调制解调电路设计实例
AM调制与解调电路设计
AM 调制与解调电路设计一.设计要求:设计AM 调制和解调电路调制信号为:()1S 3cos 272103cos164t V tV ππ=⨯+=⎡⎤⎣⎦ 载波信号:()2S 6 cos 2107210 6 cos1640t V tV ππ=⨯⨯+=⎡⎤⎣⎦二.设计内容:本题采用普通调幅方式,解调电路采用包络检波方法;调幅电路采用丙类功放电路,集电极调制;检波电路采用改进后的二极管峰值包络检波器。
1.AM 调幅电路设计: (1).参数计算:()6cos1640c u t tVπ=载波为,()3cos164t tVπΩ=调制信号为u则普通调幅信号为am cm U U [1cos164]cos1640a M t t ππ=+其中调幅指数0.5a M =最终调幅信号为am U 6[10.5cos164]cos1640t tππ=+为了让三极管处在过压状态cc U 的取值不能过大,本题设为6v 其中选频网络参数为21LC c ω=c 1640ωπ= L 200H,C 188F 1BB Vμμ===另U(2).调幅电路如下图所示:调幅波形如下:可知调幅信号与包络线基本匹配2.检波电路设计:参数计算:取10L R k =Ω 1.电容C对载频信号近似短路,故应有1cRCω,取()510/10/0.00194c c RCωω==2.为避免惰性失真,有max 10.00336a a RCM M -Ω=,取0.0022,1RC R k C F μ==Ω=,则3.设11212250.2,,330, 1.6566R R R R R R R k R ====Ω=Ω则。
因此, 4.c C 的取值应使低频调制信号能有效地耦合到L R 上,即满足min1cL C R Ω,取4.7c C F μ=3.调制解调电路如下图所示:o am U U 与波形为:o L U U 与解调信号的波形为:下面的波形为解调信号波形,基本正确,没有出现惰性失真和底部切割失真。
模拟信号调理与处理电路设计
音频信号调理与处理电路设计
音频信号调理与处理电路概述
音频信号调理与处理电路是用于改善音频信号质量、增强音频效果并确保音频设备正常工 作的电路。
音频信号调理电路
包括前置放大器、滤波器、均衡器和压缩器等,用于调整音频信号的幅度、频率和动态范 围,以满足后续处理或播放的需求。
音频信号处理电路
包括效果器、混响器和均衡器等,用于添加特效、调整音色和改善音质,以提供更好的听 觉体验。
视频信号调理与处理电路设计
1 2 3
视频信号调理与处理电路概述
视频信号调理与处理电路是用于改善视频信号质 量、增强视频效果并确保视频设备正常工作的电 路。
视频信号调理电路
包括同步分离器、行场再生电路和钳位电路等, 用于恢复和调整视频信号的同步和幅度,以确保 图像的稳定性和清晰度。
视频信号处理电路
包括彩色校正器、亮度/对比度调整器和噪声抑 制器等,用于调整色彩、亮度和对比度,以及降 低噪声和改善画质。
用于固定和连接被测电路,确保测试过程 中的稳定性和可靠性。
测试方法与步骤
电源供电
为模拟信号调理与处理电路提供稳定的电源,确 保电路正常工作。
输出信号测量
使用示波器等测量仪器,对调理与处理后的输出 信号进行测量,记录相关数据。
ABCD
输入信号设置
根据需要设置输入信号的频率、幅度等参数,以 测试不同条件下的电路性能。
模块化设计
将模拟信号调理与处理电路划分为多个独立的功能模块,便于模块间 的组合和替换,提高设计的灵活性和可维护性。
THANKS
[ 感谢观看 ]
信号噪声抑制
01
噪声抑制
通过技术手段降低信号中的噪声成 分,提高信号质量。
毕业设计(论文)-FM调制与解调电路设计
下图是晶体管组成的电抗管直接调频电路,图中 ~ 与 、 是电抗管与振荡管的直流偏置电阻, 、 、 、 对高频短路, 是耦合电容, 、 、 、 组成谐振回路, 、 为高频振流圈。电抗管调频器的缺陷是:振荡频率的稳定度不是很高;频率偏移也不能很大,阻抗Ze一般还有电阻分量,这个电阻分量也会随之变化,这个分量变化使振荡器产生寄生调幅。这种调频器的优点是电路较简单,先期的调频装置经常使用这种电路,其后逐渐被变容二极管调频器所替代[6]。
Keywords:FM modulation;FM demodulation;direct frequency modulation;indirect frequency modulation;frequency discriminator;phase locked loop
前言
随着人们生活品质的提高,FM技术被广泛运用于高保真音乐广播、立体声广播、多声道电视音响、电子音乐合成技术中。这就需要我们对FM系统的调制与解调熟悉与掌握。本文主要介绍通过直接调频法和间接调频法对FM进行调制,直接调频法即用调制信号直接控制决定振荡器振荡频率的某个元件参数,使振荡器瞬时频率跟随调制信号大小呈线性变化,即可实现频率调制。间接调频法就是利用频率与相位间有微积分的关系,首先要将调制信号进行积分,然后对载波进行调相。其中直接调频法采用变容二极管直接调频电路和电抗管调频电路,间接调频法是采纳变容管调相电路电路。解调主要采用鉴频器(非相干解调)或鉴相器(非相干解调)以及锁相环电路(相干解调),其中锁相环电路是由环路滤波器、鉴相器、压控振荡器组成。
5.若在省教育厅、学校组织的毕业设计(论文)检查、评比中,被发现有抄袭、剽窃、弄虚作假等违反学术规范的行为,本人愿意接受学校按有关规定给予的处理,并承担相应责任。
