单端反激式开关电源变压器的计算及相关波形分析

合集下载

开关电源反激式变压器计算公式与方法

开关电源反激式变压器计算公式与方法

原边电感量:Lp =(Dmax * Vindcmin)/ (fs * ΔIp)
开关管耐压:Vmos =Vindcmax+开关管耐压裕量(一般用150V)+Vf
*反激电压(Vf)的计算: Vindcmin * Dmax = Vf *(1- Dmax)
原边与副边的匝比:Np / Ns = Vf / Vout
原边与副边的匝比:Np / Ns = (Vdcmin * Dmax)/ [Vout * (1-Dmax)]
原边电流:[1/2 * (Ip1 + Ip2)] * Dmax * Vindcmin = Pout / η
磁芯:AwAe = (Lp * Ip2^2 * 10^4 / Bw * Ko * Kj) * 1.14
原边匝数:Np = (Lp * Ip^2 * 10^4 )/ (Bw * Ae)
气隙:lg = 0.4π * Np^2 * Ae * 10^-8 / Lp
Lp:
Dmax:
Fs:
ΔIp:
Vmos:
Vf:
Np:
Ns:
Vout:
η:
Ae:
Ip2:
Bw:
Ko:
Kj:
Lg:
即为
截止的,二极管上的电压除了输出电压Vo,还有原边“折射”过来的电压Vin(dc)/n,及Vo+[Vin(dc)/n,].。

所以,匝比的设计,除了影响占空比,也影响着原边开关管及次级二极管的应力选择。

在变压器线圈匝数未知的情况下,如何计算磁芯工作时的磁感应强度Bw?测量其电感量(可用压
——仅供参考。

反激式变压器开关电源电路参数计算

反激式变压器开关电源电路参数计算

反激式变压器开关电源电路参数计算
一、基本参数
1、变压器参数:
变压器由两个线圈构成,一个为高压线圈(H),另一个为低压线圈(L),均为叠加结构。

变压器的形状参数可表示为:VH:高压线圈的电压,VL:低压线圈的
电压,Nh:高压线圈匝数,Nl:低压线圈匝数,a:高压线圈电感与低压
线圈电感的比值,Lh:高压线圈电感,Ll:低压线圈电感。

变压器的负载特性可表示为:Rc:负载电阻,Xl:负载电抗,RL:灰
尘损耗,Xm:空载损耗,RL:空载电抗。

2、开关管参数:
开关管由长短两个极构成,一个为高压极(H),另一个为低压极(L)。

开关管的形状参数可表示为:VH:高压极的电压,VL:低压极的电压,Vt:开关管的阈值电压,Rt:开关管的阈值电阻,Ct:开关管的阈值电容,Rg:开关管的电阻,Cg:开关管的电容。

二、计算方法
1、确定变压器的输出电压:
根据变压器规格,计算其实际输出电压Vout:
Vout=VH*Nh/(Nh+Nl)
其中,VH为高压线圈的电压,Nh为高压线圈的匝数,Nl为低压线圈的匝数。

反激式开关电源变压器设计参看详解

反激式开关电源变压器设计参看详解

Npri(V01+VD1)(1-Dmax)
NS1 =
(匝)
Vin(min) Dmax
8. 计算二次其它绕组所需匝数Nsn
Nsn =
(Von+VDn) Ns1 V01 + VD1
(匝)
技术部培训教材
反激式开关电源变压器设计(2)
1.9 检查相应输出端的电压误差
Vsn
δVsn%=(( =
N’sn-Vsn)/Vsn)x100%
0.65(16)
0.5(11)
0.80(20)
1.1(30)
1.1(30)
1.4(35)
1.5(38)
1.8(47)
2.0(51)
2.4(60)
技术部培训教材
反激式开关电源变压器设计(2)
第二种是计算方式,首先假定变压器是单绕组,每增加一个绕组并考 虑安规要求,就需增加绕组面积和磁芯尺寸,用“窗口利用因数”来修整 单绕组电感磁芯尺寸按下式计算:
A’p=Knet.Ap
按照上计算A’P值,加一定裕度,选取相适应的磁芯.
技术部培训教材
反激式开关电源变压器设计(2)
4. 计算一次电感最小值Lpri
Vin(min).Dmax
Lpri =
(H)
Ipk f
式中:f单位为Hz
5. 计算磁芯气隙Lgap
0.4 πLpriIpk . 108
Lgap =
cm2
Iin(MIN)=PINxVIN (MAX) Iin(MAX)=PINxVIN (MIN) 5 估算峰值电流:
K POUT IPK =
VIN (MIN) 其中:K=1.4(Buck 、推挽和全桥电路)
K=2.8(半桥和正激电路) K=5.5(Boost,

