正方形的定义及性质课件

合集下载

18.2.3正方形的性质与判定课件

18.2.3正方形的性质与判定课件

对称性
轴 对 称 图 形
例1、如图,正方形ABCD中,
正 (1)一条对角线把它分成 个2 全等的三


角形。 问:这些三角形是什么三角形?
的 性 AA
(2)图中共有__8___
DB
个等腰直角三角形。
(3)对角线AC与正方

O
形的一边所成的角为


BO
C
度。 45
(4) 正方形的面积为64,
用D
C
则正方形对角线
试说明:四边形DEBF是正方形.
解:∵ DF⊥BC,DE⊥AB,
A
∴ ∠DEB= ∠DFB=90°,
又∵ ∠ABC=90°, ∴四边形DEBF是矩形
ED BF C
∵ BD平分∠ABC, DF⊥BC , DE⊥AB,
∴ DE= DF
∴四边形DEBF是正方形 第17页,共19页。
小结
性质
图形
对边平行且相等
正方形判定方法
要使一个菱形成为正方形需 增加的条件是 有一个角是直角 (填上一个条件即可)
判定方法2: 一个角为直角的菱形叫正方形
第11页,共19页。
图形之间的变化关系 矩形
平行四边形
有一组邻边相等 有一个角是直角
正方形
菱形
第12页,共19页。
正方形的判定方法 判定方法3:
一组邻边相等且有一个角是直角 的平行四边形是正方形

面积为

4.已知正方形ABCD中,对角线AC=10cm,P为 AB上任意一点,PE⊥AC,PF⊥BD,E、F为垂足, 则PE+PF= 。5cm
第6页,共19页。
4.已知正方形ABCD中,对角线AC=10cm,P为AB上任意 一点,PE⊥5cAmC,PF⊥BD,E、F为垂足,则PE+PF= 。

2024优质小班认识正方形ppt课件

2024优质小班认识正方形ppt课件

04 正方形在日常生 活中的应用
建筑设计中使用正方形元素
窗户设计
正方形窗户简洁大方,提供良好 的采光和通风效果。
建筑设计
许多现代建筑采用正方形或矩形 设计,体现简约风格。
城市规划
正方形或矩形街区有利于交通组 织和城市空间规划。
家居装修中运用正方形美学原则
1 2
家具摆放
正方形家具摆放稳定,易于搭配,节省空间。
墙面装饰
正方形装饰画、照片墙形地砖、地板等铺装材料易于施工,视觉效 果佳。
手工制作中裁剪和拼接正方形材料
剪纸艺术
利用正方形纸张进行剪纸创作,可制作出各种精 美图案。
布艺制作
正方形布块易于裁剪和缝制,适合制作抱枕、桌 布等家居用品。
拼图游戏
正方形拼图游戏锻炼儿童手眼协调能力和空间想 象力。
孩子在日常生活中也能够注意观察身边的正方形物体,对正方形的应用有了一定的 了解。
拓展延伸:探索其他几何图形奥秘
引入其他几何图形
在认识正方形的基础上,引导学生探索其他几何图形,如长方形 、三角形、圆形等。
比较不同几何图形的特点
通过对比不同几何图形的边、角、对称性等性质,加深学生对几何 图形的理解和认识。
拓展几何图形的应用
介绍几何图形在建筑设计、机械制造、艺术创作等领域的应用,激 发学生的学习兴趣和创造力。
THANKS
感谢观看
侧面视角
正方形可能呈现为菱形形 状,但仍具有四边等长且 对角线相等的特征。
倾斜视角
正方形可能呈现为斜向的 四边形,但可通过旋转调 整视角来识别其正方形特 征。
区分相似但非正方形图形
矩形
矩形与正方形相似,但矩形的对边相 等而邻边不一定相等,因此不是正方 形。

1.3 正方形的判定与性质(一)

1.3 正方形的判定与性质(一)

关系图:
矩形
平行四边形
有一个角是直角且有一组邻边相等
正方形
菱形
平行四边形
矩形
正方形
菱形
正方形的性质
(正方形既是矩形,又是菱形,它具有 矩形和菱形所 有的性质)
角:四个角都是直角; 边: 四条边都相等; 对角线: 对角线相等且互相垂直平分; 对称性: 既是中心对称也是轴对称图形;
正方形的性质: 正方形的四条边都相等,四个角都是直角, 对角线相等且互相垂直平分。
第一章 特殊平行四边形
第3节 正方形的性质与判定(一)
正方形的性质
复习提问:
一,什么叫做菱形?它有什么性质和判定? 二,什么叫做矩形?它有什么性质和判定?
三,矩形性质的推论是什么?逆定理又是什么?
四,有没有一种四边形,它将菱形和矩形的特点 兼而有之?如果有应该怎么定义它?
正方形定义:有一组邻边相等,有一个角是直 角的平行四边形叫做正方形。
(2)延长BE交DE于点M,(如图1-19). ∵△BCE≌△DCF. ∴∠CBE=∠CDF. ∵∠DCF=90°. ∴∠CDF+∠F=90°. ∴∠CBE+∠F=90°. ∴∠BMF=90°. ∴BE⊥DF.
随堂练习:
1:如图,在正方形ABCD中,对角线AC与BD相 交于点O,图中有多少个等腰三角形? 2:如图,在正方形ABCD中,点F为对角线AC 上一点,连接BF,DF。你能找出图中的全等 三角形吗?选择其中一对进行证明.
性质应用
例1:如图1-18,在正方形ABCD中,E为CD 上一点,F为BC边延长线上一点,且 CE=CF.BE与DF之间有怎样的关系?请说 明理由. 解:BE=DF,且BE⊥DF. 理由如下:
(1)∵四边形ABCD是正方形. ∴BC=DC,∠BCE=90°(正方形的四 条边都相等,四个角都是直角) ∴∠BCE=∠DCF. 又∵CE=CF. ∴△BCE≌△DCF. ∴BE=DF.

