大连理工大学2000-2017年数学分析真题
大连理工数学分析试题及解答
11.计算曲面积分 ,S为椭球面 的外侧。
证明:
12.设 ,对于任意的c>0, 于0。证明:对于任意 :
证明:
13.证明:一个严格递增函数的间断点只能是第一类间断点
证明:首先,证明左右极限都存在。不妨先证明左极限存在。如果不存在,函数有界,那么存在两个不同的子列,收敛于不同极限A<B,显然,可以找到x1<x2,f(x1)趋近于B,而f(x2)趋近于A,和递增矛盾。同理,右极限也存在
证明:
5.证明:
证明:
6.证明:
,在x=0处有连续的二阶导数
证明:
7.利用重积分计算三个半长轴分别为a,b,c的椭球体的体积
解:三种方法:
8.计算第二类曲面积分: ,其中,
。
解:(Gauss定理)
二、从9-14题中选4题解答
9.假设
证明:Stolz公式
利用定义也可以做的
10.计算积分: ,其中,Γ为包含原点的一条分段光滑闭曲线,取正方向。
然后证明,左极限不等于右极限,否则,根据严格递增不难得到函数在该点是连续的,又和题目矛盾
从而命题成立
14. 于 ,但是 ,证明,
未完成!
Zhubin846152朱斌
2000年大连理工大学硕士生入学考试试题——数学分析
一、从以下的第一到第八题中选取6题解答,每题10分
1.证明: 于区间 (其中 )一致连续,但是于 内不一致连续
证明:
2.证明:若 ,则
证明:
3.证明:Dirichlet函数:
在所有无理点连续,在有理点间断,
证明:
4.证明:若 ,且任意 , ,那么 ,
2000数学一解析
2000年数学(一)真题解析一、填空题(1)【答案】7T方法一—x 2 dx = f a /1 — (jc — l)2 d(j? — 1)=J 0a /1 — x 2 dj?方法二1/----------帀x = sin tV 1 —无=o根据定积分的几何应用,「屆—工认即以曲线J 0y = Jlx — jc 2 (0 £工W 1)为曲边的曲边梯形的面积. 如图所示,显然[丿2工-工f =中.⑵【答案】千1_卄2_「2-46cos 2/d/=/2=£x Ko 2【解】"={F : ,F ; ,F ;} |(1,一2,2)= {2工,4y ,6z} |(i,_2,2)= {2, — 8,12},qr 1 yi —I — 2 N 2则曲面在点(1.—2,2)处的法线方程为、工占=乞丁.(3) 【答案】y =q + C2(C 】,C2为任意常数).X【解】 方法一 由xy" + 33/' = 0 ,得y"-----y' =0.X解得/hCojM =$,积分得原方程的通解为y =^ + C 2(C 15C 2为任意常数).XJC方法二 由砂"+ 3y f =0,得 x 7,y" + 3x 2y f =0 或(x 3y'Y =0.「 C于是工s ,=c 。
,解得y =-|,积分得原方程通解为^=4 + C 2(C.,C 2为任意常数).jc x (4) 【答案】 一1.【解】 因为原方程组无解,所以r (A ) <r (A ),而r (A )三3,所以r (A ) <3.于是|A 1 = 0,解得a =-1或a =3._ I 121/I 21 ! 1 \/I2 11当a = 3时,由A=”35Y -> 0 - 1-* °—131'13—2i o''o 1-3 - 1''00 00得r (A ) =r (A ) =2,原方程组有无数个解,所以a 工3 ,故a == -1.2(5)【答案】 y.【解】PCAB) =PCA) -F(AB), P CAB) = P (B) - P (AB),由P(AB)=P(AB),得P(A)=P(B).--------------1«由P(AB)=P(A+B)=l-P(A+B)=y,得P(A+B)=§.又P(A+B)=P(A)+P(B)-P(AB)=2P(A)-P2(A),o o得P2(A)-2P(A)+y=0,解得P(A)=y.二、选择题(6)【答案】(A).【解】由厂Q)gQ)TQ)g‘Q)<o,得&(工)」g(工)即牛¥为减函数,当a V工时,有牛牛>力黑>侏.gd g(工)g lb)于是/'(•z)g(b)>f(b)gO,应选(A).方法点评:本题考查函数单调性.若y'(H)>o或y'(_z)<o时,/•&)严格递增或严格递减.注意如下技巧:若题中出现/'(_r)g(>z)—/■(H)g'(_z)时,一般构造辅助函数;g(H)若题中出现f'(j;)+/(a-)g z(j:),一般构造辅助函数/(JC)g(J7).(7)【答案】(C).【解】由对面积的曲面积分的对称性质,得又因为s i x dS=JJ ydSs iF ds=.sjjj/dS=0,s』n dS9所以』n dS=4JJS]S S]zdS Z(1S9s】x dS9应选(C).方法点评:二重积分、三重积分、对弧长的曲线积分、对面积的曲面积分有类似的对称性,对面积的曲面积分的对称性如下:若》关于jrOy平面对称,其中工0夕平面上方为I】,则有]J/(z,z)dS=J0,12jJ/(jr,w)dS,I习f(.x,y,—z)=—f(工,y,z),f(a:,y,—2)=f{x,y,z).其他两种情形同上.(8)【答案】(D).【解】方法一令S”="]+“2------"”,因为工"”收敛,所以lim“”=0且limS…存在.”=]"-88设limS”=S,令S:=("]+“2)+("2+"3)+…+("”+«…+i)=2S”一"i+“卄i.OO因为limS:,=2S—-,所以级数工("”+"”+i)收敛,应选(D).心00”=1■(—1\H g/_1\W°°1方法二取U n=丄1、,级数工|/,1、收敛,而工丄1、发散,(A)不对;ln(z?+1)/z=1ln(n+1) z/=1n ln(7?+1)取"”=上?,级数》>7 =工丄发散,(B)不对;寸Tln = \” = 1"(—1 \n~l00 吕1取U ” =',级数工(“2”T — “2”)= Y —发散,(C)不对,应选(D).n n=\n=\ n(9) 【答案】(D).【解】 令 A =( a 1 .a?,…,a ”),B = (0i ,02,・"‘0,”).由 a i ,a 2, ,a m 线性无关,得 r (A ) =m .若山,卩-…仇线性无关,则r (B )=m,因为r(A) =r(B) 所以矩阵A.B 等价;反之,若矩阵A .B 等价,则r(A) — rCB ),因为r(A)—加,所以r(B)=加,又因为矩阵的秩与矩阵列向量组的秩相等,所以你,02,…,血的秩为加,即你心,…0”线性无关,应选(D).(10) 【答案】(E).【解】W 诃不相关的充分必要条件是Cov(f ,^) =0.而 Cov(Wq) =Cov(X + Y,X — Y) =Cov(X,X) -Cov(Y,Y) =D(X) -D(Y),又 D(X) =E(X 2) -[E(X )T , D(Y) =E(Y 2) ~[E(Y)]2,所以不相关的充分必要条件是D(X) =D(Y),即 E(X 2) ~[E(X)J 2 =E(Y 2) -[E(Y)]2,应选(E).三、解答题(11)【解】— . 1/2 + sin j - \ 2 -h e 7由 lim T + I I = lim -------r + lim z-o+'l+e ’ 1 1 ' 乂_°* 1 += 0 + 1=1,— . 1/2 + e J . sin jc \ 9 4- e 7 sin rlim ( T x I j = lim ------------lim --------=2 — 1 = 19/2 + e T sin x \得啸匚/ +甘)7(12)【解】由复合函数求偏导法则,得券= yf ; + —fi —气 g', dx y xdy=f\ + y (工咒y 〃-------gX1l —i £〃 无 〃〃 1 / y >—f 2 + ^yf 11 J 22 g s y yQ («Z 9』)=(13)【解】令 PCx.y) = , 2 24j ? + ydQ dp y 2 — 4 工23jc (4jc 2 + y 2 )2((乂,』)# (0,0)).如图所示,作L 0:4^2+y 2=r 2(r> 0且L 。
大连理工大学(已有10试题)
大连理工大学应用数学系数学分析2001——2005,2009(2005有答案)高等代数2000——2005、2007(2005有答案)物理系数学物理方法2000——2005量子力学2000,2002——2005热力学与统计物理2000,2002——2005电动力学2000,2002——2005普通物理2000——2005光学(几何光学与波动光学)2000晶体管原理2000半导体材料2004——2005半导体器件2004——2005半导体物理2001——2002,2004——2005神经科学基础2004——2005生物统计学2004——2005生物物理学2004——2005工程光学2005微电子技术2003——2005离散数学及应用2000——2001(2000有答案)离散数学与数据结构2002——2005模拟电子技术2001——2005工程力学系材料力学1999——2001,2003——2005,2010(2010为回忆版)理论力学1995,1999——2001,2003——2005理论力学(土)2000土力学1999——2005自动控制原理(含现代20%) 1999——2005杆系结构静力学1998,2000弹性力学(不含板壳)1999——2004流体力学1999——2005流体力学(土)2004——2005流体力学基础2002——2005岩石力学1999——2000钢筋混凝土结构1999——2000工程流体力学2001,2004——2005水力学1999——2000,2002,2004——2005机械工程学院机械设计2001——2005(2001——2005有答案)机械原理1999——2000,2003——2005画法几何及机械制图2003——2005控制工程基础2001,2003——2005微机原理及应用(8086)1999——2000微机原理及应用(机)2004——2005微机接口与通讯及程序设计1999——2000模拟电子技术2001——2005离散数学及应用2000——2001(2000有答案)离散数学与数据结构2002——2005过程控制(含计算机控制)2000杆系结构静力学1998,2000微电子技术2003——2005系统工程概论1999——2002晶体管原理2000系统工程概论1999——2005管理基础知识1999——2001,2003——2005(2003——2005有答案)计算机组成原理(软)2005管理学基础2004——2005(2004——2005有答案)管理学2010(回忆版)材料力学1999——2001,2003——2005,2010(2010为回忆版)自动控制原理(含现代20%) 1999——2005材料科学与工程学院材料科学基础2003——2005,2010(2010为回忆版)机械设计2001——2005(2001——2005有答案)模拟电子技术2001——2005微电子技术2003——2005物理化学2004物理化学及物理化学实验1991——1993,2000,2002——2005(2002——2004有答案)胶凝材料学2001——2005硅酸盐物理化学2001——2002,2005杆系结构静力学1998,2000金属学2000金属热处理原理2000金属材料学2000钢筋混凝土结构1999——2000晶体管原理2000土木水利学院材料力学(土)2000,2003——2005材料力学1999——2001,2003——2005,2010(2010为回忆版)土力学1999——2005结构力学2000——2001,2003——2005水力学1999——2000,2002,2004——2005杆系结构静力学1998,2000理论力学(土)2000弹性力学(不含板壳)1999——2004流体力学1999——2005流体力学(土)2004——2005流体力学基础2002——2005岩石力学1999——2000钢筋混凝土结构1999——2000工程流体力学2001,2004——2005系统工程概论1999——2005工程经济学2004——2005无机化学2003——2005传热学2002,2004——2005工程力学2004——2005工程项目管理2004——2005建筑材料2005工程热力学2001——2002,2004——2005热工基础(含工程热力学和传热学)2003化工学院无机化学2003——2005物理化学2004物理化学及物理化学实验1991——1993,2000,2002——2005(2002——2004有答案)有机化学及实验2001,2003——2005高分子化学及物理2002——2005化工原理及化工原理实验2001——2005材料力学1999——2001,2003——2005,2010(2010为回忆版)工程流体力学2001,2004——2005硅酸盐物理化学2001——2002,2005热力学基础2005天然药物化学2005药剂学2005生物化学及生物化学实验1999——2005船舶工程学院船舶动力装置2002——2005船舶设计原理2001——2005水声学原理2002——2005船舶静力学2001——2005杆系结构静力学1998,2000电子与信息工程学院模拟电子技术2001——2005信号与系统(含随机信号20%)1999——2005 