反激式开关变压器的通俗讲解及实例计算

反激式开关变压器的通俗讲解及实例计算

反激式开关变压器的通俗讲解及实例计算咱先看下在理想情况下的VDS波形上面说的是指变压器和开关都是理想工作状态!从图上可以看出Vds是由VIN和VF组成,VIN大家可以理解是输入电压,那VF呢?这里我们引出一个反激的重要参数:反射电压即VF,指次级输出电压按照初次级的砸比反射到初级的电压。

可以用公式表示为VF=VOUT/(NS/NP),(因分析的是理想情况,这里我们忽略了整流管的管压降,实际是要考虑进去的)式中VF为反射电压;VOUT为输出电压;NS为次级匝数;NP为初级匝数。

比如,一个反激变换器的匝比为NP:NS=6:1,输出电压为12V,那么可以求出反射电压VF=12/(1/6)=72V。

上边是一个连续模式(CCM模式)的理想工作波形。

下面咱在看一个非连续模式(DCM模式)的理想工作波形从图上可以看出DCM的Vds也是由VIN和VF组成,只不过有一段时间VF为0,这段时候是初级电流降为0,次级电流也降为0。

那么到底反激变化器怎么区分是工作在连续模式(CCM)还是非连续模式(DCM)?是看初级电感电流是否降到0为分界点吗,NO,反激变换器的CCM和DCM分界点不是按照初级电感电流是否到0来分界的,而是根据初次级的电流是否到0来分界的。

如图所示从图上可以看出只要初级电流和次级电流不同时为零,就是连续模式(CCM);只要初级电流和次级电流同时为零,便是不连续模式(DCM);介于这俩之间的是过度模式,也叫临界模式(CRM)。

以上说的都是理想情况,但实际应用中变压器是存在漏感的(漏感的能量是不会耦合到次级的),MOS管也不是理想的开关,还有PCB板的布局及走线带来的杂散电感,使得MOS的Vds波形往往大于VIN+VF。

类似于下图这个图是一个48V输入的反激电源。

从图上看到MOS的Vds有个很大的尖峰,我用的200V的MOS,尖峰到了196了。

这是尖峰是由于漏感造成的,上边说到漏感的能量不能耦合到次级,那么MOS关断的时候,漏感电流也不能突变,所以会产生个很高的感应电动势,因无法耦合到次级,会产生个很高的电压尖峰,可能会超过MOS的耐压值而损坏MOS管,所以我们实际使用时会在初级加一个RCD吸收电路,把尖峰尽可能的吸到最低值,来确保MOS管工作在安全电压。

反激式开关电源工作原理及波形分析

反激式开关电源工作原理及波形分析

反激式开关电源工作时可以简化为下图所示电路:
Mos管控制原边(左侧)电流的通断。

Mos管导通时:
电感充电(实则为建立磁通),副边二极管截止,无电流。

Mos管断开时:
由于电流不同突变(实际上是磁通不能突变),于是在副边形成感应电流,二极管导通。

原边反射电压:
副边有电流流通时,会在原边感应出一个电压(下+上-),叠加在输入电压上。

原边的尖峰电压:
由于漏电感的存在,该部分的磁通没有通过磁芯耦合到副边,因此mos管断开时,会产生很大的电压来维持电流,从而达到维持磁通的目的。

振荡波形:
Mos管关断时尾部有振荡,是由于开关电流工作在断续模式时,能量释放完全后,原边、副边无电流。

此时原边的电路可以等效为电源+电感+电容(Mos管输入电容),发生谐振。

实测波形如下:
(黄色为mos驱动,绿色为mos管的VDS,粉色是原边线圈的电流)。

单端反激式开关电源变压器的设计

单端反激式开关电源变压器的设计

· 59 ·研制开发单端反激式开关电源变压器的设计顾伟康(国网浙江省电力有限公司 湖州供电公司,浙江文章针对开关电源变压器设计中存在公式繁多,参数计算困难等问题,提出了一种简单实用的设计方法。

该方法统一了变压器工作在电流连续模式和断续模式下的计算公式,有效解决了原边电感值、线圈匝数、线径、磁芯大小等参数的设计,降低了设计难度,提高了设计效率,并给出了设计实例。

开关电源;反激式变压器;参数Design of Single-Ended Flyback Transformers in Switching Power SupplyGU WeikangHuzhou Power Supply Company of State Grid Zhejiang Electric Power Co.The paper puts forward a simple and practical design method for there are many issues such as various parameter calculation difficulty in switching power supply transformer. This method unified the formulas of current continuous mode and current discontinuous mode ,effectively solved the original side inductance value core size and so on ,reduced the design difficulty 图1 单端反激式变压器原理图2 单端反激式变压器的设计单端反激式变压器设计流程图如图2所示。

