典型环节的Bode图
自动控制原理3第三节典型环节的频率特性
左图是不同阻尼系数情况下的 对数幅频特性和对数相频特性 图。上图是不同阻尼系数情况 下的对数幅频特性实际曲线与 渐近线之间的误差曲线。
1 2T 1 T 2 T 5 T 10 T
1 5T
Saturday, November 05, 2016
15
微分环节的频率特性
⒌ 微分环节的频率特性: 微分环节有三种:纯微分、一阶微分和二阶微分。传递函 数分别为: G( s) s
05, 2016
12
振荡环节的波德图
2 T ( ) tg 相频特性: 1 T 2 2
1
几个特征点: 0, ( ) 0;
1 , ( ) ; , ( ) 。 T 2
由图可见:
K 10, T 1, 0.3 10 G ( j ) 2 s 0.6s 1 1 o T
1
幅频特性为: 相频特性为:
A( )
(1 T 2 2 )2 (2T )2 2 T ( ) tg 1 1 T 2 2
L( ) 20 log A( ) 20 log (1 T 2 2 ) 2 (2 T ) 2 对数幅频特性为:
低频段渐近线: T 1时,L( ) 0 高频段渐近线: T 1时, L( ) 20 log (T 2 2 ) 2 40 log T 1 两渐进线的交点 o 称为转折频率。斜率为-40dB/Dec。 T Saturday, November
1 2
T
时,无谐振峰值。当
M p A( p )
1 2
1 0.707时, p 0 。 2
时,有谐振峰值。
1 2 1 2
1 当 0 , A(0 ) , 。 L ( ) 20 lg 2 0 2
典型环节的Bode图
控制系统的开环频率特性目的:掌握开环Bode 图的绘制根据Bode 图确定最小相位系统的传递函数 重点:开环Bode 图的绘制、根据Bode 图确定最小相位系统的传递函数1 开环伯德图手工作图的一般步骤:1)将开环传递函数表示为时间常数表达形式,计算各个典型环节的交接频率2)求20lgK 的值,并明确积分环节的个数ν 3)通过(1,20lgK )绘制斜率为-20vdB/dec 低频段 4)随着频率增加,每遇到一个典型环节的交接频率,就改变一次斜率最小相位系统定义: 递函数的零点、极点全部位于S 左半平面,同时又无纯滞后环节的系统称为最小相位系统。
否则就是非最小相位系统。
对数幅频特性与相频特性之间存在确定的对应关系。
对于一个最小相位系统,我们若知道了其幅频特性,它的相频特性也就唯一地确定了。
也就是说:只要知道其幅频特性,就能写出此最小相位系统所对应的传递函数,而无需再画出相频特性。
非最小相位系统高频时相角迟后大,起动性能差,响应缓慢。
对响应要求快的系统,不宜采用非最小相位元件。
2 典型环节的伯德图绘制曲线在MA TLAB 中实现,利用下述的程序段:num=[b2 b1 b0]; den=[1 a2 a1 a0]; H=tf(num,den); bode(H) margin(H) hold on2.1 比例环节传递函数:()G s K = 频率特性:()G j K ω=对数幅频特性:()20lg L j K ω= 对数相频特性:()0ϕω=程序段:num=[0 10]; den=[0 1]; H=tf(num,den); bode(H)margin(H) holdon结论:放大环节的对数幅频特性是一条幅值为20lgK 分贝,且平行于横轴的直线,相频特性是一条和横轴重合的直线。
K>1时,20lgK>0dB ;K<1时,20lgK<0dB 。
2.2 惯性环节(低通滤波特性)传递函数:1()1G s sτ=+频率特性:()()()j G j A e ϕωωω=对数幅频特性:21()20lg 1()L ωτω=+对数相频特性:()arctan ϕωτω=-绘制1()10.1G s s=+的Bode 图程序段:num=[0 1]; den=[0.1 1];H=tf(num,den); bode(H) margin(H) holdon结论:惯性环节的对数幅频特性可以用在1ωτ= 处相交于0分贝的两条渐近直线来近似表示:当1ωτ时,是一条0分贝的直线; 当1ωτ时,是一条斜率为-20dB/dec 的直线。