自动控制原理(含现代20%) 1999——2005工程光学2005通信原理2004——2005离散数学及应用2000——2001(2000有答案)离散数学与数据结构2002——2005离散数学与计算机组成原理2005离散数学与数据库原理2004——2005数据结构与计算机组成原理2004——2005计算机组成原理与计算机体系结构2004——2005 计算机组成原理与数字逻辑2000计算机组成原理(软)2005编译方法1999——2000操作系统1999——2001高等代数2000——2005过程控制(含计算机控制)2000微电子技术2003——2005微机接口与通讯及程序设计1999——2000系统工程概论1999——2005晶体管原理2000能源与动力学院汽车理论2000——2005机械原理1999——2000,2003——2005自动控制原理(含现代20%) 1999——2005化工原理及化工原理实验2001——2005普通物理2000高等代数2000——2005离散数学及应用2000——2001(2000有答案)离散数学与数据结构2002——2005运筹学基础及应用2004——2005计算机信息管理1999——2001,2004——2005 微电子技术2003——2005杆系结构静力学1998,2000系统工程概论1999——2005晶体管原理2000信息管理与信息系统2010(回忆版)管理学院计算机信息管理1999——2001,2004——2005 运筹学基础及应用2004——2005离散数学及应用2000——2001(2000有答案)离散数学与数据结构2002——2005公共经济学基础2004——2005,2010(2010为回忆版)过程控制(含计算机控制)2000微电子技术2003——2005系统工程概论1999——2002政治学原理2004——2005行政管理学2004——2005,2010(2010为回忆版)经济学基础2001——2005(2001——2005有答案)运筹学基础及应用2004——2005公共管理学2005社会保障学2004——2005管理学2010(回忆版)信息管理与信息系统2010(回忆版)人文社会科学学院经济学基础2001——2005(2001——2005有答案)管理基础知识1999——2001,2003——2005(2003——2005有答案)管理学基础2004——2005(2004——2005有答案)管理学2010(回忆版)系统工程概论1999——2002现代科学技术基础知识1999——2000,2004——2005思想政治教育学2004——2005马克思主义哲学原理2004——2005马克思主义哲学2001——2002西方哲学史2005哲学概论2004——2005科学技术史(含命题作文)2004——2005科学史、技术史、命题作文2001——2003政治学原理2004——2005行政管理学2004——2005,2010(2010为回忆版)传播学2004——2005新闻传播实务2004——2005民法学2004——2005法理学与商法总论2004——2005政治学2004——2005中外教育史2004——2005教育学2005中国近现代史2004——2005世界近现代史2004——2005电气工程及应用电子技术系电路理论2002——2005自动控制原理(含现代20%) 1999——2005过程控制(含计算机控制)2000微电子技术2003——2005系统工程概论1999——2005晶体管原理2000外国语学院二外德语2002,2004二外俄语2002——2004二外法语2004——2005二外日语2002——2004专业基础英语2003英汉翻译2003,2005英汉翻译与写作2004英语水平测试2004——2005二外英语2002——2005日语水平测试2004——2005翻译与写作(日)2004——2005专业基础日语2002——2003外国语言学与应用语言学(日语)专业综合能力测试2002——2003体育教学部运动生物力学2005人体测量与评价2004——2005生物学基础2005体质学2004——2005建筑艺术学院建筑设计(8小时)2000,2004——2005建筑设计原理1999——2000,2003建筑设计理论综合2004——2005城市建设史2002——2003中国与外国建筑史2000建筑构造与建筑结构1999——2000城市规划历史与理论2004——2005城市规划原理2003城市设计2002规划设计(8小时)2004-2005素描(8小时)2005泥塑(8小时)2005色彩(4小时)2005软件学院离散数学及应用2000——2001(2000有答案)离散数学与数据结构2002——2005离散数学与计算机组成原理2005离散数学与数据库原理2004——2005数据结构与计算机组成原理2004——2005计算机组成原理与计算机体系结构2004——2005计算机组成原理与数字逻辑2000计算机组成原理(软)2005编译方法1999——2000操作系统1999——2001环境与生命学院物理化学2004物理化学及物理化学实验1991——1993,2000,2002——2005(2002——2004有答案)化工原理及化工原理实验2001——2005硅酸盐物理化学2001——2002,2005基因工程原理2004——2005微生物学2004——2005细胞生物学2005环境化学2004——2005环境工程原理2004——2005,2010(2010为回忆版)分子遗传学2004——2005环境微生物2002经济系经济学基础2001——2005(2001——2005有答案)公共经济学基础2004——2005,2010(2010为回忆版)高科技研究院数学分析2001——2005,2009(2005有答案)高等代数2000——2005数学物理方法2000——2005量子力学2000,2002——2005热力学与统计物理2000,2002——2005电动力学2000,2002——2005物理化学2004物理化学及物理化学实验1991——1993,2000,2002——2005(2002——2004有答案)硅酸盐物理化学2001——2002,2005微电子技术2003——2005。
大连理工大学数学分析考试题
µÎ inf Å
n≥1 xn
> 0.
§
¦
lim sup 16. xn yn
Ô¤§ ¦
n→∞
n→∞
xn+1 ≥ 1. xn
(1) lim inf xn lim inf yn ≤ lim inf (xn yn ) ≤ lim inf xn lim sup yn .
n→∞ n→∞ n→∞ n→∞
3
(2) lim inf xn lim sup yn ≤ lim sup(xn yn ) ≤ lim sup xn lim sup yn . 17. 18. xn > xn+k . xn > 0, xn
§¦
b > a, f (x)
(1) lim 4n (1 − an ); (2) lim (a1 . . . an ).
n→∞
Å
15. (HOMEWORK)
¤ ¥
f (x)
Ë (a, +∞) ŵÀ¤¥¹
n→∞
¶Ë (a, b)
¦
§4
f (x + 1) − f (x) = e. x→∞ xn lim e f (x) . = n +1 →∞ x n+1 lim
20.
{xn }
§ ¦ ˽ º ¿« n, x < x , k = 1, . . . , n . Å Ô¤¥ lim(x − x ) = 0.a = lim inf x , b = lim sup x . ³Å © © Ì [a, b].
n+1
4
ß ¡ ¥Ëµ f (x) Ë x ¬ ×Ê Å
(iii) an > 0,
¦
2000-2017考研数学二历年真题word版
2017年全国硕士研究生入学统一考试数学二试题一、选择题:1~8小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项是符合题目要求的.(1)若函数10(),0x f x axb x ⎧->⎪=⎨⎪≤⎩在x=0连续,则 (A )12ab =(B)12ab =- (C )0ab = (D )2ab = (2)设二阶可到函数()f x 满足(1)(1)1,(0)1f f f =-==-且 ()0f x ''>,则 (A) 11()0f x dx ->⎰(B)12()0f x dx -<⎰(C ) 0110()()f x dx f x dx ->⎰⎰(D )111()()f x dx f x dx -<⎰⎰(3)设数列{}n x 收敛,则(A )当limsin 0n n x →∞=时,lim 0n n x →∞=(B)当lim (0n n n x x →∞= 时,则lim 0n n x →∞=(C )当2lim()0n n n x x →∞+=, lim 0n →∞=(D )当lim(sin )0n n n x x →∞+=时,lim 0n n x →∞=(4)微分方程248(1cos 2)xy y y e x '''-+=+ 的特解可设为ky =(A)22(cos 2sin 2)xx Aee B x C x ++(B )22(cos 2sin 2)xx Axe e B x C x ++(C )22(cos 2sin 2)xx Ae xe B x C x ++ (D )22(cos 2sin 2)xx Axexe B x C x ++(5)设()f x 具有一阶偏导数,且在任意的(,)x y ,都有(,)(,)0,f x y f x y x y∂∂>∂∂则 (A)(0,0)(1,1)f f > (B)(0,0)(1,1)f f <(C )(0,1)(1,0)f f > (D )(0,1)(1,0)f f <(6)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m)处,图中,实线表示甲的速度曲线()1v v t = (单位:m/s )虚线表示乙的速度曲线()2v v t =,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为0t (单位:s ),则 (A)010t = (B )01520t << (C)025t = (D)025t >()s(7)设A 为三阶矩阵,123(,,)P ααα=为可逆矩阵,使得 1000010002P AP -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则123(,,)A ααα=(A )12αα+ (B )232αα+ (C )23αα+ (D)122αα+(8)已知矩阵200021001A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,210020001B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,100020000C ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则 (A) A 与C 相似,B 与C 相似(B ) A 与C 相似,B 与C 不相似 (C) A 与C 不相似,B 与C 相似(D ) A 与C 不相似,B 与C 不相似二、填空题:9~14题,每小题4分,共24分.(9)曲线()21arcsin y x x =+的斜渐近线方程为(10)设函数()y y x =由参数方程sin t x t e y t⎧=+⎨=⎩确定,则202t d ydx =(11)()2ln(1)1x dx x +∞++⎰=(12)设函数(),f x y 具有一阶连续偏导数,且()()(),1,0,00y y df x yye dx x y e dy f =++=,则(),f x y = (13)11tan yxdy dx x=⎰⎰(14)设矩阵41212311A a ⎛⎫- ⎪= ⎪ ⎪-⎝⎭的一个特征向量为112⎛⎫⎪⎪ ⎪⎝⎭,则a =三、解答题:15~23小题,共94分。
大连理工大学数学系考研试题集_数学分析
2π f (x)(sin nx)dx = 2
2π
f (x)dx .
n→∞ 0
π0
第5页共9页
59. f (x) ∈ R[a,b] (黎曼可积函数类), g(x) 以 T (T > 0 )为周期, 且 g(x) 在[0,T ] 上 可积, 求证:
∫ ∫ ∫ b
f
n→∞
(x)g(nx)dx →
1
T
b
g(x)dx f (x)dx .
x
f (t)dt ,
若 g(x) 单调递减,
则 f (x) ≡ 0 .
