利用三角函数测高共22页

合集下载

6 利用三角函数测高

6  利用三角函数测高

拓展与延伸
如图,测量人员在山脚A处测得山顶B的仰角为45°,沿着倾
角为30°的山坡前进1 000米到达D处,在D处测得山顶B的仰
角为60°,则山高BC大约是(精确到0.1米)( A )
A. 1 366.0米
B. 1 482.1米
C. 1 295.9米
D. 1 508.2米
水平线
90° 60° 30°
90°
60°

30°
新课讲解
活动一:测量倾斜角
M
根据刚才测量数据, 你能求出目标M的仰 角或俯角吗?说说你 的理由.
水平线
同角的余角相等
1
2
4
3
新课讲解
活动二:测量底部可以到达的物体的高度
所谓“底部可以到达”,就是在地面上可以无障碍地直接测得测点与被测物 体底部之间的距离. 如图,要测量物体MN的高度,需测量哪些数据? 可按下列步骤进行:
新课讲解
知识点1 认识测倾器 简单的测倾器由度盘、铅锤和支杆组成。
90 90
P
Q
度盘
0
铅锤
支杆
新课讲解
活动一:测量倾斜角 M
使 用 测 倾 器 测 量 倾 斜 角 的 步骤如下: 1.把支杆竖直插入地面,使支 杆的中心线、铅锤线和度盘 的00刻度线重合,这时度盘的 顶线PQ在水平位置. 2.转动度盘,使度盘的直径对 准目标M,记下此时铅锤线所 指的度数.
1.在测点A处安置测倾器,
M
测得M的仰角∠MCE=α.
2.量出测点A到物体底部N的水平距离 E
AN=L.
N
3.量出测倾器的高度AC=a
α
L
a
C A
新课讲解

1.6 利用三角函数测高 课件(17张ppt)

1.6 利用三角函数测高 课件(17张ppt)

tan A a 1
A
b tan B
2、仰角、俯角:


线
B
c
a

b
C
视线
仰角 俯角
水平线
视线
认识测倾器
简单的测倾器由度盘、铅锤和支杆组成。
90 90
P
Q
度盘
0
铅锤
支杆
M
使用测倾器测 量倾斜角的步骤 如下: 1.把支杆竖直插 入地面,使支杆的 中心线、铅锤线 和度盘的00刻度 线重合,这时度盘 的顶线PQ在水平 位置. 2.转动度盘,使度 盘的直径对准目 标M,记下此时铅 锤线所指的度数.
1.测量底部可以到达的物体的高度. 2.测量底部不可以到达的物体的高度. 三、目前我们学习的测量物体高度的方法 有相似法、全等法、三角函数法.
作业布置
必做题:
助学P199 第8、9两题 .
选做题:
习题1.7 第1、2、3题 .
为60° ,测得塔底B的俯角为30°,则塔高AB = 米;
2.如图1-17,小明想测量电线杆AB的高度,发现电线杆的影 子恰好落在地面BC和斜坡的坡面CD上,测得BC = 10米,CD = 4米,CD与地面成30°角,且此时测得1米杆的影长为2米, 则电线杆的高度为 米.
A
C
D
B
图1-16
3.如图,测量人员在山脚A处测得山顶B的仰角为45°,沿着 倾角为30°的山坡前进1 000米到达D处,在D处测得山顶B的仰 角为60°,则山高BC大约是(精确到0.1米)( ); A. 1 366.0米 B. 1 482.1米 C. 1 295.9米 D. 1 508.2米
活动一:测量倾斜角.
水平线