基于Multisim调制解调仿真电路设计
基于Multisim调制解调仿真电路设计春芽电子科技春芽ing摘要通信电路系统中实现调制解调方法很多,而锁相环鉴频是利用现代锁相环技术来鉴频实现调制解调因为工作稳定、失真度小、信噪比高等优点被广泛应用。
本课题分别设计2ASK、2PSK、2FSK的调制解调电路,功能是数字基带信号经过调制输出模拟信号,然后运用锁相环进行解调出数字信号,所以调制解调电路都运用Multisim软件进行仿真分析。
对2ASK、2FSK、2PSK解调电路时低通滤波器输出的波形失真比较大,经过抽样判决电路整形后可以再生数字基带脉冲。
整个硬件电路设计中,尽量做到电路简单实用,基本达到功能要求。
关键词:调制解调,Multisim仿真,锁相环AbstractCommunication circuit system to achieve a lot of modulation and demodulation, and the phase-locked loop frequency demodulation is the use of modern technology to achieve phase locked loop demodulation because the work is stable, low distortion, high signal noise ratio is widely used. This topic design of 2ASK, 2PSK, 2FSK modulation and demodulation circuit function is digital base band signal after the modulation output analog signal, then use the PLL to demodulate the digital signal, so modulation and demodulation circuit use Multisim software simulation analysis. The waveform distortion of the low pass filter output of 2ASK, 2FSK and 2PSK demodulation circuits is relatively large, and the digital baseband pulse can be regenerated by the sampling decision circuit. Throughout the hardware circuit design, as far as possible to achieve a simple and practical circuit, the basic requirements to achieve functional.Keywords: Modulation and Demodulation, Multisim Simulation, Phase Locked Loop目录摘要 (1)Abstract (1)1绪论 (3)1.1课题研究背景 (3)1.2 国内外发展现状 (3)1.3 课题主要研究内容 (3)2 锁相环基本原理 (4)2.1基本组成 (4)2.2工作原理 (4)3 2FSK调制解调电路设计 (6)3.1 2FSK调制电路设计原理 (6)3.2 2FSK调制单元电路的设计 (6)3.3 2FSK解调单元电路的设计 (10)3.4 2FSK解调电路的整体设计 (12)4 2PSK调制解调电路设计 (13)4.1 2PSK调制解调电路设计原理 (13)4.2 2PSK调制与解调电路的设计与仿真 (14)5 2ASK调制解调电路设计.............................................................................. 错误!未定义书签。
FM频率调制解调电路的设计和制作
FM调制的基础技术调变电路为可以将信号波(音频信号等)等乘载在电波上传送的电路。
也即是将载波(carrie r)利用信号波加以变形,然后传送出去。
在本文中,将针对调变电路中最常使用到的FM调变(F requency Modulation……频率调变),以及解调(回复到原来的信号)的技术加以说明。
FM调变方式为将载波频率变化而后传送的方式。
FM调变的基础技术FM调变的理论图1所示的为FM调变的考查方法。
其中的Vc为载波,Vs真为信号波。
对于各信号可以如下表示。
图1 FM调变(FM调变为利用信号而改变频率。
由于振幅为一定,较容易去除噪声成分。
)此时的载波频率fc称之为中心频率。
今将此一载波做FM调变。
也即是,使载波频率fc会随着信号波的大小而改变。
频率变化时角频率w也会变化,因此,或者此时的频率变化△f称之为最大频率偏移。
经过调变后的信号,称之为被调变波Vm,可以用下式子表示。
被调变波Vm会随信号波Vs而变化,其瞬间相位为时间积分。
因此,相位角成为所以,被调变波Vm可以如下表示,此时的称之为调变指数。
FM调变波所占有的频带宽FM调变波所占有的频带宽会随着调变指数(△f/fs)的增大而扩宽。
FM调变波的频谱分布范围很广,而只对于存在有95%以上的能量的频带称之为Carson频带宽。
在此,对于占有频带宽B W可以概略计算如下。
