c++单向链表的排序

合集下载

c语言中linklist类型

c语言中linklist类型

c语言中linklist类型LinkList类型是C语言中常用的数据结构之一,它是一种线性链表的实现方式。

在计算机科学中,链表是一种常见的数据结构,用于存储和操作一系列元素。

链表由一系列节点组成,每个节点包含一个数据元素和一个指向下一个节点的指针。

链表中的第一个节点称为头节点,最后一个节点称为尾节点。

链表可以根据需要动态地增加或删除节点,相比于数组,链表的大小可以根据实际需求进行调整。

链表的实现可以使用不同的方式,其中最常见的是单向链表。

在单向链表中,每个节点只有一个指针,指向下一个节点。

这种实现方式简单且高效,适用于大多数场景。

除了单向链表,还有双向链表和循环链表等其他实现方式。

链表的优点是可以快速在任意位置插入或删除节点,而无需移动其他节点。

这是由于链表中的节点通过指针相互连接,而不是像数组那样连续存储。

另外,链表的大小可以根据需要进行动态调整,而数组的大小是静态的。

这使得链表在处理动态数据集合时非常有用。

然而,链表也有一些缺点。

首先,访问链表中的任意节点都需要从头节点开始遍历,直到找到目标节点。

这导致了链表的访问时间复杂度为O(n),而数组的访问时间复杂度为O(1)。

其次,链表需要额外的内存空间来存储指针信息,这会占用更多的存储空间。

在C语言中,可以使用结构体来定义链表节点,例如:```typedef struct Node {int data;struct Node *next;} Node;typedef struct LinkedList {Node *head;Node *tail;} LinkedList;```上述代码定义了一个包含数据和指针的节点结构体Node,以及一个包含头节点和尾节点指针的链表结构体LinkedList。

通过这样的定义,可以方便地进行链表的操作,比如插入、删除和遍历等。

链表的插入操作可以分为三步:创建新节点、修改指针、更新链表的头尾指针。

例如,插入一个新节点到链表末尾的代码如下:```void insert(LinkedList *list, int data) {Node *newNode = (Node *)malloc(sizeof(Node));newNode->data = data;newNode->next = NULL;if (list->head == NULL) {list->head = newNode;list->tail = newNode;} else {list->tail->next = newNode;list->tail = newNode;}}```链表的删除操作也类似,可以分为三步:找到目标节点、修改指针、释放内存。

C语言八大排序算法

C语言八大排序算法

C语⾔⼋⼤排序算法C语⾔⼋⼤排序算法,附动图和详细代码解释!来源:C语⾔与程序设计、⽵⾬听闲等⼀前⾔如果说各种编程语⾔是程序员的招式,那么数据结构和算法就相当于程序员的内功。

想写出精炼、优秀的代码,不通过不断的锤炼,是很难做到的。

⼆⼋⼤排序算法排序算法作为数据结构的重要部分,系统地学习⼀下是很有必要的。

1、排序的概念排序是计算机内经常进⾏的⼀种操作,其⽬的是将⼀组“⽆序”的记录序列调整为“有序”的记录序列。

排序分为内部排序和外部排序。

若整个排序过程不需要访问外存便能完成,则称此类排序问题为内部排序。

反之,若参加排序的记录数量很⼤,整个序列的排序过程不可能在内存中完成,则称此类排序问题为外部排序。

2、排序分类⼋⼤排序算法均属于内部排序。

如果按照策略来分类,⼤致可分为:交换排序、插⼊排序、选择排序、归并排序和基数排序。

如下图所⽰:3、算法分析1.插⼊排序*直接插⼊排序*希尔排序2.选择排序*简单选择排序*堆排序3.交换排序*冒泡排序*快速排序4.归并排序5.基数排序不稳定排序:简单选择排序,快速排序,希尔排序,堆排序稳定排序:冒泡排序,直接插⼊排序,归并排序,奇数排序1、插⼊排序将第⼀个和第⼆个元素排好序,然后将第3个元素插⼊到已经排好序的元素中,依次类推(插⼊排序最好的情况就是数组已经有序了)因为插⼊排序每次只能操作⼀个元素,效率低。

元素个数N,取奇数k=N/2,将下标差值为k的数分为⼀组(⼀组元素个数看总元素个数决定),在组内构成有序序列,再取k=k/2,将下标差值为k的数分为⼀组,构成有序序列,直到k=1,然后再进⾏直接插⼊排序。

3、简单选择排序选出最⼩的数和第⼀个数交换,再在剩余的数中⼜选择最⼩的和第⼆个数交换,依次类推4、堆排序以升序排序为例,利⽤⼩根堆的性质(堆顶元素最⼩)不断输出最⼩元素,直到堆中没有元素1.构建⼩根堆2.输出堆顶元素3.将堆低元素放⼀个到堆顶,再重新构造成⼩根堆,再输出堆顶元素,以此类推5、冒泡排序改进1:如果某次冒泡不存在数据交换,则说明已经排序好了,可以直接退出排序改进2:头尾进⾏冒泡,每次把最⼤的沉底,最⼩的浮上去,两边往中间靠16、快速排序选择⼀个基准元素,⽐基准元素⼩的放基准元素的前⾯,⽐基准元素⼤的放基准元素的后⾯,这种动作叫分区,每次分区都把⼀个数列分成了两部分,每次分区都使得⼀个数字有序,然后将基准元素前⾯部分和后⾯部分继续分区,⼀直分区直到分区的区间中只有⼀个元素的时候,⼀个元素的序列肯定是有序的嘛,所以最后⼀个升序的序列就完成啦。