1.6 利用三角函数测高(教案)-北师大版数九年级下册

1.6 利用三角函数测高(教案)-北师大版数九年级下册

第6节利用三角函数测高1.经历设计活动方案、自制仪器或运用仪器进行实地测量以及撰写活动报告的过程.2.能够对得到的数据进行分析,能够对仪器进行调整和对测量的结果进行矫正,进而得出所要求的结果.3.能够综合运用直角三角形边角关系的知识解决实际问题.让学生经历设计活动方案、自制仪器的过程,通过综合运用直角三角形边角关系的知识,利用数形结合思想解决实际问题,提高学生解决实际问题的能力.通过积极参与数学活动过程,培养学生不怕困难的品质,发展合作意识和科学精神.【重点】综合运用直角三角形边角关系的知识解决实际问题.【难点】设计活动方案、运用仪器的过程及学生学习品质的培养.【教师准备】测倾器、皮尺等测量工具;多媒体课件.【学生准备】复习三角函数的概念和解直角三角形的相关知识.导入一:一天课外活动课,数学兴趣小组的同学想去操场上测量学校旗杆的高度(如图所示).以下是两位同学设计的测量方案:方案1:用皮尺和标杆能测出旗杆的高度.方案2:用皮尺和小平面镜能测出旗杆的高度.【问题】你认为这两位同学提出的方案可行吗?如果是阴天没有太阳光怎么办?[设计意图]通过生活中的实际问题引入课题,使学生认识到数学源于生活,增加学生学习数学的兴趣,并让学生带着问题走进今天的学习.导入二:如图所示展示的是山东省青岛市电视塔夜晚的美丽景色,青岛电视塔坐落于市中心榉林公园内116m高的太平山上.由上海同济大学马人乐先生设计.由于其创意新、选点好、功能布局合理、色调协调及综合规模宏大等,1995年被国务院发展研究中心选入《中华之最大荣誉》,认为是“中国第一钢塔”.某数学兴趣小组的同学想测量该电视塔的高度.【问题】测量电视塔的高度和测量旗杆的高度的方法一样吗?两者有什么区别?[设计意图]通过青岛市电视塔的介绍,既让学生增长了课外知识,又引出了新的疑问——测量方法的区别,激发了学生的学习兴趣,为新知的探究奠定了良好的基础.课件出示:(一)测倾器的认识:如图所示的是一个测倾器的外观图,它是测量倾斜角的仪器.简单的测倾器由度盘、铅锤和支杆组成.【教师活动】制作测倾器时应注意什么?【学生活动】学生观察、交流后得出:支杆的中心线、铅垂线、0°刻度线要重合,否则测出的角度不准确.度盘的顶线PQ与支杆的中心线、铅垂线、0°刻度线要互相垂直,并且度盘有一个旋转中心是铅垂线与PQ的交点.当度盘转动时,铅垂线始终垂直向下.(二)测倾器的使用方法和步骤:【教师活动】用测倾器如何测仰角?【师生活动】学生思考后,师生共同总结:使用测倾器测量倾斜角的步骤如下:1.把支杆竖直插入地面,使支杆的中心线、铅垂线和度盘的0°刻度线重合,这时度盘的顶线PQ 在水平位置.2.转动度盘,使度盘的直径对准目标M,记下此时铅垂线所指的度数.(三)测倾器的运用:课件出示:【做一做】根据刚才测量的数据,你能求出目标M的仰角或俯角吗?说说你的理由.【师生活动】根据操作步骤:当度盘的直径对准目标M时,铅垂线指向一个度数,即∠BOA的度数.根据图形我们不难发现:∵∠BOA+∠NOA=90°,∠MON+∠NOA=90°,∴∠BOA=∠MON.因此读出∠BOA的度数也就读出了仰角∠MON的度数.∴测倾器上铅垂线所示的度数就是物体仰角的度数.【思考】根据上面的做法,如何用测倾器测量一个低处物体的俯角呢?【学生活动】生类比操作:和测量仰角的步骤是一样的,只不过测量俯角时,转动度盘,使度盘的直径对准低处的目标,记下此时铅垂线所指的度数,同样根据“同角的余角相等”,铅垂线所指的度数就是低处的俯角.[设计意图]了解测倾器的构造,学习其使用方法.目的是在测量时能正确地使用,特别注意测量【教师提示】所谓“底部可以到达”,就是在地面上可以无障碍地直接测得测点与被测物体的底部之间的距离.师引导学生观察并思考下面的问题:1.如图所示,要测量物体MN的高度,需测量哪些数据?2.请说出测量物体MN的高度的一般步骤,需要测得的数据用字母表示.【学生活动】学生思考后与同伴交流,统一答案:1.测量A点到物体底部N点的距离AN、测倾器的高度AC的长以及测量仰角∠MCE的度数.2.测量底部可以到达的物体的高度的步骤:(1)在测点A处安置测倾器,测得M的仰角∠MCE=α.(2)量出测点A到物体底部N的水平距离AN=l.(3)量出测倾器的高度AC=a(即顶线PQ成水平位置时,它与地面的距离).【做一做】根据上面测量的数据,你能求出物体MN的高度吗?说说你的理由.【学生活动】生独立解答后,代表展示:解:在Rt△MCE中,ME=EC·tanα=AN·tanα=l·tanα,∴MN=ME+EN=ME+AC=l·tanα+a.[设计意图]通过小组合作设计方案,培养学生科学的思维方式及归纳总结的能力,并积累“做数学”经验.【活动三】测量底部不可以到达的物体的高度【教师提示】所谓“底部不可以到达”,就是在地面上不能直接测得测点与被测物体的底部之间的距离.师引导学生观察,小组交流,思考下面的问题:1.要测量物体MN的高度,使用测倾器测一次仰角够吗?2.如图所示,你能类比活动二的方法得出测量底部不可以到达的物体的高度的一般步骤吗?需要测得的数据用字母表示.【师生活动】学生交流后代表发言,师生共同订正:1.要测量物体MN的高度,测一次仰角是不够的.2.测量底部不可以到达的物体的高度的步骤:(1)在测点A处安置测倾器,测得此时M的仰角∠MCE=α.(2)在测点A与物体之间的B处安置测倾器(A,B与N都在同一条直线上),测得此时M的仰角∠MDE=β.(3)量出测倾器的高度AC=BD=a,以及测点A,B之间的距离AB=b.【做一做】根据刚才测量的数据,你能求出物体MN的高度吗?说说你的理由.【学生活动】生独立解答后,代表展示:解:∵在Rt△MDE中,ED=,在Rt△MCE中,EC=,∴EC-ED=b,∴=b,∴ME=,∴MN=+a.【议一议】同学们知道了底部不可以到达的物体高度的测量方案,利用这种方案你们可以测量哪些物体的高度?【学生活动】生发挥想象力,并分组讨论这些高度的测量方案和计算方法.【议一议】问题(1):到目前为止,有哪些测量物体高度的方法?【师生小结】测量物体的高度的方法:(1)利用三角函数;(2)利用三角形相似;(3)利用全等三角形.问题(2):如果一个物体的高度已知或容易测量,那么如何测量某测点到该物体的水平距离?【师生小结】以活动三中的图为例,可以测得M的仰角∠MCE=α,以及测倾器的高AC=a,然后根据AN=EC即可求出测点A到物体MN的水平距离AN.[设计意图]引导学生设计测量底部不可以到达的物体的高度,在交流、展示自己设计的方案的过程中完善方案,判断其可行性,为下面的实际操作做准备,同时培养学生科学、严谨的做事态度.【活动四】设计测量方案,撰写活动报告你能根据我们学过的测量物体高度的方法完成下面的问题吗?课件出示:某校学生去春游,在风景区看到一棵汉柏树,不知这棵汉柏树有多高,下面是两位同学的一段对话:小明:我站在此处看树顶仰角为45°.小华:我站在此处看树顶仰角为30°.小明:我们的身高都是1.6m.小华:我们相距20m.请你根据这两位同学的对话,计算这棵汉柏树的高度.(参考数据:≈1.414,≈1.732,结果保留三个有效数字)【教师活动】引导学生判断是测量底部可以到达的物体的高度还是测量底部不可以到达的物体的高度,然后从两名学生的对话中分析得到的信息:∠ABE=30°,∠ACE=45°,ED=1.6m,BC=20m.【师生活动】生独立解答后,同伴交流.代表展示,师生共同订正.解:如图所示,延长BC交DA于E.设AE的长为x m.在Rt△ACE中,∠ACE=45°,∠AEB=90°,则∠CAE=45°,∴CE=AE=x.在Rt△ABE中,∠B=30°,AE=x,tan B=,即tan30°=,∴BE=x.∵BE-CE=BC,BC=20m,∴x-x=20,解得x=10+10,∴AD=AE+DE=10+10+1.6≈28.9(m).答:这棵汉柏树的高度约为28.9m.【学生活动】撰写活动报告.[设计意图]在解决问题的过程中再一次验证测量方案的可行性,巩固新知的同时,利用生活情境设计问题,培养学生的应用意识,提高分析问题、解决问题的能力.1.利用三角函数的知识可以测量物体的高度:(1)测量倾斜角的方法.(2)测量底部可以到达的物体的高度的方法和步骤.(3)测量底部不可以到达的物体的高度的方法和步骤.2.测量物体的高度的方法:(1)利用三角函数;(2)利用三角形相似;(3)利用全等三角形.1.(2015·长沙中考)如图所示,为测量一棵与地面垂直的树OA的高度,在距离树的底端30m的B处,测得树顶A的仰角∠ABO为α,则树OA的高度为()A.mB.30sinαmC.30tanαmD.30cosαm解析:在Rt△ABO中,∵BO=30m,∠ABO为α,∴AO=BO tanα=30tanα(m).故选C.2.某市进行城区规划,工程师需测某楼AB的高度,工程师在D点用高2m的测角仪CD,测得楼顶端A的仰角为30°,然后向楼前进30m到达E,又测得楼顶端A的仰角为60°,则楼AB的高为.解析:在Rt△AFG中,∠AFG=60°,∠AGC=90°,tan∠AFG=,∴FG==.在Rt△ACG中,∠ACG=30°,tan ∠ACG=,∴CG==AG.∵CG-FG=30m,∴AG-=30,解得AG=15,∴AB=(15+2)m.故填(15+2)m.3.在一次综合实践活动中,小明要测某地一座古塔AE的高度,如图所示,已知塔基AB的高为4m,他在C处测得塔基顶端B的仰角为30°,然后沿AC方向走5m到达D点,又测得塔顶E的仰角为50°.(人的身高忽略不计)(1)求AC的距离;(结果保留根号)(2)求塔高AE.(结果保留整数)解:(1)在Rt△ABC中,∠ACB=30°,AB=4,tan∠ACB=,∴AC===4(m).答:AC的距离为4m.(2)在Rt△ADE中,∠ADE=50°,AD=5+4,tan∠ADE=,∴AE=AD·tan∠ADE=(5+4)×tan50°≈14(m).答:塔高AE约为14m.6利用三角函数测高1.利用三角函数的知识可以测量物体的高度:(1)测量倾斜角的方法.(2)测量底部可以到达的物体的高度的方法和步骤.(3)测量底部不可以到达的物体的高度的方法和步骤.2.利用三角形相似的知识可以测量物体的高度.3.利用全等三角形的知识也可以测量物体的高度.一、教材作业【必做题】教材第23页习题1.7第1,2题.【选做题】教材第23页习题1.7第3题.二、课后作业【基础巩固】1.已知A,B两点,如果A对B的俯角为α,那么B对A的仰角为()A.αB.90°-αC.90°+αD.180°-α2.如图所示,为了测量电线杆AB的高度,小明将测倾器放在与电线杆的水平距离为9m的D处.若测倾器CD的高度为1.5m,在C处测得电线杆顶端A的仰角为36°,则电线杆AB的高度约为m(精确到0.1m).(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)3.如图所示,两建筑物的水平距离BC为18m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°.则建筑物CD的高度为m.(结果不作近似计算)4.(2014·云南中考)如图所示,小明在M处用高1m(DM=1m)的测角仪测得旗杆AB的顶端B的仰角为30°,再向旗杆方向前进10m到F处,又测得旗杆顶端B的仰角为60°,请求出旗杆AB的高度.(取≈1.73,结果保留整数)【能力提升】5.(2015·衡阳中考)如图所示,为了测得电视塔的高度AB,在D处用高为1m的测角仪CD,测得电视塔顶端A的仰角为30°,再向电视塔方向前进100m达到F处,又测得电视塔顶端A的仰角为60°,则这个电视塔的高度AB(单位:m)为()A.50B.51C.50+1D.1016.在一次实践活动中,某课题学习小组用测倾器、皮尺测量旗杆的高度,他们设计了如下的方案(如图(1)所示):(1)在测点A处安置测倾器,测得旗杆顶部M的仰角∠MCE=α;(2)量出测点A到旗杆底部N的水平距离AN=m;(3)量出测倾器的高度AC=h.根据上述测量数据,即可求出旗杆的高度MN.如果测量工具不变,请仿照上述过程,设计一个测量某小山(如图(2)所示)高度的方案:(1)在图(2)中,画出你测量小山高度MN的示意图(标上适当的字母);(2)写出你的设计方案.【拓展探究】7.如图所示,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树的正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为3m,台阶AC的坡度为1∶(即AB∶BC=1∶),且B,C,E三点在同一条直线上.请根据以上条件求出树DE的高度(测倾器的高度忽略不计).【答案与解析】1.A2.8.1(解析:在Rt△ACE中,AE=CE·tan36°=BD·tan36°=9×tan36°≈6.57,∴AB=AE+EB=AE+CD ≈6.57+1.5≈8.1(m).故填8.1.)3.12(解析:首先过点D作DE⊥AB于点E,可得四边形BCDE是矩形,然后分别在Rt△ABC与Rt△ADE 中,利用正切函数的知识,求得AB与AE的长,进而可求得答案.)4.解:∵∠BDE=30°,∠BCE=60°,∴∠CBD=60°-∠BDE=30°=∠BDE,∴BC=CD=10m,在Rt△BCE中,sin 60°=,即=,∴BE=5,AB=BE+AE=5+1≈10(m).答:旗杆AB的高度大约是10m.5.C(解析:设AG=x,在Rt△AEG中,∵tan∠AEG=,∴EG==x.在Rt△ACG中,∵tan∠ACG=,∴CG==x,∵CG-EG=100,∴x-x=100,解得x=50,则AB=50+1(m).故选C.)6.解:(1)画出示意图如图所示.(2)①在测点A处安置测倾器,测得此时M的仰角∠MCE=α.②在测点B处安置测倾器(A,B与N在同一条直线上),测得此时山顶M的仰角∠MDE=β.③量出测倾器的高度AC=BD=h,以及测点A,B之间的距离AB=m.根据上述测量数据,即可求出小山的高度MN.7.解:如图所示,过点A作AF⊥DE于F,则四边形ABEF为矩形,∴AF=BE,EF=AB=3.设DE=x,在Rt△CDE 中,∠DCE=60°,∴CE==x.在Rt△ABC中,∵=,AB=3,∴BC=3.在Rt△AFD中,DF=DE-EF=x-3,∠DAF=30°,∴AF==(x-3).∵AF=BE=BC+CE,∴(x-3)=3+x,解得x=9.∴DE=9m.答:树的高度为9m.这节课采用了学生分组活动与全班交流研讨相结合的方法探究测量物体高度的方案,并利用探索出的方案解决生活问题.本节课给了学生足够多的活动空间,通过师生互动、生生互动等活动,让学生积极参与到活动中来,激发学生学习的兴趣,让学生自主探究利用三角函数测高的步骤和方法,并会对测量物体的高度的方案进行设计.让学生用已有的知识解决生活实际问题,体验数学来源于生活,应用于生活,进一步掌握从实际问题到解直角三角形的建模过程.另外,通过小组合作交流形式,让学生积极参与数学活动,对数学产生好奇心,培养学生独立思考问题的习惯,并在数学活动中获得成功的体验,建立自信心.在探究时给学生充分的自主讨论交流时间,导致后面的当堂检测题处理得比较仓促,部分学生接受起来可能有些困难.针对每种测量方案都给出具体的事例让学生去实践,以检验自己所设计方案的可行性.复习题(教材第24页)1.解:(1).(2)0.(3).2.解:(1)0.7841.(2)0.0374.(3)0.7566.3.解:(1)∠A=45°.(2)a=4,∠A=60°.(3)a=b=4.4.sin A=,tan A=.5.(1)∠A≈42°27'15″.(2)∠B≈85°28'29″.(3)∠C≈88°23'28″.6.解:(1)==1.(2)原式=+2×+1-+=++1-+=2.(3)原式=-tan60°=tan60°-1-tan60°=-1.7.解:AC=2,BC=2,sin A=,cos A=.9.解:(1)tan∠ABC=tan∠ADC.(2)tan∠ABC=tan∠ADC.(3)tan∠ABC=·tan∠ADC.10.CD≈5.82m[提示:CD=BD-BC=20tan56°-20tan50°≈5.82(m).]11.船与观测者之间的水平距离约为173.2m.[提示:水平距离=≈173.2(m).]12.解:(1)如图所示,由两直线平行,内错角相等得∠ABD=60°.∵∠CBE=30°,∴∠ABC=90°.∵AB=BC=10km,∴AC==10≈14.1(km).(2)∵AB=BC,∴∠CAB=∠C=45°,∴C港在A港北偏东60°-45°=15°的方向上.13.解:依题意知PQ=180m,∠PTQ=50°,∴∠PQT=40°.∵tan∠PQT=,∴PT=PQ·tan40°≈180×0.839≈151(m).14.解:在Rt△ABC中,AC=6.3,BC=9.8,∴tan B==.∴∠B≈32°44'7″.因此射线与皮肤的夹角为32°44'7″.15.解:(1)在Rt△ACB中,∵AB=4m,∠ABC=60°,cos∠ABC=,∴BC=AB·cos60°=4×=2(m).(2)在Rt △DCE中,∵CD=2.3m,ED=4m,∴sin∠DEC===0.575,∴∠DEC≈35°5'58.68″.16.解:如图所示,在Rt△ACB中,∵AC=30m,∠BAC=30°,tan∠BAC=,∴BC=AC·tan30°=30×=10≈17.3(m).∵CE=AD=40m,∴BE=BC+CE=17.3+40≈57(m),∴乙楼高约57m.17.解:在Rt△BED 中,tan∠BDE =.在Rt△ACB 中,tan∠BAC =.∵∠BDE =30°,∠BAC =60°,DE =AC ,EC =AD =30m ,∴tan 30°=,即BC -30=AC ·tan 30°.又tan 60°=,即BC =AC ·tan 60°,∴AC -30=AC ,∴AC =30,∴AC ==15≈25.98(m ),∴BC ≈25.98×≈45.00(m ).18.解:设渔船到海岛A 的最近距离为x n mile ,由题意得(x -12)=x ,解得x =6>8,所以渔船没有触礁的危险.19.解:过点C 作CF ⊥AB 于F ,则△ADE ∽△ACF ,∴=,即=,∴CF =2.7m .∵BC =2.8m ,∴sin α==≈0.9643,∴α≈74°38'39.14″.20.解:如图所示,连接BD ,过点B 作BE ⊥CD 于E ,过点D 作DF ⊥AB 于F ,在Rt△BEC 中,sin C =,∴BE =BC ·sin 60°=20×=10(m ).在Rt△AFD 中,sin A =,∴DF =AD ·sin 60°=30×=15(m ),∴S 四边形ABCD =S △ABD +S △CBD =AB ·DF +CD ·BE =×50×15+×50×10=625≈1082.53(m 2).21.解:(1)如图所示,过A 作AG ⊥CD 于G ,过E 作EF ⊥CD 于F ,依题意知AB =5m ,BC =30m ,∠DEF =30°,EB =1.4m .在Rt△DFE 中,∵tan∠DEF =,∴DF =BC ·tan30°=30×=10(m ),∴DC =DF +FC =DF +EB =10+1.4≈18.72(m ).(2)∵GC =AB =5m ,∴DG =DC -GC ≈18.72-5=13.72(m ).∵AG =BC =30m ,∴AD =≈≈32.99(m ).22.提示:各边长约为0.34m ,0.34m ,0.66m .23.解:(1)由勾股定理可知OA 1=,OA 2=,OA 3=,…,OA n =.∵tan∠A 0OA 1==,∴∠A 0OA 1=45°.∵tan∠A 1OA 2==,∴∠A 1OA 2≈35°15'51.8″.∵tan ∠A 2OA 3==,∴∠A 2OA 3=30°.(2)∵tan 20°≈0.3640,tan∠A n -1OA n ==<tan 20°,∴>≈2.7473,∴n >7.5477,∴n 的值为8.本节课探究学习的主要任务是掌握利用测倾器测倾斜角和测量物体高度的方法,所以前提条件是要对测倾器有足够的了解,学生在课前可以自己制作一个简单的测倾器,这样就会非常熟悉其操作原理,对于活动一,测量倾斜角就会感觉非常容易;对于活动二、三的探究,分组讨论和全班的交流讨论就显得尤为重要,要积极投身其中,区分测量底部可以到达的物体的高度和底部不可以到达的物体的高度的方法,熟练掌握各种方案的步骤,并利用所学知识解决实际问题,达到学以致用.测量物体的高度时容易漏掉测倾器的高度.李明带领小组成员做了测量电线杆高度的活动,在离电线杆21m 的D 点,用高1.2m 的测角仪CD 测得电线杆顶端A 的仰角α=30°,则电线杆AB 的高为m .【错解】7【错解分析】在利用三角函数计算出AE 的长度后,忽略测倾器的高度,漏加CD ,造成错误.【正解】7+1.2【正解分析】CE =DB =21m ,BE =CD =1.2m .在Rt△ACE 中,∠α=30°,CE =21m ,∴AE =CE ·tan 30°=7(m ),∴AB =AE +BE =(7+1.2)m .(2014·绍兴中考)九(1)班同学在上学期的社会实践活动中,对学校旁边的山坡护墙和旗杆进行了测量.(1)如图(1)所示,第一小组用一根木条CD斜靠在护墙上,使得DB与CB的长度相等,如果测量得到∠CDB=38°,求护墙与地面的倾斜角α的度数.(2)如图(2)所示,第二小组用皮尺量得EF为16m(E为护墙上的端点),EF的中点离地面FB的高度为1.9m,请你求出E点离地面FB的高度.(3)如图(3)所示,第三小组利用第一、第二小组的结果来测量护墙上旗杆的高度,在点P测得旗杆顶端A的仰角为45°,向前走4m到达Q点,测得A的仰角为60°,求旗杆AE的高度(精确到0.1 m).备用数据:tan60°≈1.732,tan30°≈0.577,≈1.732,≈1.414.〔解析〕(1)根据∠α=2∠CDB即可得出答案.(2)设EF的中点为M,过M作MN⊥BF,垂足为点N,过点E作EH⊥BF,垂足为点H,如图所示,根据EH=2MN即可求出E点离地面FB的高度.(3)延长AE,交PB的延长线于点C,设AE=x,则AC=x+3.8,CQ=x-0.2,根据=得出=,求出x即可.解:(1)∵BD=BC,∴∠CDB=∠DCB,∴∠α=2∠CDB=2×38°=76°.(2)设EF的中点为M,如图所示,过M作MN⊥BF,垂足为点N,过点E作EH⊥BF,垂足为点H,∵MN∥EH,MN=1.9,∴EH=2MN=3.8(m),∴E点离地面FB的高度是3.8m.(3)延长AE,交PB于点C,如图所示,设AE=x,则AC=x+3.8,∵∠APB=45°,∴PC=AC=x+3.8.∵PQ=4,∴CQ=x+3.8-4=x-0.2,∴tan∠AQC==tan60°=,∴=,解得x=≈5.7,∴AE≈5.7m.答:旗杆的高度约是5.7m.[解题策略]此题考查了解直角三角形的应用,用到的知识点是仰角的定义,能作出辅助线并借助仰角构造直角三角形是解本题的关键.。

