速率不变,小物块最后落在与C 点水平距离x =1.2 m 的D 处.(不计空气阻力,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:图14(1)小物块在AB 段向下运动时的加速度大小a ; (2)小物块到达B 处时的速度大小v B ; (3)AB 的长L .答案 (1)4 m/s 2 (2)3 m/s (3)1 m解析 (1)小物块从A 到B 过程中,由牛顿第二定律得 mg sin θ-μmg cos θ=ma解得a =4 m/s 2.(2)小物块从B 向右匀速运动,自C 点水平抛出,由平抛运动规律得h =12gt 2,x =v B t解得v B =3 m/s(3)小物块从A 到B ,由运动学公式得 v B 2-v A 2=2aL 解得L =1 m章末检测试卷(第二章)(时间:90分钟 满分:100分)一、选择题(本题共12小题,每小题4分,共48分.1~8题为单项选择题,9~12题为多项选择题.全部选对的得4分,选对但不全的得2分,错选和不选的得0分)1.如图1所示,甲、乙两车在水平地面上匀速过圆弧形弯道(从1位置至2位置),已知两车速率相等,下列说法正确的是( )图1A .甲乙两车过弯道的时间可能相同B .甲乙两车角速度可能相同C .甲乙两车向心加速度大小可能相同D .甲乙两车向心力大小可能相同 答案 D2.如图2所示为某中国运动员在短道速滑比赛中勇夺金牌的精彩瞬间.假定此时她正沿圆弧形弯道匀速率滑行,则她( )图2A .所受的合力为零,做匀速运动B .所受的合力恒定,做匀加速运动C .所受的合力恒定,做变加速运动D .所受的合力变化,做变加速运动 答案 D解析 运动员做匀速圆周运动,由于合力时刻指向圆心,其方向变化,所以是变加速运动,D 正确. 【考点】对匀速圆周运动的理解 【题点】对匀速圆周运动的理解3.如图3所示,质量为m 的物块从半径为R 的半球形碗边向碗底滑动,滑到最低点时的速度为v ,若物块滑到最低点时受到的摩擦力是f ,则物块与碗的动摩擦因数为( )图3A.f mgB.fmg +mv 2RC.f mg -mv 2RD.f m v 2R答案 B解析 物块滑到最低点时受竖直方向的重力、支持力和水平方向的摩擦力三个力作用,根据牛顿第二定律得N -mg =m v 2R ,又f =μN ,联立解得μ=fmg +mv 2R,选项B 正确.4.质量为m 的飞机以恒定速率v 在空中水平盘旋,如图4所示,其做匀速圆周运动的半径为R ,重力加速度为g ,则此时空气对飞机的作用力大小为( )图4A .m v 2RB .mgC .m g 2+v 4R2D .mg 2-v 2R4答案 C解析 飞机在空中水平盘旋时在水平面内做匀速圆周运动,受到重力和空气的作用力两个力的作用,其合力提供向心力F =m v 2R .飞机受力情况如图所示,根据勾股定理得:F ′=(mg )2+F 2=mg 2+v 4R2.5.如图5所示,两个相同材料制成的靠摩擦传动的轮A 和轮B 水平放置(两轮不打滑),两轮半径r A =2r B ,当主动轮A 匀速转动时,在A 轮边缘上放置的小木块恰能相对静止,若将小木块放在B 轮上,欲使木块相对B 轮能静止,则木块距B 轮转轴的最大距离为( )图5A.r B 4B.r B 3C.r B 2 D .r B答案 C解析 当主动轮匀速转动时,A 、B 两轮边缘上的线速度大小相等,由ω=v R 得ωA ωB =vr A v r B =r B r A =12.因A 、B材料相同,故木块与A 、B 间的动摩擦因数相同,由于小木块恰能在A 边缘上相对静止,则由静摩擦力提供的向心力达到最大值f m ,得f m =mωA 2r A ①设木块放在B 轮上恰能相对静止时距B 轮转轴的最大距离为r ,则向心力由最大静摩擦力提供,故f m =mωB 2r ②由①②式得r =(ωA ωB )2r A =(12)2r A =r A 4=r B2,C 正确.【考点】水平面内的匀速圆周运动分析 【题点】水平面内的匀速圆周运动分析6.如图6所示,两段长均为L 的轻质线共同系住一个质量为m 的小球,另一端分别固定在等高的A 、B 两点,A 、B 两点间距也为L .今使小球在竖直平面内做圆周运动,当小球到达最高点时速率为v ,两段线中张力恰好均为零,若小球到达最高点时速率为2v ,则此时每段线中张力大小为( )图6A .4mgB .2mgC .3mg D.3mg 答案 D解析 当小球到达最高点的速率为v 时,有mg =m v 2r .当小球到达最高点的速率为2v 时,应有F +mg=m (2v )2r =4mg ,所以F =3mg ,此时两段线对球的作用力如图所示,解得T =3mg ,选项D 正确,A 、B 、C 错误.7.如图7所示,水平圆盘可绕过圆心的竖直轴转动,两个小物体M 和m 之间连一根跨过位于圆心的光滑小孔的细线,M 与盘间的最大静摩擦力为f m ,物体M 随圆盘一起以角速度ω匀速转动,下述的ω取值范围已保证物体M 相对圆盘无滑动,则下列说法正确的是()图7A.无论ω取何值,M所受静摩擦力都指向圆心B.ω取不同值时,M所受静摩擦力有可能指向圆心,也有可能背向圆心C.ω取值越大,细线拉力越小D.ω取值越大,细线拉力越大答案 B解析M在竖直方向上受到重力和支持力,二力平衡,在水平方向受到绳子的拉力,也可能受到静摩擦力.设M所受静摩擦力方向指向圆心,根据牛顿第二定律得:T+f=Mω2r.又T=mg,则得:f=Mω2r -mg.若Mω2r>mg,f>0,静摩擦力方向指向圆心;若Mω2r<mg,f<0,静摩擦力方向背向圆心,故A错误,B正确;对于m,根据平衡条件得:T=mg,说明细线的拉力保持不变,故C、D错误.8.如图8所示,一根细线下端拴一个金属小球P,细线的上端固定在金属块Q上,Q放在带小孔的水平桌面上.小球在某一水平面内做匀速圆周运动(圆锥摆).