c语言链表排序算法

c语言链表排序算法

c语言链表排序算法在C语言中,链表的排序可以使用多种算法,如插入排序、归并排序、快速排序等。

以下是一个简单的插入排序算法的示例,用于对链表进行排序:C:#include<stdio.h>#include<stdlib.h>struct Node {int data;struct Node* next;};void insert(struct Node** head, int data) {struct Node* newNode= (struct Node*)malloc(sizeof(struct Node));newNode->data = data;newNode->next = NULL;if (*head == NULL) {*head = newNode;return;}struct Node* current = *head;while (current->next != NULL) {current = current->next;}current->next = newNode;}void sortList(struct Node** head) { struct Node* current = *head;while (current != NULL) {struct Node* next = current->next; while (next != NULL) {if (current->data > next->data) { int temp = current->data;current->data = next->data;next->data = temp;}next = next->next;}current = current->next;}}void printList(struct Node* head) { while (head != NULL) {printf("%d ", head->data);head = head->next;}}int main() {struct Node* head = NULL;insert(&head, 5);insert(&head, 2);insert(&head, 4);insert(&head, 1);insert(&head, 3);printf("Before sorting: ");printList(head);sortList(&head);printf("\nAfter sorting: ");printList(head);return0;}这个程序定义了一个链表节点结构体Node,其中包含一个整型数据data 和一个指向下一个节点的指针next。

链表排序(冒泡、选择、插入、快排、归并、希尔、堆排序)

链表排序(冒泡、选择、插入、快排、归并、希尔、堆排序)

链表排序(冒泡、选择、插⼊、快排、归并、希尔、堆排序)这篇⽂章分析⼀下链表的各种排序⽅法。

以下排序算法的正确性都可以在LeetCode的这⼀题检测。

本⽂⽤到的链表结构如下(排序算法都是传⼊链表头指针作为参数,返回排序后的头指针)struct ListNode {int val;ListNode *next;ListNode(int x) : val(x), next(NULL) {}};插⼊排序(算法中是直接交换节点,时间复杂度O(n^2),空间复杂度O(1))class Solution {public:ListNode *insertionSortList(ListNode *head) {// IMPORTANT: Please reset any member data you declared, as// the same Solution instance will be reused for each test case.if(head == NULL || head->next == NULL)return head;ListNode *p = head->next, *pstart = new ListNode(0), *pend = head;pstart->next = head; //为了操作⽅便,添加⼀个头结点while(p != NULL){ListNode *tmp = pstart->next, *pre = pstart;while(tmp != p && p->val >= tmp->val) //找到插⼊位置{tmp = tmp->next; pre = pre->next;}if(tmp == p)pend = p;else{pend->next = p->next;p->next = tmp;pre->next = p;}p = pend->next;}head = pstart->next;delete pstart;return head;}};选择排序(算法中只是交换节点的val值,时间复杂度O(n^2),空间复杂度O(1))class Solution {public:ListNode *selectSortList(ListNode *head) {// IMPORTANT: Please reset any member data you declared, as// the same Solution instance will be reused for each test case.//选择排序if(head == NULL || head->next == NULL)return head;ListNode *pstart = new ListNode(0);pstart->next = head; //为了操作⽅便,添加⼀个头结点ListNode*sortedTail = pstart;//指向已排好序的部分的尾部while(sortedTail->next != NULL){ListNode*minNode = sortedTail->next, *p = sortedTail->next->next;//寻找未排序部分的最⼩节点while(p != NULL){if(p->val < minNode->val)minNode = p;p = p->next;}swap(minNode->val, sortedTail->next->val);sortedTail = sortedTail->next;}head = pstart->next;delete pstart;return head;}};快速排序1(算法只交换节点的val值,平均时间复杂度O(nlogn),不考虑递归栈空间的话空间复杂度是O(1))这⾥的partition我们参考(选取第⼀个元素作为枢纽元的版本,因为链表选择最后⼀元素需要遍历⼀遍),具体可以参考这⾥我们还需要注意的⼀点是数组的partition两个参数分别代表数组的起始位置,两边都是闭区间,这样在排序的主函数中:void quicksort(vector<int>&arr, int low, int high){if(low < high){int middle = mypartition(arr, low, high);quicksort(arr, low, middle-1);quicksort(arr, middle+1, high);}}对左边⼦数组排序时,⼦数组右边界是middle-1,如果链表也按这种两边都是闭区间的话,找到分割后枢纽元middle,找到middle-1还得再次遍历数组,因此链表的partition采⽤前闭后开的区间(这样排序主函数也需要前闭后开区间),这样就可以避免上述问题class Solution {public:ListNode *quickSortList(ListNode *head) {// IMPORTANT: Please reset any member data you declared, as// the same Solution instance will be reused for each test case.//链表快速排序if(head == NULL || head->next == NULL)return head;qsortList(head, NULL);return head;}void qsortList(ListNode*head, ListNode*tail){//链表范围是[low, high)if(head != tail && head->next != tail){ListNode* mid = partitionList(head, tail);qsortList(head, mid);qsortList(mid->next, tail);}}ListNode* partitionList(ListNode*low, ListNode*high){//链表范围是[low, high)int key = low->val;ListNode* loc = low;for(ListNode*i = low->next; i != high; i = i->next)if(i->val < key){loc = loc->next;swap(i->val, loc->val);}swap(loc->val, low->val);return loc;}};快速排序2(算法交换链表节点,平均时间复杂度O(nlogn),不考虑递归栈空间的话空间复杂度是O(1))这⾥的partition,我们选取第⼀个节点作为枢纽元,然后把⼩于枢纽的节点放到⼀个链中,把不⼩于枢纽的及节点放到另⼀个链中,最后把两条链以及枢纽连接成⼀条链。