利用三角函数测高

利用三角函数测高
如图,要测量物体MN的高度,需测量哪些数据?
可按下列步骤进行:
1.在测点A处安置测倾器, 测得M的仰角∠MCE=α.
2.量出测点A到物体底部 M N的水平距离AN=L.
3.量出测倾器的高度AC=a E N
α
L
aC
A
根据刚才测量的数据,你能求出物体MN的 高度吗?说说你的理由.
在Rt△MCE中, ME=EC tanα=AN tanα=L tanα MN=ME+EN=ME+AC=L tanα+a
要测量物体
MN的高度,使 M
用侧倾器测一
次仰角够吗?
为什么?
E
N
α C a
A
活动三:测量底部不可以到达的物体的高度.
要测量物体MN的高度,测一次仰角是不够的. 还需哪些条件,测量哪些数据呢?
M
E
β Dα
C
b物体MN的高度,可以按下列步骤进行:
1.在测点A处安置测倾器,测得M的仰角∠MCE=α. 2.在测点A与物体之间的B处安置测倾(A,B与N在一
水平线
90° 60° 30°
90°
60°

30°
活动一:测量倾斜角.
M
根据刚才测量 数据,你能求出 目标M的仰角 或俯角吗?说 说你的理由.
水平线
1
2
4
3
同角的余角 相等
活动二: 测量底部可以到达的物体的高度.
所谓“底部可以到达”,就是在地面上可以无障 碍地直接测得测点与被测物体底部之间的距离.
AB=AG+1≈83(m)
如图,山上有一座铁塔,山脚下有一矩形建筑物 ABCD.且建筑物周围没有开阔平整地带.该建筑物顶