现使小球改到一个更高一些的水平面上做匀速圆周运动(图上未画出,细线长度不变),两次金属块Q都保持在桌面上静止.则后一种情况与原来相比较,下面的判断中正确的是()图8A.Q受到桌面的静摩擦力变大B.Q受到桌面的支持力变大C.小球P运动的角速度变小D.小球P运动的周期变大答案 A解析金属块Q保持在桌面上静止,对金属块和小球研究,竖直方向上没有加速度,根据平衡条件得知,Q受到桌面的支持力等于两个物体的总重力,保持不变,故B错误.设细线与竖直方向的夹角为θ,细线的拉力大小为T,细线的长度为L.P球做匀速圆周运动时,由重力和细线的拉力的合力提供向心力,如图,则有T =mgcos θ,mg tan θ=mω2L sin θ,得角速度ω=gL cos θ,周期T =2πω=2πL cos θg,现使小球改到一个更高一些的水平面上做匀速圆周运动时,θ增大,cos θ减小,则得到细线拉力T 增大,角速度增大,周期T 减小.对Q ,由平衡条件知,f =T sin θ=mg tan θ,知Q 受到桌面的静摩擦力变大,故A 正确,C 、D 错误.9.m 为在水平传送带上被传送的小物体(可视为质点),A 为终端皮带轮,如图9所示,已知皮带轮半径为r ,传送带与皮带轮间不会打滑,当m 可被水平抛出时( )图9A .皮带的最小速度为grB .皮带的最小速度为g r C .A 轮每秒的转数最少是12πg rD .A 轮每秒的转数最少是12πgr 答案 AC解析 物体恰好被水平抛出时,在皮带轮最高点满足mg =m v 2r ,即速度最小为gr ,选项A 正确;又因为v =2πrn ,可得n =12πgr,选项C 正确. 【考点】向心力公式的简单应用 【题点】竖直面内圆周运动的动力学问题10.有一种杂技表演叫“飞车走壁”,由杂技演员驾驶摩托车沿圆台形表演台的侧壁高速行驶,做匀速圆周运动.如图10所示,图中虚线表示摩托车的行驶轨迹,轨迹离地面的高度为h ,下列说法中正确的是( )图10A .h 越高,摩托车对侧壁的压力将越大B .h 越高,摩托车做圆周运动的线速度将越大C .h 越高,摩托车做圆周运动的周期将越大D .h 越高,摩托车做圆周运动的向心力将越大 答案 BC解析 摩托车受力分析如图所示.由于N =mgcos θ所以摩托车受到侧壁的支持力与高度无关,保持不变,摩托车对侧壁的压力也不变,A 错误;由F =mg tan θ=m v 2r =mω2r =m 4π2T 2r 知h 变化时,向心力F 不变,但高度升高,r 变大,所以线速度变大,角速度变小,周期变大,选项B 、C 正确,D 错误. 【考点】圆锥摆类模型【题点】类圆锥摆的动力学问题分析11.如图11所示,叠放在水平转台上的物体A 、B 及物体C 能随转台一起以角速度ω匀速转动,A 、B 、C 的质量分别为3m 、2m 、m ,A 与B 、B 和C 与转台间的动摩擦因数都为μ,A 和B 、C 离转台中心的距离分别为r 、1.5r .设最大静摩擦力等于滑动摩擦力,重力加速度为g ,下列说法正确的是( )图11A .B 对A 的摩擦力一定为3μmg B .B 对A 的摩擦力一定为3mω2rC .转台的角速度一定满足ω≤μgrD .转台的角速度一定满足ω≤2μg 3r答案 BD解析 B 对A 的静摩擦力提供向心力,有f =3mω2r ,A 错,B 对;C 刚好发生滑动时,μmg =mω12·1.5r ,ω1=2μg3r,A 刚好发生滑动时,3μmg =3mω22r ,ω2=μg r,A 、B 一起刚好发生滑动时,5μmg =5mω32r ,ω3=μgr,故转台的角速度一定满足ω≤2μg3r,C 错,D 对. 12.如图12甲所示,一长为R 的轻绳,一端系在过O 点的水平转轴上,另一端固定一质量未知的小球,整个装置绕O 点在竖直面内转动,小球通过最高点时,绳对小球的拉力F 与其速度平方v 2的关系如图乙所示,图线与纵轴的交点坐标为a ,下列判断正确的是( )图12A .利用该装置可以得出重力加速度,且g =R aB .绳长不变,用质量较大的球做实验,得到的图线斜率更大C .绳长不变,用质量较小的球做实验,得到的图线斜率更大D .绳长不变,用质量较小的球做实验,图线与纵轴的交点坐标不变 答案 CD解析 小球在最高点,根据牛顿第二定律得mg +F =m v 2R ,解得v 2=FRm +gR ,由题图乙知,纵轴截距a=gR ,解得重力加速度g =a R ,故A 错误.由v 2=FR m +gR 知,图线的斜率k =Rm ,绳长不变,用质量较大的球做实验,得到的图线的斜率更小,故B 错误.用质量较小的球做实验,得到的图线斜率更大,故C 正确.由v 2=FRm +gR 知,纵轴载距为gR ,绳长不变,则图线与纵轴交点坐标不变,故D 正确.二、实验题(本题共2小题,共12分)13.(6分)航天器绕地球做匀速圆周运动时处于完全失重状态,物体对支持面几乎没有压力,所以在这种环境中已经无法用天平称量物体的质量.假设某同学在这种环境中设计了如图13所示的装置(图中O 为光滑小孔)来间接测量物体的质量:给待测物体一个初速度,使它在水平桌面上做匀速圆周运动.设航天器中具有基本测量工具.图13(1)实验时需要测量的物理量是__________________. (2)待测物体质量的表达式为m =________________.答案 (1)弹簧测力计示数F 、圆周运动的半径R 、圆周运动的周期T (2)FT 24π2R解析 需测量物体做圆周运动的周期T 、圆周运动的半径R 以及弹簧测力计的示数F ,则有F =m 4π2T 2R ,所以待测物体质量的表达式为m =FT 24π2R .【考点】对向心力的理解 【题点】向心力实验探究14.(6分)如图14所示是探究向心力的大小F 与质量m 、角速度ω和半径r 之间的关系的实验装置图,转动手柄1,可使变速轮塔2和3以及长槽4和短槽5随之匀速转动.