数据结构C语言版 线性表的单链表存储结构表示和实现

数据结构C语言版 线性表的单链表存储结构表示和实现

#include 〈stdio.h>#include <malloc。

h>#include 〈stdlib.h>/*数据结构C语言版线性表的单链表存储结构表示和实现P28—31编译环境:Dev-C++ 4。

9。

9。

2日期:2011年2月10日*/typedef int ElemType;// 线性表的单链表存储结构typedef struct LNode{ElemType data; //数据域struct LNode *next;//指针域}LNode, *LinkList;// typedef struct LNode *LinkList;// 另一种定义LinkList的方法// 构造一个空的线性表Lint InitList(LinkList *L){/*产生头结点L,并使L指向此头结点,头节点的数据域为空,不放数据的。

void *malloc(size_t)这里对返回值进行强制类型转换了,返回值是指向空类型的指针类型.*/(*L)= (LinkList)malloc(sizeof(struct LNode) );if( !(*L))exit(0);// 存储分配失败(*L)-〉next = NULL;// 指针域为空return 1;}// 销毁线性表L,将包括头结点在内的所有元素释放其存储空间。

int DestroyList(LinkList *L){LinkList q;// 由于单链表的每一个元素是单独分配的,所以要一个一个的进行释放while(*L ){q = (*L)—〉next;free(*L );//释放*L = q;}return 1;}/*将L重置为空表,即将链表中除头结点外的所有元素释放其存储空间,但是将头结点指针域置空,这和销毁有区别哦。

不改变L,所以不需要用指针。

*/int ClearList( LinkList L ){LinkList p,q;p = L—〉next;// p指向第一个结点while( p ) // 没到表尾则继续循环{q = p—>next;free( p );//释放空间p = q;}L—>next = NULL; // 头结点指针域为空,链表成了一个空表return 1;}// 若L为空表(根据头结点L—〉next来判断,为空则是空表),则返回1,// 否则返回0.int ListEmpty(LinkList L){if(L—>next ) // 非空return 0;elsereturn 1;}// 返回L中数据元素个数。

(完整)《C语言程序设计课程设计》题目——软件工程2班

(完整)《C语言程序设计课程设计》题目——软件工程2班

1 一元稀疏多项式的运算问题描述:设有两个带头指针的单链表表示两个一元稀疏多项式A、B,实现两个一元稀疏多项式的处理.实现要求:⑴输入并建立多项式;⑵输出多项式,输出形式为整数序列:n,c1,e1,c2,e2……cn,en,其中n是多项式的项数,ci,ei分别为第i项的系数和指数。

序列按指数降序排列;⑶多项式A和B相加,建立多项式A+B,输出相加的多项式;⑷多项式A和B相减,建立多项式A-B,输出相减的多项式;⑸多项式A和B相乘,建立多项式A×B,输出相乘的多项式;⑹设计一个菜单,至少具有上述操作要求的基本功能。

测试数据:(1) (2x+5x8-3.1x11)+(7—5x8+11x9)(2) (6x-3—x+4。

4x2-1。

2x9)-(-6x-3+5.4x2+7。

8x15)(3)(x+x2+x3)+0(4)(x+x3)—(-x—x-3)2 成绩排序假设某年级有4个班,每班有45名同学。

本学期有5门课程考试,每门课程成绩是百分制。

假定每个同学的成绩记录包含:学号、姓名各门课程的成绩共7项,其中学号是一个10位的字符串,每个学生都有唯一的学号,并且这4个班的成绩分别放在4个数组中,完成以下操作要求:⑴编写一个成绩生成函数,使用随机数方法,利用随机函数生成学生的各门课程的成绩(每门课程的成绩都是0∽100之间的整数),通过调用该函数生成全部学生的成绩;⑵编写一个平均成绩计算函数,计算每个同学的平均成绩并保存在成绩数组中;⑶用冒泡排序法对4个班的成绩按每个同学的平均成绩的以非递增方式进行班内排序;⑷用选择排序法对4个班的成绩按每个同学的平均成绩的以非递增方式进行班内排序;⑸对已按平均成绩排好序的4个班的同学的构造一个所有按平均成绩的以非递增方式排列的新的单链表;⑹设计一个菜单,至少具有上述操作要求的基本功能。

(本题⑸由2人完成)3 迷宫问题问题描述:以一个m×n的长方阵表示迷宫,0和1分别表示迷宫中的通路和障碍。

单链表的 基本操作

单链表的 基本操作

单向链表单向链表的基本操作,创建一个由6个节点组成的单向链表,显示链表中每个节点的数据,并且做增加、删除、查找节点以及计算单链表的长度等处理。

➢需求分析:1.功能(1)用尾插法创建一带头结点的由6个节点组成的单向链表:从键盘读入一组整数,作为单链表中的元素,输入完第6个结点后结束;将创建好的单链表元素依次输出到屏幕上。

(2)显示链表中每个节点的数据(3)从键盘输入一个数,查找在以上创建的单链表中是否存在该数;如果存在,显示它的位置,即第几个元素;如果不存在,给出相应提示如“No found node!”。

(4)在上述的单链表中的指定位置插入指定数据,并输出单链表中所有数据。

(5)删除上述单链表中指定位置的结点,并输出单链表中所有数据。

(6)求单链表的长度并输出.2.输入要求先输入单链表中结点个数n,再输入单链表中所有数据,在单链表中需查找的数据,需插入的数据元素的位置、值,要删除的数据元素的位置。

3。

测试数据单链表中所有数据:12,23,56,21,8,10在单链表中需查找的数据:56;24插入的数据元素的位置、值:1,28;7,28;0,28要删除的数据元素的位置:6➢概要设计:1.算法思想:由于在操作过程中要进行插入、删除等操作,为运算方便,选用带头结点的单链表作数据元素的存储结构.对每个数据元素,由一个数据域和一个指针域组成,数据域放输入的数据值,指针域指向下一个结点。