△f:最大频率偏移fsm:信号波的最大频率图2所示的为△f=±75kHz,fsm=15KHz时的占有频带宽BW。
图2 FM调变波所占有的频带宽(FM调变波的频率能量为无限大扩广,而其能量成分几乎存在于2△f+2fs)图3 利用可变电容二极管做成FM调变的实验(将振荡电路的电容器改为可变电容二极管时,便可以做简单的FM调变。
将△V(电压变化)政变成为△f(频率变化)。
FM调变电路的实验FM调变电路为将信号波的电压变化(△v)变换成为频率变化。
在此举一简单的调变电路为例子说明。
2FSK--FSK通信系统调制解调综合实验电路设计
学生学号实验课成绩学生实验报告书实验课程名称开课学院指导教师姓名学生姓名学生专业班级200 -- 200 学年第学期实验教学管理基本规范实验是培养学生动手能力、分析解决问题能力的重要环节;实验报告是反映实验教学水平与质量的重要依据。
为加强实验过程管理,改革实验成绩考核方法,改善实验教学效果,提高学生质量,特制定实验教学管理基本规范。
1、本规范适用于理工科类专业实验课程,文、经、管、计算机类实验课程可根据具体情况参照执行或暂不执行。
2、每门实验课程一般会包括许多实验项目,除非常简单的验证演示性实验项目可以不写实验报告外,其他实验项目均应按本格式完成实验报告。
3、实验报告应由实验预习、实验过程、结果分析三大部分组成。
每部分均在实验成绩中占一定比例。
各部分成绩的观测点、考核目标、所占比例可参考附表执行。
各专业也可以根据具体情况,调整考核内容和评分标准。
4、学生必须在完成实验预习内容的前提下进行实验。
教师要在实验过程中抽查学生预习情况,在学生离开实验室前,检查学生实验操作和记录情况,并在实验报告第二部分教师签字栏签名,以确保实验记录的真实性。
5、教师应及时评阅学生的实验报告并给出各实验项目成绩,完整保存实验报告。
在完成所有实验项目后,教师应按学生姓名将批改好的各实验项目实验报告装订成册,构成该实验课程总报告,按班级交课程承担单位(实验中心或实验室)保管存档。
6、实验课程成绩按其类型采取百分制或优、良、中、及格和不及格五级评定。
实验课程名称:__通信原理_____________图3-1数字键控法实现2FSK 信号的原理图图中两个振荡器的载波输出受输入的二进制基带信号s(t)控制。
由图3-1 可知,s(t)为“1”时,正脉冲使门电路1接通,门2断开,输出频率为f1;数字信号为“0”时,门1断开,门2接通,输出频率为f2。
在一个码元Tb 期间输出ω1或ω2两个载波之一。
由于两个频率的振荡器是独立的,故输出的2FSK 信号:在码元“0”“1”转换时刻,相邻码元的相位有可能是不连续的。
振幅调制器与解调器的设计
Ma=30%
调制信号峰峰值为200mv
解调信号峰峰值为73mv 输出信号波形
Ma=100%
调制信号峰峰值为200mv
解调信号峰峰值为66mv 输出信号波形
峰值为564mv 调节RP1,VAB=-0.4V,输出信号波形
峰值为286mv 调节RP1,VAB=-0.2V,输出信号波形
峰值为0mv 调节RP2,VAB=0V,输出信号波形
峰值为266mv 调节RP2,VAB=+0.2V,输出信号波形
峰值为558mv 调节RP2,VAB=+0.4V,输出信号波形
频率为1KHz,峰值为80mv 输出信号波形
频率为1KHz,峰值为100mv 输出信号波形
实验步骤六
将函数波发生器的输出正弦信号加到AM调幅器实验电路板的 调制信号输入IN2端。 示波器的CH1通道接到AM调幅器实验电路板的输出OUT端。 观察输出信号波形,调节RP2电位器使输出信号最小。
输出信号波形
VMIN=19mV
调幅输出信号波形
实验步骤十四
调节RP1改变VAB的值,观察并记录ma =100% 和ma >100% 两种调幅波在零点附近的波形情况。
Ma=100% 调节RP1,ma=100%,调幅输出信号波形
ma>100% 调节RP1, ma>100% ,调幅输出信号波形
三、实现解调全载波信号(AM)
在AM调制器的载波信号输入端IN1加 VC(t)=10Sin2π×105t(mV)信号(已调好),调制信号端 IN2不加信号。
cd4046构成的fsk调制解调电路
cd4046构成的fsk调制解调电路全文共四篇示例,供读者参考第一篇示例:CD4046是一种集成电路,常用于FSK调制和解调电路中。
FSK (Frequency Shift Keying)调制技术是一种数字调制技术,通过改变信号的频率来携带数字信息。
在通信系统中,FSK调制技术被广泛应用于数据传输和调频调制解调。
本文将详细介绍CD4046构成的FSK 调制解调电路的原理和应用。
一、CD4046简介CD4046是一种集成数字数字锁相环PLL(Phase Locked Loop)电路,由德州仪器公司生产。
它由一个相位比较器、一个VCO (Voltage Controlled Oscillator)和一个低通滤波器组成。
CD4046可以将输入信号的频率与VCO的频率进行比较,并自动调节VCO的频率,使得输入信号与VCO的频率同步。
这种锁相环的原理可以用于FSK调制和解调电路中。
二、FSK调制解调电路原理1. FSK调制原理:在FSK调制中,输入的数字信号被转换成两种不同频率的信号,并分别控制两个不同频率的载波信号。
这两种载波信号通过一个开关切换器,使得输出信号在两种频率之间切换,从而携带数字信息。
2. FSK解调原理:在FSK解调中,接收到的信号经过解调器解调,得到两种不同频率的信号。