八年级数学下册教学课件《正方形的性质》

八年级数学下册教学课件《正方形的性质》
情境导入
仔细观察下列实际生活中的图片,你会发现这些都 是正方形的形象.
正方形是我们熟悉的图形,你还能列举出正方形在 生活中应用的其他例子吗?
情境导入
结合已有经验,类比菱形与矩形,正方形的概念是怎 样的呢?
正方形可以定义为有一组邻边相等并且有一个角 是直角的平行四边形.
下面我们一起来探讨一下正方形的性质吧!
解:有多种方法:只要两条小路 交于正方形对角线的交点且两条 小路互相垂直,则满足条件.
课后作业
5. 如图为某城市部分街道示意图,四边形ABCD为正方
形,点G在对角线BD上,GE⊥CD,GF⊥BC,AD=1500m,
小敏行走的路线为B A G E,小聪行走的路线为B A
D E F,若小敏行走的路程为3100m,则小聪行走的路程
∴C(b,d)
课后作业
2.(2)如图,四边形ABCD是菱形,C,D两点的
坐标分别是(c,0),(0,d).点A , B的在坐标轴上.求A ,
B两点的坐标.【选自教材P61,习题18.2第12题】
y
(2)∵四边形ABCD是菱形,
D
∴AO=CO,BO=DO.
A
O
Cx
Hale Waihona Puke ∵C(c,0),∴A(-c,0)
B
∵D(0,d),∴B(0,-d)
由勾股定理得BC= EC2 EB2 900 100 20 2 (m).
在Rt△ABC中,∠B=90°,AB=BC= 20 2 m,
A
D
由勾股定理得AC= AB2 BC 2 800 800 40(m).
2
S正方形ABCD BC 2 20 2 800
E
∴这块场地的面积为800m2,对角线长40m.

正方形的性质与判定-优质课件

正方形的性质与判定-优质课件
(2) BH⊥AF
7、如图(6),△ABC的外面作正方形ABDE 和ACFG,连结BG、CE,交点为N。 求证:∠CEA=∠ABG
证明:∵四边形ABDE和四边形ACFG是正方形。 ∴AE=AB AG=AC ∠1=∠2=90°
又∵∠EAC=∠1+∠BAC=90°+∠BAC ∠BAG=∠2+∠BAC=90°+∠BAC
D O
B
C
例题1 如图,在正方形ABCD中,点E
在对角线AC上,那么,BE和DE相等吗?
为什么?
D
C
解:BE=DE.
因为 对角线AC所在的直
线是正方形ABCD的对
E
称轴,而点E在对称轴 A
B
上,点B为点D关于AC
的对称点,
所以 BE=DE
2.在正方形ABCD中,点P是对角线 AC上一点,PE⊥AB,PF⊥BC,垂 足分别是点E、F.求证:DP=EF
矩形
正方形
一组邻边相等的矩形
叫正方形
菱 形 一个角是直角
正方形

发现:
一个角为直角的菱形叫正 方形
如何来给正方形下定义?
菱形
平行四边形
正方 形
矩形
平行四边形
一组邻边相等 一内角是直角
正方形
定义:一组邻边相等,且有一个角是直角的平行四边
形叫做正方形
平行四边形,矩形,菱形,正方形的关系
平行四边形

矩形 方 菱形
练:正方形ABCD中,M为AD中点, ME⊥BD于E,MF⊥AC于F,若
ME+MF =8cm,则AC=___1_6_c_m__.
F
B A
MC D
F
E
O
B
C

正方形的性质与判定-ppt课件

正方形的性质与判定-ppt课件
∵AF=5,∴在 Rt△ABF 中,BF= AF2-AB2=
52-42=3.∵点 F 为 BC 的中点,∴BC=2BF=6.
∴在 Rt△BCE 中,CE= BC2+BE2= 62+22=2 10.
感悟新知
(2)若AF=CE,求证:四边形ABCD 是正方形.
知3-练
证明:在 Rt△ABF 中,AF2=AB2+BF2,
∴四边形ACED 是正方形(正方形的定义).
感悟新知
知3-练
3-1. 如图, 在矩形ABCD 中,点E,F 分别是AB,BC 的
中点,连接AF,CE.
感悟新知
知3-练
(1)若AE=2,AF=5,求CE 的长;
解:∵四边形 ABCD 是矩形,∴∠B=90°.
∵点 E 为 AB 的中点,AE=2,∴AB=4,BE=2.
数学表达式
∵在ABCD 中,AB=BC(或
AB=AD 或BC=CD 或
AD=CD),且∠ A=90°(或
∠ B=90°或∠ C=90°或
∠ D=90°),∴ ABCD 是
正方形
感悟新知
知1-讲
2. 图解
感悟新知
知1-讲
3. 四边形、平行四边形、菱形、矩形、正方形间的关系
感悟新知
知1-讲
特别提醒
2
四边形A2 024B2 024C2 024D2 024 的面
3
积为______ .
22 022
课堂小结
正方形的性质与判定
性质



正方形的面积公式
一组邻边相等
特殊的矩形
对角线互相垂直
一个角是直角
判定
特殊的菱形
对角线相等
∴四边形 ABCD 是正方形.