《典型环节伯德图》课件
稳定性分析
稳定性定义:系统 在受到扰动后能够 恢复到其原始状态 的能力
稳定性分类:稳定、 不稳定、临界稳定
稳定性分析方法: 伯德图分析、奈奎 斯特图分析、根轨 迹分析等
伯德图分析:通过绘制 伯德图,观察系统在不 同频率下的增益和相位 变化,判断系统的稳定 性。
动态性能分析
伯德图:描述系统动态性能的图形工具 频率响应:系统对不同频率信号的响应 相位裕度:系统稳定性的指标 增益裕度:系统放大能力的指标 动态性能分析方法:如根轨迹法、频率响应法等
MATLAB还提供了丰富的函数库,可以方便地进行各种数学计算和仿真。
Simulink软件介绍
软件名称: Simulink
开发商: MathWorks
公司
软件功能:用 于建模、仿真 和分析动态系
统
应用领域:广 泛应用于控制 工程、信号处 理、通信等领
域
软件特点:图 形化界面,易 于操作,支持 多种编程语言
软件版本:最 新版本为 Simulink 2022a
其他绘制软件介绍
AutoCAD:一款专业的CAD软件,可以绘制 各种类型的伯德图
SolidWorks:一款三维设计软件,可以绘制 伯德图
Inventor:一款三维设计软件,可以绘制伯 德图
SketchUp:一款三维设计软件,可以绘制伯 德图
Blender:一款三维设计软件,可以绘制伯德 图
幅频特性的分析
幅频特性的定义:描述信号在频率域上的分布特性 幅频特性的表示方法:通常采用伯德图或奈奎斯特图 幅频特性的应用:用于分析信号的频率响应、滤波器设计等 幅频特性的测量方法:通过频谱分析仪或示波器等仪器进行测量
相频特性的分析
相频特性的定义:描述信号频率与相位之间的关系 相频特性的表示方法:通常用相频特性曲线表示 相频特性的应用:在信号处理、通信等领域有广泛应用 相频特性的测量方法:通过实验或仿真进行测量
考研复习题典型环节伯德图
相频特性是:
二阶微分环节与振荡节 的Bode图关于ω轴对称 ,如图5-21。渐近线的 转折频率为,相角变化 范围是00至+1800。 二阶微分环节的Bode图
七不稳定环节
不稳定环节的频率特性是:
其对数幅频特性和相频特性分别为:
不稳定惯性环节的Bode图
二积分环节
积分环节的频率特性是: 其幅频特性为: 对数幅频特性是:
设
,则有: (5-68)
可见,其对数幅频特性是一条 在ω=1(弧度/秒)处穿过零分贝 线(ω轴),且以每增加十倍频率 降低20分贝的速度(-20dB/dec) 变化的直线。 积分环节的相频特性是:
(5-69)
是一条与ω无关,值为-900 且平行于ω轴的直线。积分环 节的对数幅频特性和相频特性 如图5-12所示。
振荡环节的相频特性是:
除上面三种特殊情况外,振荡环节相频特性还是 阻尼比ξ的函数,随阻尼比ξ变化,相频特性在转折 频率 附近的变化速率也发生变化,阻尼比ξ越小, 变化速率越大,反之愈小。但这种变化不影响整个相 频特性的大致形状。不同阻尼比ξ的相频特性如图520 所示。
振荡环节对数相频特性图
六二阶微分环节
一放大环节(比例环节)
放大环节的频率特性为:
其幅频特性是:
对数幅频特性为:
放大环节的对数幅频特性如图5-11所示,它是一条与角 频率ω无关且平行于横轴的直线,其纵坐标为20lgK。 当有n个放大环节串联时,即:
(5-62)
幅值的总分贝数为:
(5-63)
放大环节的相频特性是:
(5-64)
如图5-11所示,它是一条与角频率ω无 关且与ω轴重合的直线。
如何绘制伯德图PPT课件
G( j ) 00
(5-63) (5-64)
100 00
900 1800
10 100 1000
图5-11 放大环节的Bode图
如图5-11所示,它是一条与角频率ω无关且与ω轴重合的直线。
5
(二)积分环节 积分环节的频率特性是