皮带分别套在轮塔2和3上的不同圆盘上,可使两个槽内的小球A 、B 分别以不同的角速度做匀速圆周运动.小球做圆周运动的向心力由横臂6的挡板对小球的压力提供,球对挡板的反作用力,通过横臂6的杠杆作用使弹簧测力筒7下降,从而露出标尺8,标尺8露出的红白相间的等分格显示出两个球所受向心力的比值.那么:图14(1)现将两小球分别放在两边的槽内,为了探究小球受到的向心力大小和角速度的关系,下列说法中正确的是________.A .在小球运动半径相等的情况下,用质量相同的小球做实验B .在小球运动半径相等的情况下,用质量不同的小球做实验C .在小球运动半径不等的情况下,用质量不同的小球做实验D .在小球运动半径不等的情况下,用质量相同的小球做实验(2)在该实验中应用了________________(选填“理想实验法”“控制变量法”或“等效替代法”)来探究向心力的大小与质量m 、角速度ω和半径r 之间的关系.(3)当用两个质量相等的小球做实验,且左边的小球的轨道半径为右边小球轨道半径的2倍时,转动时发现右边标尺上露出的红白相间的等分格数为左边的2倍,那么,左边轮塔与右边轮塔之间的角速度之比为______.答案 (1)A (2)控制变量法 (3)1∶2解析 (1)根据F =mrω2知,要研究小球受到的向心力大小与角速度的关系,需控制小球的质量和小球运动的半径不变,故A 正确,B 、C 、D 错误. (2)由前面分析可知该实验采用的是控制变量法. (3)由F =mrω2得 ω左ω右=F 左F 右·r 右r 左=12. 三、计算题(本题共4小题,共40分)15.(8分)如图15所示是马戏团中上演飞车节目,在竖直平面内有半径为R 的圆轨道.表演者骑着摩托车在圆轨道内做圆周运动.已知人和摩托车的总质量为m ,人以v 1=2gR 的速度过轨道最高点B ,并以v 2=3v 1的速度过最低点A .求在A 、B 两点摩托车对轨道的压力大小相差多少?图15答案 6mg解析 在B 点,F B +mg =m v 12R ,解得F B =mg ,根据牛顿第三定律,摩托车对轨道的压力大小F B ′=F B =mg在A 点,F A -mg =m v 22R解得F A =7mg ,根据牛顿第三定律,摩托车对轨道的压力大小F A ′=F A =7mg 所以在A 、B 两点车对轨道的压力大小相差F A ′-F B ′=6mg . 【考点】向心力公式的简单应用 【题点】竖直面内圆周运动的动力学问题16.(10分)如图16所示,小球在外力作用下,由静止开始从A 点出发做匀加速直线运动,到B 点时撤去外力.然后,小球冲上竖直平面内半径为R 的光滑半圆轨道BC ,恰能维持在圆环上做圆周运动通过最高点C ,到达最高点C 后水平抛出,最后落回到原来的出发点A 处.试求:。
必修二物理考试题及答案
必修二物理考试题及答案一、选择题(每题3分,共30分)1. 下列关于光的折射现象,说法正确的是:A. 光从空气斜射入水中时,折射角大于入射角B. 光从水斜射入空气中时,折射角大于入射角C. 光从空气垂直射入水中时,折射角等于入射角D. 光从水中斜射入空气中时,折射角小于入射角答案:C2. 根据牛顿第二定律,下列说法正确的是:A. 物体所受合力越大,加速度越大B. 物体的质量越大,加速度越小C. 物体的加速度与所受合力成正比D. 物体的加速度与所受合力成反比答案:A3. 一个物体从静止开始做匀加速直线运动,其加速度为2m/s²,那么在第3秒内通过的位移是:A. 5mB. 6mC. 7mD. 8m答案:B4. 两个完全相同的金属球,分别带有电荷量Q和-Q,它们之间的距离为r,当它们相距更远时,库仑力将:A. 变大B. 变小C. 不变D. 无法确定答案:B5. 一个质量为m的物体从高度h的斜面顶端由静止开始下滑,若斜面与水平面的夹角为θ,不考虑摩擦力,物体到达斜面底端时的速度v 为:A. √(2gh)B. √(2ghsinθ)C. √(2ghcosθ)D. √(2ghtanθ)答案:B6. 一个点电荷q,置于电场强度为E的电场中,它受到的电场力F为:A. F = qEB. F = qE²C. F = E²qD. F = 2qE答案:A7. 一个物体在水平面上受到一个水平恒力F的作用,若物体的加速度为a,则物体受到的摩擦力f为:A. F - maB. ma - FC. F + maD. ma + F答案:A8. 一个物体从高度h自由落下,不计空气阻力,其下落过程中的机械能守恒,那么物体落地时的速度v为:A. √(2gh)B. √(gh)C. √(2h/g)D. √(2gh/g)答案:A9. 一个质量为m的物体,以初速度v₀沿斜面下滑,斜面与水平面的夹角为θ,若物体下滑过程中的加速度为a,则物体所受的摩擦力f 为:A. mgsinθ - maB. mgcosθ - maC. mgtanθ - maD. mgsinθ + ma答案:A10. 一个点电荷q置于电场强度为E的电场中,若将电场强度增加一倍,则点电荷所受的电场力将:A. 增加一倍B. 减少一半C. 增加两倍D. 减少到原来的一半答案:A二、填空题(每题4分,共20分)1. 根据牛顿第三定律,作用力和反作用力大小相等,方向________,作用在________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新教科版高中物理必修二测试题全套及答案重点强化卷(一)平抛运动规律的应用一、选择题1.一个物体以速度v0水平抛出,落地时速度的大小为2v0,不计空气的阻力,重力加速度为g,则物体在空中飞行的时间为()A.v0g B.2v0gC.3v0g D.2v0g【解析】如图所示,gt为物体落地时竖直方向的速度,由(2v0)2=v20+(gt)2得:t=3v0 g,C正确.【答案】 C2. (多选)如图1所示,在高空匀速飞行的轰炸机,每隔1 s投下一颗炸弹,若不计空气阻力,则()图1A.