根据下面步骤设计合适的变压器。

2.1 确定系统要求V acmax ,V acmin ,U max ,U min ,V o ,P o ,η等参数值的确定。

反激式开关电源变压器是这么计算的

反激式开关电源变压器是这么计算的

反激式开关电源变压器是这么计算的于法拉弟电磁感应定律,这个定律是在一个铁心中,当磁通变化的时候,其会产生一个感应电压,这个感应电压=磁通的变化量/时间T 再乘以匝数比,把磁通变化量换成磁感应强度的变化量乘以其面积就可以推出上式来,NP=90*4.7 微秒/32 平方毫米*0.15,得到88 匝0.15 是选取的值,算了匝数,再确定线径,一般来说电流越大线越热,所以需要的导线就越粗,需要的线径由有效值来确定,而不是平均值。

上面已经算得了有效值,所以就来选线,用0.25 的线就可以,用0.25 的线,其面积是0.049 平方毫米,电流是0.2 安,所以其电流密度是4.08,一般选定电流密度是4 到10 安第平方毫米。

若是电流很大,最好采用两股或是两股以上的线并绕,因为高频电流有趋效应,这样可以比较好。

第六步,确定次级绕组的参数、圈数和线径。

原边感应电压,就是一个放电电压,原边就是以这个电压放电给副边的,看上边的图,因为副边输出电太为5V,加上肖特基管的压降,就有5.6V,原边以80V 的电压放电,副边以5.6V 的电压放电,那么匝数是多少呢?当然其遵守变压器那个匝数和电压成正比的规律,所以副边电压=NS*(UO+UF)/VOR,其中UF 为肖特基管压降,这个副边匝数等于88*5.6/80,得6.16,整取6 匝,再算副边的线径,当然也就要算出副边的有效值电流,下图是副边电流的波形,有突起的时间是1-D,没有突起的是D,刚好和原边相反,但其KRP 的值和原边相同,这个峰值电流就是原边峰值电流乘以其匝数比,要比原边峰值电流大数倍。

第七步,确定反馈绕组的参数。

反馈是反激的电压,其电压是取自输出级的,所以反馈电压是稳定的,TOP。

单端反激式开关电源变压器

单端反激式开关电源变压器

单端反激式开关电源变压器变压器的使用在升压和降压电源中很常见,开关电源根据不同的输出要求采用不同的变压器拓扑电路,同样的电源也采用不同的变压器拓扑实现。

在所有拓扑中反激式变压器构成的升压式开关电源具有电路简单、元器件最少的优点,在小功率开关电源中经常采用。

而变压器的设计需要技术人员根据一些经验参数来进行变压器的设计和绕制。

会出现经验设计多于准确的参数设计,而且在高频条件下变压器的设计和制作不同于普通的工频变压器,更加需要实际经验和理论设计两者相互结合。

本文结合实际设计和制作变压器的经验,提出一种工作于断续电流模式(DCM)下的反激式变压器设计方案,并给出相关参数设计方法。

1 反激式变压器的基本工作原理图1(a)为反激式变压器的工作原理图,其中,开关管VT1的导通和截止使得原边绕组线圈产生交变电流信号。

当原边绕组导通期间,次级绕组输出电压为上负下正,整流二极管VD1和VD2截止,输出电容Co和Cf放电;当原边绕组截止时次级输出电压为上正下负,整流二极管VD1和VD2导通,输出电容Co和 Cf充电,与正激式电路充放电过程相反。

可以从输入输出电压、电流波形关系图1(b)中得出DCM模式下的工作过程。

其中PWM、UDS、 IDl,IF1、Io1、Uo2分别为开关管VT1栅极脉宽调制信号、漏源极电压、整流二极管VD1和VD2电流、负载输出端Co正极性端电压波形、反馈输出端Cf正极性端电压波形。

查看原图(大图)2 单端反激式变压器设计单端反激式变压器设计流程,首先根据逆变升压模块前后电路的需要,列出输入电压、输出电压参数、开关频率、额定输出功率等整个系统需要变压器完成的参数要求,包括Uin(min)、Dmax、F、Po(max)分别为输入直流电压最小值10 V、最大占空比、开关频率10kH-z、输出最大功率15W等参数,然后再按照下面步骤设计合适的开关变压器。

2.1 选定工作点最低的交流输入电压,对应于最大的输出功率,由原边电感电流在开关管导通和截止期间电流的峰值相等和电磁感应定理得到:式中,Uor为原边反激电压,单位为V;L为原边电感,单位为H。

单端反激变压器设计简单计算

单端反激变压器设计简单计算

单端反激变压器设计简单计算实例讲解电源高频变压器的设计方法开关电源高频变压器设计高频变压器是电源设计过程中的难点,下面以反馈式电流不连续电源高频变压器为例,向大家介绍一种电源高频变压器的设计方法。