0
大连理工大学“考研数学专业共享群”资料 deepfish 编辑
∫ ∫ 57.
f (x) 是周期为 T 的连续函数, 求证:
lim 1
x f (t)dt = 1
T
f (t)dt .
x x→+∞ 0
T0
∫ ∫ 58.
f (x) ∈[0, 2π ] , 求证: lim
n→∞ n n n n
nn
50. 设 f (0) = 0 ,
f ' (0) 存在,
令 xn
=
f
(
1 n2
)
+
"
+
f
(
n n2
),
n
=
1,
2,
...
,
求
lim
n→∞
xn
.
51. f (t) 三次可微, f '' (t) ≠ 0 , 求 d 3 y . dx3
52. 设 f (x) 在[a,b] 上连续, (a,b) 内可导, 且 f (a) = f (b) = 0 , 证明: ∀λ ∈ R , ∃ξ ∈ (a,b) , 使
2000-2017考研数学二历年真题word版
2017年全国硕士研究生入学统一考试数学二试题一、选择题:1~8小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项是符合题目要求的.(1)若函数0(),0x f x b x >=⎪≤⎩在x=0连续,则 (A)12ab =(B)12ab =- (C)0ab = (D)2ab = (2)设二阶可到函数()f x 满足(1)(1)1,(0)1f f f =-==-且 ()0f x ''>,则 (A) 11()0f x dx ->⎰ (B) 12()0f x dx -<⎰(C) 0110()()f x dx f x dx ->⎰⎰(D)111()()f x dx f x dx -<⎰⎰(3)设数列{}n x 收敛,则(A)当limsin 0n n x →∞=时,lim 0n n x →∞=(B)当lim (0n n n x x →∞+= 时,则lim 0n n x →∞=(C)当2lim()0n n n x x →∞+=,lim 0n →∞=(D)当lim(sin )0n n n x x →∞+=时,lim 0n n x →∞=(4)微分方程248(1cos 2)xy y y e x '''-+=+ 的特解可设为ky =(A)22(cos 2sin 2)xx Aee B x C x ++ (B)22(cos 2sin 2)xx Axe e B x C x ++(C)22(cos 2sin 2)xx Aexe B x C x ++ (D)22(cos 2sin 2)xx Axexe B x C x ++(5)设()f x 具有一阶偏导数,且在任意的(,)x y ,都有(,)(,)0,f x y f x y x y∂∂>∂∂则 (A)(0,0)(1,1)f f > (B)(0,0)(1,1)f f <(C)(0,1)(1,0)f f > (D)(0,1)(1,0)f f <(6)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,图中,实线表示甲的速度曲线()1v v t = (单位:m/s )虚线表示乙的速度曲线()2v v t =,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为0t (单位:s ),则(A)010t = (B)01520t << (C)025t = (D)025t >()s(7)设A 为三阶矩阵,123(,,)P ααα=为可逆矩阵,使得 1000010002P AP -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则123(,,)A ααα=(A)12αα+ (B)232αα+ (C)23αα+ (D)122αα+(8)已知矩阵200021001A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,210020001B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,100020000C ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则 (A) A 与C 相似,B 与C 相似(B) A 与C 相似,B 与C 不相似 (C) A 与C 不相似,B 与C 相似 (D) A 与C 不相似,B 与C 不相似二、填空题:9~14题,每小题4分,共24分.(9)曲线()21arcsin y x x =+的斜渐近线方程为(10)设函数()y y x =由参数方程sin t x t e y t ⎧=+⎨=⎩确定,则202t d ydx =(11)()2ln(1)1x dx x +∞++⎰=(12)设函数(),f x y 具有一阶连续偏导数,且()()(),1,0,00y y df x yye dx x y e dy f =++=,则(),f x y = (13)11tan yxdy dx x=⎰⎰(14)设矩阵41212311A a ⎛⎫- ⎪= ⎪ ⎪-⎝⎭的一个特征向量为112⎛⎫⎪⎪ ⎪⎝⎭,则a =三、解答题:15~23小题,共94分。
2000-2017数学高考(江苏卷)真题及答案汇总(共185页)
1 . 2
赛
及
考
研
设 f(x)是定义在 R 上的偶函数,其图象关于直线 x= 1 对称,对任意 x1; ,x2 ∈[0,
大
学
f(x1+x2)=f(x1)f(x2). (I)求 f(
(II)证明 f(x)是周期函数; (III)记 an= f(2n+
1 1 )及 f( ); 4 2
1 ),求 lim (ln a n ) . n 2n
收集整理:我欲封天
12 23
07 83 4
1 ],都有 2
数学试题(理工农医类)参考答案及评分标准
一.选择题:本题考查基本知识和基本运算.每小题 5 分,满分 60 分. (1)B (2)C (3)B (4)A (5)C (6)A (7)C (8)A (9)B (10)C (11)D (12)D 二.填空题:本题考查基本知识和基本运算.每小题 4 分.满分 16 分.
赛
i i pm pn m m 1 m i 1 n n 1 n i 1 , 同理 i , 4 分 i m m m m n n n n i p i pm nk mk i i , 所以 n ,即 由于m n, 对整数k 1, 2, , i 1, 有 n ip m m ip n i i n m n m
i i ( II )证明 : 由二项式定理有(1 m) n m iC n , (1 n) m n iC m , i 0 i (1 i m n), 由( I )知m i Pni n i Pm
竞
n
学
i 而C m m
P P i , Cn i! i!
i m
i n
及
1 4
大连理工大学2000-2017年数学分析真题
大连理工大学2000年数学分析真题 (2)大连理工大学2001年数学分析真题 (4)大连理工大学2002年数学分析真题 (6)大连理工大学2003年数学分析真题 (8)大连理工大学2004年数学分析真题 (10)大连理工大学2005年数学分析真题 (12)大连理工大学2006年数学分析真题 (14)大连理工大学2008年数学分析真题 (16)大连理工大学2009年数学分析真题 (18)大连理工大学2010年数学分析真题 (20)大连理工大学2011年数学分析真题 (22)大连理工大学2013年数学分析真题 (24)大连理工大学2014年数学分析真题 (25)大连理工大学2015年数学分析真题 (28)大连理工大学2016年数学分析真意 (30)大连理工大学2017年数学分析真题 (32)大连理工大学2000年数学分析真题一.从以下的第一到第八题中选取6题解答,每题10分 1.证明:()xx f 1=于区间()10,δ(其中0<0δ<1)一致连续,但是于(0,1)内不一致连续。
2.证明:若()x f 于[a ,b]单调,则()x f 于[a ,b]内Riemann 可积。
3.证明:Dirichlet 函数:()()⎪⎩⎪⎨⎧==有理数为无理数q px q x x f ,1,0在所有无理点连续,在有理点间断。
4.证明:若()()b a C x f ,∈,(指(a ,b )上的连续函数,且任意()()b a ,,⊂βα,()⎰=βα0dx x f ,那么()()b a x x f ,0∈≡,。
5.证明:∑∞=-1n nx ne 于(0,+∞)不一致收敛,但是对于0>∀δ,于[)+∞,δ一致收敛。
6.证明:()⎪⎩⎪⎨⎧=≠=0,00,1sin 4x x xx x f ,在0=x 处有连续的二阶导数。
7.利用重积分计算三个半长轴分别为a,b,c 的椭球体的体积。
8.计算第二类曲面积分:⎰⎰∑++zdxdy ydzdx xdydz ,其中,∑是三角形()10,,=++>z y x z y x ,,法方向与z y x ,,轴成锐角为正。
大连理工大学---上学期工科数学分析基础测试试题
大连理工大学---上学期工科数学分析基础试题作者: 日期:2010工科数学分析基础(微积分)试题二、单项选择题(每题4分,共20分)1•当x 0时,321 ax 1与1 cosx是:等价无穷小,则()/ 、2 3(A) a -,3 (B ) a 3,(C). a 2,(D) a 22.下列结论中不正确的是()(A)可导奇函数的导数一定是偶函数;(B)可导偶函数的导数一定是奇函数;(C).可导周期函数的导数一定是周期函数;(D)可导单调增加函数的导数一定是单调增加函数;3X x3•设f(x) ,则其( )sin x(A)有无穷多个第一类间断点;(B )只有一个跳跃间断点;(C).只有两个可去间断点;(D)有三个可去间断点;4•设f(x) x X3X,则使f(n) (0)存在的最高阶数门为()(A) 1 ( B) 2(C)3(D)45•若sin xlimxf(x)2 0 ,则lim 2()为( )。
x 0x 0x2(A )> 0(B1 (C)1(D)、填空题(每题6分, 共30分)a bx21 •函数f(x) e bx1lim f (x)x 0,若函数f(x)在x 0点连续,则 a , b满足2. limx3. 曲线4. e x y xy5. 若limx 1 limn1n2 n 12~~2~n n 2e t sin 2tt在0,1处的切线斜率为e t cost,切线方程为1 , dy y (0)2x~2 cx x 22,则a(10分)求lim丄亡・-x0 tanx arctanxx 0,其中g (x)具有二阶连续导数,g(0) 0 ,x 0g (0) 1, (1 )求a的值使f (x)连续;(2)求f (x) ; (3)讨论f (x)连续性。
3ln(1 ax3) 门,x 0x arcs in x五.(10分)函数f(x) 6, x 0 问a为何值,f (x)在x 0处(1)e x ax 1,x 0.xxsi n4连续;(2)为可去间断点;(3)为跳跃间断点;(4)为第二类间断点;六.(10 分)设X1 14,Xn 1 x n2 (n1, 2, ),( 1:)求极限lim x;(2)求极限lim4(X n 1 2)1X n 2 n n X n 2七.(10 分)设函数f(x)在a, b连续,a, b可导,证明:至少存在一点a, b , f( ) f(a) b四.(10分)设f( x)g(x) si nxxa,、填空题(每题6分,共30分)在(0,1)点处切线方程为5•设 f(x) x 3si nx ,贝U f (0) ______, f (2011) (0)___________、单项选择题(每题4分,共20分)1.下列结论正确的是()(A) •如果f(x)连续,则f (x)可导。
大连理工数学分析试题及解答Word版
2000年大连理工大学硕士生入学考试试题——数学分析一、从以下的第一到第八题中选取6题解答,每题10分1. 证明:1()f x x=于区间0(,1)δ(其中001δ<<)一致连续,但是于(0,1)内不一致连续 证明:01212(1)0,()[1]2(2)1||()|()()|f x x x f x f x δδδδεδδε<=<⇒=-<-<而由于在,内连续,从而一致连续,第一个命题成立利用定义,取,不存在为定值使得从而不难利用反证法得到第二个命题成立2. 证明:若()[,]f x a b 于单调,则()[,]f x a b Riemann 于内可积证明:1101111111111()...[,],max 0(max {()}min {()})(()())(max{()()})(max{()()})i ii in i i i i i nnni i i i i i x x x x x x i ni i i i i nf x a x x x b a b x x f x f x f x f x f x f x f x f x λλλλλλ---≤≤--≤≤≤≤≤≤==-≤≤∆=<<<==-=→-=-<--∑∑不妨设单调递增,且:是的一个划分,必然存在一个划分,使得11111(max{()()})lim (max {()}min {()})0i ii ii i i nni x x x x x x i f x f x f x f x λ---≤≤∆≤≤≤≤=→--=∑(由于递增,使用二分法的思想,可以使得小于任何数)所以,,所以可积3. 证明:Dirichlet 函数:0,()1,()x f x px q q ⎧⎪=⎨=⎪⎩为无理数有理数在所有无理点连续,在有理点间断,证明:0001000000()010[]1min{||}1(,),|()|()0{,{}},()n N i Zi i x f x iN x n x x x f x Nx f x x y y f x εδδεεεε+≤≤∈=∀>=+=-∈-+≤<≠∈为无理数,对于,,取,显然这样的存在当所以,在无理点连续为有理数,。
大连理工大学数值分析历年真题与答案(研究生期末卷)
;
7.设 A 是 n 阶正规矩阵,则 A 2
;
8.求解一阶常微分方程初值问题 u(t ) (t 2 1)u t , u(t0 ) u0 的向后(隐式) Euler 法的显式化的格式为: 9.设 a 211.001 12 为 x 的近似值,且 x a 0.5 10 2 ,则 a 至少有 。
A-5
1 3 四、 (4 分)求 Householder 变换矩阵将向量 x 2 化为向量 y 0 . 2 0
五、 (12 分)写出解线性方程组的 Jacobi 法,G-S 法和超松弛(SOR)法的矩阵表示形式, 并根据迭代法 x ( k 1) Bx ( k ) f 对任意 x ( 0) 和 f 均收敛的充要条件为 ( B) 1 , 证明若线性方 程组 Ax b 中的 A 为严格对角占优矩阵, 则超松弛(SOR)法当松弛因子 (0,1] 时收敛.