2.数据结构:单链表结点类型:typedef struct Liistnode {int data;struct Listnode *next;}NODE;3.模块划分:a)用尾插法建立带头结点的单链表*CreateList函数;b)显示链表中每个结点的数据PrintList函数;c)从键盘输入一个数,查找单链表中是否存在该数FoundList函数;d)在单链表中指定位置插入指定数据并输出单链表中所有数据InsertList函数;e)删除单链表中指定位置的结点并输出单链表中所有数据DeleteList函数;f)计算单链表的长度并在屏幕上输出LengthList函数;g)主函数main(),功能是给出测试数据值,建立测试数据值的带头结点的单链表,调用PrintList函数、FoundList函数、InsertList函数、DeleteList函数、LengthList函数实现问题要求。

c语言数据结构及算法

c语言数据结构及算法

C语言是一种广泛应用于编程和软件开发的编程语言,它提供了一系列的数据结构和算法库,使得开发者能够在C语言中使用这些数据结构和算法来解决各种问题。

以下是C语言中常用的数据结构和算法:数据结构:1. 数组(Array):一组相同类型的元素按顺序排列而成的数据结构。

2. 链表(Linked List):元素通过指针连接而成的数据结构,可分为单向链表、双向链表和循环链表等。

3. 栈(Stack):具有后进先出(LIFO)特性的数据结构,可用于实现函数调用、表达式求值等。

4. 队列(Queue):具有先进先出(FIFO)特性的数据结构,可用于实现任务调度、缓冲区管理等。

5. 树(Tree):一种非线性的数据结构,包括二叉树、二叉搜索树、堆、A VL树等。

6. 图(Graph):由节点和边组成的数据结构,可用于表示网络、关系图等。

7. 哈希表(Hash Table):基于哈希函数实现的数据结构,可用于高效地查找、插入和删除元素。

算法:1. 排序算法:如冒泡排序、插入排序、选择排序、快速排序、归并排序等。

2. 查找算法:如线性查找、二分查找、哈希查找等。

3. 图算法:如深度优先搜索(DFS)、广度优先搜索(BFS)、最短路径算法(Dijkstra、Floyd-Warshall)、最小生成树算法(Prim、Kruskal)等。

4. 字符串匹配算法:如暴力匹配、KMP算法、Boyer-Moore 算法等。

5. 动态规划算法:如背包问题、最长公共子序列、最短编辑距离等。

6. 贪心算法:如最小生成树问题、背包问题等。

7. 回溯算法:如八皇后问题、0-1背包问题等。

这只是C语言中常用的一部分数据结构和算法,实际上还有更多的数据结构和算法可以在C语言中实现。

开发者可以根据具体需求选择适合的数据结构和算法来解决问题。

同时,C语言也支持自定义数据结构和算法的实现,开发者可以根据需要进行扩展和优化。

数据结构c语言版课后习题答案

数据结构c语言版课后习题答案

数据结构c语言版课后习题答案数据结构是计算机科学中的一个重要概念,它涉及到组织、管理和存储数据的方式,以便可以有效地访问和修改数据。

C语言是一种广泛使用的编程语言,它提供了丰富的数据结构实现方式。

对于学习数据结构的C语言版课程,课后习题是巩固理论知识和提高实践能力的重要手段。

数据结构C语言版课后习题答案1. 单链表的实现在C语言中,单链表是一种常见的线性数据结构。

它由一系列节点组成,每个节点包含数据部分和指向下一个节点的指针。

实现单链表的基本操作通常包括创建链表、插入节点、删除节点、遍历链表等。

答案:- 创建链表:定义一个链表结构体,然后使用动态内存分配为每个节点分配内存。

- 插入节点:根据插入位置,调整前后节点的指针,并将新节点插入到链表中。

- 删除节点:找到要删除的节点,调整其前后节点的指针,然后释放该节点的内存。

- 遍历链表:从头节点开始,使用指针遍历链表,直到达到链表尾部。

2. 二叉树的遍历二叉树是一种特殊的树形数据结构,其中每个节点最多有两个子节点。

二叉树的遍历是数据结构中的一个重要概念,常见的遍历方式有前序遍历、中序遍历、后序遍历和层序遍历。

答案:- 前序遍历:先访问根节点,然后递归遍历左子树,最后递归遍历右子树。

- 中序遍历:先递归遍历左子树,然后访问根节点,最后递归遍历右子树。

- 后序遍历:先递归遍历左子树,然后递归遍历右子树,最后访问根节点。

- 层序遍历:使用队列,按照从上到下,从左到右的顺序访问每个节点。

3. 哈希表的实现哈希表是一种通过哈希函数将键映射到表中一个位置来访问记录的数据结构。

它提供了快速的数据访问能力,但需要处理哈希冲突。

答案:- 哈希函数:设计一个哈希函数,将键映射到哈希表的索引。

- 哈希冲突:使用链地址法、开放地址法或双重哈希法等解决冲突。

- 插入操作:计算键的哈希值,将其插入到对应的哈希桶中。

- 删除操作:找到键对应的哈希桶,删除相应的键值对。

4. 图的表示和遍历图是一种复杂的非线性数据结构,由顶点(节点)和边组成。

学习C必须掌握的20个代码段

学习C必须掌握的20个代码段
{
low++;
}
a[high] = a[low];
}
a[low] = val;
return low;
}
void quicksort(int* a,int low,int high)
{
int pos;
if(low &lt; high)
{
pos = findpos(a,low,high);
// printf(&quot;%d\n&quot;,n);
if(n == 1)
{
strcpy(temp,str[j]);
strcpy(str[j],str[j+1]);
strcpy(str[j+1],temp);
}
}
}
for(i=0;i&lt;N;i++)
{
puts(str[i]);
char * strcpy( char *strDest, const char *strSrc )
{
assert( (strDest != NULL) &amp;&amp; (strSrc != NULL) );
char *address = strDest;
while( (*strDest++ = * strSrc++) != ‘\0’ );
#include&lt;stdio.h&gt;
#include&lt;string.h&gt;
#define N 3
/*************比较函数str1&gt;str2,则返回1,否则返回2************/