设计目标:电源输入交流电压在180V~260V之间,频率为50Hz,输出电压为直流5V、14A,功率为70W,电源工作频率为30KHz。

设计步骤:1、计算高频变压器初级峰值电流Ipp由于是电流不连续性电源,当功率管导通时,电流会达到峰值,此值等于功率管的峰值电流。

由电感的电流和电压关系V=L*di/dt可知:输入电压:Vin(min)=Lp*Ipp/T c取1/Tc=f/Dmax,则上式为:Vin(min)=Lp*Ipp*f/Dmax其中:V in:直流输入电压,VLp:高频变压器初级电感值,mHIpp:变压器初级峰值电流,ADmax:最大工作周期系数f:电源工作频率,kHz在电流不连续电源中,输出功率等于在工作频率下的每个周期内储存的能量,其为:Pout=1/2*Lp*Ipp2*f 将其与电感电压相除可得:Pout/Vin(min)=Lp*Ipp2*f*Dmax/(2*Lp*Ipp*f)由此可得:Ipp=Ic=2*Pout/(Vin(min)*Dmax)其中:Vin(min)=1.4*Vacin(min)-20V(直流涟波及二极管压降)=232V,取最大工作周期系数Dmax=0.45。

则:Ipp=Ic=2*Pout/(Vin(min)*Dmax)=2*70/(232*0.45)=1.34A当功率管导通时,集极要能承受此电流。

2、求最小工作周期系数Dmin在反馈式电流不连续电源中,工作周期系数的大小由输入电压决定。

Dmin=Dmax/[(1-Dmax)*k+Dmax]其中:k=Vin(max)/Vin(min)Vin(max)=260V*1.4-0V(直流涟波)=364V,若允许10%误差,Vin(max)=400V。

单端反激式开关电源变压器的计算及相关波形分析

单端反激式开关电源变压器的计算及相关波形分析

5.初级峰值电流Ipk的计算
Ipk=【2Vo*Io】/【§* Vin(min)*Dmax】
Vo:输出电压 Io:输出电流 §:电源能量转换效率
初级平均电流怎么计算?(在计算线径时会用到)
6.初级电感量Lp的计算
以下公式假设电源工作在断续模式(DCM 模式下) Lp= 【Vin(min)*Dmax】/【Ipk*F】 = 【Vin(min)*Ton】/Ipk
取J为2.5~5A/mm2。导线直径的选择还要考虑趋
肤效应。如必要,还要经过变压器温升校核后进
行必要的调整。
什么是导体的趋肤效应?
交变电流通过导体时,由于感应作用引起导体截面上电流 分布不均匀,愈近导体表面电流密度越大,这种现象称 “趋肤效应”。 趋肤效应使导体的有效电阻增加。频率越高,趋肤效应越 显著。当频率很高的电流通过导线时,可以认为电流只在 导线表面上很薄的一层中流过,这等效于导线的截面减小, 电阻增大。 为了削弱趋肤效应,在高频电路中也往往使用多股相互绝 缘细导线编织成束来代替同样截面积的粗导线,这种多股 线束称为辫线。
什么是开关电源的DCM与CCM?
开关电源的CCM和DCM状态是指: 高频开关变压器次级线圈中感应到的磁化电流, 即输出电流。 磁化电流的非连续状状DCM:Toff>次级电感与 输出电压之比再除以次级峰值电流。 磁化电流的连续状状CCM:Toff≤次级电感与输 出电压之比再除以次级峰值电流。
DCM与CCM模式的选取
变压器设计时的主要指标参数:
变压器选型 初次级匝比N的计算 最大占空比Dmax的计算 初级匝数Np的计算 初级峰值电流Ipk的计算 初级电感量Lp的计算 次级匝数Ns及IC供电绕组Nf的计算 初次级线径d的计算

一步一步精通单端反激式开关电源设计

一步一步精通单端反激式开关电源设计

一步一步精通单端反激式开关电源设计目录■系统应用需求 (3)■步骤1_确定应用需求 (3)■步骤2_根据应用需求选择反馈电路和偏置电压VB (4)■步骤3_确定最小和最大直流输入电压VMIN和VMAX,并基于输入电压和PO选择输入存储电容CIN的容量 (6)3.1、选择输入存储电容CIN的容量 (6)3.2、确定最小和最大直流输入电压VMIN和VMAX (8)■步骤4_输入整流桥的选择 (9)■步骤5_确定发射的输出电压VOR以及钳位稳压管电压VCLO (10)■步骤6_对应相应的工作模式及电流波形设定电流波形参数KP:当KP≤1时,KP=KRP;当KP≥1时,KP=KDP (14)■步骤7_根据VMIN和VOR确定DMAX (15)■步骤8_计算初级峰值电流IP、输入平均电流IAVG和初级RMS电流IRMS (16)■步骤9_基于AC输入电压,VO、PO以及效率选定MOS管芯片 (17)■步骤10_设定外部限流点降低的ILIMIT降低因数KI (17)■步骤11_通过IP和ILIMIT的比较验证MOS芯片选择的正确性 (17)■步骤12_计算功率开关管热阻选择散热片验证MOS芯片选择的正确性 (17)■步骤13_计算初级电感量LP (18)■步骤14_选择磁芯和骨架,再从磁芯和骨架的数据手册中得到AA,AA,AA,和BW的参考值 (18)■步骤15_设定初级绕组的层数L以及次级绕组圈数AA(可能需要经过迭代的过程) (24)■步骤16_计算次级绕组圈数AA以及偏置绕组圈数AA (25)■步骤17_确定初级绕组线径参数OD、DIA、AWG (25)■步骤18_步骤23-检查AA、AAA以及AA。