G( j) 1 j 1 1 e j90 j
7
当有n个积分环节串联时,即
dB L()
G(
j
)
(
1
j
)n
其对数幅频特性为
20 lg
G(
j )
20 lg
1
பைடு நூலகம்n
40
( 5-70 )
0
(5-71)
0.01 0.1
40 dB / dec
1
10
n 20 lg
G( j ) n 900
(5-72) 度 ()
6
设 ' 10 ,则有
20lg ' 20lg 10 20 20lg
dB L()
可见,其对数幅频特性是一条在
60
(5-68)
ω =1(弧度/秒)处穿过零分贝线 (ω 轴),且以每增加十倍频降 低20分贝的速度(-20dB/dec ) 变化的直线。
40
20dB / dec
1
L() dB
BODE图的讲解
L() 20 lg () *90
共二十三页
( )
§5.3.1 典型环节的Bode图
§5.3.1 典型(diǎnxíng)环节的Bode图
⑶ 积分(jīfēn) G( j ) 1
环节
j
L() 20lg () 90
当 G( j) ( 1 ) j
L() 20 lg () 90*
⑷ 惯性环节
§5.3.1 典型(diǎnxíng)环节的Bode图
⑹ 节
振荡(zhèndàng)G环(s)
n2 s2 2ns n2
G(
j )
1
2
2 n
1
j2
n
L( ) 20lg
[1
2 n2
]2
[2
n
]2
( )
arctan 2
n
1 -
2
2 n
1
n
1
n
L() 0 () 0
L( ) 40lg n
第一转折频率之左 的特性及其延长线
共二十三页
内容(nèiróng)总结
1)由开环频率特性 求出幅频特性 和相频特性 ,或实频 特性 和虚频特性。不含零点时,模值和相位一般会单调收缩 ,当有零点时,曲线可能会扭曲。(4) (非直线)特性曲线可以绘制 渐近对数(duìshù)幅频特性,进一步简化绘制过程。是一条斜率为+ 20db/dec,过(1,0)点的直线,记作〔+20〕。谐振频率wr 和谐振 峰值Mr。① 两惯性环节转折频率很接近时
30dB
20( lgc
lg
2)
20 lg
c
2
lg c 30 1.5
2 20
c 2 101.5 63.2 rad s
如何绘制伯德图
。
6
设 ' 10 ,则有
20 lg 20 lg 10 20 20 lg
'
(5-68)
dB L( )
可见,其对数幅频特性是一条在 ω =1(弧度/秒)处穿过零分贝线 ( ω 轴),且以每增加十倍频降 低 20 分贝的速度( -20dB/dec ) 变化的直线。 积分环节的相频特性是
对数幅频特性为
20 lg G( j ) 20 lg K
(5-61)
当K>1时,20lgK>0,位于横轴上方;
当K=1时,20lgK=0,与横轴重合;
当K<1时,20lgK<0,位于横轴下方。
4
放大环节的对数幅频特性如图5-11所示,它是一条与角频 率ω 无关且平行于横轴的直线,其纵坐 标为20lgK。
0
100
1000
(5-63)
180
0
放大环节的相频特性是
G( j ) 0
0
图5-11 放大环节的Bode图
(5-64) 如图5-11所示,它是一条与角频率ω无关且与ω轴重合的直线。
5
(二)积分环节 积分环节的频率特性是
G ( j ) 1 j j 1
1
e
j 90
2 2 2
(5-85)
相频特性是
G ( j ) arctg 2 1
2 2
dB
40
(5-86)20
0
1 1 10
0
精确特性
40dB / dec
二阶微分环节与振荡节的Bode
1
图关于ω 轴对称,如图5-21 。
第五章_开环伯德图
一、对数坐标图
1. 幅频特性图: 纵坐标:幅值的对数20lg(dB),采用线性分度; 横坐标:用频率ω 的对数lgω 分度。
2.相频特性图 纵坐标:频率特性的相移,以度为单位,采用线性 分度; 横坐标:用频率ω 的对数lgω 分度。
1
( )
60 180
L( ) dB
40
90
12
