第四章微生物的营养
微生物学(周德庆版)第四章 微生物的营养和培养基
49
50
2.鉴别性培养基(differential medium) 培养基中加能与某一菌的无色代谢产物发
生显色反应的指示剂,从而用肉眼就能使 该菌菌落与外形相似的它种菌落相区分的 培养基,就称鉴别性培养基。
丙酮酸+P-HPr
HPr是一种低分子量的可溶性蛋白,结合在 细胞膜上,具有高能磷酸载体的作用。
27
2、糖被磷酸化后运入膜内
膜外环境中的糖先与外膜表面的酶2结合,再
被转运到内膜表面。这时,糖被P-HPr上的
磷酸激活,并通过酶2的作用将糖-磷酸释放
到细胞内。
酶2
P-HPr+糖 糖-P +HPr
28
29
以纤代糖 以国代进
42
二、4 种方法
生态模拟 参阅文献 精心设计 试验比较
43
二、培养基的种类
培养基种类繁多,根据其成分、物理状态和用
途可将培养分成多种类型。
一类利用动、植物或微生物体或其提取物制
(
成的培养基,是一类营养成分复杂,难以说
一 )
天然培养基
出其确切成分的培养基。
按
牛肉膏蛋白胨培养基、麦芽汁培养基
(NH4)2SO4, NH4NO3等 KNO3等 空气
7
按氮源的不同生物可分为: 氨基酸自养型生物:能利用尿素、铵盐、硝酸盐甚至氮 气的生物 氨基酸异养型生物:现成氨基酸
8
3.能源 能源:能为微生物的生命活动提供最初能量来源营养 物或辐射能,称为能源。
无机物:化能自养菌的能源:NH4+、NO2-、S、H、H2S、Fe2+等。 单功能营养物、双功能营养物、三功能营养物
第四章 微生物的营养和培养及
第四章 微生物的营养与培养基目的要求:通过本章的课堂教学,使学生了解微生物营养类型的特点及多样性,以及根据不同微生物各自的营养要求,配制相应的培养基对微生物培养的理论知识,为今后对微生物的研究与利用打下基础。
教学内容:1、微生物的6类营养要素2、微生物的营养类型3、营养物质进入细胞的方式单纯扩散(simple diffusion)促进扩散(facilitated diffusion)主动运输(active transport)基团移位(group translocation)4、培养基(media)配制的原则5、培养基的种类重点内容:微生物 营养类型营养物质进入细胞的方式培养基(media)配制的原则及主要培养基类型营养(nutrition):微生物CUN 从外部环境中摄取对其生命活动必须的能量和物质,以满足其生长和繁殖等生理活动的过程。
营养物质(nutrient):那些能够满足机体生长、繁殖和完成各种生理活动所需要的物质称为营养物质。
营养物质是微生物生存的物质基础,而营养是微生物维持和延续其生命形式的一种生理过程。
第一节 微生物的六种营养要素一、微生物细胞的化学组成细胞化学元素组成:主要元素: 包括碳、氢、氧、氮、磷、硫、钾、镁、钙、铁等,碳、氢、氧、氮、磷、硫等微量元素: 包括锌、锰、氯、钼、硒、钴、铜、钨、镍、硼等。
微生物细胞组成:有机物、无机物和水。
有机物:主要包括蛋白质、糖、脂、核酸、维生素以及它们的降解产物和一些代谢产物等物质。
无机物:是指与有机物相结构或单独存在于细胞中的无机盐(inorganic salt)等物质。
水:细胞维持正常生命活动所不可少的,一般可占细胞重量的70%-90%。
二、微生物的营养要素营养物质按照它们在机体中的生理作用不同,可以将它们区分成碳源、氮源、能源、生长因子、无机盐和水。
1、碳源:在微生物生长过程中能满足微生物生长繁殖所需碳元素的营养物质称为碳源。
碳源物质在细胞内经过一系列复杂的化学变化后成为微生物自身的细胞物质(如糖类、脂类、蛋白质等)和代谢产物,同时绝大部分碳源物质在细胞内生化反应过程中还能为机体提供维持生命活动所需的能源,因此碳源物质通常也是能源物质。
yd第四章 微生物的营养和培养基
生长因子是一类调节微生物正常代谢必不可少,但素、AA、碱基等。其主要功能是参与合成核酸和辅酶,如嘌呤和嘧啶。提供生 长因子的物质包括酵母膏、玉米浆、麦芽汁、复合维生素等营养物质。 五、无机盐
以 CO2 或碳酸盐作为唯一或主要碳源,以氧化无机物释放的化学能为能源,利用电子供 体如氢气、硫化氢、二价铁离子或亚硝酸盐等使 CO2 还原成细胞物质。这类微生物主要有硫 化细菌、硝化细菌、氢细菌与铁细菌。它们在自然界物质转换过程中起着重要的作用。 三、光能有机营养型以 CO2 和简单有机物为基本碳源,以有机物(如异丙醇)作为供氢体, 利用光能将 CO2 还原成细胞物质。红螺菌属中的一些细菌属于此种营养类型。四、化能有机 营养型
这类微生物以有机化合物为碳源,利用有机化合物氧化过程中产生的化学能为能源,以 有机物作为供氢体进行生长的微生物,称为化能异养微生物。多数微生物属于化能异养型, 其生长所需要能源和碳源通常来自同一种有机物。其中,化能异养型又依据所利用的有机物 特性,分为腐生型和寄生型。
营养类型的划分不是绝对的,不同生活条件下,可相互转变。 4.3 营养物进入细胞的方式 一、单纯扩散(simple diffusion)
1. 热稳载体蛋白(HPr)的激活。HPr 是一种低分子量的可溶性蛋白,结合在细胞膜上, 具有高能磷酸载体的作用。细胞内高能化合物磷酸烯醇式丙酮酸(PEP)的磷酸基团通过酶 1 的作用把 HPr 激活。