如果有必要可以通过改变L、AA或AA或磁芯/骨架的方法对其进行迭代,知道满足规定的范围 (25)■步骤24 –确认AA≤4200高斯。

如有必要,减小限流点降低因数AA (26)■步骤25 –计算次级峰值电流AAA (26)■步骤26 –计算次级RMS电流AAAAA (26)■步骤27 –确定次级绕组线径参数AA A、AAA A、AAA A (26)■步骤28 –确定输出电容的纹波电流AAAAAAA (27)■步骤29 –确定次级及偏置绕组的最大峰值反向电压AAAA,AAAA (27)■步骤30 –参照表8,基于VOR及输出类型选择初级钳位电路中使用的钳位稳压管以及阻断二极管 (27)■步骤31 –根据表9选择输出整流管 (28)■步骤32 –输出电容的选择 (28)■步骤33 –后级滤波器电感L和电容C的选择 (29)■步骤34 –从表10选择偏置绕组的整流管 (29)■步骤35 –偏置绕组电容的选择 (29)■步骤36 –控制极引脚电容及串联电阻的选择 (29)■步骤37 –根据图3、4、5及6中所示的参考反馈电路的类型,选用相应的反馈电路元件 (29)■步骤38 –环路动态补偿设计 (30)■系统应用需求交流输入最小电压:VACMIN,单位V交流输入最大电压:VACMAX,单位V交流输入电压频率:FL,单位HZ开关频率:FS,单位KHZ输出电压:Vo,单位V输出电流:IO,单位A电源效率:η负载调整率:SI损耗分配因子:Z空载功率损耗:P_NO_LOAD,单位MW输出纹波电压:VRIPPLE,单位MV■步骤1_确定应用需求●交流输入最小电压:VACMIN●●交流输入电压频率:FL50HZ或者60HZ,详见世界电网频率表。

单端反激开关电源变压器设计总结

单端反激开关电源变压器设计总结

单端反激开关电源变压器设计总结单端反激开关电源的变压器实质上是一个耦合电感,它要承担着储能、变压、传递能量等工作。

下面对工作于连续模式和断续模式的单端反激变换器的变压器设计进行了总结。

1、已知的参数这些参数由设计人员根据用户的需求和电路的特点确定,包括:输入电压Vin、输出电压Vout、每路输出的功率Pout、效率η、开关频率fs(或周期T)、线路主开关管的耐压Vmos。

2、计算在反激变换器中,副边反射电压即反激电压Vf与输入电压之和不能高过主开关管的耐压,同时还要留有一定的裕量(此处假设为150V)。

反激电压由下式确定:Vf=VMos-VinDCMax-150V反激电压和输出电压的关系由原、副边的匝比确定。

所以确定了反激电压之后,就可以确定原、副边的匝比了。

Np/Ns=Vf/Vout另外,反激电源的最大占空比出现在最低输入电压、最大输出功率的状态,根据在稳态下,变压器的磁平衡,可以有下式:VinDCMin•DMax=Vf•(1-DMax)设在最大占空比时,当开关管开通时,原边电流为Ip1,当开关管关断时,原边电流上升到Ip2。

若Ip1为0,则说明变换器工作于断续模式,否则工作于连续模式。

由能量守恒,我们有下式:1/2•(Ip1+Ip2)•DMax•VinDCMin=Pout/η一般连续模式设计,我们令Ip2=3Ip1这样就可以求出变换器的原边电流,由此可以得到原边电感量:Lp= DMax•VinDCMin/fs•ΔIp对于连续模式,ΔIp=Ip2-Ip1=2Ip1;对于断续模式,ΔIp=Ip2 。

可由AwAe法求出所要铁芯:AwAe=(Lp•Ip22•104/Bw•K0•Kj)1.14在上式中Aw为磁芯窗口面积,单位为cm2Ae为磁芯截面积,单位为cm2Lp为原边电感量,单位为HIp2为原边峰值电流,单位为ABw为磁芯工作磁感应强度,单位为TK0为窗口有效使用系数,根据安规的要求和输出路数决定,一般为0.2~0.4Kj为电流密度系数,一般取395A/cm2根据求得的AwAe值选择合适的磁芯,一般尽量选择窗口长宽之比比较大的磁芯,这样磁芯的窗口有效使用系数较高,同时可以减小漏感。