正方形的性质与判定完整ppt课件

正方形的性质与判定完整ppt课件
A B
D C
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
A
D
B
C
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
A
D
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
拓展讨论:
正方形对角线把正方形分成多少个等腰直角三角形?
A
D
O
B
C
结论:
分成八个等腰直角三角形,分别是△ABC、 △ADC、 △ABD、 △BCD ; △AOB、 △BOC、 △COD、 △DOA.

A
B
O
D
C
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
12.正已方知形正具方有形而的菱一形条不边一长定为具2c有m的,则性这质个是正(方形C)的
周长A为.对8角c线m,对互角相线垂长直为B.对2角,面线2积c互m为相平分. 4cm2
性质 图形 平行四
分类
边形
矩形 (所特有)
菱形 (所特有)
正方形
边 对边平行
且相等
四条边相等
对边平行且 四条边相等

对角相等
四个角都 是直角
四个角都 是直角
对角线互
对角线 相平分
对角线 相等
对角线互相 垂直,每条 对角线平分 一组对角
对角线相等且互 相垂直平分,每 条对角线平分一 组对角

正方形的性质与判定ppt课件

正方形的性质与判定ppt课件
北师大版九年级数学
第一章 特殊平行四边形
第3节 正方形的性质与判定
情境引入
情景引入
将一张长方形纸对折两次,然后剪下一个 角,打开,怎样剪才能剪出一个正方形?
情景引入
正方形的判定定理: 1.对角线相等的菱形是正方形。 2.对角线垂直的矩形是正方形。 3.有一个角是直角的菱形是正方形。
情景引入
运用巩固
位置关系 垂直
对称性 有
合作学习
第二类图形就是正方形,我们给出定义: 有一组邻边相等的矩形叫做正方形.
议一议: (1)正方形是菱形吗? (2)你认为正方形有哪些性质?
从我们得到数据分析:正方形既是矩形 又是菱形,它具有矩形和菱形的所有性质.
请同学们参照下表或独立整理矩形菱形
的性质. 矩形 性质
菱形 性质
么特征?
H
F
C G D
第三环节 猜想结论,分组验证
如果四边形ABCD变为特殊的四边形,中点四边 形EFGH会有怎样的变化呢?
原四边形可以是:
平行四边形
矩形
菱形
正方形
等腰梯形
直角梯形
梯形
第三环节 猜想结论,分组验证
特殊四边形的中点四边形:

平行四边形的中点四边形是平行四边形
矩形的中点四边形是菱形
菱形的中点四边形是矩形
想一想: 正方形有几条对称轴
解析: 正方形有4条对称轴. 经验层面:可通过折叠. 分析层面:正方形具有矩形、菱形的 所有性质,所以必然具有矩形过每组 对边中点的对称轴和菱形过对角线的 对称轴.
性质应用
例1:如图1-18,在正方形ABCD中,E为CD 上一点,F为BC边延长线上一点,且 CE=CF.BE与DF之间有怎样的关系?请说 明理由.