x1 3 x2 3 x1 x2 2 x x 2 1 4 4 4 x3 7
A 1, L , U
m1
(1)列主元消元法求出上述方程组的解,并计算
和 x 2;
(2)试问用 Jacobi 迭代法和 Gauss-Seidel 迭代法求解上述方程组是否收敛? ( 3) 请给出可求出上述方程组解的收敛的 Jacobi、 Gauss-Seidel 迭代法的分量形式的迭 代公式,并说明其收敛性。
五、 (12 分)求满足下列插值条件的分段三次多项式( [3,0] 和 [0,1] ), 并验证它是不是三次样条函数.
f (3) 27 , f (2) 8 , f (1) 1 , f (0) 0 , x [3,0] ; f (0) 0 , f (0) 0 , f (1) 0 , f (1) 1 , x [0,1] .
大连理工大学 高等数值分析 常微分方程数值解法-2017
i.常微分方程初值问题数值解法i.1 常微分方程差分法考虑常微分方程初值问题:求函数()u t 满足(,), 0du f t u t T dt=<≤ (i.1a ) 0(0)u u = (i.1b)其中(,)f t u 是定义在区域G : 0t T ≤≤, u <∞上的连续函数,0u 和T 是给定的常数。
我们假设(,)f t u 对u 满足Lipschitz 条件,即存在常数L 使得121212(,)(,), [0,]; ,(,)f t u f t u L u u t T u u -≤-∀∈∈-∞∞ (i.2) 这一条件保证了(i.1)的解是适定的,即存在,唯一,而且连续依赖于初值0u 。
通常情况下,(i.1)的精确解不可能用简单的解析表达式给出,只能求近似解。
本章讨论常微分方程最常用的近似数值解法-差分方法。
先来讨论最简单的Euler 法。
为此,首先将求解区域[0,]T 离散化为若干个离散点:0110N N t t t t T -=<<<<= (i.3) 其中n t hn =,0h >称为步长。
在微积分课程中我们熟知,微商(即导数)是差商的极限。
反过来,差商就是微商的近似。
在0t t =处,在(i.1a )中用向前差商10()()u t u t h -代替微商du dt ,便得 10000()()(,())u t u t hf t u t ε=++如果忽略误差项0ε,再换个记号,用i u 代替()i u t 便得到1000(,)u u hf t u -=一般地,我们有1Euler (,), 0,1,,1n n n n u u hf t u n N +=+=-方法: (i.4) 从(i.1b) 给出的初始值0u 出发,由上式可以依次算出1,,N t t 上的差分解1,,N u u 。
下面我们用数值积分法重新导出 Euler 法以及其它几种方法。
为此,在区间1[,]n n t t +上积分常微分方程(i.1a ),得11()()(,())n n t n n t u t u t f t u t dt ++=+⎰ (i.5)用各种数值积分公式计算(i.5)中的积分,便导致各种不同的差分法。
大连理工数学分析试题及解答
大连理工数学分析试题及解答大连理工大学硕士生入学考试数学分析试题一. 从以下的1到8题中选答6题1. 证明:2()f x x =在区间[0,]M 内一致连续(M 为任意正数),但是在[0,)+∞不一致连续2. 证明:若()f x 在[,]a b 内连续,那么()f x 在[,]a b 内Riemann 可积.3. 证明:若1α>,那么广义积分1sin x dx α+∞收敛4. 证明:若()f x ,()g x 为区间(,)a b 上的连续函数,对任意的(,)(,)a b αβ?有:()()f x dx g x dx ββαα=??,那么, ()()f x g x ≡于(,)a b5. 证明:若1nn a∞=∑收敛,那么1nxn n a e∞-=∑在[0,)+∞一致收敛6. 已知:2,0()0,0x e x f x x -?≠?=?=??,求"(0)f7. 已知:()()1(,)()22x atx at x at x at u x t d aφφψαα+-++-=+. 其中, ψ和φ分别是可以求导一次和求导两次的已知函数,计算22222(,)(,)u x t u x t a t x ??-??8. 计算,半径为R 的球的表面积二. 从9到14题中选取6题9.已知: lim '()0x f x →∞=,求证: ()lim0x f x x→∞=10.证明: ()af x dx +∞收敛,且lim ()x f x λ→+∞=,那么0λ=11.计算曲面积分: 333SI x dydz y dzdx z dxdy =++??, 其中S 为旋转椭球面2222221x y z a b c++=的外侧12.设()[0,1]f x C ∈,(0)0f =,(1)1f =,0()1f x ≤<. 求证: ()()n n S x f x =对于任意小于1的正数δ,在区间(0,1]δ-一致收敛,但是不在(0,1)一致收敛13.设()[0,1]f x C ∈,(0)0f =,(1)1f =,0()1f x ≤<. 求证: 1lim ()0n n f x dx →∞=?14.证明:若()[,]n u x C a b ∈,1,2,...,...n =且1()n n u b ∞=∑发散,那么1()n n u x ∞=∑不在[,)a b 一致收敛大连理工大学2001年硕士生入学考试数学分析试题解答一.1. 证利用定义证明(1) 对于0ε?>,21M εδ?=+,12||x x δ?-<,那么12121212|()()||()()|2||2f x f x x x x x M x x M δε-=-+<-<<(2) 任取1ε=,0δ?>,1211,22x x δδδ==+, 1212121|()()||()()|1f x f x x x x x δδ-=-+>=,推出矛盾,从而命题得证■2. 证利用一致连续的定义和Riemann 可积的定义来做因为函数在闭区间内连续,所以一致连续. 根据一致连续的定义对0ε?>,δ?,12||x x δ?-<,12|()()|f x f x ε-<考虑可积的定义,对于一个[,]a b 分割112:...n a a a a b ?=<<<=,11max ||i i i na a λ+≤<=-下面证明:振幅函数121110,[,]1()limmax {()}()i i n i i x x a a i w x f x a a λ+-+→∈==-∑=0当λδ<时,12111110,[,]110()limmax {()}()()i i n n i i i i x x a a i i w x f x a a a a b λεε+--++→∈==≤=-≤-=∑∑.根据夹逼定理,不难得到()0w x =. 从而,命题得证■3. 证利用莱布尼兹交错级数:假设;n a n π=,1sin nn a n a s x dx α-=?考虑:111|||||sin ||sin |n nnn a a n n a a s s x dx x dx αα+-+-=-?1111[|sin ||sin |]n n n n x x dx xx dx ππππααππα--+-=+??1111[|sin |(2)|sin |]n n n n xx dx n x x dx ππππααππαπ--++=--??1111[(2)]|sin |0n n x n x x dx ππααπαπ--+=--<?11lim |||sin |||lim ||0nnn n a a n n a a n n s x dx dx n n s αααπππ--→∞→∞=≤=--?=??如此,不难看出1sin x dx α+∞是一个莱布尼兹交错级数,从而命题得证■4. 证不妨设:2a bc +=()()x c F x f t dt =?,那么()()F x G x =于(,)x a b ∈因为()f x ()g x 都是(,)x a b ∈上的连续函数,所以()'()()()f x F x G xg x ===■5. 证利用A-D 判别法做,也可以通过Abel 求和公式出发推导1nxn n a e∞-=∑中nxn b e-=,现在,根据原题:1n n a∞=∑收敛,1nxnb e -=≤一致有界所以,根据Abel 判别法,知该函数项级数在定义域一致收敛. ■6. 解题目有问题,在零点不连续■7. 解不断利用链式求导法则()()1(,)()22x atx at x at x at u x t d aφφψαα+-++-=+(,)()()()()()()()()()()22'()'()'()'()22u x t xx at x at x at x at x at x at x at x at x at x x at x x x ax at x at x at x at aφφψψφφψψ+?+?-?-?+?-++--?+??-=+++-+--=+22'()'()()()(,)()()()()22"()"()'()'()22x at x at x at x at u x t x at x at x at x at x ax at x at x at x at aφφψψφφψψ?+?-?+?-+-+?-?+?-=+++-+--=+同理:(,)()()()()()()()()()()22'()'()'()'()22u x t tx at x at x at x at x at x at x at x at x at t x at t t t aa x at a x at x at x at φφψψφφψψ+?+?-?-?+?-++--?+??-=++--++-=+222'()'()()()(,)()()()()"()"()'()'()22x at x at x at x at aa u x t x at x at x at x at x x at x at x at x at a aφφψψφφψψ?+?-?+?--++?-?+?-=+++-+--=+22222(,)(,)0u x t u x t a t x ??-=??■8. 解方法很多,此处介绍一种比较简单的假设:()V R 为半径R 为的球的体积2234()()3R R V R R x dx R ππ-=-=?假设: ()S R 为半径R 为的球的表面积20()()()'()4RV R S x dx S R V R R π=?==?■二9. 证L ’Hosptial 法则因为x →+∞,()'()lim lim lim '()0'x x x f x f x f x x x →∞→∞→∞===■10. 证反证法如果命题不成立,即0λ≠,那么,根据极限的定义,G ?,当x G >的时候, |()|||2f x λ>()Gf x dx +∞→∞?和收敛矛盾,从而命题得证■11. 解利用Gauss 定理加换元3332223()VSI x dydz y dzdx z dxdy x y z dxdydz =++=++换元sin cos sin sin ,[0,1],[0,2),[0,]cos x ar y br r z cr ?θ?θθπ?π?=??=∈∈∈??=?4222222223sin (sin sin sin cos cos )VI abc r a b c drd d ??θ?θ?θ?=++22322322200033(sin sin sin cos )cos sin 55abc abc a b d d c d πππ?θ?θ?θ=++332232203646()sin ()5555abc abc abc abc a b d a b πππ??=++=++?■12. 证首先由于在闭区间内连续,所以函数在闭区间内一致连续(1)(0,1]x δ?∈-,根据确界存在定理,存在上确界,且上确界不等于1,否则和题意矛盾不妨设:(0,1]sup ()1x f x m δ∈-=<根据定义,对于0ε?>,ln ln N mε=,当n N >,|()||()|n n n S x f x m ε=≤< 从而知一致收敛于0(2)首先,根据前半题,显然()n S x 于(0,1)x ?∈收敛于0由于(1)1f =,且函数一致收敛,存在一组数列:12...a a <<,1()1i fa n=- 如此,考虑11lim ()lim ()lim(1)0nnn n n n n n S a f a ne→∞→∞→∞==-=≠,从而不是一致收敛的. ■13. 证利用前一小题的结论因为()nf x 内闭一致收敛,对于0ε?>,2εδ?=,当n 足够大的时候:10()2n f x dx δε-<又1111|()|||2n f x dx dx δδε--<=所以,1111()()()n n n f x dx f x dx f x dx δδε--=+<?从而命题得证. ■14. 证反证法:假设命题不成立,那么1()n n u x ∞=∑在[,)a b 一致收敛.即0ε?>,N ?,,m n N ?>,(,)x a b ?∈,|()|m n nu x ε<∑因为|()|lim |()|m mn n x bnnu b u b ε→=≤∑∑,否则与()[,]n u x C a b ∈矛盾而1|()|n n u b ∞=∑发散,所以|()|n n Nu b ∞=∑发散,与|()|lim |()|m m n n x bnnu b u b ε→=≤∑∑矛盾从而命题得证. ■。