这两种信号再经过一个比较器比较,得到解调后的数字信号。
CD4046通过其内部的相位比较器和VCO实现了FSK调制解调电路。
其电路连接如下:1. 输入信号经过一个低通滤波器,去除噪声和高频成分,然后输入到CD4046的相位比较器。
2. CD4046的VCO的频率由输入信号的频率控制,当输入信号的频率高于VCO的频率时,VCO的频率会增加;反之,当输入信号的频率低于VCO的频率时,VCO的频率会减小。
3. CD4046的输出信号通过一个比较器进行信号处理,得到FSK调制或解调后的数字信号。
1. 数据传输:FSK调制技术可以将数字信号转换成模拟信号进行传输,提高数据传输效率和可靠性。
基于FPGA的QPSK调制解调电路设计与实现
基于FPGA的QPSK调制解调电路设计与实现数字调制信号又称为键控信号,调制过程可用键控的方法由基带信号对载频信号的振幅、频率及相位进行调制,最基本的方法有3种:正交幅度调制(QAM)、频移键控(FSK)、相移键控(PSK).根据所处理的基带信号的进制不同分为二进制和多进制调制(M进制).多进制数字调制与二进制相比,其频谱利用率更高.其中QPSK(即4PSK)是MPSK(多进制相移键控)中应用最广泛的一种调制方式。
1 QPSK简介QPSK信号有00、01、10、11四种状态。
所以,对输入的二进制序列,首先必须分组,每两位码元一组。
然后根据组合情况,用载波的四种相位表征它们。
QPSK信号实际上是两路正交双边带信号, 可由图1所示方法产生。
QPSK信号是两个正交的2PSK信号的合成,所以可仿照2PSK信号的相平解调法,用两个正交的相干载波分别检测A和B两个分量,然后还原成串行二进制数字信号,即可完成QPSK信号的解调,解调过程如图2所示。
图1 QPSK 信号调制原理图图2 QPSK 信号解调原理图2 QPSK 调制电路的FPGA 实现及仿真 2.1基于FPGA 的QPSK 调制电路方框图基带信号通过串/并转换器得到2位并行信号,,四选一开关根据该数据,选择载波对应的相位进行输出,即得到调制信号,调制框图如图3所示。
基带信号clkstart串/并转换四选一开关分 频0°90°180°270°调制信号FPGA图3 QPSK 调制电路框图系统顶层框图如下图中输入信号clk为调制模块时钟,start为调制模块的使能信号,x为基带信号,y是qpsk调制信号的输出端,carrier【3..0】为4种不同相位的载波,其相位非别为0、90、180、270度,锁相环模块用来进行相位调节,用来模拟通信系统中发送时钟与接收时钟的不同步start1为解调模块的使能信号。
y2为解调信号的输出端。
调制解调电路设计实例
调制解调电路设计实例
4.4.1 基于U2790的1000MHz正交调制器 电路
U2790是一个1000MHz的正交调制器,基带输入频率为 0~50MHz,本机振荡器输入频率为100~1000MHz,具 有50的单端本机振荡器和RF端口。输出电平和寄生电 平可以调整,连接Atmel公司的U2795B混频器,可以上 变频到2GHz。U2790电源电压为5V,电流消耗30mA, 具有低功耗模式(电流消耗1A),工作温度范围为 40℃~+85℃。U2790采用SO-16封装形式,适用GSM、 ADC、JDC 和WLAN等数字无线通信系统应用。
调制解调电路设计实例
图4.4.1 U2调7制90解的调应电路用设电计实路例
4.4.2 基于STQ 2016的700~2500MHz直
接正交调制器电路
STQ2016是一个直接正交调制器芯片,芯片中集成了一 对平衡混频器、移相器、功率放大器等电路,频率范围 为700~2500MHz,基频带宽为0~500MHz,典型输出 功率为12dBm,并具有大于50dB的IM3抑制。具有极好 的载波和边带抑制。STQ2016具有宽带噪声低、功耗低、 LO驱动要求低、相位精确度高、幅度平衡好、无须外部 IF滤波器等特性。在5V电压下正常工作,电流消耗82mA。
LT5503在1.9~2.4GHz的应用电路中,MODRFOUT和 MIXRFOUT端口在2.45GHz下与50阻抗匹配,LO1端口在 2.1GHz下与50阻抗匹配,LO2端口内部匹配。使用390 电阻来降低调制输出的品质因数,使输出功率下降3dBm。 如果希望得到更低的功率输出,可以使用更低阻值的电阻。 例如:如果使用200的阻抗,输出功率将低于3dBm。
STQ2016采用TSSOP-16封装,可广泛应用在各种通信系 统中,例如,蜂窝电话/PCS/ CDMA2000/UMTS收发器、 900 & 2400 MHz ISM频带收发器、GMSK、QPSK、QAM、 SSB调制器。
抽样定理和PAM调制解调实验
《通信原理》实验报告实验抽样定理和PAM 调制解调实验系别:信息科学与技术系专业班级:通信工程0901班学生姓名: M C 同组学生:成绩:指导教师:惠龙飞(实验时间:2011年11月18日——2011年11月18日)华中科技大学武昌分校实验三抽样定理和PAM 调制解调实验一、实验目的1、通过脉冲幅度调制实验,使学生能加深理解脉冲幅度调制的原理。
2、通过对电路组成、波形和所测数据的分析,加深理解这种调制方式的优缺点。
二、实验器材1、信号源模块一块2、①号模块一块3、 20M 双踪示波器一台4、连接线若干三、实验原理(一)基本原理 1、抽样定理抽样定理表明:一个频带限制在(0,f H )内的时间连续信号m (t ,如果以T ≤的间隔对它进行等间隔抽样,则m (t 将被所得到的抽样值完全确定。