《利用三角函数测高》课件1

《利用三角函数测高》课件1

如图,山上有一座铁塔,山脚下有一矩形建筑物 ABCD.且建筑物周围没有开阔平整地带.该建筑物顶
端宽度AD和高度DC都可以直接测得。从A、D、C三
点可看到塔顶端H.可供使用的测员工具有皮尺,测倾 器(即测角仪).
方案一
(1)如图(a)(测四个数据)
AD=m.CD=n,∠HDM=α,∠HAM=β
(2)设HG=x,HM=x-n, 在Rt△HDM中,tanα = H M
1.6 利用三角函数测高
根据我们所学的数学知识,你能设 计出哪些测量方案?都用到了什么知识?
活动课题:利用直角三角形的边角关系测量
物体的高度.
活动工具:测倾器,皮尺
等测量工具.
1、直角三角的边角关系:
tan A = a b
a=btanA b = a
tan A
2、仰角、俯角:
A
视线

仰角

线
俯角 水平线
M
E
α C
N
L
aA
和同伴交流一下,你发现了什么?
活动三:测量底部不可以到达的物体的高度.
所谓“底部不可以到达”,就是在地面上不能直接 测得测点与被测物体底部之间的距离.(如图)
要测量物体
MN的高度,使 M
用侧倾器测一
次仰角够吗?
为什么?
E
N
α C a
A
活动三:测量底部不可以到达的物体的高度.
要测量物体MN的高度,测一次仰角是不够的. 还需哪些条件,测量哪些数据呢?
水平线
90° 60° 30°
90°
60°

30°
活动一:测量倾斜角.

M

根据刚才测量 数据,你能求出 目标M的仰角 吗?说说你的 理由.

利用三角函数测高 北师大版九年级数学下册

利用三角函数测高    北师大版九年级数学下册

风板FG与EF夹角成136°,风沿FG方向吹出,为了让空调风不直接吹到
床上,空调安装的高度(BC的长)至少为多少?(精确到个位)(参考数据:
cos46°≈0.69,tan46°≈1.04,sin46°≈0.72)
【分析】连接AF,作FH⊥AD构造直角三角形运用三
角函数解出FH,再将床高加上即可求出EC的值.
解这个方程得:x≈45.1,
经检验:x≈45.1符合题意.
∴灯塔的高CF=55.1≈55(m)
答:灯塔的高为55米.
课堂总结
测倾器的认识及使用
利用三角函
数测高
测量底部可以到达的物体的
高度(一次测量仰角)
测量底部不可以到达的物体
的高度(两次测量仰角)
利用解三角
形的知识,
求出物体的
高度
直角三角形,将仰角或俯角置于这个三角形中,选择正确的三
角函数,并借助计算器求出要求的量.
活动三:测量底部不可以到达的物体的高度.
所谓“底部不可以到达”,就是在地面上不能直接测得
测点与被测物体的底部之间的距离.
如图1-17,要测量物体MN的高度,可按下列步骤进行:
图1-17
1.在测点A处安置测倾器,测得此时M的仰角∠MCE=α.
【详解】当A、F在一条直线时,就正好不会吹到床上,
连接AF,过点F作FH⊥AD,
∵AD=200,HD=20,
∴AH=180,
∵∠EFA=136°,
∴∠FAD=46°,
∴FH=AH·tan46°=180×1.04=187.2
∴ED=FH=187.2,
∴EC=187.2+50=237.2≈237.
故答案为237.
所谓“底部可以到达”,就是在地面上可以无障碍

6利用三角函数测高

6利用三角函数测高

C′
B′
x ta 6 n 0 x ta 3 n 0 50 D
C
B
x 5 0 2 53 4 3 .3 (m ) ta n 6 0 ta n 3 0
x 4 3 .3 1 .5 4 4 .8 4 5 ( m )
解:(1)由题意,AC=AB=610(米); (2)DE=AC=610(米),在Rt△BDE中,tan∠BDE= B E ,
∠DEM=30°,BC=EM=30 m,
M
CM=BE=1.4m
在Rt△DEM中, DM=EMtan30°≈30×0.577 =17.32(m), CD=DM+CM=17.32+1.4=18.72(m).
三 测量底部不可以到达的物体的高度
问题1:在黄浦江的另一端,你能否测量东方明珠的高度呢?
在现实生活中,我们不可以直接从测点到达被测点的脚
Eα F β
G
B CD
30° 45°
60m
解:由表格中数据,得α=30° ,β=45° ,
QtanAG,tanAG,
EG
FG
EG AG AG 3AG,
tan tan30
FG AG AG AG,
tan tan45
CDEF EGFG( 31)AG,
A G C D6 03 0 (3 1 )(m ), 3 1 3 1
DE
4.小明家所在居民楼的对面有一座大厦AB,AB= 80米.为测量居民楼与这座大厦之间的距离,小 明从自己家的窗户C处测得大厦顶部A的仰角为 37°,大厦底部B的俯角为48°.求小明家所在居 民楼与大厦的距离CD的长度.(结果保留整数)
(参考数据:s i n 3 7 o 3 , t a n 3 7 o 3 , s i n 4 8 o 7 , t a n 4 8 o 1 1 )

§162利用三角函数测高.docx

§162利用三角函数测高.docx

授课教师林永寿课型新课授课时间课题§ 1.62利用三角函数测鬲教学目标知识与技能:能够对所得到的数据进行分析,能够对仪器进行调整和对测量结果进行矫止,从而得岀符合实际的结果,能综合应用直角三角形的边角关系的知识解决实际问题.过程与方法:经历运用仪器进行实地测量以及撰写活动报告的过程.积极参与数学活动,积累数学活动的经验,捉高对实验数据的处理能力;学会将实际问题转化为数学模型的方法,在提高分析问题、解决问题的能力的同时,增强数学的应用意识.情感态度与价值观:能够主动积极地想办法,积极地投入到数学活动中去,提高学习数学的兴趣;培养不怕困难的品质,发展合作意识和科学精神.教7重点难点重卢4\\\1、能够对所得到的数据进行分析2、能够综合运用直角三角形边角关系的知识解决实际问题难点1、能够对所得到的数据进行分析2、能够综合运用直角三角形边角关系的知识解决实际问题教学方法猜想证明法讲授法引导交流法合作探究学习法学法指导渗透指导、讲授指导、点拨指导、交流指导课前准备一体机、PPT课件师生活动过程一、活动报告展示展示内容:活动方案1r、厂 A r、测量对象测量工具测量数据\ r、计算过程/ C >规则与要求:1、提供4个展示机会;2、每个小组选派一名代表上台展示;3、展示时间不得超过5分钟;4、其他同学进行点评;5、评选出本次活动的最佳小组.《利用三角函数测高》活动报告(示例测量对象大树C 测量图示1 L测量工具测量数据计算过程测量结果《利用三角函数测高》活动报告(示例2)测量对象测量图示测量工具测量数据计算过程测量结果《利用三角函数测高》活动报告(示例测量对象旗杆M测量图示E1[N B A 测量工具测量数据计算过程测量结果《利用三角函数测高》活动报告(示例测量对象教学楼测量图示Z_______ .X1Q0□□□□□□t£□□□□<—30 m->ZZZZ/Z//ZZZ/Z//ZZ (甲)(乙)测量工具测量数据计算过程测量结果二、活动心得交流在这次活动中你有什么收获?1•必做题:2•选做题:1、学生非常喜欢活动课,学习积极性非常高,要结合教材,多开发数学活动课;2、在活动中,学生利用数学知识解决了实际问题,感受了生活中的数学,体验教学反思到了数学的价值;3、在分组活动、小组合作、全班交流研讨的过程中,学生的合作意识得到了发展.。

1.6利用三角函数测高

1.6利用三角函数测高

3.量出测倾器的高度AC=BD=a,以及测点A,B之 间的距离AB=b.
根据测量数据, 你能求出物体 MN的高度吗?说 说你的理由.
想一想
(p19)
M
E N
β
D B
α
b
C
a
A
根据测量数据,物体MN的高度计算过程:
在Rt△MDE中,
ME ED= tan
M
在Rt△MCE中,
ME EC = tan a
1.6 利用三角函数测高 1.6 利用三角函数测高
枣庄市峄城区阴平中学 苏增产
温故而知新
1、仰角、俯角: 2、直角三角的边角关系:
铅 垂 线 仰角
视线
俯角
水平线
视线
3、利用三角函数解决实际问题的计算原则: “有斜(斜边)用弦(正弦、余弦),
c
B
a
无斜(斜边)用切(正切)”
A
b
┌ C
“宁乘勿除,取原(原始数据)避中(中间数据)”
≈ 在Rt MCE中,ME = ECtanα= ANtanα=20.6× tan30° 2′ 20.6× 0.578=11.60m, MN=ME+EN=ME+AC=11.60+1.22=12.82m
活动三:测量底部不可以到达的物体的高度.
所谓“底部不可以到达”,就是在地面上不能直接
测得测点与被测物体底部之间的距离.(如图) 要测量物体
议一议

相信你能行!
大家要认 真思考吆
(1)到目前为止,你有哪些 测量物体高度的方法? (2)如果一个物体的高度已 知或容易测量,那么如何测量 某测点到该物体的水平距离?
讨 与同伴交流一下,谈谈你的想法? 论 :

06-第一章6利用三角函数测高

06-第一章6利用三角函数测高

6 利用三角函数测高
栏目索引
发挥直观想象,构造直角三角形 素养解读 直观想象是指借助几何直观和空间想象感知事物的形态与变 化,利用空间形式特别是图形,理解和解决数学问题的素养.主要包括:借助 空间形式认识事物的位置关系、形态变化与运动规律;利用图形描述、分 析数学问题;建立形与数的联系,构建数学问题的直观模型,探索解决问题 的思路. 直观想象是发现和提出问题、分析和解决问题的重要手段,是探索和形成 论证思路、进行数学推理、构建抽象结构的思维基础. 直观想象主要表现为:建立形与数的联系,利用几何图形描述问题,借助几 何直观理解问题,运用空间想象认识事物.
知识点二 测量底部不可以到达的物体的高度
工具
步骤
图例
测量底部不可以到达 的物体的高度
测倾器、皮尺(卷尺)
如图,测量物体MN的高 度:(1)在测点A处安置 测倾器,测得此时M的 仰角∠MCE=α.(2)在测 点A与物体之间的B处 安置测倾器(A、B与N 在同一条直线上),测得 此时M的仰角∠MDE= β.(3)量出测倾器的高度 AC=BD=a,以及测 点A、B之间的距离AB =b.(4)根据三角函数求 出物体MN的高度,MN=
在Rt△CDE中, CD =tan∠CED,即
x
= 3,
DE
30 3- 3x-10 3
图1-6-5
解得x=15-
5
3 3
.答:立柱CD的高为15-
5
3 3
米.
6 利用三角函数测高
栏目索引
素养呈现 (1)了解角之间的关系,找到与已知和未知相关联的直角三角 形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,作CH ⊥AB于H,得到Rt△AHC和矩形BDCH. (2)由矩形BDCH得到BD=CH,设CD=x米,根据正切的定义用x表示出HC,根 据题意用x表示出ED. (3)在△CDE中,根据正切的定义列出方程,解方程即可.