6. 振荡环节 对数幅频特性 对数相频特性
G jω
1 2 T 2 jω 2ζ T jω 1
Lω 20lg 1 T 2ω2 2ζ Tω
2
2
ω t g1
2ζ Tω 2 2 1 T ω
低频段,即ωT<<1时
Lω 20lg1 =0 dB
2
1 T2
( )
0
G1
90
G2
180
显然,两个系统的幅频特性一样,但相频特性不同。由 2 ω 的变化范围要比 1 ω 大得多。 图可见, G1 ( s) ——最小相位系统 G 2 ( s ) ——非最小相位系统
26
b、当ω=∞时,其相角等于-90°(n-m),对 数幅频特性曲线的斜率为–20(n–m)dB/dec。有时 用这一特性来判别该系统是否为最小相位系统。 c、对数幅频特性与相频特性之间存在确定的对 应关系。对于一个最小相位系统,我们若知道了 其幅频特性,它的相频特性也就唯一地确定了。 也就是说:只要知道其幅频特性,就能写出此最 小相位系统所对应的传递函数,而无需再画出相 频特性。 非最小相位系统高频时相角迟后大,起动性能 差,响应缓慢。对响应要求快的系统,不宜采用 非最小相位元件。
第5章4——Bode图
2
1 2 n
2
n
2 arc tg n 2 1 2 n
0 0 ( ) 90 n 180
autocumt@ 22
振荡环节L()
L()dB 40 20 0dB -20
(rad / s)
10 -2
10 -1
1
10
0
2 3 4
10
1
autocumt@
自动控制原理
对数分度:
lg 2 0.301
lg 3 0.4771 lg 4 2lg 2 0.602 lg 5 0.699 lg 6 lg 3 lg 2 0.778
lg 7 0.845 lg 8 3 lg 2 0.903 lg 9 2 lg 3 0.954
()º
(rad / s)
10 -2
autocumt@
10 -1
3
100
10
1
20 10 0
自动控制原理
L() dB -10
-20 -30 -40 900 450
( )
00 0 -450 -900
-1350
完 整 图 二 合 一
-1800
10 -2
autocumt@
[-20] 0.1 0.2
1
2
10 20
[-20]
100
16
5-4 对数频率特性——Bode图
(5)一次微分环节
传递函数: G(S) TS+ 1 频率特性: G ( j ) Tj 1
0 0 1 相频特性 ( ) arctanT 45 T 90
波德(Bode)图
2 2
低频段( << n)
L( ) 20lg1 0
即低频渐近线为0dB的水平线。 高频段( >> n)
2 L( ) 20lg 1 2 n n 2 2
20 lg 40 lg 40 lg 40 lg n n n
3
通常用L()简记对数幅频特性,也称L() 为增益;用()简记对数相频特性。
对数坐标的优点
幅值相乘、相除,变为相加,相减,简化作图; 对数坐标拓宽了图形所能表示的频率范围 两个系统或环节的频率特性互为倒数时,其对数 幅频特性曲线关于零分贝线对称,相频特性曲线关 于零度线对称
11
20 10
Bode Diagram
= 0.1 = 0.2 = 0.3 = 0.5
L()/ (dB)
0
-10 -20
-30 -40 0
渐近线
= 0.7 = 1.0
-40dB/dec
() / (deg)
-45
-90 -135 -180 0.1
= 0.1 = 0.2 = 0.3
即低频段可近似为0dB的水平线,称为低频渐近线。 高频段( >> 1/T )
L( ) 20lg 1 T 2 2 20lg T 20lg T 20lg
即高频段可近似为斜率为-20dB/dec 的直线,称 为高频渐近线。
7
L()/ (dB)
10 0
10
Bode Diagram 渐近线 -20dB/dec
j 1 i 1 n m
(3)依次作出各环节的Bode图(渐进线); (4)将各环节曲线合成; (5)将对数幅频特性曲线竖直移动20lgKdB.