冒泡排序链表c语言

冒泡排序链表c语言

冒泡排序链表c语言冒泡排序是一种简单而常用的排序算法,它可以用于对链表进行排序。

在本文中,我们将介绍如何使用C语言实现冒泡排序链表,并解释算法的原理和步骤。

让我们来了解一下冒泡排序的基本原理。

冒泡排序通过多次遍历待排序的元素,比较相邻的两个元素的大小,并根据需要交换它们的位置。

通过这样的比较和交换,最大(或最小)的元素会逐渐“冒泡”到列表的末尾(或开头),从而实现排序。

在链表中实现冒泡排序的思路与数组类似,但需要注意的是,我们无法像数组那样通过下标直接访问链表中的元素。

因此,在链表中进行元素比较和交换时,我们需要修改节点之间的连接关系。

下面是使用C语言实现冒泡排序链表的步骤:1. 遍历链表,确定链表的长度。

这一步是为了确定需要进行多少次排序遍历。

2. 写一个循环,循环次数为链表的长度减1。

每次循环都进行一次完整的遍历和排序。

3. 在每次遍历中,从链表的头部开始,比较相邻节点的值。

如果前一个节点的值大于后一个节点的值,则交换它们的位置。

4. 重复步骤3,直到遍历到链表的倒数第二个节点。

这样可以确保在每次遍历后,链表的最后一个节点都是当前遍历范围内的最大(或最小)值。

5. 重复步骤2和步骤3,直到完成所有的排序遍历。

此时,链表中的元素已经按照从小到大(或从大到小)的顺序排列好了。

以下是冒泡排序链表的C语言代码实现:```c#include <stdio.h>// 定义链表节点的结构体typedef struct Node {int data;struct Node* next;} Node;// 冒泡排序链表的函数void bubbleSortList(Node* head) {if (head == NULL || head->next == NULL) {return;}int len = 0;Node* cur = head;while (cur != NULL) {len++;cur = cur->next;}for (int i = 0; i < len - 1; i++) {cur = head;for (int j = 0; j < len - i - 1; j++) {if (cur->data > cur->next->data) { int temp = cur->data;cur->data = cur->next->data; cur->next->data = temp;}cur = cur->next;}}}// 打印链表的函数void printList(Node* head) {Node* cur = head;while (cur != NULL) {printf("%d ", cur->data);cur = cur->next;}printf("\n");}int main() {// 创建链表Node* head = (Node*)malloc(sizeof(Node)); Node* node1 = (Node*)malloc(sizeof(Node)); Node* node2 = (Node*)malloc(sizeof(Node)); Node* node3 = (Node*)malloc(sizeof(Node)); head->data = 3;node1->data = 2;node2->data = 4;node3->data = 1;head->next = node1;node1->next = node2;node2->next = node3;node3->next = NULL;// 打印排序前的链表printf("排序前的链表:");printList(head);// 对链表进行冒泡排序bubbleSortList(head);// 打印排序后的链表printf("排序后的链表:");printList(head);return 0;}```在上面的代码中,我们首先定义了一个链表节点的结构体,其中包含一个整型数据成员和一个指向下一个节点的指针成员。

C语言链表的排序

C语言链表的排序

C语言链表的排序/某==========================功能:选择排序(由小到大)返回:指向链表表头的指针==========================某//某选择排序的基本思想就是反复从还未排好序的那些节点中,选出键值(就是用它排序的字段,我们取学号num为键值)最小的节点,依次重新组合成一个链表。

head存储的是第一个节点的地址,head->ne某t存储的是第二个节点的地址;任意一个节点p的地址,只能通过它前一个节点的ne某t来求得。

单向链表的选择排序图示:---->[1]---->[3]---->[2]...---->[n]---->[NULL](原链表)head1->ne某t3->ne某t2->ne某tn->ne某t---->[NULL](空链表)firttail---->[1]---->[2]---->[3]...---->[n]---->[NULL](排序后链表)firt1->ne某t2->ne某t3->ne某ttail->ne某t图10:有N个节点的链表选择排序1、先在原链表中找最小的,找到一个后就把它放到另一个空的链表中;2、空链表中安放第一个进来的节点,产生一个有序链表,并且让它在原链表中分离出来(此时要注意原链表中出来的是第一个节点还是中间其它节点);3、继续在原链表中找下一个最小的,找到后把它放入有序链表的尾指针的ne某t,然后它变成其尾指针;某/tructtudent某SelectSort(tructtudent某head){tructtudent某firt;/某排列后有序链的表头指针某/tructtudent 某tail;/某排列后有序链的表尾指针某/tructtudent某p_min;/某保留键值更小的节点的前驱节点的指针某/tructtudent某min;/某存储最小节点某/tructtudent某p;/某当前比较的节点某/firt=NULL;while(head!=NULL)/某在链表中找键值最小的节点。

c语言中单目运算符的优先级

c语言中单目运算符的优先级

c语言中单目运算符的优先级
C语言中的单目运算符(一元运算符)的优先级如下(按照从高到低的顺序):
1. 后置递增和递减运算符:+ +和--
2. 前置递增和递减运算符:+ +和--
3. 一元正号和负号:+和-
4. 逻辑非运算符:!
5. 位求反运算符:~
6. 强制类型转换运算符:(type)
7. 取地址运算符:&
8. 解引用运算符:
9. 大小关系运算符:sizeof
C语言中的优先级规则还受到结合性(associativity)的影响。

