超分子化学既是一个新兴的跨学科的交叉前沿领域
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超分子化学在电分析化学中领域的研究进展
许婷婷
【摘要】本文主要以超分子中具有代表性的冠醚、环糊精、杯芳烃为切入点,分别介绍了它们在电分析化学中的应用。以及环糊精在电极表面的自组装,超分子在压电化学传感器中的应用,及最后的纳米材料修饰电极的类型及在药物分析中的应用。
【关键词】超分子冠醚环糊精杯芳烃电化学分析电化学传感器纳米材料
一、超分子化学的基本概念
超分子化学简言之是研究各个分子间通过非共价键作用形成具有特定功能体系的科学。从而使化学从分子层次扩展到超分子层次。这种分子间相互作用形成的超分子组装体,带给人们许多认识上的飞跃,认识到分子已不再是保持物性的最小单位。【1】在超分子体系中, 分子与分子之间力的关系就如同在分子中原子和共价键的关系一样。换言之, 超分子化学是研究分子通过非共价键作用形成的聚集体的功能体系科学。超分子体系的微观单元是由若干乃至许许多多个不同化合物的分子或离子或其他可单独存在的具有一定化学性质的微粒聚集而成, 聚集数可以确定或不确定, 这与一分子中原子个数严格确定具有本质的区别。在这个整体中, 各组分还保持某些固有的物理和化学性质, 同时又因彼此间的相互影响或扰动而表现出某些整体的功能。【2】
超分子化学既是一个新兴的跨学科的交叉前沿领域,又是一门发展前景广阔的边缘学科。为21世纪化学发展提供了一个重要的热点研究方向。随着超分子化学的发展先后出现了三代超分子体系,它们分别以冠醚、环糊精、杯芳烃为主体。
二、冠醚类化合物
冠醚为大环多元醚,其最早的产物是Pedersen 于1967年合成的二苯并-18-冠-6.如果把这些大环多元醚的主体结构绘在纸上,其醚氧原子就像镶嵌在王冠上的钻石一样,形成了宛如王冠的形状,故取名为冠醚。冠醚化合物是具有—〔—Y—CH2CH2—〕—重复结构单元的大环化合物,其中Y原子是电子给体,即:杂原子,环上所含杂原子来看,冠醚化学已从最初的全氧冠醚发展到硫杂、硒杂、氮杂、磷杂、砷杂、硅杂冠醚。【3】
(一)在电分析化学中的应用
设计合成具有一定空腔尺寸、极性的冠醚,选择性地与离子或中性分子形成主客体络合物,可制得高选择性的离子选择电极或电化学传感器。如:以1,1—联萘并—20—冠—6为钾离子载体的聚氯乙烯(PVC)膜电极对钾离子有良好的能斯特响应性能和高选择性,线性响应范围为10-4—10-1mo l/L,斜率为58.1mV/pCK+; 电极具有优良的重现性和较宽的PH使用范围。【4】
三、环糊精超分子
分子识别是类似“锁和钥匙”的分子间或分子内不同部分之间的专一性结合,分子识别包含两方面的内容;一是受体与作用物之间有几何尺寸、形状上的相互识别;二是分子对范德华力、静电引力、氢键、疏水作用、∏一∏作用以及cation一∏作用等非共价作用
的识别。分子识别作用对于某些化学反应过程如催化等具有重要意义,特别是在生物体系中,相当多的生物化学过程离不开这种作用。【5】
环糊精作为第二代分子识别的主体,是由环糊精葡萄糖基转移酶作用于淀粉所产生的一组环状低聚糖,整个环糊精分子围城一个空腔,空腔内部除了醚键之外就是碳氢键,所以是疏水性的;环糊精上的轻基向分子外伸展使其自身具有亲水性。正由于CD“内疏水外亲水”的特殊结构,它可与许多客体比如有机分子、无机离子、配合物甚至惰性气体,通过分子间相互作用形成主客体包合物。【6】
(一)环糊精在电极表面的自组装
自组装单分子膜(Self—Assembled—Monolayers简称SAM)是近年发展起来的一种新型的有机超薄膜。它利用特定的有机分子在适当的固体材料表面上通过化学键合方式排列成紧密有序的单分子层膜广泛用于生物体系模拟及研究界面各种物理化学性质。利用环糊精可以和许多有机化合物形成主—客体包合物的性质将环糊精衍生物有序地组装在固体电极表面能够模拟生物膜的传输过程对研究选择性分子传输、分子识别、酶模拟都有重要意义。
Tamagakiw.等曾试图在金电极上制备致密的自组装单分子B—环糊精膜但由于所选用的七(十二烷基硫醚)B—环糊精制备的单分子层存在严重的缺陷而没有得到理想的结果。何品刚等【7】采用硫辛酰—B—环糊精衍生物在金表面制备了致密的自组装单分子膜。该膜能有效地抑制[Fe(CN) 6]3—/[Fe(CN)6]4 的穿透,而对能够和环糊精形成包合物的羧酸二茂铁则能够选择性穿透。同时,其他客体分子如冰片、熊去氧胆酸等的加入可以和羧酸二茂铁竞争与环糊精的结合,从而可以抑制羧酸二茂铁的穿透性。按照这种方法制得的环糊精修饰电极可以用于毛细管电泳分离乌素脱氧胆酸、脱氢胆酸的检测。另外,在金表面先自组装一层8—巯基辛酸后氨基取代的环糊精就可以通过和羧基之间的静电作用在金表面整齐地形成第二层单分子膜。
王臻等【8】将偶氮苯衍生物和B-环糊精首先生成包合物,然后自组装于金表面,得到偶氮苯环糊精包合物的自组装膜。与单纯的偶氮苯自组装膜相比,由于环糊精将偶氮苯分子隔开,降低了偶氮苯排布的密度并抑制了偶氮苯基团在金表面的聚集,从而使偶氮苯具有较大的自由空间进行构型转变从而提高了其电化学活性。
(二)环糊精超分子功能在电化学分析中的应用
当前环糊精超分子功能在电化学分析中的应用【9】重要集中在以下两个方面:(1)用电化学方法研究环糊精包合物性质及测定其稳定常数,所用的方法有极谱法、电导法、循环伏案法及光谱电化学法等;(2)将功能化的环糊精或环糊精包合物作为电活性物质制成离子选择电极、化学修饰电极或传感器。Bersier【10】曾对环糊精在电化学方面的应用做过比较详细的综述。
3.2.1 在研究环糊精包合物性质及测定其稳定常数中的应用
当环糊精于电活性分子发生包合反应时,由于改变了客体分子所处的微环境,包合物的电化学性质与客体分子相比会发生变化,利用这些变化可以证明包合物的生成,并可以测定主客体分子的作用常数或确定其含量。【11】Matsu 首次用循环伏安法测定了环糊精包合物的包结常数。由于形成环糊精包合物后其扩散系数减小,从而引起循环伏安图上峰值电流的下降,又由于形成包合物使在电极上发生氧化反应所需克服的活化能增大,而使其氧化电位正移。董绍俊等提出了利用峰电流和峰电位的变化来求包合常数的方法。【12】Wang 等运用电化学及现场极谱法核黄素、盐酸硫胺等化合物与环糊精分子之间的相互作用,阐明了这类环糊精包合物的性质、结构和形成及其与客体分子尺寸匹配的相关性,并