假定将信号m (t 和周期为T 的冲激函数δT (t )相乘,如图3-1所示。
乘积便是均匀间隔为T 秒的冲激序列,这些冲激序列的强度等于相应瞬时上m (t 的值,它表示对函数m (t 的抽样。
若用m s (t 表示此抽样函数,则有:1秒2f Hm s (t =m (t δT (t图3-1 抽样与恢复假设m (t 、δT (t 和m s (t 的频谱分别为M (ω 、δT (ω 和M s (ω 。
按照频率卷积定理,m (tδT (t 的傅立叶变换是M (ω 和δT (ω 的卷积:M s (ω =1[M (ω *δT (ω ] 2π2π因为δT =Tωs =n =-∞∑δ∞T(ω-n ωs2π T∞1⎡⎤所以M s (ω =⎢M (ω *∑δT (ω-n ωs ⎥T ⎣n =-∞⎦由卷积关系,上式可写成1∞M s (ω =∑M (ω-n ωsT n =-∞该式表明,已抽样信号m s (t 的频谱M s (ω 是无穷多个间隔为ωs 的M (ω 相迭加而成。
这就意味着M s (ω 中包含M (ω 的全部信息。
需要注意,若抽样间隔T 变得大于1,则M (ω 和δ(ω 的卷积在相邻的周期内存T 2f H1是抽样的最大间隔,2f H在重叠(亦称混叠),因此不能由M s (ω 恢复M (ω 。
通信课程设计AM和OOK的调制与解调电路设计
计算机与信息工程系《通信原理》课程设计报告专业通信工程班级 ****学号 ******姓名 *****报告完成日期 2011-12-24指导教师 ***** 评语:成绩:批阅教师签名:批阅时间:摘要通信按照传统的理解就是信息的传输,信息的传输离不开它的传输工具,通信系统应运而生,我们此次课程设计的目的就是要对调制解调的通信系统进行仿真研究。
当然,在通信系统的设计研发过程中,通信系统的软件仿真已成为必不可少的一部分。
目前,电子设计自动化EDA(Electronic Design Automatic)已成为通信系统设计的主潮流。
为了使复杂的设计过程更加便捷高效,使得分析与设计所需的时间和费用降低。
美国Elanix公司推出的基于PC机Windows平台的SystemView动态系统仿真软件,是一个比较流行的,优秀的仿真软件。
它是一个信号级的系统仿真软件,主要用于电路与通信系统的设计、仿真、能满足从信号处理、滤波器设计,到复杂的通信系统等要求。
通常,调制分为模拟调制和数字调制,模拟调制。
模拟调制常用的方法有AM 调制、DSB调制、SSB调制;数字调制常用的方法有BFSK调制等。
经过调制不仅可以进行频谱搬移,把调制信号的频谱搬移到所希望的位置上,从而将调制信号转换成适合于信道传输或便于信道多路复用的已调信号,而且它对系统的传输有效性和传输的可靠性有着很大的影响。
调制方式往往决定着一个通信系统的性能。
本文利用SystemView软件设计AM和OOK的调制和解调电路,并通过分析其输人输出波形验证所设计电路的正确性。
关键词:SystemView软件,AM,OOKAbstractAccording to the traditional communication understanding is the information transmission, information transmission is inseparable from its transmission tools, communication system emerge as the times require, we have designed this course is aim to modem communication system simulation. Of course, in communication system design and development process, the communication system software simulation has become an essential part of it. At present, the electronic design automation EDA (Electronic Design Automatic) has become the main trend of communication system design. In order to make the complex design process more efficient and convenient, making the analysis and design of the time and costs is required. U.S. Elanix company introduced PC-based Windows platform SystemView dynamic system simulation software, is a more popular, excellent simulation software.It is a signal-level system simulation software, and communication systems primarily for circuit, design, simulation, to meet from the signal processing, filter design, to