2. 糖经磷酸化后运入细胞膜内。膜外环境中的糖先与外膜表面的酶 2 结合,再被转运 到内膜表面。这时,糖被 P-HPr 上的磷酸激活,并通过酶 2 的作用将糖-磷酸释放到细胞内。 酶 2 是一种结合于细胞膜上的蛋白,它对底物具有特异性选择作用,因此细胞膜上可诱导出 一系列与底物分子相应的酶 2。 4. 4 培养基(medium)
微生物第四章总结
3. 半组合培养基 又称半合成培养基,指一类主要以化学试剂配制,同时还加有某种或某些天然成分的培养基。如:马铃薯蔗糖培养基。
(2)渗透压和水活度
渗透压:是某水溶液中一个可用压力来度量的物化指标,它表示两种不同浓度的溶液间若被一个半透膜隔开时,稀溶液中的水分子会因水势的推动而透过隔膜流向浓溶液,直至两边水分子的进出达到平衡为止。
水活度:即aw,表示在天然或人为环境中,微生物可实际利用的自由水或游离水的含量。其定量涵义为:在同温同压下,某溶液的蒸汽压(P)与纯水蒸汽压(P0)之比。因此水活度也等于该溶液的百分相对湿度值(ERH),各种微生物生长繁殖范围的水活度在0.998-0.60之间。
氮源:凡能提供微生物生长繁殖所需氮元素的营养源。
氮源谱:把微生物作为一个整体观察,它们能利用的氮源范围。其谱详见P84
异养微生物对氮源的利用顺序是:N.C.H.O或N.C.H.O.X优于N.H优于N.O优于N类。
氨基酸自养型生物:一部分微生物是不需要利用氨基酸作为氮源,它们能把尿素,铵盐,硝酸盐甚至氮气等简单氮源自行合成所需要的一切氨基酸。
三,主动运送
主动运送:指一类须提供能量通过细胞膜上特异性载体蛋白构象的变化,而使膜外环境中低浓度的溶质运入膜内的一种运送方式。
四,基因移位
基因移位: 指一类既需特异性载体蛋白的参与,又需耗能的一种物质运送方式,其特点是溶质在运送前后还会发生分子结构变化。基因移位主要用于运送各类糖类,核苷酸,丁酸和腺嘌呤等物质。
4.微生物的营养(1)
加富培养基
是在培养基中加入血、血清、动植物组 织提取。用来培养要求较苛刻的某些异 养微生物。
Cncnc-micro
无机盐(mineral salts)
无机盐功能 构成微生物细胞的组成成分 调解微生物细胞的渗透压, PH值和氧 化还原电位 有些无机盐如S、Fe还可做为化能自养微 生物的能源 构成酶活性基的组成成分,维持E活性。 Mg、Ca、K是多种E的激活剂
Cncnc-micro
无机盐种类
构成微生物细胞以C、H、O、N、P、S六种元素 为主, 此外Ca、K 、Mg、Fe,约占细胞干重的 95%以上。 大量元素Ca、K 、Mg、Fe,以无机盐阳离子形 式被吸收,配培养基要加进磷酸盐、硫酸盐。
Cncnc-micro
化能自养微生物
在完全无机的环境中生长发育,以无机 化合物氧化为时释放的能量为能源,以 CO2为碳源,合成细胞物质的微生物叫化 能自养微生物。 这类细菌包括硫细菌、硝化细菌、H细 菌、铁细菌等,硫细菌和硝化细菌与生 产密切相关。
Cncnc-micro
异养微生物(有机营养型)
在完全有机环境中生长繁殖,以含碳 有机物为碳源,含氮有机物或无机物为 氮源,合成细胞物质,称为异养微生物。
Cncnc-micro
氮源种类
分子态氮:固氮微生物以分子氮为唯一氮源 无机态氮:硝酸盐、铵盐几乎所有微生物能利用 有机态氮:蛋白质及其降解产物 实验室常用牛肉膏、蛋白胨、酵母膏做氮源 生产用玉米浆、豆饼、葵花饼、花生饼等。 a 速效氮源:玉米浆、铵盐等 b 迟效氮源:豆饼、花生饼等
Cncnc-micro
基团转位:是在研究糖的运输时发现的 一种主动运输方式。 运输过程中需要能量,被运输的物质发 生化学变化的运输叫基团移位。 许多糖就是靠基团移位进行运输的。 这种运输方式是微生物通过磷酸转移酶 系统来运输营养物质的。
第4章 微生物的营养与培养基
基团移位
基团转移运输特点:(p93)
需要磷酸酶系统进行催化
被运输的物质发生化学变化,被磷酸化 需要能量
4 种运送方式 总结
浓度梯度 单纯扩散 促进扩散 主动运输 高 高 低 低 低 高 能量 不需 不需 需 载体 不需 需 需 动力 浓度差 浓度差 能量
基团移位
低
高
需
需
能量
4种运送营养方式的比较
促进扩散 (p93)
①不消耗能量 ②参与运输的物质本身的分子结构不发生变化
特 点
③不能进行逆浓度运输
④运输速率与膜内外物质的浓度差成正比 ⑤需要载体参与
图4 主动运输示意图
三、主动运输特点
被运送的物质可逆 浓度梯度进入细胞 内 消耗能量,必需有 能量参加。 有膜载体参加,膜 载体发生构型变化 被运送物质不发生 任何变化。
葡萄糖 5g
1g
NH4H2PO4 1g NaCl 5g MgSO4.7H2O 0.2g K2HPO4
H2O 1000ml
2. 营养协调 (p96)
培养基中营养物质浓度合适时微生物才能生长良好,营养物质浓度 过低时不能满足微生物正常生长所需,浓度过高时则可能对微生物生长 起抑制作用。 培养基中各营养物质之间的浓度配比直接影响微生物的生长繁殖 和代谢产物的形成和积累,碳氮比(C/N)的影响较大。 碳氮比:培养基中碳元素与氮元素的物质的量比值,有时也指培养 基中还原糖与粗蛋白之比。
单功能营养物:如辐射能 双功能营养物:NH4+是硝酸细菌的能源和氮源 三功能营养物:如”N.C.H.O”是异养微生物的能源、碳源及氮 源。
第二节 微生物的营养类型
营养类型 碳源 能源 代表菌 蓝细菌 绿硫细菌 藻类 红螺菌科 硝化细菌 硫化细菌 绝大多数细菌 全部真核微生物
微生物学4微生物的营养
4、生长因子
指那些微生物生长所必需而且需要量很小,但微生 物自身不能合成或合成量不足以满足机体需要的有机物。