三角函数的应用及利用三角函数测高

三角函数的应用及利用三角函数测高

第03讲 三角函数的应用及利用三角函数测高1.会运用有关解直角三角形的知识解决实际生活中存在的解直角三角形问题.2.理解用三角函数解决实际问题的有关概念;3.理解并解决实际问题中转化为三角函数模型解决实际问题。

知识点01锐角三角函数之间的关系如图所示,在Rt △ABC 中,∠C=90°.(1)互余关系:,;(2)平方关系:;(3)倒数关系:或;(4)商数关系:.要点诠释: 锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便.【知识拓展1】利用同角三角函数关系求值计算:(1)2tan452sin30cos 30-+o o o ; (2)22tan1tan89sin 1sin 89o o o o ×++.【答案】(1)34;(2)2.【分析】(1)根据特殊角的三角函数值计算即可;(2)根据直角三角形中tanA=1tanB,sin 2A+cos 2A=1,.解:()1原式21331211244=-´+=-+=;()2原式()221tan1sin 1cos 1tan1=´++o o o o 11=+2=.故答案为:(1)34;(2)2.【点拨】本题考查了三角函数值的计算.【即学即练1】已知∠A 为锐角且sinA=12,则4sin 2A -4sinAcosA +cos 2A的值是多少。

【答案】74【分析】先求出A Ð的度数,再求出cos A 的值,最后代入计算即可.解:A Q Ð为锐角,且1sin 2A =30A \Ð=°cos cos30A \=°2222411744()4224sin A sinAcos A A cos \-+´-´==【点拨】本题考查了锐角三角函数值,熟记特殊角的三角函数值是解题关键.【即学即练2】.如图,在ABCD Y 中,E ,F 是对角线BD 上的两点(点E 在点F 左侧),且90AEB CFD Ð=Ð=°.(1)求证:四边形AECF 是平行四边形.(2)当5AB =,3tan 4ABE Ð=,CBE EAF Ð=Ð时,求BD 的长.【答案】(1)见解析;(2)【分析】(1)由平行四边形的性质得到AB =CD ,ABE CDF Ð=Ð,和已知条件一起,用于证明三角形全等,再根据一组对边平行且相等的四边形是平行四边形判定定理得出结论;(2)根据平行四边形的性质得到一组对角相等,通过等量代换,得到CBE ECF Ð=Ð,则相等的角正切值也相等,根据比值算出结果.解:(1)证明Q ,∴//AE CF ,在中,//AB CD ,=AB CD ,∴ABE CDF Ð=Ð,∴ABE △≌CDF V ()AAS ,∴AE CF =,∴四边形AECF 是平行四边形.(2)解:∵ABE △≌CDF V ,∴BE =DF ,∵四边形AECF 是平行四边形,∴,在Rt ABE △中5AB =,3tan 4ABE Ð=,∴AE =3,BE =4.∵BE =DF ,AE =CF ,∴BE =DF =4,AE =CF =3,Q,CBE EAF Ð=Ð,∴CBE ECF Ð=Ð,∴tan ∠CBF =34CF BE EF EF=++,tan ∠ECF =3EF EF CF =,∴343EFEF =+,得到EF 2,或EF =2(舍去),∴BD 2=6,即BD =6.【点拨】本题考查了平行四边形的性质与判定以及相等的角的正切值也相等.解决本题的关键在于等量代换出角相等,应用相等的角的正切值也相等来解题.【即学即练3】求值:(1)260453456cos sin tan tan +-×o o o o ; ()2已知2tanA =,求245sinA cosAsinA cosA-+的值.【答案】(1)0;(2)313.【分析】(1)根据特殊角的三角函数值及互余两角三角函数值相互间的关系计算.(2)根据同角三角函数值相互间的关系计算.解:(1)原式12=+2﹣11122=+-1=0;(2)∵tan A =2,∴sin cos A A=2,∴sin A =2cos A ,∴原式=22cos 42cos 5A cosA A cosA ´-´+=3cos 13cos A A =313.【点拨】本题考查了特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,题型以选择题、填空题为主.【知识拓展2】求证同角三角函数关系式已知:1sin15cos15sin302o o o ×=,1sin20cos20sin402×=o o o ,1sin30cos30sin602×=o o o,请你根据上式写出你发现的规律________.【答案】1sin cos sin22a a a×=【分析】从角度的倍数关系方面考虑并总结写出结论.解:根据题意发现:同一个角正弦与余弦的积等于这个角的2倍的正弦的一半,规律为:1sin cos sin22a a a ×=.故答案为1sin cos sin22a a a ×=.【点拨】本题考点:同角三角函数的关系.【即学即练1】已知:实常数a b c d 、、、同时满足下列两个等式:⑴sin cos 0a b c q q +-=;⑵cos sin 0a b d q q -+=(其中q 为任意锐角),则a b c d 、、、之间的关系式是:___________【答案】a 2+b 2=c 2+d 2【分析】把两个式子移项后,两边平方,再相加,利用sin 2θ+cos 2θ=1,即可找到这四个数的关系.解:由①得asinθ+bcosθ=c ,两边平方,a 2sin 2θ+b 2cos 2θ+2absinθcosθ=c 2③,由②得acosθ-bsinθ=-d ,两边平方,a 2cos 2θ+b 2sin 2θ-2absinθcosθ=d 2④,③+④得a 2(sin 2θ+cos 2θ)+b 2(sin 2θ+cos 2θ)=c 2+d 2,∴a 2+b 2=c 2+d 2.【点拨】本题主要考查了同角三角函数基本关系式的应用,sin 2θ+bcos 2θ=1的应用是解题的关键,属于基础题.【即学即练2】.①sin 2A+cos 2A=________,②tanA•cotA=________.【答案】11【解析】如图,设Rt △ABC 中,∠C=90°,∠A 、∠B 、∠C 所对的边分别为a b c 、、,则sinA=a c,cosA=bc ,tanA=a b ,cotA=b a ,222+=a b c ,∴(1)sin 2A+cos 2A=2222222()()1a b a b c c c c c++===;(2)tanA•cotA=1a bb a×=.点睛:解答本题的要点是:画出符合要求的图形,结合锐角三角形函数的定义和勾股定理进行推理计算即可得到答案.【知识拓展3】互余两角的三角函数的关系在Rt △ABC 中,已知∠C =90°,sin A =35,求cos A 、tan A 以及∠B 的三个三角函数值.【分析】根据已知角A 的正弦设BC =3k ,得出AB =5k ,由勾股定理求出AC =4k ,根据锐角三角函数的定义求出即可.解:∵sin A =35=BCAB,∴设BC =3k ,AB =5k ,由勾股定理得:AC =4k ,则cos A =4554AC k AB k ==,tan A =3344BC k AC k ==,sin B =45AC AB =,cos B =35BC AB =,tan B =43AC BC =.【点拨】本题考查了锐角三角函数的定义的应用,熟练掌握定义是关键.【即学即练1】在Rt △ABC 中,∠C =90°,sin B =35,求cos A 的值.【答案】cos A =35.【分析】先根据三角形内角和定理得出∠A+∠B=90°,再根据互余两角的三角函数的关系求解.解::在△ABC 中,∵∠C =90°,∴∠A +∠B =90°,∴cos A =sin B =35.故答案为:35.【点拨】本题考查直角三角形中互为余角的两角的三角函数的关系及三角形内角和定理.解题关键是一个角的正弦值等于它的余角的余弦值,一个角的余弦值等于它的余角的正弦值;三角形内角和是180°.【即学即练2】在Rt △ABC 中,∠C=90°,sinA=34,求cosA ,sinB ,cosB ,tanA ,tanB 的值.;34【分析】已知直角三角形中一个锐角的某个三角函数值,求这个锐角的其他三角函数值和它的余角的各三角函数值,可以先画出直角三角形,结合图形和已知条件,利用设“k”法,将直角三角形的各边长用含“k”的代数式表示出来,其中k >0,然后根据锐角三角函数的定义,求得锐角的各三角函数值.解::如图因为Rt △ABC 中,∠C=90°,3sin 4A =,所以34BC AB =,设BC =3k(k >0),则AB =4k .在Rt △ABC 中,由勾股定理得AC ===.所以cos A =,sin AC B AB =33cos 44BCk B AB k ===,tan BC A AC ===tan AC B BC ===【知识拓展4】三角函数综合如图,在△ABC 中,∠ACB =90°,sin A =45,BC =8,D 是AB 中点,过点B 作直线CD 的垂线,垂足为点E.(1)求线段CD 的长;(2)求cos ∠ABE 的值.【答案】(1)5;(2)2425.解:试题分析:(1)利用正弦定义很容易求得AB =10,然后由已知D 为斜边AB 上的中点,直角三角形斜边上的中线等于斜边的一半求解.(2)cos ∠ABE =BEBD,则求余弦值即求BE ,BD 的长,易求得BD =5.再利用等面积法求BE 的长.试题解析:(1)在△ABC 中,∵∠ACB =90°,sin A =45BC AB =,而BC =8,∴AB =10.∵D 是AB 的中点,∴CD =12AB =5.(2)在Rt △ABC 中,∵AB =10,BC =8,∴AC =6.∵D 是AB 中点,∴BD =5,S △BDC =S △ADC ,∴S △BDC =12S △ABC ,即12CD ·BE =12·12AC ·BC ,∴BE =6824255´=´.在Rt △BDE 中,cos ∠DBE =BE BD= 2455=2425,即cos ∠ABE 的值为2425.点睛:在直角三角形中求长度,一般可通过勾股定理或全等三角形来求;若已知角度则可用锐角三角函数来求;若这些方法均不可行,又是求高或已知高的长度则可利用等面积法来求.【即学即练1】如图,海中一渔船在A 处且与小岛C 相距70nmile ,若该渔船由西向东航行30nmile 到达B 处,此时测得小岛C 位于B 的北偏东30°方向上;求该渔船此时与小岛C 之间的距离.【答案】渔船此时与C 岛之间的距离为50海里.【分析】过点C 作CD ⊥AB 于点D ,由题意得:∠BCD=30°,设BC=x ,解直角三角形即可得到结论.解:过点C 作CD ⊥AB 于点D ,由题意得:∠BCD=30°,设BC=x ,则:在Rt △BCD 中,BD=BC•sin30°=12x ,;∴AD=30+12x ,∵AD 2+CD 2=AC 2,即:(30+12x )2+)2=702,解得:x=50(负值舍去),【点拨】注意能借助于方向角构造直角三角形,并利用解直角三角形的知识求解是解此题的关键.【即学即练2】.如图,已知四边形ABCD 中,∠ABC=90°,∠ADC=90°,AB=6,CD=4,BC 的延长线与AD 的延长线交于点E .(1)若∠A=60°,求BC 的长;(2)若sinA=45,求AD 的长.(注意:本题中的计算过程和结果均保留根号)【答案】(1)8;(2)143.【分析】(1)根据锐角三角函数求得BE 和CE 的长,根据BC=BE ﹣CE 即可求得BC 的长;(2)根据题意求得AE 和DE 的长,由AD=AE ﹣DE 即可求得AD 的长.解:(1)∵∠A=60°,∠ABE=90°,AB=6,tanA=,∴∠E=30°,BE=tan60°•6=6,又∵∠CDE=90°,CD=4,sinE=,∠E=30°,∴CE==8,∴BC=BE ﹣8;(2))∵∠ABE=90°,AB=6,sinA==,∴设BE=4x ,则AE=5x ,得AB=3x ,∴3x=6,得x=2,∴BE=8,AE=10,∴tanE====,解得,DE=,∴AD=AE ﹣DE=10﹣=,即AD 的长是.