5.3 对数频率特性(Bode图)
(5-58)
式中, Li (ω) 和ϕi (ω ) 分别表示各典型环节的对数幅频特性和对数相频特性。 式(5-58)表明,只要能作出 G( jω ) 所包含的各典型环节的对数幅频和对数相频曲线,
将它们进行代数相加,就可以求得开环系统的 Bode 图。实际上,在熟悉了对数幅频特性的
性质后,可以采用更为简捷的办法直接画出开环系统的 Bode 图。具体步骤如下:
5.3 对数频率特性(Bode 图)
5.3.1 典型环节的 Bode 图
1.比例环节
比例环节 G( jω ) = K 的频率特性与频率无关,其对数幅
频特性和对数相频特性分别为
⎧L(ω) = 20 lg K ⎨⎩ϕ(ω) = 0o
(5-50)
相应 Bode 图如图 5-23 所示。
2.微分环节
微分环节 G( jω) = s 的对数幅频特性与对数相频特性
显然,当ω ωn = 1,即ω = ωn 时,是两条渐近线的相交点,所以,振荡环节的自然
频率ωn 就是其转折频率。
振荡环节的对数幅频特性不仅与ω ωn 有关,而且与阻尼比ξ 有关,因此在转折频率附
近一般不能简单地用渐近线近似代替,否则可能引起较大的误差。图 5-27 给出当ξ 取不同 值时对数幅频特性的准确曲线和渐近线,由图可见,当ξ < 0.707 时,曲线出现谐振峰值, ξ 值越小,谐振峰值越大,它与渐近线之间的误差越大。必要时,可以用图 5-28 所示的误
差修正曲线进行修正。
由式(5-55)可知,相角ϕ (ω ) 也是ω ωn 和ξ 的函数,当ω = 0 时,ϕ (ω ) = 0 ;当ω → ∞ 时,ϕ (ω ) = −180o ;当ω = ωn 时,不管ξ 值的大小,ωn 总是等于 − 90o ,而且相频特性 曲线关于 (ωn , − 90°) 点对称,如图 5-27 所示。
典型环节的Bode图
典型环节的B o d e图-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN控制系统的开环频率特性目的:掌握开环Bode图的绘制根据Bode图确定最小相位系统的传递函数重点:开环Bode图的绘制、根据Bode图确定最小相位系统的传递函数1 开环伯德图手工作图的一般步骤:1)将开环传递函数表示为时间常数表达形式,计算各个典型环节的交接频率2)求20lgK的值,并明确积分环节的个数ν3)通过(1,20lgK)绘制斜率为-20vdB/dec低频段4)随着频率增加,每遇到一个典型环节的交接频率,就改变一次斜率最小相位系统定义:递函数的零点、极点全部位于S 左半平面,同时又无纯滞后环节的系统称为最小相位系统。
否则就是非最小相位系统。
对数幅频特性与相频特性之间存在确定的对应关系。
对于一个最小相位系统,我们若知道了其幅频特性,它的相频特性也就唯一地确定了。
也就是说:只要知道其幅频特性,就能写出此最小相位系统所对应的传递函数,而无需再画出相频特性。
非最小相位系统高频时相角迟后大,起动性能差,响应缓慢。
对响应要求快的系统,不宜采用非最小相位元件。
2 典型环节的伯德图绘制曲线在MATLAB中实现,利用下述的程序段:num=[b2 b1 b0];den=[1 a2 a1 a0];H=tf(num,den);bode(H)margin(H)hold on比例环节传递函数:()G s K=频率特性:()G j Kω=对数幅频特性:()20lgL j Kω=对数相频特性:()0ϕω=程序段:num=[0 10]; den=[0 1]; H=tf(num,den);bode(H)margin(H) hold on结论:放大环节的对数幅频特性是一条幅值为20lgK分贝,且平行于横轴的直线,相频特性是一条和横轴重合的直线。
K>1时,20lgK>0dB;K<1时,20lgK<0dB。
控制工程-典型环节的对数坐标图(Bode图)
I 型系统的低频渐近线: L (ω )= 20lgK-20lgω 斜率为-20dB/dec的直线,且与0dB线(横轴)的交点为ω=K
II型系统的低频渐近线: L (ω )= 20lgK-40lg ω 斜率为-40dB/dec的直线,且与0dB线(横轴)的交点为= K
3. dec:十倍频,即频率增加10倍;
4. ±20dB/dec:频率每增加10倍,分贝值增加或下降20;
5. 坐标原点0只是纵坐标的0,横坐标没有0。
南华大学
第四章 系统的频率响应分析
对数相频特性曲线:
∠G(jω)
90° 45°
0
1
10
说明: 1. 横坐标仍然表示ω,仍然按对数均匀分度; 2. 纵坐标为(ω)=∠G(jω),均匀分度; 3.坐标原点0只是纵坐标的0,横坐标没有0。
南华大学
第四章 系统的频率响应分析
5. 用特殊点及趋势或者叠加画对数相频特性曲线。
90 ( )
45