2000-历年考研数学一真题(答案+解析)
--历年考研数学一真题1987-2017(答案+解析)(经典珍藏版)最近三年+回顾过去 最近三年篇(2015-2017)2015年全国硕士研究生入学统一考试数学(一)试卷一、选择题 1—8小题.每小题4分,共32分.1.设函数()f x 在(,)-∞+∞上连续,其二阶导数()f x ''的图形如右图所示,则曲线()y f x =在(,)-∞+∞的拐点个数为(A )0 (B)1 (C)2 (D)3【详解】对于连续函数的曲线而言,拐点处的二阶导数等于零或者不存在.从图上可以看出有两个二阶导数等于零的点,以及一个二阶导数不存在的点0x =.但对于这三个点,左边的二阶导数等于零的点的两侧二阶导数都是正的,所以对应的点不是拐点.而另外两个点的两侧二阶导数是异号的,对应的点才是拐点,所以应该选(C)2.设21123()x x y e x e =+-是二阶常系数非齐次线性微分方程x y ay by ce '''++=的一个特解,则(A)321,,a b c =-==- (B )321,,a b c ===- (C)321,,a b c =-== (D)321,,a b c ===【详解】线性微分方程的特征方程为20r ar b ++=,由特解可知12r =一定是特征方程的一个实根.如果21r =不是特征方程的实根,则对应于()x f x ce =的特解的形式应该为()x Q x e ,其中()Q x 应该是一个零次多项式,即常数,与条件不符,所以21r =也是特征方程的另外一个实根,这样由韦达定理可得213212(),a b =-+=-=⨯=,同时*x y xe =是原来方程的一个解,代入可得1c =-应该选(A) 3.若级数1nn a∞=∑条件收敛,则33,x x ==依次为级数11()nnn na x ∞=-∑的(A)收敛点,收敛点 (B)收敛点,发散点 (C)发散点,收敛点 (D )发散点,发散点--【详解】注意条件级数1n n a ∞=∑条件收敛等价于幂级数1n n n a x ∞=∑在1x =处条件收敛,也就是这个幂级数的收敛为1,即11limn n na a +→∞=,所以11()n n n na x ∞=-∑的收敛半径111lim()nn n na R n a →∞+==+,绝对收敛域为02(,),显然33,x x ==依次为收敛点、发散点,应该选(B )4.设D 是第一象限中由曲线2141,xy xy ==与直线3,y x y ==所围成的平面区域,函数(,)f x y 在D 上连续,则(,)Df x y dxdy =⎰⎰( )(A)1321422sin sin (cos ,sin )d f r r rdrπθπθθθθ⎰⎰(B)231422sin sin (cos ,sin )d f r r rdr πθπθθθθ⎰⎰(C )1321422sin sin (cos ,sin )d f r r dr πθπθθθθ⎰⎰(D)231422sin sin (cos ,sin )d f r r dr πθπθθθθ⎰⎰【详解】积分区域如图所示,化成极坐标方程:221212122sin cos sin sin xy r r r θθθθ=⇒=⇒=⇒=22141412222sin cos sin sin xy r r r θθθθ=⇒=⇒=⇒=也就是D:432sin sin r ππθθθ⎧<<⎪⎪⎨<<22所以(,)D f x y dxdy =⎰⎰23422sin sin (cos ,sin )d f r r rdr πθπθθθθ⎰⎰,所以应该选(B ).5.设矩阵2211111214,A a b d a d ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,若集合{}12,Ω=,则线性方程组Ax b =有无穷多解的充分必要条件是(A),a d ∉Ω∉Ω (B),a d ∉Ω∈Ω(C ),a d ∈Ω∉Ω (D),a d ∈Ω∈Ω【详解】对线性方程组的增广矩阵进行初等行变换:--22221111111111111201110111140311001212(,)()()()()B A b ad a d a d a d a d a a d d ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪==→--→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭方程组无穷解的充分必要条件是3()(,)r A r A b =<,也就是120120()(),()()a a d d --=--=同时成立,当然应该选(D).6.设二次型123(,,)f x x x 在正交变换x Py =下的标准形为2221232y y y +-,其中()123,,P e e e =,若()132,,Q e e e =-,则123(,,)f x x x 在x Qy =下的标准形为(A)2221232y y y -+ (B )2221232y y y +- (C)2221232y y y -- (D ) 2221232y y y ++【详解】()()132123100100001001010010,,,,Q e e e e e e P ⎛⎫⎛⎫ ⎪ ⎪=-== ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭,100001010T T Q P ⎛⎫⎪=- ⎪ ⎪⎝⎭211T T T T f x Ax y PAPy y y ⎛⎫ ⎪=== ⎪ ⎪-⎝⎭所以100100100210001001001100010*********T T Q AQ P AP ⎛⎫⎛⎫⎛⎫⎛⎫⎛ ⎪ ⎪ ⎪⎪=-=- ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪---⎝⎭⎝⎭⎝⎭⎝⎭⎝故选择(A ).7.若,A B 为任意两个随机事件,则( )(A)()()()P AB P A P B ≤ (B)()()()P AB P A P B ≥(C )2()()()P A P B P AB +≤(D)2()()()P A P B P AB +≥【详解】()(),()(),P A P AB P B P AB ≥≥所以2()()()P A P B P AB +≤故选择(C).8.设随机变量,X Y 不相关,且213,,EX EY DX ===,则2(())E X X Y +-=( )(A)3- (B )3 (C ) 5- (D)5【详解】22222(())()()()E X X Y E X E XY EX DX EX EXEY EX+-=+-=++---故应该选择(D).二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) 9.20ln(cos )limx x x →=【详解】200122ln(cos )tan lim lim x x x x x x →→-==-. 10.221sin cos x x dx xππ-⎛⎫+= ⎪+⎝⎭⎰ .【详解】只要注意1sin cos xx+为奇函数,在对称区间上积分为零,所以22202214sin .cos x x dx xdx x ππππ-⎛⎫+== ⎪+⎝⎭⎰⎰11.若函数(,)z z x y =是由方程2cos ze xyz x x +++=确定,则01(,)|dz = .【详解】设2(,,)cos zF x y z e xyz x x =+++-,则1(,,)sin ,(,,),(,,)z x y z F x y z yz x F x y z xz F x y z e xy '''=+-==+且当01,x y ==时,z =,所以010101001010010010(,)(,)(,,)(,,)|,|,(,,)(,,)y x z z F F z zx y F F ''∂∂=-=-=-=∂∂'' 也就得到01(,)|dz =.dx -12.设Ω是由平面1x y z ++=和三个坐标面围成的空间区域,则23()dxdydz x y z Ω++=⎰⎰⎰ .【详解】注意在积分区域内,三个变量,,x y z 具有轮换对称性,也就是dxdydz dxdydz dxdydz x y z ΩΩΩ==⎰⎰⎰⎰⎰⎰⎰⎰⎰1120236631()dxdydz dxdydz ()zD x y z z zdz dxdy z z dz ΩΩ++===-=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰13.n 阶行列式2002120200220012-=- .【详解】按照第一行展开,得1111212122()()n n n n n D D D +---=+--=+,有1222()n n D D -+=+由于1226,D D ==,得11122222()n n n D D -+=+-=-.14.设二维随机变量(,)X Y 服从正态分布10110(,;,;)N ,则--{}0P XY Y -<= .【详解】由于相关系数等于零,所以X,Y 都服从正态分布,1101~(,),~(,)X N Y N ,且相互独立. 则101~(,)X N -.{}{}{}{}1111101001001022222(),,P XY Y P Y X P Y X P Y X -<=-<=<->+>-<=⨯+⨯=三、解答题 15.(本题满分10分)设函数1()ln()sin f x x a x bx x =+++,3()g x kx =在0x →时为等价无穷小,求常数,,a b k 的取值.【详解】当0x →时,把函数1()ln()sin f x x a x bx x =+++展开到三阶的马克劳林公式,得233332331236123()(())(())()()()()x x f x x a x o x bx x x o x a aa xb x x o x =+-+++-+=++-+++ 由于当0x →时,(),()f x g x 是等价无穷小,则有10023a ab a k ⎧⎪+=⎪⎪-+=⎨⎪⎪=⎪⎩,解得,11123,,.a b k =-=-=-16.(本题满分10分)设函数)(x f y =在定义域I 上的导数大于零,若对任意的0x I ∈,曲线)(x f y =在点00(,())x f x 处的切线与直线0x x =及x 轴所围成区域的面积恒为4,且02()f =,求()f x 的表达式.【详解】)(x f y =在点00(,())x f x 处的切线方程为000()()()y f x x x f x '=-+令0y =,得000()()f x x x f x =-' 曲线)(x f y =在点00(,())x f x 处的切线与直线0x x =及x 轴所围成区域的面积为--00000142()()(()()f x S f x x x f x =--='整理,得218y y '=,解方程,得118C x y =-,由于02()f =,得12C =所求曲线方程为84.y x=- 17.(本题满分10分)设函数(,)f x y x y xy =++,曲线223:C x y xy ++=,求(,)f x y 在曲线C 上的最大方向导数.【详解】显然11,f fy x x y∂∂=+=+∂∂. (,)f x y x y xy=++在(,)x y 处的梯度()11,,f f gradf y x x y ⎛⎫∂∂==++ ⎪∂∂⎝⎭(,)f x y 在(,)x y 处的最大方向导数的方向就是梯度方向,最大值为梯度的模gradf =所以此题转化为求函数2211(,)()()F x y x y =+++在条件223:C x y xy ++=下的条件极值.