complex communication system and other requirements.Typically, the modulation is divided into analog modulation and digital modulation, analog modulation. Analog modulation methods are commonly used AM modulation, DSB modulation, SSB modulation; digital modulation methods are commonly used BFSK modulation. Spectrum can be modulated used not only move, move the modulated signal spectrum to the desired position, which will convert the modulated signal suitable for transmission or to facilitated the channel multiplexed channels modulated signal, the transmission on system and has a great impact. Modulation often determines the performance of a communication system.This paper uses the SystemView software to design AM and OOK modulation and demodulation circuit, and through the analysis of the input and output waveforms verify the correctness of the design circuit.关键词:SystemView软件,AM,OOK目录摘要 (2)A BSTRACT (3)第1章系统概述 (3)1.1设计题目 (3)1.2设计目的和内容 (3)1.2.1 设计目的 (3)1.2.2设计要求 (3)1.2.3设计内容 (3)第2章软件开发 (3)2.1S YSTEMVIEW软件简介 (3)2.2设计原理 (4)2.2.1模拟调制系统原理 (4)2.2.2数字调制系统 (5)2.3调制解调仿真电路图 (6)2.3.1 AM调制解调仿真电路 (6)2.3.2 ASK(OOK)调制解调仿真电路 (7)第3章系统调试及分析 (9)3.1仿真波形图 (9)3.1.1 AM调制解调仿真仿真后的波形 (9)3.1.2 ASK(OOK)调制解调仿真仿真后的波形 (9)3.2调制系统仿真结果分析 (10)3.2.1 AM调制系统仿真结果分析 (10)3.2.2 ASK(OOK) 调制系统仿真结果分析 (10)结论 (11)谢辞 (12)参考文献 (13)前言通信按照传统的理解就是信息的传输。
2fsk--fsk通信系统调制解调综合实验电路设计
学生学号实验课成绩学生实验报告书实验课程名称开课学院指导教师姓名学生姓名学生专业班级2 00--200学年第学期实验教学管理基本规范实验是培养学生动手能力、分析解决问题能力的重要环节;实验报告是反映实验教学水平与质量的重要依据。
为加强实验过程管理,改革实验成绩考核方法,改善实验教学效果,提高学生质量,特制定实验教学管理基本规范。
1、本规范适用于理工科类专业实验课程,文、经、管、计算机类实验课程可根据具体情况参照执行或暂不执行。
2、每门实验课程一般会包括许多实验项目,除非常简单的验证演示性实验项目可以不写实验报告外,其他实验项目均应按本格式完成实验报告。
3、实验报告应由实验预习、实验过程、结果分析三大部分组成。
每部分均在实验成绩中占一定比例。
各部分成绩的观测点、考核目标、所占比例可参考附表执行。
各专业也可以根据具体情况,调整考核内容和评分标准。
4、学生必须在完成实验预习内容的前提下进行实验。
教师要在实验过程中抽查学生预习情况,在学生离开实验室前,检查学生实验操作和记录情况,并在实验报告第二部分教师签字栏签名,以确保实验记录的真实性。
5、教师应及时评阅学生的实验报告并给出各实验项目成绩,完整保存实验报告。
在完成所有实验项目后,教师应按学生姓名将批改好的各实验项目实验报告装订成册,构成该实验课程总报告,按班级交课程承担单位(实验中心或实验室)保管存档。
6、实验课程成绩按其类型采取百分制或优、良、中、及格和不及格五级评定。
实验课程名称:__通信原理_____________一部分:实验预习报告(包括实验目的、意义,实验基本原理与方法,主要仪器设备及耗材,实验方案与技术路线等)一、实验目的通过2 FSK 通信系统综合设计实验,加强对2 FSK 调制器与解调器通信技术电路理解,学会查寻资料、方案比较,以及设计计算环节。
学会对所学基本理论知识的综合运用;进一步提高分析解决实际问题的能力,创造一个动脑动手、独立开展电路实验的机会,锻炼分析、解决通信技术电路问题的本领,真正实现由课本知识向实际能力的转化;通过典型电路的设计与制作,初步体验从事通信产品研发的过程;增强学生的实际能力;掌握使用Multisim软件的操作方法。
DSP应用技术-工程应用实例
20 K
30 k
3C11
RXB
RX B
14
CLKFLTA D