正方形的性质及判定

正方形的性质及判定

1.正方形的定义:有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形. 2.正方形的性质正方形是特殊的平行四边形、矩形、菱形.它具有前三者的所有性质: ① 边的性质:对边平行,四条边都相等. ② 角的性质:四个角都是直角.③ 对角线性质:两条对角线互相垂直平分且相等,•每条对角线平分一组对角. ④ 对称性:正方形是中心对称图形,也是轴对称图形. 平行四边形、矩形、菱形和正方形的关系:(如图)3.正方形的判定判定①:有一组邻边相等的矩形是正方形. 判定②:有一个角是直角的菱形是正方形.一、正方形的性质【例1】 正方形有 条对称轴.【例2】 已知正方形BDEF 的边长是正方形ABCD 的对角线,则:BDEF ABCD S S =正方形正方形【例3】 如图,已知正方形ABCD 的面积为256,点F 在CD 上,点E 在CB 的延长线上,且20AE AF AF ⊥=,,则BE 的长为FE D CBA【例4】 如图,在正方形ABCD 中,E 为AB 边的中点,G ,F 分别为AD ,BC 边上的点,若1AG =,2BF =,90GEF ∠=︒,则GF 的长为 .正方形的性质及判定正方形菱形矩形平行四边形【例5】 将n 个边长都为1cm 的正方形按如图所示摆放,点12...n A A A ,,,分别是正方形的中心,则n 个正方形重叠形成的重叠部分的面积和为【例6】 如图,正方形ABCD 中,O 是对角线AC BD ,的交点,过点O 作OE OF ⊥,分别交AB CD ,于E F ,,若43AE CF ==,,则EF =OFE DC BA【例7】 如图,正方形ABCD 的边长为2cm ,以B 为圆心,BC 长为半径画弧交对角线BD 于点E ,连接CE ,P 是CE 上任意一点,PM BC ⊥于M ,PN BD ⊥于N ,则PM PN +的值为PNME DC BA【例8】 如图,E 是正方形ABCD 对角线BD 上的一点,求证:AE CE =.EDCBA【例9】 如图,P 为正方形ABCD 对角线上一点,PE BC ⊥于E ,PF CD ⊥于F .求证:AP EF =.F EPDCB A【例10】 如图所示,正方形ABCD 对角线AC 与BD 相交于O ,MN ∥AB ,且分别与AO BO 、交于M N 、.试探讨BM 与CN 之间的关系,写出你所得到的结论的证明过程.M N CDO B A【例11】 如图,已知P 是正方形ABCD 内的一点,且ABP ∆为等边三角形,那么DCP ∠=PDCBA【例12】 已知正方形ABCD ,在AD 、AC 上分别取E 、F 两点,使2ED AD FC AC =∶∶,求证:BEF ∆是等腰直角三角形.GEHDFCBA【例13】 如图,已知E 、F 分别是正方形ABCD 的边BC 、CD 上的点,AE 、AF 分别与对角线BD 相交于M 、N ,若50EAF ∠=︒,则CME CNF ∠+∠= .NMFEDCBA【例14】 如图,四边形ABCD 为正方形,以AB 为边向正方形外作正方形ABE ,CE 与BD 相交于点F ,则AFD ∠=FEDCBA【例15】 如果点E 、F 是正方形ABCD 的对角线BD 上两点,且BE DF =,你能判断四边形AECF 的形状吗?并阐明理由.E CDFBA【例16】 如图,正方形ABCD 中,在AD 的延长线上取点E ,F ,使DE AD =,DF BD =.连结BF 分别交CD ,CE 于H ,G .求证:GHD ∆是等腰三角形.3142FE GHCDBA【例17】 如图,过正方形顶点A 引AE BD ∥,且BE BD =.若BE 与AD 的延长线的交点为F ,求证DF DE =.GFEBDA【例18】 如图所示,在正方形ABCD 中,AK 、AN 是A ∠内的两条射线,BK AK ⊥,BL AN ⊥,DM AK ⊥,DN AN ⊥,求证KL MN =,KL MN ⊥.K NMLDCB A【例19】 如图,正方形ABCD 的边CD 在正方形ECGF 的边CE 上,连接,BE DG ,求证:BE DG =.GC FEDBA【例20】 (2007年三帆中学期中考试)如图,在正方形ABCD 中,E 为CD 边上的一点,F 为BC 延长线上的一点,CE CF =,30FDC ∠=︒,求BEF ∠的度数.BDCAEF【例21】 已知:如图,在正方形ABCD 中,G 是CD 上一点,延长BC 到E ,使CE CG =,连接BG 并延长交DE 于F .(1)求证:BCG DCE ∆∆≌;(2)将DCE △绕点D 顺时针旋转90︒得到DAE '∆,判断四边形E BGD '是什么特殊四边形?并说明理由.