一阶微分环节 2
0
ω1
ω2
-45 惯性环节 1
-90
③ω3
惯性环节
南华大学
第四章 系统的频率响应分析
频率特性的特征量
表征系统动态特性的频域性能指标
零频幅值A(0) 复现频率M与复现带宽0~M 谐振频率r及相对谐振峰值Mr 截止频率b和截止带宽0~b
G
() G( j)
0°
ω
南华大学
第四章 系统的频率响应分析
各典型环节Bode图特点总结:
比例环节 积分环节 微分环节 惯性环节 一阶微分环节 二阶振荡环节 二阶微分环节 延时环节
如何绘制伯德图
2 20 log
A( )
20 log
K
40
K 10
20log K 20log ,
20
当K 1时, 1, L() 0;
20 40
()
1 10 100 K 1
10,L() 20 可见斜率为-20dB/dec 当K 0时, 1, L() 20 log K;
1 10 100
T
2
可见,相角的变化范围从0~180度。
Wednesday, May 29, 2024
17
二阶微分环节的波德图
( )(deg)
180°
1.0
150° 0.7
120° 90°
0.5 0.3 0.2
60° 0.1
30°
0°
L( )(dB)
40dB / Dec
L( ) 20
(dB)
比例环节的bode图
二、典型环节的波德图
⒈ 比例环节:G(s) K, (K 0),G( j) K 幅频特性:A() K;相频特性:() 0
L() / dB
20log K
20log K
20log K
()
180
K 1
K 1 log
0 K 1
对数幅频特性:
0
L() 20lg K 0
0
K 0 log
相频特性:
() K 0
180
Wednesday, May 29, 2024
K 1 K 1 0 K 1
1
积分环节的Bode图
⒉ 积分环节的频率特性:G(s) K
s
频率特性:
G( j )
K
j
K
K
e2
典型环节的Bode图
控制系统的开环频率特性目的:掌握开环Bode图的绘制根据Bode图确定最小相位系统的传递函数重点:开环Bode图的绘制、根据Bode图确定最小相位系统的传递函数1 开环伯德图手工作图的一般步骤:1)将开环传递函数表示为时间常数表达形式,计算各个典型环节的交接频率2)求20lgK的值,并明确积分环节的个数ν3)通过(1,20lgK)绘制斜率为-20vdB/dec低频段4)随着频率增加,每遇到一个典型环节的交接频率,就改变一次斜率最小相位系统定义:递函数的零点、极点全部位于S 左半平面,同时又无纯滞后环节的系统称为最小相位系统。
否则就是非最小相位系统。
对数幅频特性与相频特性之间存在确定的对应关系。
对于一个最小相位系统,我们若知道了其幅频特性,它的相频特性也就唯一地确定了。
也就是说:只要知道其幅频特性,就能写出此最小相位系统所对应的传递函数,而无需再画出相频特性。
非最小相位系统高频时相角迟后大,起动性能差,响应缓慢。
对响应要求快的系统,不宜采用非最小相位元件。
2 典型环节的伯德图绘制曲线在MA TLAB中实现,利用下述的程序段:num=[b2 b1 b0];den=[1 a2 a1 a0];H=tf(num,den);bode(H)margin(H)hold on2.1 比例环节传递函数:()G s K=频率特性:()G j Kω=对数幅频特性:()20lgL j Kω=对数相频特性:()0ϕω=程序段:num=[0 10]; den=[0 1]; H=tf(num,den);bode(H)margin(H) hold on结论:放大环节的对数幅频特性是一条幅值为20lgK分贝,且平行于横轴的直线,相频特性是一条和横轴重合的直线。
K>1时,20lgK>0dB;K<1时,20lgK<0dB。
2.2 惯性环节(低通滤波特性)传递函数:1()1G ssτ=+频率特性:()()()jG j A eϕωωω=对数幅频特性:21()20lg1()Lωτω=+对数相频特性:()arctanϕωτω=-绘制1()10.1G ss=+的Bode图程序段:num=[0 1]; den=[0.1 1];H=tf(num,den);bode(H)margin(H)hold on结论:惯性环节的对数幅频特性可以用在1ωτ=处相交于0分贝的两条渐近直线来近似表示:当1ωτ时,是一条0分贝的直线;当1ωτ时,是一条斜率为-20dB/dec的直线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