用拉格朗日乘子法求解如下:令2222113(,,)()()()L x y x y x y xy λλ=++++++-解方程组22212021203()()x y F x x y F y y x x y xy λλλλ⎧'=+++=⎪⎪'=+++=⎨⎪++=⎪⎩,得几个可能的极值点()11112112,,(,),(,),(,)----,进行比较,可得,在点21,x y ==-或12,x y =-=处,方向导数取到最3.= 18.(本题满分10分)(1)设函数(),()u x v x 都可导,利用导数定义证明(()())()()()()u x v x u x v x u x v x '''=+;(2)设函数12(),(),,()n u x u x u x 都可导,12()()()()n f x u x u x u x =,写出()f x 的求导公式.【详解】(1)证明:设)()(x v x u y=)()()()(x v x u x x v x x u y -++=∆∆∆()()()()()()()()u x x v x x u x v x x u x v x x u x v x =+∆+∆-+∆++∆---v x u x x uv ∆∆∆)()(++=xux u x x v x u x y ∆∆∆∆∆∆∆)()(++= 由导数的定义和可导与连续的关系00'lim lim[()()]'()()()'()x x y u uy v x x u x u x v x u x v x x x x∆→∆→∆∆∆==+∆+=+∆∆∆(2)12()()()()n f x u x u x u x =1121212()()()()()()()()()()()n n nf x u x u x u x u x u x u x u x u x u x u x ''''=+++19.(本题满分10分)已知曲线L的方程为z z x ⎧=⎪⎨=⎪⎩,起点为0()A ,终点为00(,)B ,计算曲线积分2222()()()Ly z dx z x y dy x y dz ++-+++⎰.【详解】曲线L的参数方程为cos ,cos x ty t z t =⎧⎪=⎨⎪=⎩起点0()A 对应2t π=,终点为00(,)B 对应2t π=-.22222222()()()cos )(cos )))(cos )cos Ly z dx z x y dy x y dzt t d t t d t t d tππ-++-+++=+++-⎰⎰2202sin .tdt π==20.(本题满分11分) 设向量组123,,ααα为向量空间3R 的一组基,113223332221,,()k k βααβαβαα=+==++.(1)证明:向量组123,,βββ为向量空间3R 的一组基;(2)当k 为何值时,存在非零向量ξ,使得ξ在基123,,ααα和基123,,βββ下的坐标相同,并求出所有的非零向量.ξ【详解】(1)()12312321020201(,,),,k k βββααα⎛⎫⎪= ⎪ ⎪+⎝⎭, 因为201212024021201k k kk ==≠++,且123,,ααα显然线性无关,所以123,,βββ是线性无关的,当然是向量空间3R 的一组基.--(2)设非零向量ξ在两组基下的坐标都是123(,,)x x x ,则由条件112233112233x x x x x x αααβββ++=++可整理得:1132231320()()x k x x k ααααα++++=,所以条件转化为线性方程组()1321320,,k k x ααααα++=存在非零解.从而系数行列式应该等于零,也就是12312310110101001002020(,,)(,,k k k k αααααα⎛⎫⎪== ⎪ ⎪⎝⎭由于123,,ααα显然线性无关,所以10110020kk=,也就是0k =.此时方程组化为()112121312230,,()x x x x x x ααααα⎛⎫⎪=++= ⎪ ⎪⎝⎭,由于12,αα线性无关,所以13200x x x +=⎧⎨=⎩,通解为1230x C x x C ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎪-⎝⎭⎝⎭,其中C 为任意常数.所以满足条件的0C C ξ⎛⎫ ⎪= ⎪ ⎪-⎝⎭其中C 为任意不为零的常数.21.(本题满分11分)设矩阵02313312A a -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭相似于矩阵12000031B b -⎛⎫⎪= ⎪ ⎪⎝⎭.(1)求,a b 的值;(2)求可逆矩阵P ,使1P AP -为对角矩阵.【详解】(1)因为两个矩阵相似,所以有trA trB =,A B =.也就是324235a b a a b b +=+=⎧⎧⇒⎨⎨-==⎩⎩. (2)由2120050150031()()E B λλλλλλ--=-=--=--,得A ,B的特征值都为12315,λλλ===解方程组0()E A x -=,得矩阵A的属于特征值121λλ==的线性无关的特征向量为12231001.ξξ-⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;--解方程组50()E A x -=得矩阵A 的属于特征值35λ=的线性无关的特征向量为3111ξ-⎛⎫ ⎪= ⎪ ⎪⎝⎭令()123231101011,,P ξξξ--⎛⎫ ⎪== ⎪ ⎪⎝⎭,则1100010005.P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭22.(本题满分11分)设随机变量X 的概率密度为22000ln ,(),x x f x x -⎧>=⎨≤⎩ 对X进行独立重复的观测,直到第2个大于3的观测值出现时停止,记Y 为次数.求Y 的分布函数;(1) 求Y 的概率分布; (2) 求数学期望.EY 【详解】(1)X进行独立重复的观测,得到观测值大于3的概率为313228()ln x P X dx +∞->==⎰显然Y 的可能取值为234,,,且2211117171234888648()(),,,,k k k P Y k C k k ---⎛⎫⎛⎫==⨯⨯=-= ⎪ ⎪⎝⎭⎝⎭(2)设22322221111()()(),()n nn n n n x S x n n xx x x x x ∞∞∞-===''''⎛⎫⎛⎫''=-====< ⎪ ⎪--⎝⎭⎝⎭∑∑∑2221717116648648()()()k k n E Y kP Y k k k S -∞∞==⎛⎫⎛⎫===-== ⎪⎪⎝⎭⎝⎭∑∑ 23.(本题满分11分) 设总体X 的概率密度为1110,(;),x f x θθθ⎧≤≤⎪=-⎨⎪⎩其他其中θ为未知参数,12,,,n X X X 是来自总体的简单样本.(1)求参数θ的矩估计量;(2)求参数θ的最大似然估计量. 【详解】(1)总体的数学期望为111112()()E X xdx θθθ==+-⎰ 令()E X X =,解得参数θ的矩估计量:21ˆX θ=-. (2)似然函数为12121110,,,,()(,,,;),n nn x x x L x x x θθθ⎧≤≤⎪-=⎨⎪⎩其他显然()L θ是关于θ的单调递增函数,为了使似然函数达到最大,只要使θ--尽可能大就可以,所以参数θ的最大似然估计量为12ˆmin(,,,).n x x x θ=2016年全国硕士研究生入学统一考试数学(一)试卷一、选择题:1~8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选前的字母填在答题纸指定位置上。
2000-2017历年考研数学一真题(答案+解析)
历年考研数学一真题1987-2017 (答案+解析) (经典珍藏版)最近三年+回顾过去 最近三年篇(2015-2017)2015年全国硕士研究生入学统一考试 数学(一)试卷一、选择题 1—8小题.每小题4分,共32分.1.设函数()f x 在(,)-∞+∞上连续,其二阶导数()f x ''的图形如右图所示,则曲线()y f x=在(,)-∞+∞的拐点个数为(A)0(B)1 (C)2 (D)3 【详解】对于连续函数的曲线而言,拐点处的二阶导数等于零或者不存在.从图上可以看出有两个二阶导数等于零的点,以及一个二阶导数不存在的点0x .但对于这三个点,左边的二阶导数等于零的点的两侧二阶导数都是正的,所以对应的点不是拐点.而另外两个点的两侧二阶导数是异号的,对应的点才是拐点,所以应该选(C )2.设21123()x x y e x e =+-是二阶常系数非齐次线性微分方程xy ay by ce '''++=的一个特解,则(A )321,,a b c =-==-(B )321,,a b c ===-(C )321,,a b c =-==(D )321,,a b c ===【详解】线性微分方程的特征方程为20r ar b ++=,由特解可知12r =一定是特征方程的一个实根.如果21r=不是特征方程的实根,则对应于()xf x ce=的特解的形式应该为()x Q x e,其中()Q x应该是一个零次多项式,即常数,与条件不符,所以21r=也是特征方程的另外一个实根,这样由韦达定理可得213212(),a b =-+=-=⨯=,同时*xy x e=是原来方程的一个解,代入可得1c =-应该选(A ) 3.若级数1nn a∞=∑条件收敛,则3x x ==依次为级数11()nnn na x ∞=-∑的 (A)收敛点,收敛点(B)收敛点,发散点(C)发散点,收敛点(D)发散点,发散点【详解】注意条件级数1nn a∞=∑条件收敛等价于幂级数1n nn a x∞=∑在1x=处条件收敛,也就是这个幂级数的收敛为1,即11lim nnnaa+→∞=,所以11()nnnna x∞=-∑的收敛半径111lim()nnnnaRn a→∞+==+,绝对收敛域为02 (,),显然3x x ==依次为收敛点、发散点,应该选(B ) 4.设D 是第一象限中由曲线21,x y xy==与直线,y x y ==所围成的平面区域,函数(,)f x y 在D 上连续,则(,)Df x y dxdy =⎰⎰( ) (A)1321422sin sin (cos ,sin )d f r r rdrπθπθθθθ⎰⎰(B)34(cos ,sin )d f r r rdrππθθθ⎰(C)1321422sin sin (cos ,sin )d f r r drπθπθθθθ⎰⎰(D)34(cos ,sin )d f r r drππθθθ⎰【详解】积分区域如图所示,化成极坐标方程: 也就是D:43r ππθ⎧<<⎪⎪⎨<< 所以(Df x y=⎰⎰34(cos ,sin )d f r r rdrππθθθ⎰,所以应该选(B ). 5.设矩阵2211111214,A a b d a d ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭,若集合{}12,Ω=,则线性方程组Ax b=有无穷多解的充分必要条件是(A ),a d ∉Ω∉Ω(B ),a d ∉Ω∈Ω(C ),a d ∈Ω∉Ω(D ),a d ∈Ω∈Ω【详解】对线性方程组的增广矩阵进行初等行变换:方程组无穷解的充分必要条件是3()(,)r A r A b =<,也就是120120()(),()()a a d d --=--=同时成立,当然应该选(D ). 6.设二次型123(,,)f x x x 在正交变换x Py=下的标准形为2221232y y y +-,其中()123,,P e e e =,若()132,,Q e e e =-,则12(,,)f x x x 在x Qy=下的标准形为(A )2221232y y y -+(B )2221232y y y +-(C )2221232y y y --(D )2221232y y y ++【详解】()()132123100100001001010010,,,,Q e e e e e e P ⎛⎫⎛⎫ ⎪ ⎪=-== ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭,100001010T TQ P ⎛⎫⎪=- ⎪ ⎪⎝⎭所以10000100100T T Q AQ P AP ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪⎪ ⎪=-=-=-⎪ ⎪⎪⎪⎪ ⎪ ⎪ ⎪ ⎪⎪⎪ ⎪---⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭故选择(A ). 