维生素 氨基酸
酶的辅基或辅酶
嘌呤或嘧啶
合成核苷
酶的辅基或辅酶,或
5、水
生理功能: 溶剂和运输介质 参与生化反应 维持大分子的天然构象 作为热的良好导体,控制细胞内的温度变化 维持细胞的正常形态 水合作用和脱水作用控制亚基结构的组成和解离
第二节 培养基 一、选用和设计培养基的原则和方法 3、物理化学条件适宜 • pH; • 水活度; • 氧化还原电位;
第二节 培养基 一、选用和设计培养基的原则和方法
3、物理化学条件适宜 • 1)pH • 培养基的pH必须控制在一定的范围内,以满足不同 类型微生物的生长繁殖或产生代谢产物。 通常培养条件: • 细菌与放线菌:pH7~7.5 • 酵母菌和霉菌:pH4.5~6范围内生长 • 为了维持培养基pH的相对恒定,通常在培养基中加 入pH缓冲剂,或在进行工业发酵时补加酸、碱。
第二节 培养基 一、选用和设计培养基的原则和方法 不同类型微生物生长对氧化还原电位(Ф)的要 求不同: • 好氧性微生物:+0.1V以上时可正常生长, 以+0.3~+0.4V为宜; • 厌氧性微生物:低于+0.1V条件下生长; • 兼性厌氧微生物:+0.1V以上时进行好氧呼 吸,+0.1V以下时进行发酵。
三、微生物的营养类型
自养型生物 生长所需要的营养物质 异养型生物 光能营养型 化能营养型
生物生长过程中能量的来源
三、微生物的营养类型
微生物营养类型(Ⅰ)
划分依据 碳源 能源 电子供体 营养类型 自养型(autotrophs) 异养型(heterotrophs) 光能营养型(phototrophs) 化能营养型(chemotrophs) 无机营养型(lithotrophs) 有机营养型(organotrophs)
微生物学 微生物的营养
最常见的鉴别性培养基是伊红美蓝乳糖
培养基,即EMB培养基。它在饮用水、 牛奶的大肠菌群数等细菌学检查和大肠 杆菌的遗传学研究工作中有着重要的用 途。
二、 培养基配制原则
1.目的明确
根据不同的微生物的营养要求配制针对强的培养基。
培养化能自养型的氧化硫杆菌的培养基组成为: S 10g MgSO4.7H2O 0.5g NH4)2SO4 0.4g 0.01g H2PO4 4g CaCl2 0.25g H2O 1000ml
0.5g MgSO4.7H2O H2O 1000ml
酵母菌(麦芽汁培养基) 干麦芽粉加四倍水,在50℃--60℃保温糖化3-4小时,用碘液 试验检查至糖化完全为止,调整糖液浓度为10。巴林,煮沸 后,沙布过滤,调PH为6.0。 霉菌(查氏合成培养基) NaNO3 3g K2HPO4 1g MgSO4.7H2O 0.5gFeSO4 0.01g 1000ml KCl 30g 0.5g H2O
从微生物所能利用的氮源种类来看,存
在着一个明显的界限: 一部分微生物是不需要利用氨基酸作氮 源的,它们能把尿素、铵盐甚至氮气等 简单氮源自行合成所需要的一切氨基酸, 称为氨基酸自养型生物。 凡需要从外界吸收现成的氨基酸作氮源 的微生物就是氨基酸异养型生物。
三、水
水是细胞维持正常生命活动所必不可少
3.半合成培养基:由成分已知的物质和 成分未知的天然物质配制而成的培养基, 如PDA培养基。 如:马铃薯蔗糖培养基--真菌
根据培养基物理状态分
A. 液体培养基:配制后不加任何凝固剂。 B. 半固体培养基:在液体培养基上加进一定凝固剂,在 液体培养基中如加0.5%琼脂,可以用来观察细胞运 动的特征,鉴定菌种,测定抗菌素的效价等。 C. 固体培养基:在液体培养基中加入凝固剂(如1.52.0%琼脂)。固体培养基为微生物的生长提供了一 个营养表面,在这个表面生长微生物可形成单个菌 落,用于微生物的分离,鉴定,计数,保管。 D. 脱水培养基:指含有除水分以外的一切成分的商品 培养基,使用时只要加入适量水分并加以灭菌即可, 其成分精确且使用方便。
第四章微生物的营养和培养基
第四章微生物的营养和培养基微生物的营养:为了满足其生长和繁殖的的需要微生物从外界摄取其生命活动所必须的能量和物质,以满足其生长和繁殖需要的一种生理功能。
即获得与利用营养物质的功能。
微生物的营养物质:能够满足微生物的生长繁殖和完成其各种生理活动所需要的物质称为微生物的营养物质。
即具有营养功能的物质。
微生物的营养物质可为它们正常的生命活动提供结构物质(大分子碳架)、能量、代谢调解物质和良好的生理环境。
微生物的营养物质来源除无机、有机物质外,还包括光能这种非物质形式的能源。
第一节微生物的六类营养要素1 微生物的营养要求2 微生物的六类营养要素一微生物的营养要求(一)微生物细胞的化学组成微生物细胞由C、H、O、N、S、P、Mg、K、Na、Ca、Fe、Mn、Cu、Co、Mo、Zn等化学元素组成,且以C、H、O、N、S、P六种元素为主,占细菌细胞干重的97%。
微生物细胞中的这些元素主要以水、有机物和无机盐的形式存在于细胞中。
有机物主要为:蛋白质、糖、脂、核酸、维生素及它们的降解物与一些代谢产物等物质组成。
无机物则是:参与有机物组成或单独存在于细胞原生质内的无机盐等灰分物质中。
水是细胞的一种主要成分,一般占微生物营养体重量的百分比:细菌80%左右、酵母菌75%左右、霉菌85%左右;霉菌孢子含水约39%、细菌芽孢核心部分的含水量低于30%。
细胞内的有机物、无机物和水等共同赋予细胞的遗传连续性、透性和生化活性。