单端反激式DC-DC开关电源变压器的设计全过程

单端反激式DC-DC开关电源变压器的设计全过程

单端反激式DC/DC 开关电源变压器的设计全过程,xuguoping 分享与世纪电源网的网友 变压器的参数计算:(1) 变压器的设计要求:输出电压:10V ~3KV ,8mA (变压器输出之后三倍压)输入电压:24 1V±工作频率:50KHZ最大占空比:45%变换效率:80%(2) 基本参数计算:输入最小电压:min IN V =-IN V V =24-1-0.5=22.5V输出功率:OUT OUT OUT P U I =30000.00824()W =×=输入功率:OUT IN P P η=2430()0.8W == (3) 选择磁芯:由于输出功率为24W ,需要留有一定的余量,选择磁芯的型号为:EI-28。

其具体参数如下:材料:PC40;尺寸:28.0*16.75*10.6(mm);P A :0.6005();:86 4cm e A 2mm W A :69.83; :4300;2mm L A 2/nH N S B :500mT () 390mT (10) 25o C 0o C 使用时为防止出现磁饱和,实取磁通密度m B = 250 mT(4) 粗略估计匝数比以及最大占空比(通过实际计算)min (1)OUT MAX IN MAX V D N V D −= 30000.5522.50.45×=× 162.9=(求出结果后然后取整为Nm )因为匝数比可以根据设计理念修正为M N =165,从而可以产生新的MAX Dmin OUT MAX M IN OUT V D N V V =+ 300022.51653000=×+44.7%=(5) 计算初级平均电流,峰值电流和电流的有效值由于输出功率为24W ,用电流连续模式(CCM )比较适合。

这里取为0.6RP K .min min IN OUT P AVG IN IN P P I V V η== 240.822.5=×1.333A =.1[1]2P AVG P RP MAX I I K D =− 1.333(10.50.6)0.447=−××4.26A=.P RMS P I I ==2.054A =.P RMS I -电流有效值,P I -峰值电流,.P AVG I -平均电流,(RP K R RP PI K I =)电流比例因数,MAX D -最大占空比; 利用Krp 的值可以定量描述开关电源的工作模式,若Krp=1.0,即峰值电流和脉动电流相等,开关电源工作在断续模式;若Krp<1.0,峰值电流大于脉动电流,开关电源工作在连续模式。

反激式开关电源变压器计算

反激式开关电源变压器计算

计算变压器1. 已知参数:最小输入电压VIN(min)=85V最大输入电压VIN(min)=264V输出电压VO=12V输出电流IO=2A输出功率PO=24W设定效率=0.8PFC开关频率=65KHZ开关周期T=15.3846154us2.计算初次侧电流设定反射电压VOR=85V 设定最低输入电压情况下最大占空比Dmax=0.41425021计算最大导通时间TON=6.37308011uS计算输入平均电流Iiav=0.24960479A设定KRP=0.67计算DeltaI=0.60707639计算输入端峰值电流Iipk=0.90608416A计算输入电流有效值Iirms=0.40388208A3.选择合适的磁芯:计算所需磁芯的窗口乘积-Aneed=2000mm^4选择磁芯EFD25电感系数AL=uH/N^2有效磁芯截面积Ae=58mm^2窗品面积Aw=67.89mm^2有效磁路长度Le=mm有效体积Ve=mm^3窗口乘积3937.62mm^4 4.计算初次级匝数计算导通时间Ton=6.37308011usToff=9.01153527us计算初级匝数np=66.0328016匝计算初次级匝比n=6.8计算次级匝数ns=9.71070612匝5.计算初级电感Lp计算初级电感量Ip=1261.75307uH6.计算初次级电流输出电流峰值Iopk=6.16137231A输出电流有效值Iorms=3.26578961A选取电流密度J=6A/mm^2计算初级线圈直径Di=0.29283086mm计算次级线圈直径Do=0.83269057mm7.验证BmaxBmax=0.29850746T提示:密码1111,请勿更改70V-120V之间Dmax=VOR/(VOR+1.414*VINMIN)Iiave=p0/效率/1.414/VinminKRP=DeltaI/IpkIrms=Iipk*((krp^2/3-krp+1)*D)^0.5PO=6500*PO/(DeltaB*J*F) DeltaB=0.2T;J=6A/MM^2;Ton=T*Dnp=1.414*Vinmin*Ton/DeltaB/Aens=np/nIp=1.414*VINmin*TON/DeltaIIopk=Iipk*nIrms=Iopk*((krp^2/3-krp+1)*(1-D))^0.5D=(4*Iirms/3.14/j)^0.5Bmax=L*Iipk/Ae/nPFC电感计算-CCM。