【例22】 若正方形ABCD 的边长为4,E 为BC 边上一点,3BE =,M 为线段AE 上一点,射线BM 交正方形的一边于点F ,且BF AE =,则BM 的长为 .【例23】 如图1,在正方形ABCD 中,E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 上的点,HA EB FC GD ===,连接EG 、FH ,交点为O . ⑴ 如图2,连接EF FG GH HE ,,,,试判断四边形EFGH 的形状,并证明你的结论;⑵ 将正方形ABCD 沿线段EG 、HF 剪开,再把得到的四个四边形按图3的方式拼接成一个四边形.若正方形ABCD 的边长为3cm ,1cm HA EB FC GD ====,则图3中阴影部分的面积为_________2cm .图3图1图2H DGC FEBAOH GFEDC BA【例24】 如图,正方形ABCD 对角线相交于点O ,点P 、Q 分别是BC 、CD 上的点,AQ DP ⊥,求证:(1)OP OQ =;(2)OP OQ ⊥.ABCDEF E 'GBO D CA QP【例25】 如图,在正方形ABCD 中,E 、F 分别是AB 、BC 的中点,求证:AM AD =.MFEDCBA【例26】 如图,正方形ABCD 中,E F ,是AB BC ,边上两点,且EF AE FC DG EF =+⊥,于G ,求证: DG DA =G FEC DBA【例27】 如图,点M N ,分别在正方形ABCD 的边BC CD ,上,已知MCN ∆的周长等于正方形ABCD 周长的一半,求MAN ∠的度数NMDCBA【例28】 如图,设EF ∥正方形ABCD 的对角线AC ,在DA 延长线上取一点G ,使AG AD =,EG 与DF交于H ,求证:AH =正方形的边长.HEG CDF B A【例29】 把正方形ABCD 绕着点A ,按顺时针方向旋转得到正方形AEFG ,边FG 与BC 交于点H (如图).试问线段HG 与线段HB 相等吗?请先观察猜想,然后再证明你的猜想.GCHF EDB A【例30】 如图所示,在直角梯形ABCD 中,AD BC ∥,90ADC ∠=︒,l 是AD 的垂直平分线,交AD 于点M ,以腰AB 为边作正方形ABFE ,作EP l ⊥于点P ,求证22EP AD CD +=.lPM FE DC BA【例31】 如图所示,ABCD 是正方形,E 为BF 上的一点,四边形AEFC 恰好是一个菱形,则EAB ∠=______. ABCDEF二、正方形的判定【例32】 四边形ABCD 的四个内角的平分线两两相交又形成一个四边形EFGH ,求证:⑴四边形EFGH 对角互补;⑵若四边形ABCD 为平行四边形,则四边形EFGH 为矩形. ⑶四边形ABCD 为长方形,则四边形EFGH 为正方形.HEFG DCBA【例33】 如图,已知平行四边形ABCD 中,对角线AC 、BD 交于点O ,E 是BD 延长线上的点,且ACE∆是等边三角形.⑴ 求证:四边形ABCD 是菱形;⑵ 若2AED EAD ∠=∠,求证:四边形ABCD 是正方形.OEDCBA【例34】 已知:如图,在ABC ∆中,AB AC =,AD BC ⊥,垂足为点D ,AN 是ABC ∆外角CAM ∠的平分线,CE AN ⊥,垂足为点E . ⑴ 求证:四边形ADCE 为矩形;⑵ 当ABC ∆满足什么条件时,四边形ADCE 是一个正方形?并给出证明.M ENCDBA【例35】 如图,点M 是矩形ABCD 边AD 的中点,2AB AD =,点P 是BC 边上一动点,PE MC ⊥,PF BM ⊥,垂足分别为E 、F ,求点P 运动到什么位置时,四边形PEMF 为正方形.PMF EDC BA【例36】 如图,ABCD 是边长为1的正方形,EFGH 是内接于ABCD 的正方形,AE a AF b ==,,若23EFGH S =,则b a -=H GFEDCBA【例37】 如图,A 在线段BG 上,ABCD 和DEFG 都是正方形,面积分别为27cm 和211cm ,则CDE∆ 的面积为GFEDCB A【例38】 如图,在正方形ABCD 中,点1P P ,为正方形内的两点,且11PB PD PB AB CBP PBP ==∠=∠,,,则1BPP ∠= P 1PDC BA【例39】 如图,若在平行四边形ABCD 各边上向平行四边形的外侧作正方形,求证:以四个正方形中心为顶点组成一个正方形.PRQ S NMFEDCBA【例40】已知:PA4PB=,以AB为一边作正方形ABCD,使P、D两点落在直线AB的两侧.(1)如图,当∠APB=45°时,求AB及PD的长;(2)当∠APB变化,且其它条件不变时,求PD 的最大值,及相应∠APB的大小.PDCBA。