这些炸弹落地前排列在同一条竖直线上B.这些炸弹都落于地面上同一点C.这些炸弹落地时速度大小方向都相同D.相邻炸弹在空中距离保持不变【解析】这些炸弹是做平抛运动,速度的水平分量都一样,与飞机速度相同.相同时间内,水平方向上位移相同,所以这些炸弹排在同一条竖直线上.这些炸弹抛出时刻不同,落地时刻也不一样,不可能落于地面上的同一点.由于这些炸弹下落的高度相同,初速度也相同,这些炸弹落地时速度大小和方向都相同.两相邻炸弹在空中的距离为Δx=x1-x2=12g(t+1)2-12gt2=gt+12g.由此可知Δx随时间t增大而增大.【答案】AC3. (多选)某人在竖直墙壁上悬挂一镖靶,他站在离墙壁一定距离的某处,先后将两只飞镖A、B由同一位置水平掷出,两只飞镖插在靶上的状态如图2所示(侧视图),若不计空气阻力,下列说法正确的是()图2A.B镖的运动时间比A镖的运动时间长B.B镖掷出时的初速度比A镖掷出时的初速度大C.A镖掷出时的初速度比B镖掷出时的初速度大D.A镖的质量一定比B镖的质量小【解析】飞镖A、B都做平抛运动,由h=12gt2得t=2h g,故B镖运动时间比A镖运动时间长,A正确;由v0=xt知A镖掷出时的初速度比B镖掷出时的初速度大,B错误,C正确;无法比较A、B镖的质量大小,D错误.【答案】AC4.从O点抛出A、B、C三个物体,它们做平抛运动的轨迹分别如图3所示,则三个物体做平抛运动的初速度v A、v B、v C的关系和三个物体在空中运动的时间t A、t B、t C的关系分别是()图3A.v A>v B>v C,t A>t B>t C B.v A<v B<v C,t A=t B=t C C.v A<v B<v C,t A>t B>t C D.v A>v B>v C,t A<t B<t C【解析】三个物体抛出后均做平抛运动,竖直方向有h=12gt2,水平方向有x=v0t,由于h A>h B>h C,故t A>t B>t C,又因为x A<x B<x C,故v A<v B<v C,C正确.【答案】 C5.如图4所示,在一次空地演习中,离地H高处的飞机以水平速度v1发射一颗炮弹欲轰炸地面目标P,反应灵敏的地面拦截系统同时以速度v2竖直向上发射炮弹拦截.设拦截系统与飞机的水平距离为s,不计空气阻力.若拦截成功,则v1、v2的关系应满足()图4A.v1=v2B.v1=Hs v2C.v1=Hs v2D.v1=sH v2【解析】设经t时间拦截成功,则平抛的炮弹下落h=12gt2,水平运动s=v1t;竖直上抛的炮弹上升H-h=v2t-12gt2,由以上各式得v1=s H v2,故D正确.【答案】 D6.如图5所示,以9.8 m/s的水平初速度v0抛出的物体,飞行一段时间后,垂直地撞在倾角为30°的斜面上,这段飞行所用的时间为(g取9.8 m/s2)()图5A.23s B.223sC. 3 s D .2 s【解析】 把平抛运动分解成水平的匀速直线运动和竖直的自由落体运动,抛出时只有水平方向的速度v 0,垂直地撞在斜面上时,既有水平方向分速度v 0,又有竖直方向的分速度v y .物体速度的竖直分量确定后,即可求出物体飞行的时间.如图所示,把末速度分解成水平方向分速度v 0和竖直方向的分速度v y ,则有tan 30°=v 0v yv y =gt ,解两式得t =v y g =3v 0g = 3 s , 故 C 正确.【答案】 C7.(多选)刀削面是同学们喜欢的面食之一,因其风味独特,驰名中外.刀削面全凭刀削,因此得名.如图6所示,将一锅水烧开,拿一块面团放在锅旁边较高处,用一刀片飞快地削下一片片很薄的面片儿,面片便飞向锅里,若面团到锅的上沿的竖直距离为0.8 m ,最近的水平距离为0.5 m ,锅的半径为0.5 m .要想使削出的面片落入锅中,则面片的水平速度可以是下列选项中的哪些(g =10 m/s 2)( )图6A .1 m/sB .2 m/sC .3 m/sD .4 m/s【解析】 由h =12gt 2知,面片在空中的运动时间t =2hg =0.4 s ,而水平位移x =v 0t ,故面片的初速度v 0=x t ,将x 1=0.5 m ,x 2=1.5 m 代入得面片的最小初速度v 01=x 1t =1.25 m/s ,最大初速度v 02=x 2t =3.75 m/s ,即1.25 m/s ≤v 0≤3.75 m/s ,B 、C 选项正确.【答案】 BC8.如图7所示,一物体自倾角为θ的固定斜面顶端沿水平方向抛出后落在斜面上.物体与斜面接触时速度与水平方向的夹角φ满足( )图7A .tan φ=sin θB .tan φ=cos θC .tan φ=tan θD .tan φ=2tan θ【解析】 设物体飞行时间为t ,则tan φ=v y v 0=gt v 0,tan θ=y x =12gt2v 0t =gt2v 0,故tan φ=2tan θ,D 正确.【答案】 D9. (多选)如图8所示,x 轴在水平地面内,y 轴沿竖直方向.图中画出了从y 轴上沿x 轴正向抛出的三个小球a 、b 和c 的运动轨迹,其中b 和c 是从同一点抛出的.不计空气阻力,则( )图8A .a 的飞行时间比b 的长B .b 和c 的飞行时间相同C .a 的水平速度比b 的小D .b 的初速度比c 的大【解析】 x =v 0t ,y =12gt 2,所以t =2yg ,由y b =y c >y a ,得t b =t c >t a ,选项 A 错,B 对;又根据 v 0=xg2y ,因为y b >y a ,x b <x a ,y b =y c ,x b >x c ,故v a >v b ,v b >v c ,选项 C 错,D 对.【答案】 BD10.