基于UC2844的单端反激电源原理及波形

基于UC2844的单端反激电源原理及波形

单端反激拓扑的基本电路单端反激拓扑的基本电路(b)为Q1电流,(c)为次级整流二极管电流,(d)为Q1的Vce电压工作原理如下:当Q1导通时,所有的次级侧整流二极管都反向截止,输出电容(Co、C1)给负载供电。

T1相当于一个纯电感,流过Np的电流线性上升,达到峰值Ip。

当Q1关断时,所有绕组电压反向,次级侧整流二极管导通,同时初级侧线圈储存的能量传递到次级,提供负载电流,同时给输出电容充电。

若次级侧电流在下一周期Q1导通前下降到零,则电路工作于断续模式(DCM),波形如上图(b)(c)(d),反之则处于连续模式(CCM)电流模式控制芯片UC2844/3844内部框图如下工作时序图如下开关电源启动时输出时序不正确的案例:电动汽车驱动板有两路开关电源,如下图开关电源1的UC2844启动电路,其输出包含VDD5开关电源2的UC2844启动电路,其输出包含+5V电路尽管两路开关电源的启动电路中电容都是200uF,充电电阻是30kΩ,但由于开关电源2中D26的存在,使得开关电源2充电快,先开始工作,导致光耦U24的副边电源+5V比原边电源先建立。

当光耦U24的副边电源比原边电源先建立时,光耦会输出负压(V out+相对于V out-的电压),如下图。

CH1:VDD5电压CH2:+5V电压CH3:U31 pin6CH4:U31 Pin7光耦的负压会让运放U20输出一段600mV的负压,如下图U20 Pin1电压这段负压输入到控制板的比较器U5反向输入端,此时GENERATRIX信号的电压为-470mV,这个电压已经超过了比较器允许的最大负压(器件资料规定输入负压不得大于0.3V),在环境温度超过73℃时,-470mV 的电压会导致比较器U5输出异常。

高温上电报Er004故障分析报告.docxSIZE-D旧版开关电源UC2844电路1、电路正常工作时(1)启动初始开始的一段时间Pin1电压维持在7.2V,原因:(1)+15电压较低,反馈电路的光耦U17初级侧的二极管两端电压未达到导通门限,因而U17次级侧阻抗无穷大(开路)(2)2844的Pin2(内部误差放大器“-”端)接地,因此误差放大器输出为高电平,电压由芯片内部决定注:UC284X/UC384X芯片资料中误差放大器输出高电平的典型值为6.2V,测量其他产品开关电源启动时Pin1电压也都在6V左右,唯有这个电路Pin1电压偏高,但器件资料并没有给出高电平的最大值CH1:UC2844 Pin1CH2:UC2844 Pin3CH3:MOS驱动CH4:+15V当Pin1电压为7.2V 时,Pin3电压达到1V 则电流取样比较器输出翻转为高,驱动关闭。

单端反激式开关电源变压器设计

单端反激式开关电源变压器设计

单端反激式开关电源变压器设计输入Vacmin Vacmax 电源功率(W) Pout 预设效率(%) η 工作频率(KHz) f MOS耐压(V) Vmosmax 连续模式输入断续模式输入输入电压(V) 磁芯预选:磁芯型号磁芯截面(mm2) Ae 磁感应强度(T) Bw 输出电压(V) 输出电流(A) 辅助电压(V) 辅助电流(A) Vout Iout Va Ia 86.00 265.00 45.00 87.00 70.00 600.00 0.50 1.00 0.50 EE13 EE13 17.20 0.20计算结果Vdcmin Vdcmax 反射电压(V) Vf 周期μ s T 最大导通时间( μs) t 最大占空比Dmax 输入功率(W) Pin 初级电流Ip 最大电感量(mH) Lp 初级次级匝数比n 磁芯气隙(cm) lg 输入电压(V) 初级匝数(Turn) 初级线径(mm) 次级匝数(Turn) 次级线径(mm) 辅助匝数(Turn) 辅助线径(mm) Np Dp Ns Ds Na Da次级参数:26.00 1.40 18.00 0.10使用说明: A,首先输入表格左侧已知参数,则相应数据会在右侧对应栏中得出B,变压器磁芯必须预选,Ae,Bw查磁芯规格书。