1u CL K FL TA D 3
4
A V CC
AVCC 3R8
13 V+
IN CL K V-
ou t 11
op ou t op in
5 6
GND 12
3R9
20 K
2
3 3R10
+2 .5 V
U10 MA X 29 5EW E
31R020
NC NC
7 GND 16
AGND 27 AGND
3R3 10 k
3R6 10 k
15 D0 14 D1 13 D2 12 D3 11 D4 10 D5 9 D6 6 D7 5 D8 4 D9 3 D10 2 D11 1 28
TI
T
I
TQ
T
Q
D [0..1 1] D [0..1 1]
图7.7 模拟输入/输出通道电路
工程应用实例
1. 信号流程
(1) 接收信号流程 由射频部分送来的基带DQPSK调制信号 (f0=7.2 kHz),进入带通滤波器MAX295EWE,滤除带外噪声, 然后进入运算放大器(TL084)放大至适当电平(0~3 V变化范围)。 放大后的信号由模数转换器AD7862进行量化,量化后的数据进 入DSP芯片,通过软件编程进行DQPSK解调、维特比译码和解 交织等,得到原始信息码。DSP将该信息码送给Intel8251A,转 化成9.6 kb/s的UART数据流,最后经MAX232EESE转变成RS232电平(±12 V)送往数据终端。
7.6 DSP
工程应用实例
图
主 系 统 及 部 分 外 围 电 路
2FSK调制解调电路的设计(校内设计)
专业技能实训报告题目2FSK调制解调电路设计与实现学院信息科学与工程学院专业通信工程专业班级学生学号指导教师二〇一三年一月十日目录1前言................................................................................... (1)1.1 FSK简介................................................. .......... .. (1)1.2 课题的主要研究工作及意义................................ ...................... . (1)2 2FSK的调制解调原理介绍 (2)2. 1 锁相环原理介绍 (2)2.2 2FSK的调制原理 (2)2.3 2FSK的解调原理 (4)3 2FSK的各电路模块设计 (7)3.1 2FSK的调制单元 (7)3.1.1模拟开关电路 (7)3.1.2振荡电路 (8)3.2 2FSK的解调单元 (8)3.2.1 2FSK的两种解调方式介绍 (8)3.2.2 2FSK解调电路 (9)4 2FSK总体电路设计与仿真 (11)4.1 总体电路设计 (11)4.2 调制解调仿真 (12)结语 (14)参考文献 (15)附录 (16)1 前言1.1 FSK简介数字频率调制又称频移键控(FSK—Frequency Shift Keying),二进制频移键控记作2FSK。
数字频移键控是用载波的频率来传送数字消息,即用所传送的数字消息控制载波的频率。
2FSK信号便是符号“1”对应于载频,而符号“0”对应于载频(与不同的另一载频)的已调波形,而且与之间的改变是瞬间完成的。
从原理上讲,数字调频可用模拟调频法来实现,也可用键控法来实现。
模拟调频法是利用一个矩形脉冲序列对一个载波进行调频,是频移键控通信方式早期采用的实现方法。
2FSKFSK通信系统调制解调综合实验电路设计
2FSKFSK通信系统调制解调综合实验电路设计以下是一个关于2FSK/FSK通信系统调制解调综合实验电路设计的文本,并附有示意图,共计1200字以上:引言:2FSK(双频调制)和FSK(频移键控)是一种常用的数字调制技术,广泛应用于通信系统中。
本实验旨在设计一个基于2FSK/FSK调制解调的通信系统电路。
1.系统概述本系统由两部分组成:调制器和解调器。
调制器负责将数字信号转换为2FSK/FSK信号,解调器负责将接收到的2FSK/FSK信号转换为数字信号。
2.调制器设计调制器的设计包括以下步骤:-数字信号生成:生成一个长度为N的数字信号序列,表示待传输的信息。
-符号映射:将数字信号映射为对应的2FSK/FSK调制信号。
例如,可以将“0”映射为低频信号,将“1”映射为高频信号。
-调制信号生成:使用相应的调制技术,将映射后的2FSK/FSK信号生成为模拟信号。
例如,对于2FSK调制,可以使用两个不同的频率来表示“0”和“1”;对于FSK调制,可以使用频率的变化来表示“0”和“1”。
-输出:将调制后的信号输出至发送端。
3.解调器设计解调器的设计包括以下步骤:-信号接收:接收从发送端发送的调制信号。
-频率检测:检测接收到的信号的频率变化,判断其对应的数字信号。
-符号还原:根据频率的变化,将接收到的频率信号还原为对应的数字信号。
-输出:将还原后的数字信号输出至接收端。
4.电路设计根据调制器和解调器的设计要求,可以设计以下电路模块:-时钟模块:用于生成系统所需的时钟信号。
-数字信号生成模块:负责生成数字信号序列。
-符号映射模块:根据数字信号将其映射为2FSK/FSK信号。
-调制信号生成模块:根据2FSK/FSK信号生成调制信号。
-信号接收模块:接收从发送端发送的调制信号。
-频率检测模块:检测接收到的信号的频率变化。
-符号还原模块:根据频率变化将接收到的信号还原为数字信号。
-输出模块:负责将数字信号输出至接收端。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