考点:解直角三角形.【即学即练3】.如图,在Rt ABC D 中,0090,30,B A AC Ð=Ð==.(1)利用尺规作线段AC 的垂直平分线DE ,垂足为E ,交AB 于点D ;(保留作图痕迹,不写作法)(2)若ADE D 的周长为a ,先化简()()211T a a a =+--,再求T 的值.【答案】(1)作图见解析;(2)10.【解析】(1)尺规作图——作线段的垂直平分线;(2)化简求值,利用三角函数求其余两边的长度.解:(1)如图所示:(2)2(1)(1)31T a a a a =+--=+,∵1122AE AC ==´=∴2cos cos30AE AEAD A ====°,∴1sin sin30=212DE AD A AD ==°´= ,∴123a=++=,3110T a \=+=.知识点02 利用三角函数测高解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键. 解这类问题的一般过程是: (1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型. (2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题. (3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形. (4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解. 拓展: 在用直角三角形知识解决实际问题时,经常会用到以下概念: (1)坡角:坡面与水平面的夹角叫做坡角,用字母表示. 坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式. (2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图. (3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°. (4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.特别说明: 1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图. 2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解. 3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解.【知识拓展5】直接求三角形的高数学课外学习小组利用矩形建筑物ABED测量广场灯塔CF的高,如图所示,在点B处测得灯塔顶端C的仰角为28°,在点D处测得灯塔顶端C的仰角为45°,已知AB=10m,AD=30m.求灯塔CF的高(结果保留整数).(参考数据:tan28°≈0.53,cos28°≈0.88,sin28°≈0.47)【答案】55米【分析】延长BE交CD于点G,交CF于点H,设CH=xm,利用锐角三角函数的含义分别GH BH,再列方程求解即可.表示,解:延长BE交CD于点G,交CF于点H,△中,∠EDG=45°,在Rt DEG∴EG=DE=10m.∠EGD=45°设CH =xm ,在Rt CGH V 中,CGH Ð=∠EGD =45°,∴GH =xm在Rt CBH V 中,∠CBH =28°,∴tan ∠CBH =CH BH ,即:3010x x++=tan28°解这个方程得:x≈45.1,经检验:x≈45.1符合题意.∴灯塔的高CF =55.1≈55(m )答:灯塔的高为55米.【点拨】本题考查的是解直角三角形的应用,掌握锐角三角函数在解直角三角形中的应用是解题的关键.【即学即练1】.如图,为测量建筑物CD 的高度,在点A 测得建筑物顶部D 点的仰角是22°,再向建筑物CD 前进30米到达B 点,测得建筑物顶部D 点的仰角为58°(A ,B ,C 在同一直线上),求建筑物CD 的高度.(结果保留整数.参考数据:sin 220.37cos 220.93tan 220.40sin 580.85cos580.53tan 58 1.60°°°°°°»»»»»»,,,,,)【答案】CD 的高度是16米.【分析】设建筑物CD 的高度为xm ,在Rt △CBD 中,由于∠CBD=58°,用含x 的代数式表示BC ,在Rt △ACD 中,利用22°的锐角三角函数求出x ,即可得到答案.解:设建筑物CD 的高度为xm ;由tan 58,DC BC °= ,1.60x BC \= 由tan 22,DC AC°= 0.40,DC AC \=0.40(30)1.60x x \=+ 解得:16.x =答:CD 的高度是16米.【点拨】本题考查的是解直角三角形的应用,掌握锐角三角函数的含义及应用是解题的关键.【即学即练2】.如图,某数学兴趣小组的同学利用标杆测量旗杆(AB )的高度:将一根5米高的标杆(CD )竖在某一位置,有一名同学站在一处与标杆、旗杆成一条直线,此时他看到标杆顶端与旗杆顶端重合,另外一名同学测得站立的同学离标杆3米,离旗杆30米.如果站立的同学的眼睛距地面(EF )1.6米,求旗杆的高度AB .【答案】35.6【分析】过点E 作CG ⊥AH 于点H ,交CD 于点G 得出△EGC ∽△EHA ,进而求出AH 的长,进而求出AB 的长.解:过点E 作EH ⊥AB 于点H ,交CD 于点G .由题意可得 四边形EFDG 、GDHB 都是矩形,AB ∥CD ∥EF .∴△AECG ∽△EAH .∴AH EH CG EG.由题意可得EG=FD=3,GH=BD=30,CG=CD-GD=CD-EF=5-1.6=3.4.∴303.43AH .∴AH=34米.∴AH=AH+HB=34+1.6=35.6米.答:旗杆高ED 为35.6米.【点拨】此题主要考查了相似三角形的应用,根据相似三角形判定得出△ECG ∽△EAH 是解题关键.【即学即练3】. “永定楼”是门头沟区的地标性建筑,某中学九年级数学兴趣小组进行了测量它高度的社会实践活动.如图,他们在A 点测得顶端D 的仰角∠DAC=30°,向前走了46米到达B 点后,在B 点测得顶端D 的仰角∠DBC=45°.求永定楼的高度CD .(结果保留根号)【答案】23【分析】根据题意得出DC=BC ,进而利用tan30°=DC AC 求出答案.解:试题分析:解:由题意可得:AB=46m ,∠DBC=45°,则DC=BC ,故tan30°=46==+DC DC AC DC解得:DC=23答:永定楼的高度CD 为23+m .【知识拓展6】由两个直角三角形求高在一次课外综合实践活动中,甲、乙两位同学测量校园内的一棵大树的高度,他们分别在A ,B 两处用高度为1.5m 的测角仪(AE 和BD )测得大树顶部C 的仰角分别为30°,45°,两人间的水平距离()AB 为20m ,已知点A ,E ,F ,C ,B ,D 在同一竖直平面内,且FC AB ^,求大树的高度CF .(结果保留根号)【答案】17m 2æöç÷èø【分析】连接ED ,交FC 于点G ,在Rt △CDG 和Rt △CEG 中,求出公共边CG 的长度,然后可求得CF =CG +GF .解:如答图,连接ED ,交FC 于点G ,由题可知四边形AEGF ,四边形BDGF ,四边形ABDG 是矩形,20m ED AB \==, 1.5m GF AE ==.在Rt CDG V 中,45CDG Ð=°Q ,tan 45CG DG CG \==°,在Rt CEG △中,30CEG Ð=°Q ,tan 30CG EG \==°,EG DG ED +=Q ,20CG \=.解,得10CG =.()1710 1.5m 2CF CG GF \=+=+=æöç÷èø.答:大树CF 的高度为17m 2æö-ç÷èø.【点拨】本题考查了解直角三角形的应用,解答本题的关键是根据仰角构造直角三角形,利用三角函数的知识求解.【即学即练1】.如图①,在我国古建筑的大门上常常悬挂着巨大的匾额,图②中的线段BC 就是悬挂在墙壁AM 上的某块匾额的截面示意图.已知BC =1米,∠MBC =37°.从水平地面点D 处看点C 的仰角∠ADC =45°,从点E 处看点B 的仰角∠AEB =53°,且DE =2.4米.(1)求点C 到墙壁AM 的距离;(2)求匾额悬挂的高度AB 的长.(参考数据:sin37°≈35,cos37°≈45,tan37°≈34)【答案】(1)点C 到墙壁AM 的距离为35米;(2)匾额悬挂的高度是4米.【分析】(1)过C 作CF ⊥AM 于F , 由1,37,BC MBC =Ð=°结合sin sin 37,CF MBC BCÐ=°= 从而可得答案;(2)过C 作CH ⊥AD 于H ,又,,CF AM MA AD ^^ 则四边形AHCF 是矩形,所以AF=CH ,CF=AH . 在Rt △BCF 中,先求解4,5BF = 再在Rt △BAE 中,∠BEA=53°,求解3,4AE AB = 再表示34,55AD AH DH AB =+=++ 或3 2.4,4AD AE DE AB =+=+列方程,解方程可得答案.解:(1)过C 作CF ⊥AM 于F ,在Rt △BCF 中,1,37,BC MBC =Ð=°由sin sin 37,CF MBC BCÐ=°= 31sin 37,5CF \=´°= 所以:点C 到墙壁AM 的距离为35米.(2)过C 作CH ⊥AD 于H ,又,,CF AM MA AD ^^则四边形AHCF 是矩形,所以AF=CH ,CF=AH .在Rt △BCF 中,1,37,BC MBC =Ð=°由cos cos37,BF MBC BCÐ=°= 441,55BF \=´= 在Rt △BAE 中,∠BEA=53°,905337,ABE \Ð=°-°=° 由3tan tan 37,4AE ABE AB Ð=°== 3,4AE AB \= 在Rt △CDH 中,∠CDH=45°, ∴4,5CH DH FA AB ===+∴347,555AD AH DH AB AB =+=++=+ ∵3 2.4,4AD AE DE AB =+=+ ∴73 2.4,54AB AB +=+ 4.AB \=答:匾额悬挂的高度是4米.【点拨】本题考查了矩形的判定与性质,解直角三角形的应用,掌握作出适当的辅助线构建直角三角形是解题的关键.【即学即练2】.数学实践课上,同学们分组测量教学楼前国旗杆的高度.小明同学所在的组先设计了测量方案,然后开始测量了.他们全组分成两个测量队,分别负责室内测量和室外测量(如图).室内测量组来到教室内窗台旁,在点E 处测得旗杆顶部A 的仰角a 为45°,旗杆底部B 的俯角b 为60°.室外测量组测得BF 的长度为5米,求旗杆AB 的高度.【答案】(5+米【分析】此题根据题意作PE AB ^,利用tan AP EP a =´Ð和 tan 60PB EP =´Ð°分别求出PB ,AP 即可求出AB 的长.解:过点E 作PE AB ^于点P ,在Rt APE V 中,90APE Ð=°,tan AP EPa Ð=,45a Ð=°,5PE BF ==,tan 5tan 455AP EP a \=´Ð=´°=在Rt PEB △中,60b Ð=°,tan PB EPb Ð=,tan 605PB EP \=´Ð°==(5AB AP BP \=+=+米.【点拨】此题考查解直角三角形应用中利用锐角三角函数求高,利用图示找出相关量根据题意列式求解是关键.【即学即练3】.如图,在坡角为20°的山坡上有一铁塔AB 、其正前方矗立着一大型广告牌,当阳光与水平线成45°角时,测得铁塔AB落在斜坡上的影子BD=10米,落在广告牌上的影子CD=5米,已知AB,CD均与水平面垂直,请根据相关测量信息,求铁塔AB的高.(sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【答案】铁塔AB的高约为11米.【分析】过点C作CE⊥AB于E,过点B作BN⊥CD于N,在Rt△BND中,分别求出DN、BN 的长度,在Rt△ACE中,求出AE、CE的长度,继而可求得AB的长度.