(二)微生物的营养要求微生物细胞也和其他高等生物细胞一样,在元素水平都需要20种左右,且以C、H、O、N、S、P六种元素为主;在营养要素水平上都在六大类的范围内:碳源、氮源、能源、生长因子、无机盐和水。
二微生物的六类营养要素(一)碳源1 碳源(carbon source)一切能满足微生物生长繁殖所需碳元素的营养物,称为碳源。
碳源是微生物需要量最大的营养物,又称大量营养物。
2 微生物的碳源谱微生物可利用的碳源范围即碳源谱。
微生物学-第四章营养与代谢
微生物的生长因子
为某些微生物生长所必需、其自身又不能合成、需要 外源提供但需要量又很小的有机物质通称为 生长因 子 ( growth factor )
狭义:维生素 广义:维生素、氨基酸、碱基、脂肪酸等
1).生长因子自养型微生物(auxoautotrophs) 2).生长因子异养型微生物(auxoheterotrophs) 3).生长因子过量合成型微生物 4).营养缺陷型微生物(nutritional deficiency)
• 特点:
• 有特异性的载体蛋白参与
• 需要消耗能量
• 可以逆浓度梯度运输
• 微生物的主要物质运输方式
微生物主动运输示意图
基团转位
• 基团转位( group transport ) 是一种既需要载体 蛋白又需要消耗能量的物质运输方式。其与主动运 输方式不同的是它有一个复杂的运输酶系统来完成 物质的运输,同时底物在运输过程中发生化学结构 变化。
• 例: 2NH3 + 2O2 • CO2 + 4H+
2HNO2 + 4H+ + 能量 (CH2O) + H2O
光能无机营养型微生物
• 光能无机营养型 又称为 光能自养型 。 这是一 类含有光合色素、能以 CO 2 作为唯一或主要 碳源并利用光能进行生长的微生物。它们能以 无机物如硫化氢、硫代硫酸钠或其他无机硫化 物,以及水作为供氢体,使 CO 2 还原成细胞 物质。藻类、蓝细菌、绿硫细菌和紫硫细菌就 属于这类微生物。
微量元素与微生物生理功能
无机盐及其生理功能
水
水在微生物机体中具有重要的功能,是维持微生物生命活动不可缺少的 物质:
• ① 水是微生物细胞的重要组成成分:它占微生物体湿重的 70 % ~ 90 %,水还供给微生物氧和氢两种元素。
第四章-营养1
▪ 化能异养型微生物根据所利用的有机物的特 性,分为腐生型和寄生型。
▪ 四种营养类型的划分并不是绝对的,在一定 条件下可以转变。
第三节 营养物质进入细胞的方式
▪ 细胞壁——简单排阻 ▪ 细胞膜——选择透性
不需要载体蛋白参与:单纯扩散
不耗能量:协助扩散(促进扩散)
需要载体蛋白参与
被运输物质分子不发生化学变化:主动运输
耗能
被运输物质分子发生化学变化:基团转位
一、单纯扩散
▪ 物质由高浓度的胞外环境向低浓度的胞内扩散。 ▪ 物质扩散的动力是该物质在膜内外的浓度差,运输的速率随
膜内外浓度差的降低而减少,最终达到动态平衡。 ▪ 运输速率取决于浓度差、物质的极性及分子大小;一般分子
量小、脂溶性、极性小的营养物质易吸收;温度高时易运输。 ▪ 运输的物质主要有水、O2、CO2、某些氨基酸分子、甘油等
CO2
NaHCO3,CaCO3等 NaHCO3,CaCO3等
二、氮源
——合成细胞结构物质及代谢产物中含氮物质的营养源。 包括 有机氮源:蛋白质及降解产物(胨、肽、氨基酸)、尿素
无机氮源:铵盐、硝酸盐、亚硝酸盐、分子氮等。 氨基酸异养型:需要从外界吸收现成的氨基酸作为氮源; 氨基酸自养型:可以自行合成所需要的一切氨基酸。 常用玉米浆、豆饼、花生饼及人工制取的蛋白胨、牛肉膏、 铵盐、硝酸盐。
无机物氧化
化能异养型
有机物
有机物氧化
代表菌 着色菌属
蓝细菌 红螺菌属
氢细菌 铁细菌 大肠杆菌等
备注
含叶绿素或 细菌叶绿素
有机物作为 供氢体
氧化无机物 产生能量
有机物作为 碳源和能源
光能异养型
▪ 例如:红螺菌利用异丙醇为供氢体
第四章_微生物营养
• 无机盐
• 生长因子
Mineral source
Growth source
• 水
Water
1. 碳源(carbon source)
碳源(carbon source)凡是提供微生物营养所需的 碳元素(碳架)的营养源,称为~。
第四章
微生物的营养
第一节 微生物的营养要求
1.1 微生物细胞的化学组成 1.2 营养物质及其生理功能 1.3 微生物的营养类型(nutritional types)
第二节 培养基
2.1 选用和设计培养基的原则和方法 2.2 培养基的类型及应用
第三节 营养物质如何进入细胞
3.1 扩散(diffusion) 3.2 促进扩散(facilitated diffusion) 3.3 主动运输(active transport) 3.4 膜泡运输(memberane vesicle transport)
真菌
48(45~55) 6(4~7) 32(25~40) 49(40~55) 8(5~10) 5(2~8) 6(4~10)
• *只有用快速增长的细胞进行分析才可获取这一高值
原核微生物细胞的化学成分
分子名称 所占干重 %
96 55 5 9.1 3.1 20.5 3.5 0.5 2 0.5 1
所含分子数/细胞
化能自养菌的能源(S、Fe 2+ 、NH 4+ 、 NO2- 等)
无氧呼吸的受体( NO2- 、SO4 2-等)
酶的激活剂(Cu 2+ 、Mn 2+ 、Zn 2+ ) 特殊分子结构成分(Co、Mo)
无机盐的提供方式
微生物学:第四章微生物的营养与培养基
微 生 物
生长因子 需要量(ml-1
胆碱