第三讲正方形的性质与判定

第三讲正方形的性质与判定

第三讲正方形的性质与判定(一)正方形的定义与性质1.正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做菱形.2.正方形的性质:①:正方形的四个角都是直角,四条边都相等.②正方形的对角线相等且互相垂直平分.3.特殊平行四边形的包含关系典例分析知识点1:利用正方形的性质计算例1:如图,AC是正方形ABCD的对角线,AE平分∠BAC,EF⊥AC交AC于点F,若BE=2,则CF长为.知识点2:利用正方形的性质证明例2:已知:如图1,正方形ABCD中,对角线的交点为O.(1)E是AC上的一点,过点A作AG⊥BE于G,AG、BD交于点F.求证:OE=OF.(2)若点E在AC上的延长线上(如图2),过点A做AG⊥BE交EB的延长线于G,AG的延长线交BD于点F,其它条件不变,OE=OF还成立吗?若成立,请给予证明;若不成立,请说明理由.知识点3:利用正方形的性质求面积例3:(1)如图,正方形ABCD的边长为2,MN∥BC分别交AB、CD于点M、N,在MN上任取两点P、Q,那么图中阴影部分的面积是.例3(1)图例3(2)图(2)如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG 的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A.a2B.a2 C.a2D.a2知识点4:利用正方形解决最短路径问题例4:如图,正方形ABCD的边长为6,E为BC上的一点,BE=2,F为AB上的一点,AF=3,P为AC上一点,则PF+PE的最小值为.(二)正方形的判定1.正方形的判定定理.(1)有一组邻边相等的矩形是正方形.(2)有一个角是直角的菱形是正方形.(3)对角线垂直的矩形是正方形.(4)对角线相等的菱形是正方形.2..判定一个四边形是矩形的方法与思路是:典例分析知识点5:先证矩形再证正方形例5.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.知识点6:先证菱形再证正方形例6:如图,已知在▱ABCD中,对角线AC,BD交于点O,E是BD延长线上的点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)若∠DAC=∠EAD+∠AED,求证:四边形ABCD是正方形.(三)中点四边形1.定义:以四边形的各边中点为顶点所组成的新四边形2.决定中点四边形EFGH的形状的主要因素是原四边形ABCD的对角线的长度和位置关系.(1)若原四边形的对角线相等,则中点四边形EFGH为菱形;(2)若原四边形的对角线互相垂直,则中点四边形EFGH为矩形;(3)若原四边形的对角线既相等又垂直,则中点四边形EFGH为正方形;(4)若原四边形的对角线既不相等也不垂直,则中点四边形EFGH为平行四边形知识点7:中点四边形形状的确定例7:(1)以四边形的各边中点为顶点可以组成一个什么图形?如果以菱形或矩形各边的中点为顶点呢?:(2)如图,梯形ABCD中,AD∥BC,AB=CD,对角线AC、BD交于点O,AC⊥BD,E、F、G、H分别为AB、BC、CD、DA的中点.(1)求证:四边形EFGH为正方形;(2)若AD=1,BC=3,求正方形EFGH的边长.(四)正方形的性质与判定的综合应用例8:如图,正方形ABCD边长为6.菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,且AH=2,连接CF.(1)当DG=2时,求证:菱形EFGH为正方形;(2)设DG=x,试用含x的代数式表示△FCG的面积.例9:如图,点M是矩形ABCD的边AD的中点,点P是BC边上一动点,PE⊥MC,PF⊥BM,垂足为E、F.(1)当矩形ABCD的长与宽满足什么条件时,四边形PEMF为矩形?猜想并证明你的结论.(2)在(1)中,当点P运动到什么位置时,矩形PEMF变为正方形,为什么?例10:如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE=BC=1.(1)求证:CE=CF;(2)若G在AD上,连接GC,且∠GCE=45°,求∠GCF的度数;(3)在(2)的条件下,求GC的长度.例11:如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF.(1)求证:AD=AF;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.例12:(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC 延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.证明:在边AB上截取AE=MC,连接ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.∴∠NMC=180°﹣∠AMN﹣∠AMB=180°﹣∠B﹣∠AMB=∠MAB=∠MAE.(下面请你完成余下的证明过程)(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则∠AMN=60°时,结论AM=MN是否还成立?请说明理由.(3)若将(1)中的“正方形ABCD”改为“正n边形ABCD…X,请你作出猜想:当∠AMN=时,结论AM=MN仍然成立.(直接写出答案,不需要证明)夯实基础:1.下列说法中,正确的是()A.有一个角是直角的四边形是菱形B.对角线互相垂直的菱形是正方形C.对角线相等的平行四边形是矩形D.一组邻边相等的平行四边形是正方形2.已知正方形的边长为2cm,则其对角线长是()A.4cm B.8cm C.cm D.2cm3.如图,直线l过正方形ABCD的顶点B,点A、C至直线l的距离分别为2和3,则此正方形的面积为()A.5 B.6 C.9 D.13第3题第4题第5题4.如图,在正方形ABCD中,AB=1,P是线段AD上的动点,PE⊥AC于点E,PF⊥BD于点F,则PE+PF的值为()A.B.4 C.2 D.5.如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是()A.3 B.4 C.5 D.66.如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE相交于点F,则∠BFC为()A.45°B.55°C.60°D.75°第6题第7题7.如图,正方形AEFG的边AE放置在正方形ABCD的对角线AC上,EF与CD交于点M,得四边形AEMD,且两正方形的边长均为2,则两正方形重合部分(阴影部分)的面积为()A.﹣4+4B.4+4 C.8﹣4D.+18.如图,在正方形ABCD中,AB=2,延长AB至点E,使得BE=1,EF⊥AE,EF=AE.分别连接AF,CF,M为CF的中点,则AM的长为()A.2B.3C.D.第8题第9题9.如图,G为正方形ABCD的边AD上的一个动点,AE⊥BG,CF⊥BG,垂足分别为点E,F.已知AD=4,则AE2+CF2=.10.已知:如图,在矩形ABCD中,BE平分∠ABC,CE平分∠DCB,BF∥CE,CF ∥BE.求证:四边形BECF是正方形.11.如图,已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF ⊥AC,垂足分别为E,F.(1)求证:△BED≌△CFD;(2)当∠A=90°时,试判断四边形DFAE是何特殊四边形?并说明理由.13..如图1,正方形ABCD中,点O是对角线AC的中点,点P是线段AO上(不与A、O重合)的一个动点,过点P作PE⊥PB且交边CD于点E.(1)求证:PB=PE;(2)过点E作EF⊥AC于点F,如图2,若正方形ABCD的边长为2,则在点P 运动的过程中,PF的长度是否发生变化?若不变,请直接写出这个不变的值;若变化,请说明理由.14.已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.(1)如图①,当∠MAN绕点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:;(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)。