对于具有相同优先级的多个运算符,它们的结合性决定了操作数的结合方式。

在上述单目运算符中,递增和递减运算符是右结合的,其他运算符都是左结合的。

在实际编程中,为了避免优先级导致的歧义,建议使用括号明确指定运算顺序。

括号可以提高代码的可读性和可维护性。

数据结构c++顺序表、单链表的基本操作,查找、排序代码

数据结构c++顺序表、单链表的基本操作,查找、排序代码

} return 0; }
实验三 查找
实验名称: 实验3 查找 实验目的:掌握顺序表和有序表的查找方法及算法实现;掌握二叉排序 树和哈希表的构造和查找方法。通过上机操作,理解如何科学地组织信 息存储,并选择高效的查找算法。 实验内容:(2选1)内容1: 基本查找算法;内容2: 哈希表设计。 实验要求:1)在C++系统中编程实现;2)选择合适的数据结构实现查 找算法;3)写出算法设计的基本原理或画出流程图;4)算法实现代码 简洁明了;关键语句要有注释;5)给出调试和测试结果;6)完成实验 报告。 实验步骤: (1)算法设计 a.构造哈希函数的方法很多,常用的有(1)直接定址法(2)数字分析法;(3) 平方取中法;(4)折叠法;( 5)除留余数法;(6)随机数法;本实验采用的是除 留余数法:取关键字被某个不大于哈希表表长m的数p除后所得余数为哈 希地址 (2)算法实现 hash hashlist[n]; void listname(){ char *f; int s0,r,i; NameList[0].py="baojie"; NameList[1].py="chengቤተ መጻሕፍቲ ባይዱoyang"; ……………………………… NameList[29].py="wurenke"; for(i=0;i<q;i++){s0=0;f=NameList[i].py; for(r=0;*(f+r)!='\0';r++) s0+=*(f+r);NameList[i].k=s0; }} void creathash(){int i;
v[k-1]=v[k]; nn=nn-1; return ; } int main() {sq_LList<double>s1(100); cout<<"第一次输出顺序表对象s1:"<<endl; s1.prt_sq_LList(); s1.ins_sq_LList(0,1.5); s1.ins_sq_LList(1,2.5); s1.ins_sq_LList(4,3.5); cout<<"第二次输出顺序表对象s1:"<<endl; s1.prt_sq_LList(); s1.del_sq_LList(0); s1.del_sq_LList(2); cout<<"第三次输出顺序表对象s1:"<<endl; s1.prt_sq_LList(); return 0; } 运行及结果:

c语言常见排序算法

c语言常见排序算法

常见的C语言排序算法有以下几种:
1. 冒泡排序(Bubble Sort):比较相邻的元素,如果前一个元素大于后一个元素,则交换它们的位置,重复这个过程直到整个序列有序。

2. 插入排序(Insertion Sort):将未排序的元素逐个插入到已排序序列中的正确位置,直到整个序列有序。

3. 选择排序(Selection Sort):每次从未排序的元素中选择最小的元素,将其放到已排序序列的末尾,重复这个过程直到整个序列有序。

4. 快速排序(Quick Sort):选择一个基准元素,将序列分成两部分,一部分小于等于基准元素,一部分大于基准元素,然后对两部分递归地进行快速排序。

5. 归并排序(Merge Sort):将序列分成两部分,分别对两部分进行归并排序,然后将两个有序的子序列合并成一个有序的序列。

6. 堆排序(Heap Sort):将序列构建成一个最大堆,然后将堆顶元素与堆末尾元素交换,重复这个过程直到整个序列有序。

7. 希尔排序(Shell Sort):将序列按照一定的间隔分成若干个子序列,对每个子序列进行插入排序,然后逐渐减小间隔直到间隔为1,最后对整个序列进行插入排序。

8. 计数排序(Counting Sort):统计序列中每个元素出现的次数,然后按照元素的大小顺序将它们放入一个新的序列中。

9. 基数排序(Radix Sort):按照元素的个位、十位、百位等依次进行排序,直到所有位数都排完为止。

以上是常见的C语言排序算法,每种算法都有其特点和适用场景,选择合适的排序算法可以提高排序效率。

笔试题-数据结构部分

笔试题-数据结构部分

笔试题-数据结构部分数据结构1.采用折半搜索算法长度为n的有序表时,元素的平均搜索长度为()A)O(n2)B)O(nlog2n)C)O(log2n)D)O(n)2.下面程序的时间复杂度为()for(int i=0;i<m;i++)< bdsfid="70" p=""></m;i++)<>{for(int j=0;j<n;j++)< bdsfid="73" p=""></n;j++)<>{a[i][j] = i * j;}}A)O(m2);B)O(n2);C)O(m*n);D)O(m+n);3.下列叙述中,正确的是()A)线性表中的个元素在存储空间中的位置必须是连续的B)线性表中的表头元素一定存储在其他元素的前面C)线性表中的个元素在存储空间中的位置不一定是连续的,但表头元素一定存储在其他元素的前面D)线性表中的个元素在存储空间中的位置不一定是连续的,且各元素的存储顺序也是任意的4.已知二叉树后序遍历序列是edcfba,中序遍历序列deacbf,它的前序遍历序列是();5.如果进栈序列为 e1,e2,e3,e4 ,则可能的出栈序列是();6.对长度为n的字符串进行字符定位运算的时间复杂度为();A)O(1)B)O(根号n)C)O(nlog2n)D)O(n)个顶点的连通图中边得条数至少为()8.合并两个已经排好序的长度为n的Array,最坏情况下需要比较多少次()A)2nB)2n-1C)2n+1D)n29.深度为5的满二叉树中,叶子结点的个数为()A)32B)31C)16D)1510.冒泡排序算法和快速排序算法的时间复杂度分别是什么?11.请简述数组和链表数据结构的特点及应用的场合?12.下列哪些数据结构最适合医疗仪器设备中的大型数据量的插入,查找()A)数组B)哈希表C)红黑树/二叉平衡树D)链表13.下列哪些排序算法的平均时间复杂度是O(nlog2n)(),哪些是稳定的排序()A)冒泡排序B)希尔排序C)快速排序D)插入排序E)堆排序14.下列哪些说法是正确的:()A)二分查找法在一个长度为1000的有序整数数组查找一个整数,比较的次数不超过100次B)在二叉树中查找元素的时间复杂度为O(log2n);C)对单向链表,可以使用冒泡排序;D)对双向链表,可以使用快速排序;15.已知某二叉树的后序遍历是DFBEGCA,中序遍历的顺序是DBFACEG,其前序遍历顺序是_________________16.下列代码将两个有序链表结合为一个,链表中的元素的排列顺序为从小到大。