控制系统的开环频率特性目的:掌握开环Bode图的绘制根据Bode图确定最小相位系统的传递函数重点:开环Bode图的绘制、根据Bode图确定最小相位系统的传递函数1 开环伯德图手工作图的一般步骤:1)将开环传递函数表示为时间常数表达形式,计算各个典型环节的交接频率2)求20lgK的值,并明确积分环节的个数ν3)通过(1,20lgK)绘制斜率为-20vdB/dec低频段4)随着频率增加,每遇到一个典型环节的交接频率,就改变一次斜率最小相位系统定义:递函数的零点、极点全部位于S 左半平面,同时又无纯滞后环节的系统称为最小相位系统。
否则就是非最小相位系统。
对数幅频特性与相频特性之间存在确定的对应关系。
对于一个最小相位系统,我们若知道了其幅频特性,它的相频特性也就唯一地确定了。
也就是说:只要知道其幅频特性,就能写出此最小相位系统所对应的传递函数,而无需再画出相频特性。
非最小相位系统高频时相角迟后大,起动性能差,响应缓慢。
对响应要求快的系统,不宜采用非最小相位元件。
Tf函数用来建立实部或复数传递函数模型或将状态方程、或零级增益模型转化成传递函数形式。
sys = tf(num,den)命令可以建立一个传递函数,其中分子和分母分别为num和den。
输出sys 是储存传递函数数据的传递函数目标。
单输入单输出情况下,num和den是s的递减幂级数构成的实数或复数行向量。
这两个向量并不要求维数相同。
如h = tf([1 0],1)就明确定义了纯导数形式h(s)=s。
若要构建多输入多输出传递函数,要分别定义每一个单输入单输出系统的端口的分子与分母。
2 典型环节的伯德图绘制曲线在MA TLAB中实现,利用下述的程序段:num=[b2 b1 b0];den=[1 a2 a1 a0];H=tf(num,den);bode(H)margin(H)hold on2.1 比例环节传递函数:()G s K=频率特性:()G j Kω=对数幅频特性:()20lgL j Kω=对数相频特性:()0ϕω=程序段:num=[0 10]; den=[0 1]; H=tf(num,den);bode(H)margin(H) holdon结论:放大环节的对数幅频特性是一条幅值为20lgK分贝,且平行于横轴的直线,相频特性是一条和横轴重合的直线。
K>1时,20lgK>0dB;K<1时,20lgK<0dB。
2.2 惯性环节(低通滤波特性)传递函数:1()1G ssτ=+频率特性:()()()jG j A eϕωωω=对数幅频特性:21()20lg1()Lωτω=+对数相频特性:()arctanϕωτω=-绘制1()10.1G ss=+的Bode图程序段:num=[0 1]; den=[0.1 1];H=tf(num,den);bode(H)margin(H)holdon结论:惯性环节的对数幅频特性可以用在1ωτ=处相交于0分贝的两条渐近直线来近似表示:当1ωτ时,是一条0分贝的直线;当1ωτ时,是一条斜率为-20dB/dec的直线。
惯性环节具有低通特性,对低频输入能精确地复现,而对高频输入要衰减,且产生相位迟后。
因此,它只能复现定常或缓慢变化的信号。
2.3 积分环节传递函数:1()G ssτ=频率特性:()()()jG j A eϕωωω=对数幅频特性:1()20lgL jωτω=对数相频特性:()2πϕω=-在同一坐标中绘制1()G ss=、1()0.1G ss=和1()0.01G ss=的Bode图num1=[0 1];den1=[1 1];H1=tf(num1,den1);bode(H1)margin(H1)hold onnum1=[0 1];den1=[0.11];H1=tf(num1,den1);bode(H1)margin(H1)hold onnum1=[0 1];den1=[0.01 1];H1=tf(num1,den1);bode(H1)margin(H1)hold on蓝色的线为:1()G ss=,红色的线为:1()0.1G ss=紫色的线为:1()0.01G ss=结论:积分环节的对数幅频曲线是一条经过横轴上ω=1这一点,且斜率为-20的直线;相频与ω无关,值为-90°且平行于横轴的直线,2.4 微分环节传递函数:()G s sτ=频率特性:()()()jG j A eϕωωω=对数幅频特性:()20lgL jωτω=对数相频特性:()2πϕω=在同一坐标中绘制()G s s=、()0.01G s s=和()0.001G s s=的Bode图num1=[1 0];den1=[0 1];H1=tf(num1,den1);bode(H1)margin(H1)hold onnum1=[0.1 0];den1=[0 1];H1=tf(num1,den1);bode(H1)margin(H1)hold onnum1=[0.01 0];den1=[0 1];H1=tf(num1,den1);bode(H1)margin(H1)hold on蓝色的线为:()G s s=,红色的线为:()0.01G s s=,紫色的线为:()0.001G s s=结论:微分环节是积分环节的倒数,它们的曲线斜率和相位移也正好相差一个负号。