正方形的性质与判定课件

正方形的性质与判定课件
1.3.1正方形的性质与判定
正方形的性质与判定
1
自主预习
一、知识回顾: 1.平行四边形的定义: 两组对边分别平行的四边形。 2.菱形的定义:邻边相等的平行四边形。 菱形的性质: 四条边都相等;对角线互相垂直 3.矩形的定义:有一个角是直角的平行四边形 矩形的性质: 四个角都是直角;对角线相等。
二、简单归纳。 1、正方形既是__矩形_,又是__菱形_,所以它具有___矩形和 __ 菱_的形性质: 2、正方形的定义:邻边相等且有一个角是直角的平行四边形。 3、正方形的性质:
7
正确的一个条件即可)。 6、已知一个正方形的边长为2cm,则对角线长为______。 7、已知一正方形的对角线长为2cm,则它的边长为_______。 8、若正方形的一条对角线长为4cm,则正方形的周长为______,面积为________;
对角线的交点到边的距离为_______。
正方形的性质与判定
平行四边形
有一组邻边相等且有一个角是直角
正方形
菱形
正方形的性质与判定
5
检测反馈
1、正方形具有而一般菱形不具有的性质是 ( ) A.四条边都相等 B. 对角线互相垂直平分 C. 对角线相等 D. 每一条对角线平分一组对角 2、正方形具有而一般矩形不一定具有的性质是 ( ) A. 四个角相等 B. 四条边相等 C. 对角线互相平分 D. 对角线相等 3、下列说法中错误的是( ) A、对角线相等的菱形是正方形 B、有一组邻边相等的矩形是正方形 C、四条边都相等的四边形是正方法 D、有一个角为直角的菱形是正方形 4、已知四边形两对角线:①互相垂直;②相等;③互相平分。 具备条件____可得平行四边形;具备条件_____可得矩形; 具备条件___ 可得是菱形; 具备条件________可得正方形。(填序号) 5、已知四边形ABCD是菱形,当满足条件_________时,它成为正方形(填上你认为

认识正方形ppt课件

认识正方形ppt课件

认识正方形ppt课件•正方形基本概念与性质•正方形周长与面积计算•正方形在生活中的应用•正方形变换与拓展•正方形相关数学问题探讨•总结回顾与课堂互动正方形基本概念与性质正方形定义及特点正方形的定义四条边长度相等且四个角都是直角的四边形。

正方形特点四边等长、四角均为直角、对角线相等且垂直相交。

正方形与长方形关系长方形定义两组对边分别平行且相等的四边形,其中有一个角是直角。

正方形与长方形关系正方形是特殊的长方形,当长方形的长和宽相等时即为正方形。

正方形对称性轴对称正方形有两条对称轴,分别是连接对角点的两条对角线。

沿对称轴折叠,两侧图形完全重合。

中心对称正方形关于中心点对称,即任意一点与关于中心点的对称点连线,该线段的中点即为正方形的中心。

正方形周长与面积计算P = 4 ×a ,其中a 为正方形的边长。

周长计算公式将正方形四条边的长度相加即可得到周长。

计算方法确保四条边的长度相等,才能构成正方形。

注意事项面积计算公式计算方法注意事项将正方形的边长自乘即可得到面积。

面积单位与边长的平方单位相同。

0302 01S=a^2,其中a为正方形的边长。

实例演练与解题技巧实例演练给定一个边长为5cm的正方形,求其周长和面积。

周长计算P=4×5cm=20cm面积计算S=5cm×5cm=25cm^2解题技巧在计算周长时,确保四条边的长度相等。

在计算面积时,注意单位与边长的平方单位相同。

可以利用已知条件,如正方形的边长或周长,来求解其他相关量。

01020304实例演练与解题技巧正方形在生活中的应用建筑设计中应用建筑设计中的正方形元素正方形常被用作建筑设计的基本元素,如建筑物的平面布局、立面设计、窗户和门的形状等。

正方形结构的稳定性正方形结构具有良好的稳定性和平衡性,因此常被用于建造高楼大厦、桥梁等需要承受重力的建筑物。

正方形的美学价值正方形具有简洁、对称的美学特点,在建筑设计中可以营造出稳重、端庄的视觉效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轴对称图形、
.
1. 正方形具有而矩形不一定具有的性质是 ( B )
A、四个角相等
B、对角线互相垂直平分 .
C、对角互补 .
D 、对角线相等 .
2.正方形具有而菱形不一定具有的性质( D )
A、四条边相等 .
B 、对角线互相垂直平分 .
C、对角线平分一组对角 . D、对角线相等 .
.
练习3.正方形的一边和对角线的夹角为4_5_°_________.
练习4.已知正方形的面积为9cm2,它的周长1为2c_m______________. 4.正方形的边长为a,当边长增加1时,其面积增加了___2_a__+_1___.
A
D
O
B
C
.
例1求证:正方形的两条对角线把正方形分
成四个全等的等腰直角三角形。
文字命题的证明步骤: 第一步 : 画图 第二步 : 写已知 第三步:写求证 第四步 : 证明
3 2 1
答案
.
证明:(1)∵ ABCD 是正方形 ∴AD=AB,∠ADE= ∠ABF=90 ° 在△ ABF 与△ ADC 中
AD=AB ∠ADE= ∠ABF=90 °
DE=BF ∴ △ABF ≌△ADE (SAS) ∴ FA=EA ,∠1=∠3
3 2 1
(2)∵∠2+∠3=90 ° ∴∠1+∠2=90 ° ∴ EA⊥FA
18.2 .3特殊的平行四边形 ----正方形(第1课时)
完美的正方形
回顾:平行四边形 ,矩形与菱形有哪些性质 ?
边: 对边平行且相等
平行四边形 角: 对角相等,邻角互补
对角线: 对角线互相平分
具有平行四边形所有性质
矩形
边: 对边平行且相等 角: 四个角是直角 对角线: 对角线相等且互相平分
.
菱形的性质
(2)
.
平行四边形
矩形