单向链表基本操作的递归实现

单向链表基本操作的递归实现

单向链表基本操作的递归实现这几天正在复习一些基本的算法和实现,今天看了看递归的基本原理,发现自己对递归还不是特别清楚,特别是不清楚递归的思想,不能很准确的把握先分解成小事件,在合并的思想,其实也是数学归纳法的程序体现,其实数学归纳法是一种强大的方法,记得高中的时候最喜欢做的题目就是数学归纳方面的证明,现在想过来好多问题我不能采用这种方式思考,可见知识真的是有联系的,只是我们没有找到联系的方式而已。

为了熟悉递归的思想,我尝试了采用递归的方式实现单向链表的基本操作。

单向的链表是C语言课程中接触到的中比较复杂的数据结构,但是他确实其他数据结构的基础,在一般情况下都是采用迭代的形式实现,迭代的形式相比递归要节省时间和空间,但是代码相对来说要复杂,递归往往只是简单的几句代码,我主要是为了熟悉迭代,并不在性能上进行分析。

基本的实现如下所示:#include;#include;typedef struct listnode{int val;struct listnode *next;}List;/*统计节点个数*/int count_listnode(List *head) {static int count = 0;if(NULL != head){count += 1;if(head->;next != NULL){count_listnode(head->;next);}return count;}}/*顺序打印*/void fdprint_listnode(List *head) {if(NULL != head){printf(&quot;%d\t&quot;,head->;val);if(head->;next != NULL){fdprint_listnode(head->;next);}}}/*反向打印*/void bkprint_listnode(List *head) {if(head != NULL){if(head->;next != NULL){bkprint_listnode(head->;next);}printf(&quot;%d\t&quot;,head->;val);}}/*删除一个节点的数据为d的节点*/List *delete_node(List * head, int d) {List *temp = head;if(head != NULL){if(head->;val == d){temp = head;head = head->;next;free(temp);temp = NULL;}else{temp = head->;next;if(temp != NULL){temp = delete_node(temp,d); head->;next = temp;}}}return head;}/*删除所有val = d的节点*/List* delete_allnode(List *head, int d) {List *temp = head, *cur = head;if(head != NULL){/*如果第一个就是需要删除的对象*/if(cur->;val == d){temp = cur;cur = cur->;next;free(temp);temp = NULL;temp = delete_allnode(cur, d); head = temp;}else /*不是删除的对象*/{cur = head->;next;temp = delete_allnode(cur, d);/*将得到的链表连接到检测的区域*/ head->;next = temp;}}return head;}/*最大值*/int max_list(List *head){int max = 0;int temp;if(NULL == head){printf(&quot;Error: NULL pointer...&quot;);}if(NULL != head && head->;next == NULL){return head->;val;}else{temp = max_list(head->;next);max = (head->;val >; temp ? head->;val : temp); return max;}}/*最小值*/int min_list(List *head){int min = 0;int temp;if(NULL == head){printf(&quot;Error: NULL pointer...&quot;);}if(NULL != head && head->;next == NULL){return head->;val;}else{temp = min_list(head->;next);min = (head->;val ;val : temp); return min;}}/*创建链表*/List* create_list(int val){List *head = (List*)malloc(sizeof(List)/sizeof(char)); if(NULL == head){return NULL;}head->;val = val;head->;next = NULL;return head;}/*插入节点*/List* insert_listnode(List *head, int val) {List *temp;if(NULL == head){return NULL;}temp = (List*)malloc(sizeof(List)/sizeof(char));temp->;val = val;temp->;next = head;head = temp;return head;}/*删除链表*/void delete_list(List *head) {List *temp = NULL;if(head != NULL){temp = head;head = head->;next;free(temp);temp = NULL;delete_list(head);}}int main(){int n = 0;int i = 0;List * head = create_list(10);for(i = 0; i < 10; ++ i){n = 1 + (int)(10.0*rand()/(RAND_MAX + 1.0)); head = insert_listnode(head, n);}fdprint_listnode(head);printf(&quot;\n&quot;);bkprint_listnode(head);printf(&quot;\n%d\n&quot;, count_listnode(head));printf(&quot;\n&quot;);#if 10head = delete_node(head, 10); fdprint_listnode(head);printf(&quot;\n&quot;);bkprint_listnode(head);printf(&quot;\n&quot;);#endif#if 10head = delete_allnode(head, 10);fdprint_listnode(head);printf(&quot;\n&quot;);bkprint_listnode(head);#endifprintf(&quot;max = %d\n&quot;,max_list(head)); printf(&quot;max = %d\n&quot;,min_list(head));delete_list(head);head = NULL;if(head == NULL){printf(&quot;ERROR:null pointer!...\n&quot;); }return 0;}递归中需要注意的思想我任务就是为了解决当前的问题,我完成最简单的一部操作,其他的由别人去完成,比如汉诺塔中的第一个和尚让第二个和尚把前63个金盘放在B处,而他自己只需要完成从A到C的搬运,实质上他自己完成的只有一部最简答的,但是搬运这种动作有存在非常大的相似性。