硫胺素 B-丙氨酸
III型肺炎链球菌(Streptococcus pneumoniae)
金黄色葡萄球菌(Staphylococcus aureus) 白喉棒杆菌(Cornebacterium diphtherriae)
6ug
0.5ng 1.5ug
破伤风梭状芽孢杆菌(Clostridium tetani)
氮源
氮源谱
{ { {
有机氮 无机氮
蛋白质 核酸 氨基酸 尿素
NH3 铵盐 硝酸盐 N2
按氮源的不同,生物可分为:
氨基酸自养型生物:能利用尿素、铵盐、硝酸盐甚至氮 气的生物
氨基酸异养型生物:不能利用尿素、铵盐、硝酸盐甚至氮 气的生物
常用的蛋白质类氮源包括蛋白胨、鱼粉、蚕蛹、黄豆饼 粉、玉米浆、牛肉浸膏、酵母浸膏等
④热的良好导体;
⑤通过水合作用与脱水作用控制由多亚基组成的结构
第二节
生长所需要的碳源
微生物的营养类型
自养型生物
异养型生物
光能营养型
生物生长过程中能量的来源
划分依据 碳源 能源 电子供体 营养类型 自养型(autotrophs) 异养型(heterotrophs) 光能营养型(phototrophs) 化能营养型(chemotrophs) 无机营养型(lithotrophs) 有机营养型(organotrophs)
碳源谱
{
有机碳 无机碳
异养微生物
自养微生物
微生物利用的碳源物质主要有糖类、有机酸、醇、 脂类、烃、CO2及碳酸盐等。糖类是最广泛利用的碳源。
对于为数众多的化能异养微生物来说,碳源是兼有 能源功能营养物。
第4章_微生物的营养(答案)
第4章微生物的营养和培养基填空题1.微生物生长繁殖所需六大营养要素是、、、、和。
碳源氮源无机盐生长因子水能源2.根据,微生物可分为自养型和异养型。
碳源3.根据,微生物可分为光能营养型和化能营养型。
能源4. 根据,微生物可分为无机营养型和有机营养型。
氢供体5. 根据碳源、能源和氢供体性质的不同,微生物的营养类型可分为、、和。
光能无机自养光能有机异养化能无机自养化能有机异养6.设计、配制培养基所要遵循的原则包括、、和。
目的明确营养协同理化适宜经济节约7.按所含成分划分,培养基可分为、、和。
天然培养基组合培养基半组合培养基8.按物理状态划分,培养基可分为、、和。
固体半固体液体脱水培养基9.按用途划分,培养基可分为、、和等4种类型。
基础加富鉴别选择10.营养物质进入细胞的方式有、、和。
单纯扩散促进扩散主动运输基团移位11. 在营养物质的四种运输方式中, 只有__________ 运输方式改变了被运输物质的分子结构.基团移位12. 在营养物质运输中, 能逆浓度梯度方向进行营养物运输的运输方式是__________,__________。
主动运输、基团移位13. 在营养物质运输中顺浓度梯度方向运输营养物质进入微生物细胞的运输方式是__________ 和__________。
单纯扩散、促进扩散14. 在营养物质运输中既消耗能量又需要载体的运输方式是__________,__________。
主动运输、基团移位15、化能自养型和化能异养型微生物,生长所需的能量前者来自于_______的氧化放能,而后者则来自于_______的氧化放能;生长所需的碳源前者以_______为主,后者则以______为主要来源。
无机物有机物CO2 有机物16、光能自养型和光能异养型微生物的共同点是都能利用__________; 不同点在于前者能以__________ 作唯一碳源或主要碳源, 而后者则以__________ 作主要碳源, 前者以__________ 作供氢体而后者则以__________ 作供氢体。
微生物营养
微生物菌体的化学组成——元素水平
主要元素:碳、氢、氧、氮、磷、硫、钾、镁、钙等
占细胞干重的97%
微量元素:锌、锰、氯、钼、硒、钴、铜等
细菌 C元素 N元素 50% 15%
酵母 49.8% 12.4%
霉菌 47.9% 5.2%
H元素
O元素 P元素 S元素
8%
20% 3% 1%
6.7%
31%
6.7%
40%
合计
97%
第一节 微生物的6类营养要素 按照营养物质在菌体中的生理作用的不同,可以将 它们分成六大类。
营养六要素:碳源、氮源、能源、生长因子、无机盐和水
无论从元素水平还是营养要素水平,微生物的营养要求 与摄食型的动物(含人类)和光合自养型的植”
• 配制培养基时,常使用生长因子丰富的天 然物质制备物作为补充生长因子的培养基 成分。 如:酵母膏、玉米浆、麦芽汁、肝浸液等。
五、无机盐
P、S、K、Mg、Na、Fe:10-3---10-4 Cu、Zn、Mn、Mo、Co等:10-6----10-8
K2HPO4 + MgSO4
凡是提供微生物生长繁殖所需要氮元
素营养源,称为氮源(nitrogen source)。 细胞的干物质中氮含量仅次于碳和氧。 氮是组成核酸和蛋白质的重要元素, 氮对微生物的生长发育有着重要的作 用。
微生物细胞中大约含氮5%~13%,它是微生物细胞蛋白蛋和核 酸的主要成分。氮素对微生物的生长发育有着重要的意义,微生物 利用它在细胞内合成氨基酸和碱基,进而合成蛋白质、核酸等细胞 成分,以及含氮的代谢产物。无机的氮源物质一般不提供能量,只 有极少数的化能自养型细菌如硝化细菌可利用铵态氮和硝态氮在提 供氮源的同时,通过氧化产生代谢能。 微生物营养上要求的氮素物质可以分为三个类型: 1.空气中分子态氮 只有少数具有固氮能力的微生物(如自生固氮 菌、根瘤菌)能利用。 2.无机氮化合物 如铵态氮(NH4+)、硝态氮(NO3-)和简单的有 机氮化物(如尿素),绝大多数微生物可以利用。 3.有机氮化合物 大多数寄生性微生物和一部分腐生性微生物需以 有机氮化合物(蛋白质、氨基酸)为必需的氮素营养。。 在实验室和发酵工业生产中,我们常常以铵盐、硝酸盐、牛肉膏、 蛋白胨、酵母膏、鱼粉、血粉、蚕蛹粉、豆饼粉、花生饼粉作为微 生物的氮源。