7.若,A B为任意两个随机事件,则( )(A )()()()P AB P A P B ≤(B )()()()P AB P A P B ≥(C )2()()()P A P B P AB +≤(D)2()()()P A P B P AB +≥【详解】()(),()(),P A P AB P B P AB ≥≥所以2()()()P A P BP AB +≤故选择(C ). 8.设随机变量,X Y不相关,且21,,EX EY DX ===,则2(())E X X Y +-=( )(A )3-(B )3(C ) 5-(D )5【详解】222(())()()(E X X Y E X E XY EX DX E+-=+-=+故应该选择(D ). 二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) 9.20ln(cos )limx x x→=【详解】200122ln(cos )tan limlim x x x x x x →→-==-.10.221sin cos x x dx x ππ-⎛⎫+= ⎪+⎝⎭⎰. 【详解】只要注意1sin cos xx+为奇函数,在对称区间上积分为零,所以22202214sin .cos x x dx xdx x ππππ-⎛⎫+== ⎪+⎝⎭⎰⎰11.若函数(,)z z x y =是由方程2cos z e xyz x x +++=确定,则01(,)|dz =. 【详解】设2(,,)cos z F x y z e xyz x x =+++-,则 且当01,x y ==时,0z =,所以010101001010010010(,)(,)(,,)(,,)|,|,(,,)(,,)y x z z F F z zx y F F ''∂∂=-=-=-=∂∂''也就得到01(,)|dz =.dx -12.设Ω是由平面1x y z ++=和三个坐标面围成的空间区域,则23()dxdydz x y z Ω++=⎰⎰⎰. 【详解】注意在积分区域内,三个变量,,x y z具有轮换对称性,也就是 13.n阶行列式200212020022012-=-. 【详解】按照第一行展开,得1111212122()()n n n n n D D D +---=+--=+,有1222()n n D D -+=+由于1226,D D ==,得11122222()n n n D D -+=+-=-.14.设二维随机变量(,)X Y 服从正态分布10110(,;,;)N ,则{}0P X Y Y -<=.【详解】由于相关系数等于零,所以X ,Y 都服从正态分布,1~(X N ,且相互独立. 则101~(,)X N -.三、解答题 15.(本题满分10分)设函数1()ln(f x xa x=+++,3()g x kx =在x →时为等价无穷小,求常数,,a b k的取值.【详解】当x →时,把函数1()ln()sin f x x a x bx x=+++展开到三阶的马克劳林公式,得 由于当0x →时,(),(f x g x是等价无穷小,则有10023a ab a k ⎧⎪+=⎪⎪-+=⎨⎪⎪=⎪⎩, 解得,11123,,.a b k =-=-=- 16.(本题满分10分) 设函数)(x f y =在定义域I上的导数大于零,若对任意的0x I∈,曲线)(x f y =在点00(,())x f x 处的切线与直线x x =及x轴所围成区域的面积恒为4,且02()f =,求()f x 的表达式. 【详解】)(x f y =在点00(,())x f x 处的切线方程为000()()()y f x x x f x '=-+ 令0y =,得000()()f x x x f x =-'曲线)(x f y =在点00(,())x f x 处的切线与直线x x =及x轴所围成区域的面积为 整理,得218y y '=,解方程,得118C x y =-,由于02()f =,得12C =所求曲线方程为84.y x=-17.(本题满分10分) 设函数(,)f x y xyxy=++,曲线223:C x y xy ++=,求(,)f x y 在曲线C上的最大方向导数. 【详解】显然11,f f y x x y∂∂=+=+∂∂.(,)f x y x y xy=++在(,)x y 处的梯度()11,,f f gradf y xx y ⎛⎫∂∂==++ ⎪∂∂⎝⎭(,)f x y 在(,)x y 处的最大方向导数的方向就是梯度方向,最大值为梯度的模gradf =所以此题转化为求函数2211(,)()()F x y x y =+++在条件223:C x y xy ++=下的条件极值.用拉格朗日乘子法求解如下: 令2222113(,,)()()()L x y x y x y xy λλ=++++++-解方程组22212021203()()x y F x x y F y y x x y xy λλλλ⎧'=+++=⎪⎪'=+++=⎨⎪++=⎪⎩,得几个可能的极值点()11112112,,(,),(,),(,)----,进行比较,可得,在点21,x y ==-或12,x y =-=处,方向导数取到最3.=18.(本题满分10分) (1)设函数(),()u x v x 都可导,利用导数定义证明(()(ux v xu '''=+; (2)设函数12(),(),,()n u x u x u x 都可导,12()()()()n f x u x u x u x =,写出()f x 的求导公式.【详解】(1)证明:设)()(x v x u y =由导数的定义和可导与连续的关系(2)12()()()()n f x u x u x u x =19.(本题满分10分) 已知曲线L 的方程为z z x⎧=⎪⎨=⎪⎩起点为0()A ,终点为00(,)B ,计算曲线积分2222()()()Ly z dx z x y dy x y dz++-+++⎰. 【详解】曲线L 的参数方程为cos ,cos x ty t z t =⎧⎪=⎨⎪=⎩起点00(,)A 对应2t π=,终点为00(,)B 对应2t π=-.20.(本题满分11分) 设向量组123,,ααα为向量空间3R 的一组基,11322221,,()k k βααβαβαα=+==++.(1)证明:向量组123,,βββ为向量空间3R 的一组基;(2)当k为何值时,存在非零向量ξ,使得ξ在基123,,ααα和基123,,βββ下的坐标相同,并求出所有的非零向量.ξ【详解】(1)()12312321020201(,,),,k k βββααα⎛⎫⎪= ⎪ ⎪+⎝⎭, 因为201212024021201kk kk ==≠++,且123,,ααα显然线性无关,所以12,,βββ是线性无关的,当然是向量空间3R 的一组基. (2)设非零向量ξ在两组基下的坐标都是123(,,)x x x ,则由条件 可整理得:1132231320()()x k x x k ααααα++++=,所以条件转化为线性方程组()1321320,,k k x ααααα++=存在非零解.从而系数行列式应该等于零,也就是 由于12,,ααα显然线性无关,所以101010020kk=,也就是0k =.此时方程组化为()11212130,,()x x x xx x αααα⎛⎫⎪=++=⎪ ⎪⎝⎭, 由于12,αα线性无关,所以1320x x x +=⎧⎨=⎩,通解为1230x C x x C ⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎪-⎝⎭⎝⎭,其中C为任意常数. 所以满足条件的0C C ξ⎛⎫ ⎪= ⎪⎪-⎝⎭其中C为任意不为零的常数. 21.(本题满分11分) 设矩阵02313312A a -⎛⎫ ⎪=-- ⎪⎪-⎝⎭相似于矩阵1200031B b-⎛⎫⎪= ⎪ ⎪⎝⎭.(1)求,a b的值; (2)求可逆矩阵P,使1AP -为对角矩阵.【详解】(1)因为两个矩阵相似,所以有t r A t=,A B=. 也就是32235aba a bb +=+=⎧⎧⇒⎨⎨-==⎩⎩.(2)由212050131()(E B λλλλλλ--=-=--=--,得A,B的特征值都为12315,λλλ===解方程组()E A x-=,得矩阵A的属于特征值121λλ==的线性无关的特征向量为12231001.ξξ-⎛⎫⎛⎫⎪ ⎪==⎪ ⎪⎪ ⎪⎝⎭⎝⎭;解方程组50()E A x-=得矩阵A的属于特征值35λ=的线性无关的特征向量为3111ξ-⎛⎫⎪= ⎪⎪⎝⎭令()123231101011,,P ξξξ--⎛⎫ ⎪== ⎪⎪⎝⎭,则1100010005.P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭22.(本题满分11分)设随机变量X 的概率密度为22000ln ,(),x x f x x -⎧>=⎨≤⎩对X 进行独立重复的观测,直到第2个大于3的观测值出现时停止,记Y为次数.求Y的分布函数; (1) 求Y的概率分布;(2)求数学期望.EY 【详解】(1)X进行独立重复的观测,得到观测值大于3的概率为显然Y的可能取值为234,,,且2211117171888648()(),k kkP Y k C k k---⎛⎫⎛⎫==⨯⨯=-=⎪ ⎪⎝⎭⎝⎭(2)设2222211 ()()()n n nn n nx S x n n x x xx ∞∞∞-===''⎛⎛⎫''=-===⎪-⎝⎭⎝∑∑∑23.(本题满分11分)设总体X 的概率密度为 其中θ为未知参数,12,,,nX X X 是来自总体的简单样本. (1)求参数θ的矩估计量; (2)求参数θ的最大似然估计量. 【详解】(1)总体的数学期望为 令()E X X=,解得参数θ的矩估计量:21ˆX θ=-.(2)似然函数为 显然()L θ是关于θ的单调递增函数,为了使似然函数达到最大,只要使θ尽可能大就可以,所以 参数θ的最大似然估计量为12ˆmin(,,,).nx x x θ=2016年全国硕士研究生入学统一考试 数学(一)试卷一、选择题:1~8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选前的字母填在答题纸指定位置上。
2000-2017考研数学二历年真题word版
2017年全国硕士研究生入学统一考试数学二试题一、选择题:1~8小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项是符合题目要求的.(1)若函数0(),0x f x b x >=⎪≤⎩在x=0连续,则 (A)12ab =(B)12ab =- (C)0ab = (D)2ab = (2)设二阶可到函数()f x 满足(1)(1)1,(0)1f f f =-==-且 ()0f x ''>,则 (A) 11()0f x dx ->⎰ (B) 12()0f x dx -<⎰(C) 0110()()f x dx f x dx ->⎰⎰(D)111()()f x dx f x dx -<⎰⎰(3)设数列{}n x 收敛,则(A)当limsin 0n n x →∞=时,lim 0n n x →∞=(B)当lim (0n n n x x →∞+= 时,则lim 0n n x →∞=(C)当2lim()0n n n x x →∞+=,lim 0n →∞=(D)当lim(sin )0n n n x x →∞+=时,lim 0n n x →∞=(4)微分方程248(1cos 2)xy y y e x '''-+=+ 的特解可设为ky =(A)22(cos 2sin 2)xx Aee B x C x ++ (B)22(cos 2sin 2)xx Axe e B x C x ++(C)22(cos 2sin 2)xx Aexe B x C x ++ (D)22(cos 2sin 2)xx Axexe B x C x ++(5)设()f x 具有一阶偏导数,且在任意的(,)x y ,都有(,)(,)0,f x y f x y x y∂∂>∂∂则 (A)(0,0)(1,1)f f > (B)(0,0)(1,1)f f <(C)(0,1)(1,0)f f > (D)(0,1)(1,0)f f <(6)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,图中,实线表示甲的速度曲线()1v v t = (单位:m/s )虚线表示乙的速度曲线()2v v t =,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为0t (单位:s ),则(A)010t = (B)01520t << (C)025t = (D)025t >()s(7)设A 为三阶矩阵,123(,,)P ααα=为可逆矩阵,使得 1000010002P AP -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则123(,,)A ααα=(A)12αα+ (B)232αα+ (C)23αα+ (D)122αα+(8)已知矩阵200021001A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,210020001B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,100020000C ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则 (A) A 与C 相似,B 与C 相似(B) A 与C 相似,B 与C 不相似 (C) A 与C 不相似,B 与C 相似 (D) A 与C 不相似,B 与C 不相似二、填空题:9~14题,每小题4分,共24分.