C语言三种基本排序方法

C语言三种基本排序方法

C语言三种基本排序方法
一、选择排序法。

选择排序法的第一层循环从起始元素开始选到倒数第二个元素,主要是在每次进入的第二层循环之前,将外层循环的下标赋值给临时变量,接下来的第二层循环中,如果发现有比这个最小位置处的元素更小的元素,则将那个更小的元素的下标赋给临时变量,最后,在二层循环退出后,如果临时变量改变,则说明,有比当前外层循环位置更小的元素,需要将这两个元素交换。

二、冒泡排序法。

冒泡排序算法的运作如下:(从后往前)比较相邻的元素。

如果第一个比第二个大,就交换他们两个。

对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。

在这一点,最后的元素应该会是最大的数。

针对所有的元素重复以上的步骤,除了最后一个。

持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

三、插入排序法。

所谓插入排序法,就是检查第i个数字,如果在它的左边的数字比它大,进行交换,这个动作一直继续下去,直到这个数字的左边数字比它还要小,就可以停止了。

插入排序法主要的回圈有两个变数:i和j,每一次执行这个回圈,就会将第i个数字放到左边恰当的位置去。

插入排序的基本思想是:每步将一个待排序的纪录,按其关
键码值的大小插入前面已经排序的文件中适当位置上,直到全部插入完为止(分为直接插入法和折半插入法)。

C语言-链表

C语言-链表

NWPU—CC—ZhangYanChun
13

void main( )
{┇
for(i=1; i<=N; i++)
/*建立链表*/
{┇
}
for(i=1; i<=N; i++)
/*输出链表*/
{ if(i==1) p1=head;
/*p1指向首节点*/
else p1=p1->next; /*p1指向下一节点*/
第第9十页,一共2章8页。 结构体与共用体
NWPU—CC—ZhangYanChun
10
3) 重复第2步,建立并链接多个节点直至所需长
度,将末尾节点的next成员赋值0。
head
1048 p1 1370 p1
2101
2304
1012
2918
89.5
90
85
操作:
1370
1012
NULL
pp22
p2
p1=(struct student *)malloc(len);
成功,返回存储块起始指针,该指针类型为
void *;否则返回空指针(NULL)。
内存释放函数原形:void free(void *p); 功能:释放p所指向的内存块。
包含文件:malloc.h、stdlib.h中均有其原型声明。
C 程序设计
第第4十页,一共2章8页。 结构体与共用体
NWPU—CC—ZhangYanChun
第第5十页,一共2章8页。 结构体与共用体
NWPU—CC—ZhangYanChun
6
6) 链表的类型
单链表:每个节点只有一个指向后继节点的指针 双向链表:每个节点有两个用于指向其它节点的指针;

云南开放大学奥鹏作业数据结构(20秋)形考作业4

云南开放大学奥鹏作业数据结构(20秋)形考作业4

数据结构(20秋)形考作业4
串与普通的线性表相比较,它的特殊性体现在()。

A:顺序的存储结构
B:链接的存储结构
C:数据元素是一个字符
D:数据元素可以任意
答案:C
对于一颗有50个节点的,度为3的树来说,其最小高度为()。

A:3
B:4
C:5
D:6
答案:C
排序方法中,从尚未排序序列中挑选元素,并将其依次放入已排序序列(初始为空)的一端的方法,称为()排序。

A:归并
B:插入
C:选择
D:快速
答案:C
以下说法不正确的是()。

A:栈的特点是后进先出
B:队列的特点是先进先出
C:栈的删除操作在栈底进行,插入操作在栈顶进行
D:队列的插入操作在队尾进行,删除操作在队头进行
答案:C
栈的插入操作在()进行。

A:栈顶
B:栈底
C:栈顶或栈底
D:在任意指定位置
答案:A
在无向图中,定义顶点i到顶点j的路径,是从顶点i到顶点j的一个()。

A:顶点序列
B:顶点个数
C:权值之和
D:边的条数
答案:A
()是性质相同的数据元素的集合,是数据的子集。

A:数据元素
B:数据对象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河北联合大学 2011-2012 第 2 学期《 软 件 设 计 基 础 -C++》课程设计报告设计名称:设计一个处理单向链表的程序:链表的排序 姓 名:王学增 学 号:201005100206专业班级:土木工程 1 班 学 院:建筑工程学院设计时间:2012-5-31 设计地点:机房指导教师评语: 教师评定: 自评成绩;75指导教师签字:年 年 月 月 日 日《软件设计基础-C++》课程设计报告第2页,共16 页目录1.课程设计目的···································· ···································· ···································· 2.课程设计任务与要求 ································ ································ ······························· 3.课程设计说明书··································· ··································· ·································· 4.课程设计成果···································· ···································· ···································· 5.程序调试过程···································· ···································· ···································· 6.设计问题的不足和改进方案 ···························· ···························· ··························· 7.课程设计心得···································· ···································· ···································· 8.参考文献······································· ······································· ······································《软件设计基础-C++》课程设计报告第3页,共16 页1.课程设计目的《软件设计基础-C++》课程设计是这门课程的实践性教学环节之一,本次设计结合实际应用的要求, 使课程设计既覆盖 C++的知识点,又接近工程实际需要。

相关文档
最新文档