方 形
菱 形
平行四边形、矩形、菱形、正方形之间关系
四边形 平行四边形 矩形 菱形 正方形
四边形 平行四边形
矩形
正 方 菱形

.
学案2
它是轴对称图形 ,有4条对称轴 (C) A
D (B)
也是中心对称图形 ,对称中心为点 O O
(1)它具有平行四边形的一切性质 (D) B
C(A)
是正方形.
(√ )
.
小结
性质
图形
对边平行且相等
四条边都相等 对角相等 四个角都是直角
对角线互相平分
对角线互相垂直
对角线相等
每条对角线平分 一组对角

√√

.
菱形 正方形
√√ √√ √√
√ √√ √√

√√
想一想:
1.若O点移动至E点时,连接AE、CE, 你有那些结论?
A
对边平行 且相等
对角相等, 邻角互补
对角线互相平分
不是轴对称图形
对边平行 四个角 且相等 都是直角
对角线相等 且互相平分
轴对称图形、
对四等边边平都行相,对邻角角相互等补,
对角线互相垂直 平分,每条对角 线平分一组对角
轴对称图形、
对四都边条相平边等行,都四是个直角角
对角线互相垂直平 分且相等,每条对 角线平分一组对角
D
O
E
B
C
该怎样证明这些结论?
.
小结
1、正方形定义
有一组邻边相等并且有一个角是直角的平行四边形是正方形
2、正方形的性质
A
D
边: 对边平行,四条边都相等
O
角:四个角都是直角
B
对角线:对角线互相垂直平分且相等,
C
每条对角线平分一组对角
对称性: 正方形是轴对称图形,也是中心对称图形;
.
平行四边形
矩形

方 形
菱 形
.
例3.已知:如图在正方形 ABCD 中,F为CD延长线 一
点,CE ⊥AF于E,交AD于M,
求证:∠MFD =45°
.
达标检测6:判断下列命题是否正确
? 1、四个角都相等的四边形是正方形; (×)
? 2、四条边都相等的四边形是正方形; (×)
? 3、对角线相等的菱形是正方形;
( √)
? 4、对角线互相垂直的矩形是正方形; (√ )
? 5、对角线垂直且相等的四边形是正方形; (×)
? 6、四边相等,有一个角是直角的四边形
菱形的性质
具有平行四边形一切性质
边: 四条边相等
角:对角相等,邻角互补
互相垂直平分 对角线:
分别平分两组对角
.
探究小结
邻边相等
发现:
矩形
正方形
一组邻边相等的矩形
叫正方形
菱 形
一个角是直角
发现:
正方形
一个角为直角的菱形叫正
∟ 方形
如何来给正方形下定义?
.
1. 正方形的定义
有一组邻边相等且有一个角是直角的 平行四边形叫做正方形。
.
例1求证:正方形的两条对角线把正方形分
成四个全等的等腰直角三角形。 已知:如图正方形ABCD对 角线AC、BD相交于点O。
求证: △ABO ≌ △BCO ≌ △CDO ≌△ADO
思考:正方形对角线把正方形分成多少个等腰直角三角形?8个
例2:
已知:如图,点E是正方形ABCD的边CD上一点, 点F是CB的延长线上一点,且DE=BF.求证: (1)AE=AF;(2)EA⊥AF.
由正方形的定义 可知,
学案1、正方形既是(1)有一组邻边相等的矩形, 又是 (2)有一个角为直角的菱形。 (3)有一组邻边相等,并且一个角为直角的平行四边形。
学案2 ?
2. 如图正方形 1)图中有多少个等腰直角三角形 2)说出图中相等的线段、相等的角。 3)求∠ABD、∠DAC、∠DOC 的度数。
.
达标检测1.
3、已知:正方形 ABCD 对角线AC、BD相 交于点 O ,且 AB=4cm ,如图。
求:AC的长及正方形的面积 S。
4.已知:在正方形 ABCD中,对角线 AC、 BD相交于点 O,且AC=6 2 cm ,如图
求:正方形的面积S。
达标检测 5: 如图,已知 E点在正方形 ABCD的BC边的延长线上, 且CE=AC ,AE与CD相交于点 F,则∠AFC=________
答案:1、八个 △ABC、△BCD、 △CDA、
△DAB 、△AOB 、△AOD、
△BOC 、△COD
A
D
O 2 AB=BC=CD=DA AC=BD
OA=OB=OC=OD
3、45°;45°,90°
B
C
.
正方形、矩形、菱形以及平行四边形四者之间的关系:
(3)
有一组邻边相等且有一个角是直角
(1) (4)
两组对边分别平行且相等,两组对角相等,对角线互相平分
(2)具有矩形的一切性质
四个角都是直角,对角线相等
(3)具有菱形的一切性质
四条边相等;对角线互相垂直,. 每条对角线平分一组对角
正方形是特殊的平行四边形,也 是特殊的矩形,也是特殊的菱形。
正方形的性质=
.
知识拓展:与同学讨论后填写下表:
几种特殊四边形的性质
相关文档
最新文档