(9)曲线()21arcsin y x x =+的斜渐近线方程为(10)设函数()y y x =由参数方程sin t x t e y t ⎧=+⎨=⎩确定,则202t d ydx =(11)()2ln(1)1x dx x +∞++⎰=(12)设函数(),f x y 具有一阶连续偏导数,且()()(),1,0,00y y df x yye dx x y e dy f =++=,则(),f x y = (13)11tan yxdy dx x=⎰⎰(14)设矩阵41212311A a ⎛⎫- ⎪= ⎪ ⎪-⎝⎭的一个特征向量为112⎛⎫⎪⎪ ⎪⎝⎭,则a =三、解答题:15~23小题,共94分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大连理工大学2000年数学分析真题 (2)大连理工大学2001年数学分析真题 (4)大连理工大学2002年数学分析真题 (6)大连理工大学2003年数学分析真题 (8)大连理工大学2004年数学分析真题 (10)大连理工大学2005年数学分析真题 (12)大连理工大学2006年数学分析真题 (14)大连理工大学2008年数学分析真题 (16)大连理工大学2009年数学分析真题 (18)大连理工大学2010年数学分析真题 (20)大连理工大学2011年数学分析真题 (22)大连理工大学2013年数学分析真题 (24)大连理工大学2014年数学分析真题 (25)大连理工大学2015年数学分析真题 (28)大连理工大学2016年数学分析真意 (30)大连理工大学2017年数学分析真题 (32)大连理工大学2000年数学分析真题一.从以下的第一到第八题中选取6题解答,每题10分 1.证明:()xx f 1=于区间()10,δ(其中0<0δ<1)一致连续,但是于(0,1)内不一致连续。
2.证明:若()x f 于[a ,b]单调,则()x f 于[a ,b]内Riemann 可积。
3.证明:Dirichlet 函数:()()⎪⎩⎪⎨⎧==有理数为无理数q px q x x f ,1,0在所有无理点连续,在有理点间断。
4.证明:若()()b a C x f ,∈,(指(a ,b )上的连续函数,且任意()()b a ,,⊂βα,()⎰=βα0dx x f ,那么()()b a x x f ,0∈≡,。
5.证明:∑∞=-1n nx ne 于(0,+∞)不一致收敛,但是对于0>∀δ,于[)+∞,δ一致收敛。
6.证明:()⎪⎩⎪⎨⎧=≠=0,00,1sin 4x x xx x f ,在0=x 处有连续的二阶导数。
7.利用重积分计算三个半长轴分别为a,b,c 的椭球体的体积。
8.计算第二类曲面积分:⎰⎰∑++zdxdy ydzdx xdydz ,其中,∑是三角形()10,,=++>z y x z y x ,,法方向与z y x ,,轴成锐角为正。
9.假设∞→=n n a a lim ,证明22lim 221a n na a a a nn n=+++∞→ 。
11.计算曲面积分⎰⎰++=Sdxdy z dzdx y dydz x I 333,S 为椭球面1222222=++cz b y a x 的外侧。
12.设()[]()⎰-==-∈>11,,3,2,111,10 n dx x C x n n ,, ,φφφ,对于任意的c>0,()x n φ在[][]1,,1,1c -上一致收敛于0。
证明:对于任意()[]1,1-∈C x g ,()()()⎰-∞→=110lim g x x g n n φ13.证明:一个严格递增函数的间断点只能是第一类间断点14.()y x f ,于()[]b a ,,⨯+∞∞-连续,()()⎰+∞∞-=dx y x f y I ,于[)b a y ,∈收敛,但是()⎰+∞∞-dx b x f ,发散,证明,()y I 于[)b a y ,∈非一致收敛。
大连理工大学2001年数学分析真题数学分析试题一.从以下的1到8题中选答6题1.证明:()2x x f =在区间[0,M]内一致连续(M 为任意正数),但是在[0,+∞]不一致连续2.证明:若()x f 在[a,b]内连续,那么()x f 在[a,b]内Riemann 可积。
3.证明:若α>1,那么广义积分dx x αsin 1⎰+∞收敛4.证明:若()x f ,()x g 为区间(a,b)上的连续函数,对任意的()()b a ,,⊂βα有:()()⎰⎰=βαβαdx x g dx x f ,那么,()()x g x f ≡于(a,b)5.证明:若∑∞=1n n a 收敛,那么∑∞=-1n nx n e a 在[0,∞)一致收敛6.已知:()⎪⎩⎪⎨⎧=≠=-0,00,2x x e x f x ,求()0f ''7.已知:()()()()⎰+-+-++=atx atx d aat x at x t x u ααψφφ212,其中,ψ和φ分别是可以求导一次和求导两次的已知函数,计算()()22222,,x t x u a t t x u ∂∂-∂∂ 8.计算,半径为R 的球的表面积二.从9到14题中选取6题9.已知:()0lim ='∞→x f x ,求证()0lim=∞→xx f x 10.证明:()dx x f a⎰+∞收敛,且()λ=+∞→x f x lim ,那么0=λ11.计算曲面积分⎰⎰++=Sdxdy z dzdx y dydz x I 333,S 为旋转椭球面1222222=++cz b y a x 的外侧12.设()[]()()()1011001,0≤≤==∈x f f f C x f , ,,,求证()()x f x S n ''=对于任意小于1的正数δ,在区间(]δ-1,0一致收敛,但是不在(0,1)一致收敛13.设()[]()()()1011001,0≤≤==∈x f f f C x f , ,,,求证:()0lim 1=⎰∞→dx x f n n14.证明:若()[] ,,2,1,=∈n b a C x u n ,且()∑∞=1n n b u 发散,那么()∑∞=1n n x u 不在[a,b)一致收敛一.(60分)从以下8题中选答6题,每题6分。
1.证明:若()[)+∞∈,a C x f ,且 ()x f x +∞→lim 存在,则()x f 在[)+∞,a 上一致连续。
2.证明: ()xx f 1=在[]1,δ上一致连续(δ为<1的任何正数),但在(0,1]内不一致连续。
3.讨论级数()()∑∞=2ln ln ln 1n n n n γβα的敛散性。
4.证明:若正项级数∑∞=1n n x 收敛,则∑∞=12n n x 也收敛,反之不然。
5.证明:11lim 0=⎥⎦⎤⎢⎣⎡→x x x 。
6.证明Riemann 函数在每点[]1,00∈x 的极限为零。
7.证明函数列(),,2,1122 =+=n x n xx S n ,于()+∞∞-,一致收敛。
8.证明函数列(),,2,1122 =+=n xn nxx S n ,于()+∞∞-,非一致收敛。
9.设()x f 于()+∞∞-,上有界,且()0≥''x f ,证明()x f 必为常数。
10.设()x f 在()+∞,0有定义, ()A x f x =+∞→lim ,且对任何0>x 都有()()x f x f =2,证明()A x f =。
11.设()x f 于[a,+∞)绝对可积,证明:()()uxdx x f u I asin ⎰+∞=于()+∞∞-∈,u 上一致连续。
12.设()x f 于任何有限区间可积,且()λ=+∞→x f x lim 。
证明:()⎰=+∞→xx dt t f x1limλ。
13.设()x f 单调递增,于任何有限区间可积,且()⎰=+∞→xx dt t f x1limλ,证明()λ=+∞→x f x lim。
14.计算第二型曲面积分⎰⎰++=Sdxdy z dzdx y dydz x I 222,S为球面()()()2222R c z b y a x =-+-+-的外侧。
一.(100分)以下各题为必答题,每题10分。
1.设{}n x ,{}n y 都是有界数列,证明 ()n n n n n n n y x y x +≤+∞→∞→∞→lim lim lim2.叙述下列极限的柯西收敛原理 (1)()x f ax +→lim ;(2)()x f x ∞→lim3.证明:()x x f sin =在()+∞∞-,上一致连续,但()2sin x x g =在()+∞∞-,上不一致连续。
4.设()⎪⎩⎪⎨⎧=≠=-0,00,21x x e x f x ,证明:对任何自然数n ,有()()00=n f 。
5.设()x f 在()+∞∞-,上连续,且()A x f x =+∞→lim ,证明()A dx nx f n =∞→lim 。
6.设正项级数∑∞=1n n a 收敛。
证明:对任何r>1,∑∞=1n rn a 收敛。
逆命题成立否?7.设()x f 在[a,+∞)上一致连续,且广义积分()dx x f a⎰+∞收敛,证明()0lim =+∞→x f x 。
8.证明:函数列()()() ,2,11=-=n x x x f n n 在[0,1]上一致收敛到0,但函数列()()() ,2,11=-=n x x g n n 在[0,1]上非一致收敛。
9.将()2x x f =在[0,π)上展开为正弦级数。
10.将二重积分()dxdy by ax f y x +⎰⎰≤+122化为定积分,其中a,b 是不全为零的实数。
二.(50分)从以下11-20题中选答5题,每题10分。
11.设0lim ,2,10==>∞→n n n x n x ,, 。
证明:存在无数多个下标n ,使对所有自然数k ,都有k n n x x +>。
12.设C 是一跳无重点,逐段光滑的闭曲线且坐标原点在闭曲线的内部。
计算积分⎰+-Cyx ydxxdy 22。
13.设()()0,0,>>=y x x y x f y 。
问()()()y x f y x ,lim0,0,←是否存在。
14.试确定常数a,b,c ,使得函数()22,,cz bxy axy z y x f ++=在()1,2,1-沿x 轴正向的方向导数取最大值64.15.设()x f 在[0,1]上可微,()00=f ,且()()x f x f ≤'。
证明:()[]()1,00∈=x x f , 。
16设()x f 在区间(a,b)中有连续的导数()x f '。
证明:函数列()()⎥⎦⎤⎢⎣⎡-⎪⎭⎫⎝⎛+=x f n x f n x f n 1在(a,b)中内闭一致收敛于()x f '。
17.设()x f 在[a,b]上连续,()x g 在[a,b]上可积,且()x f >0,证明()()[]()x f dx x g x f b a x nn ban ,1max lim ∈∞→=⎪⎭⎫ ⎝⎛⎰。
18.已知22π=-∞+⎰dx ex 。
计算积分xdx e x αcos 2-+∞⎰。
19.设(){}10,10,<<<<=y x y x D ,并且函数()dy dx cy bxy ax y x g ++++=222,(a,b,c,d 是常数)在D 的边界上非正,亦即()()D y x y x g ∂∈≤,0,, 。