如图9所示,P 是水平面上的圆弧凹槽,从高台边B 点以某速度v 0水平飞出的小球,恰能从固定在某位置的凹槽的圆弧轨道的左端A 点沿圆弧切线方向进入轨道.O 是圆弧的圆心,θ1是OA 与竖直方向的夹角,θ2是BA 与竖直方向的夹角,则( )图9A.tan θ2tan θ1=2B .tan θ1 tan θ2=2 C.1tan θ1 tan θ2=2D .tan θ1tan θ2=2【解析】 OA 方向即小球末速度垂线的方向,θ1是末速度与水平方向的夹角;BA 方向即小球合位移的方向,θ2是位移方向与竖直方向的夹角.由题意知:tan θ1=v y v 0=gt v 0,tan θ2=x y =v 0t 12gt 2=2v 0gt由以上两式得:tan θ1 tan θ2=2.故B 项正确. 【答案】 B 二、计算题11.从离地高 80 m 处水平抛出一个物体,3 s 末物体的速度大小为 50 m/s ,g 取10 m/s 2.求:(1)物体抛出时的初速度大小; (2)物体在空中运动的时间; (3)物体落地时的水平位移.【解析】 (1)由平抛运动的规律知v =v 2x +v 2y3 s 末v =50 m/s ,v y =gt =30 m/s 解得v x =40 m/s ,即v 0=40 m/s. (2)物体在空中运动的时间t =2hg =2×8010 s =4 s.(3)物体落地时的水平位移x=v0t=40×4 m=160 m.【答案】(1)40 m/s(2)4 s(3)160 m12.如图10所示,跳台滑雪运动员经过一段加速滑行后从O点水平飞出,经过3.0 s落到斜坡上的A点.已知O点是斜坡的起点,斜坡与水平面的夹角θ=37°,运动员的质量m=50 kg.不计空气阻力.(取sin 37°=0.60,cos 37°=0.80,g=10 m/s2)求:图10(1)A点与O点的距离;(2)运动员离开O点时的速度大小.【解析】(1)设A点与O点的距离为L,运动员在竖直方向做自由落体运动,有L sin 37°=12gt2L=gt22sin 37°=75 m.(2)设运动员离开O点的速度为v0,运动员在水平方向做匀速直线运动,即L cos 37°=v0t解得v0=L cos 37°t=20 m/s.【答案】(1)75 m(2)20 m/s重点强化卷(二)圆周运动及综合应用一、选择题1.如图1所示为一种早期的自行车,这种带链条传动的自行车前轮的直径很大,这样的设计在当时主要是为了()图1A.提高速度B .提高稳定性C .骑行方便D .减小阻力【解析】 在骑车人脚蹬车轮转速一定的情况下,据公式v =ωr 知,轮子半径越大,车轮边缘的线速度越大,车行驶得也就越快,故A 选项正确.【答案】 A2.两个小球固定在一根长为L 的杆的两端,绕杆的O 点做圆周运动,如图2所示,当小球1的速度为v 1时,小球2的速度为v 2,则转轴O 到小球2的距离是( )图2A.L v 1v 1+v 2B .L v 2v 1+v 2 C.L (v 1+v 2)v 1D .L (v 1+v 2)v 2【解析】 两小球角速度相等,即ω1=ω2.设两球到O 点的距离分别为r 1、r 2,即v 1r 1=v 2r 2;又由于r 1+r 2=L ,所以r 2=L v 2v 1+v 2,故选B.【答案】 B3.汽车在转弯时容易打滑出事故,为了减少事故发生,除了控制车速外,一般会把弯道做成斜面.如图3所示,斜面的倾角为θ,汽车的转弯半径为r ,则汽车安全转弯速度大小为( )图3A.gr sin θ B .gr cos θ C.gr tan θD .gr cot θ【解析】 高速行驶的汽车完全不依靠摩擦力转弯时所需的向心力由重力和路面的支持力的合力提供,如图.根据牛顿第二定律得: mg tan θ=m v 2r 解得:v =gr tan θ 故选C. 【答案】 C4.一质量为m 的物体,沿半径为R 的向下凹的圆形轨道滑行,如图4所示,经过最低点的速度为v ,物体与轨道之间的动摩擦因数为μ,则它在最低点时受到的摩擦力为 ( )图4A .μmgB .μm v 2R C .μm (g -v 2R )D .μm (g +v 2R )【解析】 小球在最低点时,轨道支持力和重力的合力提供向心力,根据牛顿第二定律得F N -mg =m v 2R ,物体受到的摩擦力为f =μF N =μm (g +v 2R ),选项D 正确.【答案】 D5. (多选)如图5所示,用细绳拴着质量为m 的小球,在竖直平面内做圆周运动,圆周半径为R ,则下列说法正确的是( )图5A .小球过最高点时,绳子张力可能为零B .小球过最高点时的最小速度为零C .小球刚好过最高点时的速度为gRD .小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相反【解析】 绳子只能提供拉力作用,其方向不可能与重力相反,D 错误;在最高点有mg +F T =m v 2R ,拉力F T 可以等于零,此时速度最小为v min =gR ,故B 错误,A 、C 正确.【答案】 AC6.如图6所示,质量为m 的小球固定在长为l 的细轻杆的一端,绕轻杆的另一端O 在竖直平面内做圆周运动.球转到最高点A 时,线速度大小为gl2,此时( )图6A .杆受到12mg 的拉力 B .杆受到12mg 的压力 C .杆受到32mg 的拉力D .杆受到32mg 的压力【解析】 以小球为研究对象,小球受重力和沿杆方向杆的弹力,设小球所受弹力方向竖直向下,则N +mg =m v 2l ,将v =gl 2代入上式得N =-12mg ,即小球在A 点受杆的弹力方向竖直向上,大小为12mg ,由牛顿第三定律知杆受到12mg 的压力.【答案】 B7. “快乐向前冲”节目中有这样一种项目,选手需要借助悬挂在高处的绳飞跃到鸿沟对面的平台上,如果已知选手的质量为m,选手抓住绳由静止开始摆动,此时绳与竖直方向夹角为α,如图7所示,不考虑空气阻力和绳的质量(选手可看为质点),下列说法正确的是()图7A.