第四章 微生物的营养与培养基
N.CHO
N.H N.O N
按氮源的不同生物可分为:
氨基酸自养型生物:能利用尿素、铵盐、 硝酸盐甚至氮气的生物
氨基酸异养型生物:现成氨基酸
3.能源 能源:能为微生物的生命活动提供最初能量来源营养 物或辐射能,称为能源。
无机物:化能自养菌的能源:NH4+、NO2-、S、H、H2S、 Fe2+等。
4.生长因子 生长因子:是一类调节微生物正常代谢必须,且不能 用简单的碳源或氮源自行合成的有机物。需要量一般 很少。
生产上常用的氮源:硝酸盐、铵盐、尿素、 氨以及蛋白含量较高的鱼粉、蚕蛹粉、黄 豆饼粉、花生饼份、玉米浆等 实验室培养微生物常用的氮源:铵盐、硝酸 盐、蛋白胨和肉汤等
微生物的氮源谱
类型 有 机 氮 无 机 氮 元素 N.CHO.X 化合物 复杂蛋白质, 核酸等 尿素,氨基酸 ,简单蛋白质 等 NH3,NH4+ 等 NO3-1 N2 培养基原料 牛肉膏,酵母 膏,饼粉及蚕 蛹粉等 尿素,蛋白胨, 明胶等 (NH4)2SO4, NH4NO3等 KNO3等 空气
2、糖被磷酸化后运入膜内
膜外环境中的糖先与外膜表面的酶2结合,再 被转运到内膜表面。这时,糖被P-HPr上的磷 酸激活,并通过酶2的作用将糖-磷酸释放到 细胞内。 酶2 P-HPr+糖 糖-P +HPr
细胞膜外
S S S
Enz2
细胞膜
S
Enz2
细胞膜内
~
HPr
P
Enz1+ PEP 丙酮酸
Enz2
☆加入CaCO3: +H+ +H+ CO32 – HCO3 – H2CO3 – – –H –H
CO2+H2O
微生物的营养
无机氮源:NH4+、氨盐、硝酸盐
有机氮源:尿素、氨基酸、嘌呤、嘧啶等
实验室常用:碳酸氨、硝酸盐、牛肉膏、酵母膏、
蛋白胨、胰酪蛋白等 生产实践:豆饼粉、花生饼粉、蚕蛹粉、玉米浆等
4.无机盐
矿质元素的化合物为无机盐,在微生物的生命活动中 起着十分重要的作用。 主要功能:构成细胞组分和能量转移(磷、硫) 作为酶的组成成分或激活剂(如铁、镁) 调节酸碱度、细胞透性、渗透压等(如钾、钠、钙)
自养型的微生物碳源和能源来自不同物质
异养型微生物碳源来自于有机物——同时是能 源
主要碳源是葡萄糖、果糖、蔗糖、麦芽糖和淀
粉。其中最常用的是葡萄糖。其次是有机酸、 醇和脂类。 生产实践中:常用农副产品和工业废弃物为碳 源,如玉米粉、米糠、麸皮、马铃薯、酱渣等
三.氮源
氮主要是组成核酸和蛋白质的重要元素
(四)调节氧和二氧化碳浓度
好氧菌:表面培养;通风培养 厌氧菌:配制培养基时常加入一些还原剂或其他 除氧方法
(五)用料经济
该培养基的应用目的,即:
是培养菌体还是积累代谢产物? 是实验室种子培养还是大规模发酵? 代谢产物是初级代谢产物还是次级代谢产物?
☆用于培养菌体的培养基营养应丰富,氮源含量宜 高(碳氮比低); ☆用于大量生产代谢产物的培养基其氮源一般应比 种子培养基稍低;若代谢产物是次级代谢产物时要 考虑是否加入特殊元素或特定的代谢产物;
第二节 微生物的营养类型和吸收方式
一、微生物的营养类型
依据微生物所需的碳源及能源不同将其 分为四种类型 光能自养型 化能自养型 光能异养型 化能异养型
微生物营养与能量代谢
【学时1】第四章微生物营养和能量代谢§4-1 微生物营养一、营养物质微生物与人类营养要求相似,对微生物细胞化学成分及分泌物分析为:1.营养元素大量元素包括C、H、O、N、P、S、Ca、Mg、K、Fe、Na;微量元素包括Mn、Mo、Cu、Zn、Co。
一般含量超过10—4mol/L的为大量元素,低于该浓度的为微量元素。
硅藻土中含Si大于50%,所以大量元素和微量元素只是统计数。
2.营养物质包括碳源、氮源、能源、无机盐、生长因子和水。
(1)碳源种类:糖(单糖、双糖、多糖)、醇、酸、脂肪、烃类、纤维素。
有些微生物能利用无机碳CO2、CO、CO32—等。
作用:一部分作为碳架结构;另一部分做能量来源:G彻底分解生成CO2、H2O和ATP。
(2)氮源种类:有机氮有AA、蛋白质、核酸;无机氮有NH4+、NO3—;分子氮N2(由N2→NH3→NH4+,工业氮=1/4生物固氮量)作用:细胞结构成分和合成原生质(3)能源凡是能提供微生物生命活动所需能量来源物质。
异养微生物碳源就是能源,只少数情况氮源充当能源或利用日光作为能源。
对自养微生物来说,光能自养菌需要日光作能源;化能自养菌利用氧化无机物而获得能量。
有机物:化能异养微生物的能源(同碳源)无机物:化能自养微生物的能源(不同于碳源)化学物质(化能营养型)能源谱光能(光能营养型):光能自养和光能异养微生物的能源化能自养微生物的能源为还原态的无机物:NH4+、NO2—、S、H2S、H2、Fe2+,包括的微生物种类为亚硝酸细菌、硝酸细菌、硫化细菌、硫细菌、氢细菌、铁细菌。
某一具体营养物可同时兼具有几种营养要素功能:光能是单功能营养物(能源),NH4+是双功能营养物(能源、氮源),AA类则是三功能营养物(C、N、能源)。
(4)矿质营养(无机盐,除C、N外的元素)主要元素:S、P、Fe、Mg、Ca、Na、K;微量元素:Zn、Mn、Mo、Co。