STQ2016采用TSSOP-16封装,可广泛应用在各种通信系 统中,例如,蜂窝电话/PCS/ CDMA2000/UMTS收发器、 900 & 2400 MHz ISM频带收发器、GMSK、QPSK、QAM、 SSB调制器。
STQ2016在1700~2500MHz的典型应用电路原理图、元 器件布局与印制板图和芯片焊盘尺寸如图4.4.2所示,元 件参数见表4.4.1。
运算放大器转换单端I和Q信号为差分形式。运算放大器具有 一定的电压增益,因此对于相同的RF输出功率,基带输入 峰值电压应该除以2。运算放大器可接收差分平衡信号。通 过连接板上的4个通孔(V1,V2,V3,V4),可以旁路运 算放大器,直接与调制器的差分输入端连接。
图4.4.5 LT5503在1.9~2.4GHz的应用电路
⑤ IC通过封装的底层上的裸露焊盘连接到地。在这种 方式下,可以得到完全RF抑制,这个裸露焊盘必须焊 接到印制板上。
。
⑥ 利用一个或更多个通孔直接连接到接地板上,以获 得低阻抗的RF接地。
⑦止其VC不C线稳必定须性使。用低阻抗的、宽频带的电容去耦,以防 ⑧ 必须使用独立的电源电压线,以隔离调制输入信号
4.4.2 基于STQ 2016的700~2500MHz直接 正交调制器电路
STQ2016是一个直接正交调制器芯片,芯片中集成了一 对平衡混频器、移相器、功率放大器等电路,频率范围 为700~2500MHz,基频带宽为0~500MHz,典型输出 功率为12dBm,并具有大于50dB的IM3抑制。具有极好 的载波和边带抑制。STQ2016具有宽带噪声低、功耗低、 LO驱动要求低、相位精确度高、幅度平衡好、无须外部 IF滤波器等特性。在5V电压下正常工作,电流消耗82mA。
和调制输出信号。如果可以的话,要使用电源印制板 面。 ⑨ 如果可以的话,要避免使用长的印制线。长的印制 线会导致信号辐射,降低隔离能力,增加损耗。
4.4.4 基于ATR0797的65~300MHz的I/Q解
调器电路
ATR0797是一种增益可控的I/Q解调器芯片,内部结构 如图4.4.7所示,它由可调增益放大器和混频器等电路 组成,主要用于典型的超外差式结构的接收器中频部 分(正交解调和直接解调中频电路)。ATR0797中频 输入(I/Q基带混合)频率范围为65~300MHz,在 65~300MHz频率范围内可以进行增益控制。ATR0797 具有很低的I/Q振幅和相位误差,并且具有很高的输入 1dB压缩(P1dB)。电源电压为5V,电流消耗为 195mA。ATR0797采用TSSOP16封装,可广泛应用于 数字通信系统、GSM/无线电收发机、ISM波段无线电 收发机及3G无线通信系统中。
图4.4.6 LT5503应用电路测试连接图
布线考虑:
① 使用50阻抗传输线连接到匹配网络,必须使用接 地板。
② 匹配网络与引脚间的连线尽可能短。
③ 建议使用尺寸为0402(或者更小)的元件,以使寄 生电感和电容最小。
④ 通过在印制板的底层上设置LO2传输线,隔离LO2输 入端与MODOUT引脚。
4.4 调制解调电路设计实例
4.4.1 基于U2790的1000MHz正交调制器电 路
U2790是一个1000MHz的正交调制器,基带输入频率为 0~50MHz,本机振荡器输入频率为100~1000MHz,具 有50的单端本机振荡器和RF端口。输出电平和寄生电 平可以调整,连接Atmel公司的U2795B混频器,可以上 变频到2GHz。U2790电源电压为5V,电流消耗30mA, 具有低功耗模式(电流消耗1A),工作温度范围为 40℃~+85℃。U2790采用SO-16封装形式,适用GSM、 ADC、JDC 和WLAN等数字无线通信系统应用。
LT5503采用TSSOP-20封装,可用于IEEE 802.11DSSS 和FHSS、高速无线局域网(WLAN)、无线本地回路 (WLL)、PCS无线数据、MMDS等领域。
图4.4.4 LT5503内部结构方框图
LT5503在1.9~2.4GHz的应用电路如图4.4.5所示,其应用电 路元器件参数见表4.4.2,应用电路测试连接图如图4.4.6所示。
图4.4.2 STQ2016在1700~2500MHz的应用电路原理图、元器件布局与印制板图和芯片焊盘尺寸
图4.4.3 直接正交调制器的参数测试电路
4.4.3 基于LT5503的1.2~2.7GHz直接正 交调制器电路
LT5503是一个发射机前端芯片,芯片中集成有可变增 益放大器(VGA)、高频率正交调制器、平衡混频器。 调制器包含一个精确的90°移相器,可以将基带I和Q 信号直接调制成RF信号,内部结构方框图如图4.4.4所 示。
LT5503的RF载波输入频率范围为1.2~2.7GHz,基带输 入带宽为0~120MHz,混频器第二本机振荡输入频率 范围为0~1000MHz,混频器第一本机振荡输入频率范 围为1~2400MHz,调制RF载波的输出功率有3dBm, VGA输出功率通过数字控制。LT5503采用1.8~5.25V 的单电源供电,电流消耗38mA。
U2790内部包含放大器、混频器、加法器、移相器、占 空比再生器(Duty cycle regenerator)、倍频器 (Frequency doubler)和控制环路器(Control loop)等 电路。
U2790的基带输入采用交流耦合形式,应用电路如图 4.4.1所示。
图4.4.1 U2790的应用电路