选手摆动到最低点时所受绳子的拉力等于mgB.选手摆动到最低点时所受绳子的拉力大于mgC.选手摆动到最低点时所受绳子的拉力大于选手对绳子的拉力D.选手摆动到最低点的运动过程为匀变速曲线运动【解析】由于选手摆动到最低点时,绳子拉力和选手自身重力的合力提供选手做圆周运动的向心力,有T-mg=F向,T=mg+F向>mg,B正确,A错误;选手摆到最低点时所受绳子的拉力和选手对绳子的拉力是作用力和反作用力的关系,根据牛顿第三定律,它们大小相等、方向相反且作用在同一条直线上,故C错误;选手摆到最低点的运动过程中,是变速圆周运动,合力是变力,故D错误.【答案】 B8.如图8所示,两个水平摩擦轮A和B传动时不打滑,半径R A=2R B,A为主动轮.当A匀速转动时,在A轮边缘处放置的小木块恰能与A轮相对静止.若将小木块放在B轮上,为让其与轮保持相对静止,则木块离B轮转轴的最大距离为(已知同一物体在两轮上受到的最大静摩擦力相等)()图8A.R B4 B.R B2C .R BD .B 轮上无木块相对静止的位置【解析】 摩擦传动不打滑时,两轮边缘上线速度大小相等. 根据题意有:R A ωA =R B ωB 所以ωB =R AR BωA因为同一物体在两轮上受到的最大静摩擦力相等,设在B 轮上的转动半径最大为r ,则根据最大静摩擦力等于向心力有:mR A ω2A =mrω2B得:r =R A ω2A⎝ ⎛⎭⎪⎫R A R B ωA 2=R 2B R A =R B 2.【答案】 B9.如图9所示,滑块M 能在水平光滑杆上自由滑动,滑杆固定在转盘上,M 用绳跨过在圆心处的光滑滑轮与另一质量为m 的物体相连.当转盘以角速度ω转动时,M 离轴距离为r ,且恰能保持稳定转动.当转盘转速增到原来的2倍,调整r 使之达到新的稳定转动状态,则滑块M ( )图9A .所受向心力变为原来的4倍B .线速度变为原来的12 C .转动半径r 变为原来的12 D .角速度变为原来的12【解析】 转速增加,再次稳定时,M 做圆周运动的向心力仍由拉力提供,拉力仍然等于m 的重力,所以向心力不变,故A 错误;转速增到原来的2倍,则角速度变为原来的2倍,根据F =mrω2,向心力不变,则r 变为原来的14.根据v =rω,线速度变为原来的12,故B 正确,C 、D 错误.【答案】 B10. (多选)中央电视台《今日说法》栏目曾报道过一起发生在湖南长沙某区湘府路上的离奇交通事故.家住公路拐弯处的张先生和李先生家在三个月内连续遭遇了七次大卡车侧翻在自家门口的场面,第八次有辆卡车冲撞进李先生家,造成三死一伤和房屋严重损毁的血腥惨案.经公安部门和交通部门协力调查,画出的现场示意图如图10所示.交警根据图示作出以下判断,你认为正确的是()现场示意图图10A.由图可知汽车在拐弯时发生侧翻是因为车做离心运动B.由图可知汽车在拐弯时发生侧翻是因为车做向心运动C.公路在设计上可能内(东北)高外(西南)低D.公路在设计上可能外(西南)高内(东北)低【解析】由题图可知发生事故时,卡车在做圆周运动,从图可以看出卡车冲入民宅时做离心运动,故选项A正确,选项B错误;如果外侧高,卡车所受重力和支持力的合力提供向心力,则卡车不会做离心运动,也不会发生事故,故选项C正确,D错误.【答案】AC二、计算题11.在用高级沥青铺设的高速公路上,汽车的设计时速是108 km/h.汽车在这种路面上行驶时,它的轮胎与地面的最大静摩擦力等于车重的0.6倍.(1)如果汽车在这种高速路的水平弯道上拐弯,假设弯道的路面是水平的,其弯道的最小半径是多少?(2)如果高速路上设计了圆弧拱桥做立交桥,要使汽车能够以设计时速安全通过圆弧拱桥,这个圆弧拱桥的半径至少是多少?【解析】(1)汽车在水平路面上拐弯,可视为汽车做匀速圆周运动,其向心力由车与路面间的静摩擦力提供,当静摩擦力达到最大值时,由向心力公式可知这时的半径最小,有F m=0.6mg=m v2r,由速度v=30 m/s,得弯道半径r=150 m.(2)汽车过拱桥,看做在竖直平面内做匀速圆周运动,到达最高点时,根据向心力公式有:mg-F N=m v2R,为了保证安全,车对路面间的弹力F N必须大于等于零,有mg≥mv2R,则R≥90m.【答案】(1)150 m(2)90 m12.如图11所示,一光滑的半径为0.1 m的半圆形轨道放在水平面上,一个质量为m的小球以某一速度冲上轨道,当小球将要从轨道口飞出时,轨道对小球的压力恰好为零,g取10 m/s2,求:图11(1)小球在B点速度是多少?(2)小球落地点离轨道最低点A多远?(3)落地时小球速度为多少?【解析】(1)小球在B点时只受重力作用,竖直向下的重力提供小球做圆周运动的向心力,根据牛顿第二定律可得:mg=m v2Br代入数值解得:v B=gr=1 m/s.(2)小球离开B点后,做平抛运动.根据平抛运动规律可得:2r=12gt2s=v B t,代入数值联立解得:s=0.2 m.(3)根据运动的合成与分解规律可知,小球落地时的速度为v=v2B+(gt)2= 5 m/s.【答案】(1)1 m/s(2)0.2 m(3) 5 m/s重点强化卷(三)万有引力定律的应用一、选择题1.两个密度均匀的球体,相距r,它们之间的万有引力为10-8N,若它们的质量、距离都增加为原来的2倍,则它们间的万有引力为()A.10-8N B.0.25×10-8 NC .4×10-8ND .10-4N【解析】 原来的万有引力为:F =G Mmr 2 后来变为:F ′=G 2M ·2m (2r )2=GMmr 2 即:F ′=F =10-8N ,故选项A 正确. 【答案】 A2.已知引力常量G =6.67×10-11N·m 2/kg 2,重力加速度g =9.8 m/s 2,地球半径R =6.4×106 m ,则可知地球质量的数量级是( )A .1018 kgB .1020 kgC .1022 kgD .1024 kg【解析】 根据mg =G Mm R 2得地球质量为M =gR 2G ≈6.0×1024 kg.