解:过点C作CE⊥AB于E,过点B作BN⊥CD于N,在Rt△BND中,∵∠DBN=20°,BD=10,∴DN=BD×sin∠DBN≈10×0.34=3.4,BN=BD×cos∠DBN≈10×0.94=9.4,∵AB∥CD,CE⊥AB,BN⊥CD,∴四边形BNCE为矩形,∴BN=CE=9.4,CN=BE=CD﹣DN=1.6,在Rt△ACE中,∠ACE=45°,∴AE=CE=9.4,∴AB=9.4+1.6=11(米).答:铁塔AB的高约为11米.【点拨】本题考查了解直角三角形的应用,解答本题的关键是根据题目所给的坡角构造直角三角形,利用三角函数的知识求解.【知识拓展7】由多个直角三角形求高小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上;如图,此时测得地面上的影长为8米,坡面上的影长为4米,已知斜坡的坡角为30°,同一时刻,一根长为1米,垂直于地面旋转的标杆在地面上的影长为2米,求树的高度为多少米?【答案】树高为(米【分析】延长AC交BF延长线于D点,则BD即为AB的影长,然后根据物长和影长的比值计算即可.解:延长AC交BF延长线于D点,则∠CFE=30°,作CE⊥BD于E,如下图所示:在Rt△CFE中,∠CFE=30°,CF=4m,o m,∴CE=2m,4cos304EF==´=在Rt△CED中,∵同一时刻,一根长为1米垂直于地面放置的标杆在地面上的影长为2米,∴CE:ED=1:2,且CE=2m,∴DE=4m,∴8412BD BF EF DF=++=+=+米,再由同一时刻,一根长为1米垂直于地面放置的标杆在地面上的影长为2米可知,1(62AB BD ==米,故答案为:树高(米.【点拨】本题考查了解直角三角形的应用,解决本题的关键是作出辅助线即可得到AB 的影长.【即学即练1】.如图,在一次综合实践活动中,小亮要测量一楼房的高度,先在坡面D 处测得楼房顶部A 的仰角为30°,沿坡面向下走到坡脚C 处,然后在地面上沿CB 向楼房方向继续行走10米到达E 处,测得楼房顶部A 的仰角为60°.已知坡面CD =10米,山坡的坡度i =1.求楼房AB 高度.(结果保留根式)【答案】(【分析】过点D 作DF ⊥BC ,垂足为F ,设AB=x ,AG=x-5,则tan 60AB BE ==o ,tan 30AG DG ==o,根据DG =FC+CE+BE ,列出方程,即可求解.解:过D 作DF ⊥BC ,垂足为F ,∵i =1∴DF :FC =1CD =10,∴DF =5,CF =过点D 作DG ⊥AB ,垂足为G ,设AB =x ,则AG =x ﹣5,在Rt △ABE 中, tan 60AB BE ==o ,在Rt △ADG 中,tan 30AG DG ==o ,由DG =FC+CE+BE 得,x ﹣5)=,解得,x =答:AB 的高度为(【点拨】本题主要考查解直角三角形的实际应用,根据特殊角的三角函数的定义,列出方程是解题的关键.【即学即练2】..如图,某大楼的顶部竖有一块广告牌CD,小明与同学们在山坡的坡脚A处测得广告牌底部D的仰角为53°,沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度,AB=10米,AE=21米,求广告牌CD的高度.(测角器的高度忽略不计,参考数据:tan53°≈43,cos53°≈0.60)【答案】2【分析】过B作DE的垂线,设垂足为G,BH⊥AE.在△ADE解直角三角形求出DE的长,进而可求出EH即BG的长,在Rt△CBG中,∠CBG=45°,则CG=BG,由此可求出CG的长然后根据CD=CG+GE-DE即可求出宣传牌的高度.解:过B作BG⊥DE于G,BH⊥AE,Rt△ABH中,i=tan∠BAH∴∠BAH=30°,∴BH=12AB=5米;∴AH∴BG=HE=AH+AE=()米,Rt△BGC中,∠CBG=45°,∴CG=BG=()米.Rt△ADE中,∠DAE=53°,AE=21米,∴DE=43AE=28米,∴CD=CG+GE﹣DE28=(2)m.答:宣传牌CD高为(2-)米.【点拨】本题综合考查了仰角、坡度的定义,能够正确地构建出直角三角形,将实际问题化归为解直角三角形的问题是解答此类题的关键.【即学即练3】.如图,某风景区内有一瀑布,AB表示瀑布的垂直高度,在与瀑布底端同一水平位置的点D处测得瀑布顶端A的仰角β为45°,沿坡度i=1:3的斜坡向上走100米,到达观景台C,在C处测得瀑布顶端A的仰角α为37°,若点B、D、E在同一水平线上.(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)(1)观景台的高度CE为 米(结果保留准确值);(2)求瀑布的落差AB(结果保留整数).【答案】(1);(2)瀑布的落差约为411米.【分析】(1)通过解直角△CDE得到:CE=CD•sin37°.(2)作CF ⊥AB 于F ,构造矩形CEBF .由矩形的性质和解直角△ADB 得到DE 的长度,最后通过解直角△ACF 求得答案.解:(1)∵tan ∠CDE =13CE CD =∴CD =3CE .又CD =100米,∴100==∴CE = .故答案是:.(2)作CF ⊥AB 于F ,则四边形CEBF 是矩形.∴CE =BF =,CF =BE .在直角△ADB 中,∠DB =45°.设AB =BD =x 米.∵C E C D =13,∴DE =.在直角△ACF 中,∠ACF =37°,tan ∠ACF 0.75AF CF ==»解得x ≈411.答:瀑布的落差约为411米.【点拨】本题考查解直角三角形、仰角、坡度等概念,解题的关键是添加辅助线构造直角三角形,记住坡度的定义,属于中考常考题型.【知识拓展8】其他运用2017年9月8日—10日,第六届翼装飞行世界锦标赛在我市天门山风景区隆重举行,来自全球11个国家的16名选手参加了激烈的角逐.如图,某选手从离水平地面1000米高的A 点出发(AB=1000米),沿俯角为30°的方向直线飞行1400米到达D点,然后打开降落伞沿俯角为60°的方向降落到地面上的C点,求该选手飞行的水平距离BC.【答案】分析:如图,作DE⊥AB于E,DF⊥BC于F,根据题意得到∠ADE=30°,∠CDF=30°,利用含30度的直角三角形三边的关系计算出AE=12AD=700,BE=300,所以DF=300,Rt△CDF中计算出CF,然后计算BF和CF的和即可.解:如图,作DE⊥AB于E,DF⊥BC于F,∠ADE=30°,∠CDF=30°,在Rt△ADE中,AE=12AD=12×1400=700,∴BE=AB-AE=1000-700=300,∴DF=300,在Rt△CDF中,∴BC为.点睛:本题考查了解直角三角形的应用-仰角俯角问题:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.【即学即练1】.如图,从点A看一山坡上的电线杆PQ,观测杆顶端点P的仰角是45°,向前走6 m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°,求该电线杆PQ 的高度(精确到0.1 m).【答案】电线杆PQ的高约是9.5 m.解:试题分析:延长PQ交直线AB于点E,设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE-BE即可列出方程求得x的值,再在直角△BQE 中利用三角函数求得QE的长,则PQ的长度即可求解.试题解析:延长PQ交直线AB于点E,设PE=x米.在直角△APE中,∠A=45°,则AE=PE=x米;∵∠PBE=60°∴∠BPE=30°在直角△BPE中,米,∵AB=AE-BE=6米,则,解得:则BE=()米.在直角△BEQ中,+3)=(∴((米).答:电线杆PQ 的高度是考点:解直角三角形的应用—俯角仰角问题.【即学即练2】.图1所示的是某景区的“关帝圣像”,它从2007年1月开始铸造,共用铜500吨,铁2000吨,甚是伟岸壮观.其侧面示意图如图2所示.在B 处测得圣像顶A 的仰角为52.8o ,在点E 处测得圣像顶A 的仰角为63.4°.已知AC BC ^于点,C EG BC ^于点,//,30G EF BC BG =米,19FC =米,求圣像的高度AF . (结果保留整数.参考数据:52.80.80,52.80.60sin cos »°»o ,52.8 1.32,63.40.89tan sin °»°»,63.40.45,63.4 2.00cos tan »°»o )【答案】圣像的高度AF 约为61米【分析】设圣像的高度AF 约为x 米,根据已知Rt AEF D 中tan AEF Ð的值用x 表示EF 的长,根据EF GC =进而可求出BC 的长,从而利用Rt ACB D 中tan ABC Ð列出关于x 的方程,解得x 的值,即为圣象的高度.解:设AF x =米,∵,,//AC BC EG BC EF BC ^^,∴四边形FCGE 为矩形,∴EF GC =,在Rt AEF D 中,AF tan AEF EF Ð=,∴63.42AF x x EF tan AEF tan ==»Ð°,∴2x GC =,∵30BG =米,∴302(x BC =+米,在Rt ACB D 中,AC tan ABC BCÐ=,1952.8302x tan x +°=+,∴19 1.32302x x +»+,解得61x »,答:圣像的高度AF 约为61米.【点拨】本题主要考查三角函数.解题的关键在于在直角三角形中,根据三角函数的定义,结合已知条件,列出关于x 的方程,求解方程即可得解.【即学即练3】.如图,在河流的右岸边有一高楼AB ,左岸边有一坡度1:2i =的山坡CF ,点C 与点B 在同一水平面上,CF 与AB 在同一平面内.某数学兴趣小组为了测量楼AB 的高度,在坡底C 处测得楼顶A 的仰角为45°,然后沿坡面CF上行了(即CD =到达点D 处,此时在D 处测得楼顶A 的仰角为26.7°.(参考数据:sin 26.70.45°»,cos26.70.89°»,tan 26.70.50°»)(1)求点C 到点D 的水平距离CE 的长;(2)求楼AB 的高度.【答案】(1)40米;(2)楼AB 的高度为80米.【分析】(1)由CF 的坡度1:2i =,,DE CE ^可得1,2DE CE = 设,DE x = 则2,CE x = 由勾股定理可得,CD === 解方程可得答案;(2)如图,过D 作DH AB ^于,H 先证明四边形DEBH 是矩形,可得2040,BH DE DH BE CE BC BC ====+=+, 设,AB m = 证明,BC AB m == 可得20,40,AH m DH m =-=+ 由26.7,ADH Ð=°建立方程,再解方程检验即可得到答案.解:(1)Q CF 的坡度1:2i =,,DE CE ^1,2DE CE \= 设,DE x = 则2,CE x =,CD \===20,x \=240.CE x \== (2)如图,过D 作DH AB ^于,H,,DE BE AB BE ^^Q\ 四边形DEBH 是矩形,2040,BH DE DH BE CE BC BC \====+=+,设,AB m =45,ACB AB BE Ð=°^Q ,45,ACB BAC \Ð=Ð=°,BC AB m \== 20,40,AH m DH m \=-=+由26.7,ADH Ð=°tan 26.7,AH DH \°= 200.5,40m m -\=+ 解得:80.m =经检验:80m =符合题意,所以:建筑物AB 的高为:80米.【点拨】本题考查的是解直角三角形的实际应用,坡度的含义,掌握利用解直角三角形测量建筑物的高是解题的关键1.如图,有一个晾衣架放置在水平地面上,在其示意图中,支架OA 、OB 的长均为108cm ,支架OA 与水平晾衣杆OC 的夹角∠AOC 为59°,求支架两个着地点之间的距离AB .(结果精确到0.1cm )(参考数据:sin 59°=0.86,cos 59°=0.52,tan 59°=1.66).【答案】112.3cm【解析】解:作OD ⊥AB 于点D ,∵OA =OB ,∴AD =BD 。