2.5 一阶比例微分环节传递函数:()1G s sτ=+频率特性:()()()jG j A eϕωωω=对数幅频特性:2()20lg1()L jωτω=+对数相频特性:()arctanϕωτω=在同一坐标系中,绘制()1G s s=+,()10.1G s s=+和()10.01G s s=+的Bode图。
num1=[1 1];den1=[0 1];H1=tf(num1,den1);bode(H1)margin(H1)hold onnum1=[0.1 1];den1=[0 1];H1=tf(num1,den1);bode(H1)margin(H1)hold onnum1=[0.01 1];den1=[0 1]; H1=tf(num1,den1); bode(H1) margin(H1) hold on2.6 二阶比例微分环节传递函数:22()12G s s s ξττ=++ 频率特性:()()()j G j A e ϕωωω=对数幅频特性:2222()20lg (2)(1)L j ωξτωτω=+-对数相频特性:222()arctan1ξτωϕωτω=-绘制22()12G ss s ξττ=++的Bode 图。
1)取0.707ξ=,1τ=则2()12G s s s =++2)取1ξ=,1τ=则2()12G s s s =++3)取0.2ξ=,1τ=则2()10.4G s s s =++4)取0.5ξ=,1τ=则2()11G s s s =++5)取0.1ξ=,1τ=则2()10.2G s s s =++在同一个标系中绘制以上曲线num1=[1 1.414 1];den1=[0 1]; H1=tf(num1,den1); bode(H1) margin(H1) hold onnum1=[1 2 1];den1=[0 1]; H1=tf(num1,den1); bode(H1)margin(H1) hold onnum1=[1 0.4 1];den1=[0 1]; H1=tf(num1,den1); bode(H1) margin(H1) hold onnum1=[1 1 1];den1=[0 1]; H1=tf(num1,den1); bode(H1) margin(H1) hold onnum1=[1 0.2 1];den1=[0 1]; H1=tf(num1,den1); bode(H1) margin(H1) holdon二阶微分环节Bode2.7 振荡环节传递函数:222()2nn n G s s s ωωξω=++令1nτω=则:221()12G s s s ξττ=++频率特性: ()221()()12j G j A e j ϕωωωξτωτω==+-对数幅频特性:22221()20lg(2)(1)L j ωξτωτω=+-对数相频特性:22222arctan 11()2arctan 11ξτωτωτωϕωξτωπτωτω⎧-≤⎪⎪-=⎨⎪-->⎪-⎩绘制221()12G s s s ξττ=++的Bode 图。
1)1)取0.707ξ=,1τ=则21()12G s s s=++ 2)取1ξ=,1τ=则21()12G s s s =++3)取0.2ξ=,1τ=则21()10.4G s s s=++ 4)取0.5ξ=,1τ=则21()11G s s s =++ 5)取0.1ξ=,1τ=则21()10.2G s s s =++ 在同一个标系中绘制以上曲线num1=[0 1];den1=[1 1.414 1]; H1=tf(num1,den1); bode(H1) margin(H1) hold onnum1=[0 1];den1=[1 2 1]; H1=tf(num1,den1); bode(H1) margin(H1) hold onnum1=[0 1];den1=[1 0.4 1]; H1=tf(num1,den1); bode(H1) margin(H1) hold onnum1=[0 1];den1=[1 1 1]; H1=tf(num1,den1); bode(H1) margin(H1) hold onnum1=[0 1];den1=[1 0.2 1]; H1=tf(num1,den1); bode(H1) margin(H1) holdon3 对控制系统的一般要求开环对数频率特性的一般要求或者说怎样的Bode 图才算是比较理想的频率特性?(1)中频段以-20dB/dec的斜率穿越零分贝线,而且这一斜率占有足够的频带宽度,则系统的稳定性好。
越高,则系统的快速性越好。
(2)截止频率c(3)低频段的斜率陡,增益高,表示系统的稳态精度好(即稳态误差小)。
(4)高频段衰减得越快,即高频特性负分贝值低,说明系统抗高频噪声干扰的能力越强。