故选项D 正确. 【答案】 D3.关于“亚洲一号”地球同步通讯卫星,下述说法正确的是( )A .已知它的质量是1.24 t ,若将它的质量增为2.84 t ,其同步轨道半径将变为原来的2倍B .它的运行速度大于7.9 km/sC .它可以绕过北京的正上方,所以我国能利用它进行电视转播D .它距地面的高度约为地球半径的5倍,故它的向心加速度约为其下方地面上物体的重力加速度的136【解析】 同步卫星的轨道半径是固定的,与质量大小无关,A 错误;7.9 km/s 是人造卫星的最小发射速度,同时也是卫星的最大环绕速度,卫星的轨道半径越大,其线速度越小.同步卫星距地面很高,故其运行速度小于7.9 km/s ,B 错误;同步卫星只能在赤道的正上方,C 错误;由G Mm r 2=ma n 可得,同步卫星的加速度a n =G M r 2=G M (6R )2=136G M R 2=136g ,故选项D 正确.【答案】 D4.如图1所示,在同一轨道平面上的几个人造地球卫星A 、B 、C 绕地球做匀速圆周运动,某一时刻它们恰好在同一直线上,下列说法中正确的是( )图1A .根据v =gr 可知,运行速度满足v A >vB >vC B .运转角速度满足ωA >ωB >ωC C .向心加速度满足a A <a B <a CD .运动一周后,A 最先回到图示位置 【解析】 由G Mmr 2=m v 2r 得,v =GM r ,r 大,则v 小,故v A <v B <v C ,A 错误;由G Mmr2=mω2r 得,ω=GM r 3,r 大,则ω小,故ωA <ωB <ωC ,B 错误;由G Mm r 2=ma 得,a =GMr 2,r 大,则a 小,故a A <a B <a C ,C 正确;由G Mm r 2=m 4π2T 2r 得,T =2πr 3GM ,r 大,则T 大,故T A >T B >T C ,因此运动一周后,C 最先回到图示位置,D 错误.【答案】 C5.据英国《卫报》网站2015年1月6日报道,在太阳系之外,科学家发现了一颗最适宜人类居住的类地行星,绕恒星橙矮星运行,命名为“开普勒438b ”.假设该行星与地球绕恒星均做匀速圆周运动,其运行的周期为地球运行周期的p 倍,橙矮星的质量为太阳的q 倍.则该行星与地球的( )A .轨道半径之比为3p 2q B .轨道半径之比为3p 2 C .线速度之比为3qp D .线速度之比为1p【解析】 行星公转的向心力由万有引力提供,根据牛顿第二定律,有G Mm R 2=m 4π2T 2R ,解得:R =3GMT 24π2,该行星与地球绕恒星均做匀速圆周运动,其运行的周期为地球运行周期的p 倍,橙矮星的质量为太阳的q 倍,故:R 橙R 太=3(M 橙M 太)(T 行T 地)2=3qp 2,故A 正确,B 错误;根据v =2πR T ,有:v 行v 地=R 行R 地·T 地T 行=3qp 2·1p =3q p ;故C 正确,D 错误. 【答案】 AC6.银河系的恒星中大约四分之一是双星.某双星由质量不等的星体S 1和S 2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C 做匀速圆周运动.由天文观测得其周期为T ,S 1到C 点的距离为r 1,S 1和S 2的距离为r ,已知万有引力常量为G .由此可求出S 2的质量为( )A.4π2r 2(r -r 1)GT 2B.4π2r 31GT 2C.4π2r 3GT 2D.4π2r 2r 1GT 2【解析】 设S 1、S 2两星体的质量分别为m 1、m 2,根据万有引力定律和牛顿定律得,对S 1有G m 1m 2r 2=m 1(2πT )2r 1,解之可得m 2=4π2r 2r 1GT 2,则D 正确,A 、B 、C 错误.【答案】 D7.质量相等的甲、乙两颗卫星分别贴近某星球表面和地球表面围绕其做匀速圆周运动,已知该星球和地球的密度相同,半径分别为R 和r ,则( )A .甲、乙两颗卫星的加速度之比等于R ∶rB .甲、乙两颗卫星所受的向心力之比等于1∶1C .甲、乙两颗卫星的线速度之比等于1∶1D .甲、乙两颗卫星的周期之比等于R ∶r【解析】 由F =G Mm R 2和M =ρ43πR 3可得万有引力F =43G πRmρ,又由牛顿第二定律F =ma 可得,A 正确;卫星绕星球表面做匀速圆周运动时,万有引力等于向心力,因此B 错误;由F =43G πRmρ,F =m v 2R 可得,选项C 错误;由F =43G πRmρ,F =mR 4π2T 2可知,周期之比为1∶1,故D 错误.【答案】 A8.嫦娥三号探测器绕月球表面附近飞行时的速率大约为1.75 km/s(可近似当成匀速圆周运动),若已知地球质量约为月球质量的81倍 ,地球第一宇宙速度约为7.9 km/s ,则地球半径约为月球半径的多少倍?( )A .3倍B .4倍C .5倍D .6倍【解析】 根据万有引力提供向心力知,当环绕天体在中心天体表面运动时,运行速度即为中心天体的第一宇宙速度,由G MmR 2=m v 2R 解得:v =GMR ,故地球的半径与月球的半径之比为R 1R 2=M 1M 2·v 22v 21,约等于4,故B 正确,A 、C 、D 错误. 【答案】 B9.如图2所示,a 、b 、c 、d 是在地球大气层外的圆形轨道上匀速运行的四颗人造卫星.其中a 、c 的轨道相交于P ,b 、d 在同一个圆轨道上.某时刻b 卫星恰好处于c 卫星的正上方.下列说法中正确的是( )图2A .b 、d 存在相撞危险B .a 、c 的加速度大小相等,且大于b 的加速度C .b 、c 的角速度大小相等,且小于a 的角速度D .a 、c 的线速度大小相等,且小于d 的线速度【解析】 b 、d 在同一轨道,线速度大小相等,不可能相撞,A 错;由a 向=GMr 2知a 、c 的加速度大小相等且大于b 的加速度,B 对;由ω= GMr 3知,a 、c 的角速度大小相等,且大于b 的角速度,C 错;由v = GMr 知a 、c 的线速度大小相等,且大于d 的线速度,D错.