对于大量元素需加入相应的化学试剂,首选K2HPO4和MgSO4,它们可同时提供4种需要量大的元素,其他需要量较小的不必专门添加。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章微生物的营养微生物的营养 (nutrition) 是微生物生理学的重要研究领域,阐明营养物质在微生物生命活动过程中的生理功能以及微生物细胞从外界环境摄取营养物质的具体机制是微生物营养的主要研究内容。
为了生存,微生物必须从环境吸收营养物质,通过新陈代谢将这些营养物质转化成自身新的细胞物质或代谢物,并从中获取生命活动必需的能量,同时将代谢活动产生的废物排除体外。
那些能够满足微生物机体生长、繁殖和完成各种生理活动所需的物质称为营养物质(nutrient), 而微生物获得和利用营养物质的过程称为营养。
营养物质是微生物生存的物质基础,而营养是微生物维持和延续其生命形式的一种生理过程。
第一节微生物的营养要求一、微生物细胞的化学组成1.化学元素(chemical element)构成微生物细胞的物质基础是各种化学元素。
根据微生物生长时对各类化学元素需要量的大小,可将它们分为主要元素(macroelement)和微量元素(trace element),主要元素包括碳、氢、氧、氮、磷、硫、钾、镁、钙、铁等,碳、氢、氧、氮、磷、硫这六种主要元素可占细菌细胞干重的97%(表4-1)。
微量元素包括锌、锰、钠、氯、钼、硒、钴、铜、钨、镍、硼等。
表4-1微生物细胞中几种主要元素的含量(干重%)组成微生物细胞的各类化学元素的比例常因微生物种类的不同而不同,例如细菌、酵母菌和真菌的碳、氢、氧、氮、磷、硫六种元素的含量就有差别(表4-1),而硫细菌(sulfur bacteria)、铁细菌(iron bacteria)和海洋细菌(marine bacteria)相对于其他细菌则含有较多的硫、铁和钠、氯等元素, 硅藻(Diatom)需要硅酸来构建富含(SiO2)n的细胞壁。
不仅如此,微生物细胞的化学元素组成也常随菌龄及培养条件的不同而在一定范围内发生变化,幼龄的或在氮源(source of nitrogen)丰富的培养基(medium)上生长的细胞与老龄的或在氮源相对贫乏的培养基上生长的细胞相比,前者含氮量高,后者含氮量低。
2.化学成分及其分析各种化学元素主要以有机物、无机物和水的形式存在于细胞中。
有机物主要包括蛋白质、糖、脂、核酸、维生素以及它们的降解产物和一些代谢产物等物质。
细胞有机物成分的分析通常采取两种方式:一是用化学方法直接抽提细胞内的各种有机成分,然后加以定性和定量分析;另一种是先将细胞破碎,然后获得不同的亚显微结构,再分析这些结构的化学成分。
无机物是指与有机物相结合或单独存在于细胞中的无机盐(inorganic salt)等物质。
分析细胞无机成分时一般将干细胞在高温炉(550℃)中焚烧成灰,所得到的灰份物质是各种无机元素的氧化物,称为灰份(ash constituent)。
采用无机化学常规分析法可定性定量分析出灰份中各种无机元素的含量。
水是细胞维持正常生命活动所必不可少的,一般可占细胞重量的70~90%。
细胞湿重(wet weight)与干重(dry weight)之差为细胞含水量,常以百分率表示:湿重-干重/湿重×100% 。
将细胞外表面所吸附的水份除去后称量所得重量即为湿重,一般以单位培养液中所含细胞重量表示(克/升或毫克/毫升),但在具体测量过程中,常由于细胞表面吸附水份除去程度的不同而导致测量结果有误差,聚集在一起的单细胞微生物表面吸附的水份难以除去,这些吸附的水份可占湿重的10% 。
采用高温(105℃)烘干、低温真空干燥和红外线快速烘干等方法将细胞干燥至恒重即为干重。
值得注意的是,采用高温烘干法会导致细胞物质分解,而利用后两种方法所得结果较为可靠。
二、营养物质及其生理功能微生物需要从外界获得营养物质,而这些营养物质主要以有机和无机化合物的形式为微生物所利用,也有小部分以分子态的气体形式提供。
根据营养物质在机体中生理功能的不同,可将它们分为碳源、氮源、无机盐、生长因子和水五大类。
1. 碳源碳源是在微生物生长过程中为微生物提供碳素来源的物质。
碳源物质在细胞内经过一系列复杂的化学变化后成为微生物自身的细胞物质(如碳水化合物、脂、蛋白质等)和代谢产物,碳可占一般细菌细胞干重的一半。
同时,绝大部分碳源物质在细胞内生化反应过程中还能为机体提供维持生命活动所需的能源,因此碳源物质通常也是能源物质。
但是有些以CO2作为唯一或主要碳源的微生物生长所需的能源则并非来自碳源物质。
微生物利用碳源物质具有选择性,糖类是一般微生物较容易利用的良好碳源和能源物质,但微生物对不同糖类物质的利用也有差别,例如在以葡萄糖和半乳糖为碳源的培养基中,大肠杆菌(Escherichia coli)首先利用葡萄糖,然后利用半乳糖,前者称为大肠杆菌的速效碳源,后者称为迟效碳源。
目前在微生物工业发酵中所利用的碳源物质主要是单糖、饴糖、糖蜜(制糖工业副产品)、淀粉(玉米粉、山芋粉、野生植物淀粉)、麸皮、米糠等。
为了节约粮食,人们已经开展了代粮发酵的科学研究, 以自然界中广泛存在的纤维素作为碳源和能源物质来培养微生物。
不同种类微生物利用碳源物质的能力也有差别。