利用三角函数测高度

利用三角函数测高度

利用三角函数测高一、教学目标 能根据实际问题设计活动方案,能综合运用直角三角形的边角关系解决实际问题 二、教学重点和难点重点:能够综合运用直角三角形边角关系的知识解决实际问题难点:能够综合运用直角三角形边角关系的知识解决实际问题 三、教学过程 (一)情境引入:数学课上,我们用直尺测量长度,用量角器测量角度. 生活中,我们是如何测量长度和角度的呢?测量长度可以用皮尺或卷尺,测量倾斜角可以用测倾器. 简单的测倾器由度盘、铅锤和支杆组成.(如图)测倾器使用测倾器测量倾斜角的步骤如下:1、把支杆竖直插入地面,使支杆的中心线、铅垂线和度盘的0°刻度线重合,这时度盘的顶线PQ 在水平位置.2、转动度盘,使度盘的直径对准目标M ,记下此时铅垂线所指的度数. 根据测量数据,你能求出目标M 的仰角或俯角吗?说说你的理由. (二)探究活动:【探究一】测量底部可以到达的物体的高度例1,如图,某中学在主楼的顶部和大门的上方之间挂一些彩旗,经测量,得到大门的高度是5m ,大门距主楼的距离是30m ,在大门处测得主楼顶部的仰角是30º,而当时测倾器离地面1.4m ,求学校主楼的高度.【探究二】测量底部不可以到达的物体的高度例2,河对岸的高层建筑AB ,为测量其高,在C 处由D 点用测量仪测得顶端A 的仰角为30º,向高层建筑物前进50m 到达C ´处,由D ´测得顶端A 的仰角为45º,已知测量仪CD=C ´D ´=1.2m ,求建筑物AB 的高度(三)学以致用1.如图,某中学在主楼的顶部和大门的上方之间挂一些彩旗.经测量,得到大门的高度是5m ,大门距主楼的距离是30m ,在大门处测得主楼顶部的仰角是30°,而当时侧倾器离地面1.4m,求学校主楼的高度.2.如图所示,小明在家里楼顶上的点A 处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A 处看电梯楼顶部点B 处的仰角为60°,在点A 处看这栋电梯楼底部点C 处的俯角为45°,两栋楼之间的距离为30m ,则电梯楼的高BC 为多少米.MAM30º AD BCE C ´D ´3.如图,如图,有一段斜坡BC 长为10米,坡角12CBD ︒∠=,为方便残疾人的轮椅车通行,现准备把坡角降为5°.(1)求坡高CD ;(2)求斜坡新起点A 与原起点B 的距离(精确到0.1米).(参考数据:sin5°≈0.1 ,cos5°≈0.9 , tan5°≈ 0.1 , Sin12°≈0.2 ,cos12°≈0.8 ,tan12°≈0.2 )(四)拓展提升1.我市某乡镇学校教学楼后面靠近一座山坡,坡面上是一块平地,如图所示.BC AD ∥,斜坡40AB =米,坡角60BAD ∠=,为防夏季因瀑雨引发山体滑坡,保障安全,学校决定对山坡进行改造.经地质人员勘测,当坡角不超过45时,可确保山体不滑坡,改造时保持坡脚A 不动,从坡顶B 沿BC 削进到E 处,问BE 至少是多少米(结果保留根号)?2.如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB 长为4米. (1)求新传送带AC 的长度;(2)如果需要在货物着地点C 的左侧留出2米的通道,试判断距离B 点4米的货物MNQP 是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米) (参考数据:2≈1.41,3≈1.73,5≈2.24,6≈2.45)3.如图,某货船以20海里/时的速度将一批货物由A 处运往正西方向的B 处,经16小时 到达,到达后必须立即卸货。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档