【答案】 B10.(2015·四川高考)登上火星是人类的梦想.“嫦娥之父”欧阳自远透露:中国计划于2020年登陆火星.地球和火星公转视为匀速圆周运动,忽略行星自转影响.根据下表,火星和地球相比()A.B.火星做圆周运动的加速度较小C.火星表面的重力加速度较大D.火星的第一宇宙速度较大【解析】火星和地球都绕太阳做圆周运动,万有引力提供向心力,由GMmr2=m4π2T2r=ma知,因r火>r地,而r3T2=GM4π2,故T火>T地,选项A错误;向心加速度a=GMr2,则a火<a地,故选项B正确;地球表面的重力加速度g地=GM地R2地,火星表面的重力加速度g火=GM火R2火,代入数据比较知g火<g地,故选项C错误;地球和火星上的第一宇宙速度:v地=GM地R地,v火=GM火R火,v地>v火,故选项D错误.【答案】 B二、计算题11.经天文学家观察,太阳在绕着银河系中心(银心)的圆形轨道上运行,这个轨道半径约为3×104光年(约等于2.8×1020m),转动一周的周期约为2亿年(约等于6.3×1015s).太阳做圆周运动的向心力是来自位于它轨道内侧的大量星体的引力,可以把这些星体的全部质量看做集中在银河系中心来处理问题.(G=6.67×10-11N·m2/kg2)用给出的数据来计算太阳轨道内侧这些星体的总质量.【解析】假设太阳轨道内侧这些星体的总质量为M,太阳的质量为m,轨道半径为r,周期为T,太阳做圆周运动的向心力来自于这些星体的引力,则G Mm r 2=m 4π2T 2r故这些星体的总质量为M =4π2r 3GT 2=4×(3.14)2×(2.8×1020)36.67×10-11×(6.3×1015)2kg≈3.3×1041kg. 【答案】 3.3×1041kg12.质量分别为m 和M 的两个星球A 和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 两者中心之间距离为L .已知A 、B 的中心和O 三点始终共线,A 和B 分别在O 的两侧.引力常量为G .图3(1)求两星球做圆周运动的周期.(2)在地月系统中,若忽略其他星球的影响,可以将月球和地球看成上述星球A 和B ,月球绕其轨道中心运行的周期记为T 1.但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期记为T 2.已知地球和月球的质量分别为5.98×1024 kg 和7.35×1022kg.求T 2与T 1两者平方之比.(结果保留三位小数)【解析】 (1)两星球围绕同一点O 做匀速圆周运动,其角速度相同,周期也相同,其所需向心力由两者间的万有引力提供,设OB 为r 1,OA 为r 2,则对于星球B :G Mm L 2=M 4π2T 2r 1 对于星球A :G Mm L 2=m 4π2T 2r 2 其中r 1+r 2=L 由以上三式可得T =2πL 3G (M +m ).(2)对于地月系统,若认为地球和月球都围绕中心连线某点O 做匀速圆周运动,由(1)可知地球和月球的运行周期T 1=2πL 3G (M +m )若认为月球围绕地心做匀速圆周运动,由万有引力与天体运动的关系:G Mm L 2=m 4π2T 22L解得T 2=4π2L 3GM则T 22T 21=M +mM =1.012.【答案】 (1)2πL 3G (M +m )(2)1.012重点强化卷(四) 功和功率一、选择题1.下列关于力做功的说法中正确的是( )A .人用力F =300 N 将足球踢出,球在空中飞行40 m ,人对足球做功12 000 JB .人用力推物体,但物体未被推动,人对物体做功为零C .物体竖直上升时,重力不做功D .只有恒力才能做功,变力不能做功【解析】 球在空中飞行40 m 不是人踢足球的力伴随的位移,A 错;物体没有被推动,位移为零,人对物体做功为零,B 对;物体竖直上升时,重力做负功,C 错;任何力都有可能做功,D 错.【答案】 B2.(多选)如图1所示,用力F 拉一质量为m 的物体,使它沿水平地面匀速向右移动距离s .若物体和地面间的动摩擦因数为μ,则此力F 对物体做功的表达式正确的有( )图1A .Fs cos αB .Fs sin αC .μmgsD .μmgs ·sin αsin α+μcos α【解析】 由功的公式得F 做功W =F ·s cos(90°-α)=Fs ·sin α,故A 错,B 正确;由于物体受力平衡,可将物体受力正交分解,如图所示.则:水平方向:F sin α=f①竖直方向:F cos α+N=mg②f=μN③联立①②③得F=μmgμcos α+sin α由功的公式得W F=F·s sin α=μmgs·sin α,sin α+μcos α故C错,D正确.【答案】BD3.如图2所示,物块A、B在外力F的作用下一起沿水平地面做匀速直线运动的过程中,关于A与地面间的滑动摩擦力和A、B间的静摩擦力做功的说法,正确的是()图2A.静摩擦力都做正功,滑动摩擦力都做负功B.静摩擦力都不做功,滑动摩擦力都做负功C.有静摩擦力做正功,有滑动摩擦力不做功D.有静摩擦力做负功,有滑动摩擦力做正功【解析】物块A、B在外力F的作用下一起沿水平地面做匀速直线运动,根据平衡条件得知,A对B的静摩擦力与拉力F平衡,地面对A的滑动摩擦力与B对A的静摩擦力平衡,则地面对A的滑动摩擦力方向向左,对A做负功,物块A对地面的滑动摩擦力不做功,A对B的静摩擦力做负功,B对A的静摩擦力做正功,因此,选项C正确,其他选项均错.【答案】 C4.(多选)如图3所示,质量为m的物块在倾角为θ的斜面上,始终与斜面保持相对静止,。