有的微生物能广泛利用各种类型的碳源物质,而有些微生物可利用的碳源物质则比较少,例如假单胞菌属(Pseudomonas)中的某些种可以利用多达90种以上的碳源物质,而一些甲基营养型(methylotrophs)微生物只能利用甲醇或甲烷等一碳化合物作为碳源物质。
微生物利用的碳源物质主要有糖、有机酸、醇、脂类、烃、CO2及碳酸盐等(表4-2)。
表4-2 微生物利用的碳源物质2. 氮源氮源物质为微生物提供氮素来源,这类物质主要用来合成细胞中的含氮物质,一般不作为能源,只有少数自养微生物能利用铵盐、硝酸盐同时作为氮源与能源。
在碳源物质缺乏的情况下,某些厌氧微生物在厌氧条件下可以利用某些氨基酸作为能源物质。
能够被微生物利用的氮源物质包括蛋白质及其不同程度的降解产物(胨、肽、氨基酸等)、铵盐、硝酸盐、分子氮、嘌呤、嘧啶、脲、胺、酰胺、氰化物等(表4-3)。
表4-3 微生物利用的氮源物质常用的蛋白质类氮源包括蛋白胨(peptone)、鱼粉、蚕蛹粉、黄豆饼粉、花生饼粉、玉米浆、牛肉浸膏(beef extract)、酵母浸膏(yeast extract)等。
微生物对这类氮源的利用具有选择性。
例如,土霉素产生菌利用玉米浆比利用黄豆饼粉和花生饼粉的速度快,这是因为玉米浆中的氮源物质主要以较易吸收的蛋白质降解产物形式存在,而降解产物特别是氨基酸可以通过转氨作用直接被机体利用,而黄豆饼粉和花生饼粉中的氮主要以大分子蛋白质形式存在,需进一步降解成小分子的肽和氨基酸后才能被微生物吸收利用,因而对其利用的速度较慢。
因此玉米浆为速效氮源,黄豆饼粉和花生饼粉作为迟效氮源,前者有利于菌体生长,后者有利于代谢产物的形成,在发酵生产土霉素的过程中,往往将两者按一定比例制成混合氮源,以控制菌体生长时期与代谢产物形成时期的长短,达到提高土霉素产量的目的。
微生物吸收利用铵盐和硝酸盐的能力较强,NH4+被细胞吸收后可直接被利用,因而(NH4)2SO4等铵盐一般被称为速效氮源,而NO3-被吸收后需进一步还原成NH4+后再被微生物利用。
许多腐生型细菌、肠道菌、动植物致病菌等可利用铵盐或硝酸盐作为氮源,例如大肠杆菌、产气肠杆菌(Enterobacter aerogenes)、枯草芽孢杆菌(Bacillus subtilis)、铜绿假单胞菌(Pseudomonas aeruginosa)等均可利用硫酸铵和硝酸铵作为氮源,放线菌可以利用硝酸钾作为氮源,霉菌可以利用硝酸钠作为氮源。
以(NH4)2SO4 等铵盐为氮源培养微生物时,由于NH4+被吸收,会导致培养基pH下降,因而将其称为生理酸性盐; 以硝酸盐( 如KNO3)为氮源培养微生物时,由于NO3-被吸收,会导致培养基pH升高,因而将其称为生理碱性盐。
为避免培养基pH变化对微生物生长造成不利影响,需要在培养基中加入缓冲物质。
3﹒无机盐无机盐是微生物生长必不可少的一类营养物质,它们在机体中的生理功能主要是作为酶活性中心的组成部分、维持生物大分子和细胞结构的稳定性、调节并维持细胞的渗透压平衡、控制细胞的氧化还原电位和作为某些微生物生长的能源物质等(表4-4)。
微生物生长所需的无机盐一般有磷酸盐、硫酸盐、氯化物以及含有钠、钾、钙、镁、铁等金属元素的化合物。
表4-4 无机盐及其生理功能在微生物的生长过程中还需要一些微量元素,微量元素是指那些在微生物生长过程中起重要作用,而机体对这些元素的需要量极其微小的元素,通常需要量在10-6~10-8mol/L(培养基中含量)。
微量元素一般参与酶的组成或使酶活化(表4-5)。
如果微生物在生长过程中缺乏微量元素,会导致细胞生理活性降低甚至停止生长。
由于不同微生物对营养物质的需求不尽相同,微量元素这个概念也是相对的。
微量元素通常混杂在天然有机营养物、无机化学式剂、自来水、蒸馏水、普通玻璃器皿中,如果没有特殊原因,在配制培养基时没有必要另外加入微量元素。
值得注意的是,许多微量元素是重金属,如果它们过量,就会对机体产生毒害作用,而且单独一种微量元素过量产生的毒害作用更大,因此有必要将培养基中微量元素的量控制在正常范围内,并注意各种微量元素之间保持恰当比例。
表4-5 微量元素与生理功能4.生长因子生长因子通常指那些微生物生长所必需且需要量很小,而且微生物自身不能合成或合成量不足以满足机体生长需要的有机化合物。
不同微生物需求的生长因子的种类和数量是不同的(表4-6)。
自养微生物和某些异养微生物(如大肠杆菌)甚至不需外源生长因子也能生长。
不仅如此,同种微生物对生长因子的需求也会随着环境条件的变化而改变,例如鲁氏毛霉(Mucor rouxii)在厌氧条件下生长时需要维生素B1与生物素,而在好氧条件下生长时自身能合成这两种物质,不需外加这两种生长因子。
有时由于对某些微生物生长所需生长因子的本质还不了解,在培养它们时通常在培养基中加入酵母浸膏、牛肉浸膏及动植物组织液等天然物质以满足需要。
根据生长因子的化学结构和它们在机体中的生理功能的不同,可将生长因子分为维生素(vitamin)、氨基酸与嘌呤及嘧啶三大类。
最早发现的生长因子在化学本质上是维生素,目前发现的许多维生素都能起到生长因子的作用。
虽然一些微生物能合成维生素,但许多微生物仍然需要外界提供维生素才能生长。
维生素在机体中所起的作用主要是作为酶的辅基或辅酶参与新陈代谢;有些微生物自身缺乏合成某些氨基酸的能力,因此必须在培养基中补充这些氨基酸或含有这些氨基酸的小肽类物质,微生物才能正常生长。
肠膜明串珠菌生长需要十七种氨基酸,有些细菌需要D-丙氨酸用于合成细胞壁;嘌呤和嘧啶作为生长因子在微生物机体内的作用主要是作为酶的辅酶或辅基,以及用来合成核苷、核苷酸和核酸。