EE磁芯可以参考下表C,连续模式输入0.5,断续模式输入1 D,使用的时候请按照顺序输入,否则会打乱运算步骤。

附:EE磁芯参数表单端反激式开关电源变压器设计依据MOS管耐压的变压器设计初级参数输入Vacmin输入电压(V)Vacmax电源功率(W)Pout预设效率(%)η工作频率(KHz)fMOS耐压(V)Vmosmax连续模式输入断续模式输入磁芯预选:磁芯型号磁芯截面(mm2)Ae磁感应强度(T)Bw输出电压(V)输出电流(A)辅助电压(V)辅助电流(A)VoutIoutVaIa86.00265.0045.0087.0070.00600.000.501.000.50*****317 .200.20计算结果Vdcmin输入电压(V)Vdcmax反射电压(V)Vf周期μsT最大导通时间( μs)t最大占空比Dmax输入功率(W)Pin初级电流Ip最大电感量(mH)Lp初级次级匝数比n磁芯气隙(cm)lg初级匝数(Turn)初级线径(mm)次级匝数(Turn)次级线径(mm)辅助匝数(Turn)辅助线径(mm)NpDpNsDsNaDa次级参数:26.001.4018.000.10 使用说明:A,首先输入表格左侧已知参数,则相应数据会在右侧对应栏中得出B,变压器磁芯必须预选,Ae,Bw查磁芯规格书。

反激式开关电源工作原理及波形分析

反激式开关电源工作原理及波形分析

反激式开关电源工作时可以简化为下图所示电路:
Mos管控制原边(左侧)电流的通断。

Mos管导通时:
电感充电(实则为建立磁通),副边二极管截止,无电流。

Mos管断开时:
由于电流不同突变(实际上是磁通不能突变),于是在副边形成感应电流,二极管导通。

原边反射电压:
副边有电流流通时,会在原边感应出一个电压(下+上-),叠加在输入电压上。

原边的尖峰电压:
由于漏电感的存在,该部分的磁通没有通过磁芯耦合到副边,因此mos管断开时,会产生很大的电压来维持电流,从而达到维持磁通的目的。

振荡波形:
Mos管关断时尾部有振荡,是由于开关电流工作在断续模式时,能量释放完全后,原边、副边无电流。

此时原边的电路可以等效为电源+电感+电容(Mos管输入电容),发生谐振。

实测波形如下:
(黄色为mos驱动,绿色为mos管的VDS,粉色是原边线圈的电流)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于电流脉动系数Krp的选取:
Krp:电流脉动系数(安全系数) Krp的取值根据输入电压的范围来确定 选择Krp值就能设定开关电源的工作模式.
由Ip1=Ip2*(1-Krp)可以得出: Krp=1-Ip1/Ip2 (0<Krp≤1)
关于Krp的选取:
DCM断续模式Krp=1.0;(断续模式Ip1=0) CCM连续模式Krp=0.4--1.0. 对于85~265V宽范围输入或230V固定输入 的交流电压: 选择Krp=0.6~1.0比较合适。 (源自互联网)
开关电源的难点:
变压器设计及功率器件选型 变压器参数设计及功率器件参数选择,散 热设计,留一定的裕量等。 过各个地区或国家的认证 如UL,CE,PSE,CCC等。 过EMC认证(包括 EMI和EMR) EMI:电磁辐射 EMR:电磁传导
各种电源的安规标准(供参考查阅之用)
安规标准(需了解,方便以后查阅)
DCM为电流断续模式,CCM为电流连续模式, 在对纹波要求较高时可以考虑用CCM模式, 但同等条件下转换效率较DCM低些。 DCM模式的转换效率更高些,属于能量完 全转换,但同时纹波较CCM要高. 应用中可以根据实际情况进行选取。一般 来说低电压工作在CCM模式,高电压工作在 DCM模式比较好。
磁芯结构 E cores
Planar E Cores
变换器电路类型 反激式 正激式 推挽式
+ 0 0 + 0 + + + + + 0 + + + + 0 0 + + + 0 0 0 0 +
EFD Cores ETD Cores ER Cores U Cores RM Cores EP Cores P Cores Ring Cores
5.初级峰值电流Ipk的计算
Ipk=【2Vo*Io】/【§* Vin(min)*Dmax】
Vo:输出电压 Io:输出电流 §:电源能量转换效率
初级平均电流怎么计算?(在计算线径时会用到)
6.初级电感量Lp的计算
以下公式假设电源工作在断续模式(DCM 模式下) Lp= 【Vin(min)*Dmax】/【Ipk*F】 = 【Vin(min)*Ton】/Ipk
3.最大占空比Dmax的计算
Dmax=Vor/Vin(min)+Vor
其中:Vor=N*(Vo+Vd)
Vor:为次级输出电压的反射电压,叠加在 MOS管 的漏极D上。 N:为初次级匝比 Dmax:一般小于0.5,要留有裕量,取0.4-0.45之 间为宜,此计算公式只为反向验证使用。
4.初级匝数Np的计算
如果是小功率的,比如输出只有1A,就断续模式, 这样对元器件的要求比较低,比如副边二极管没 有反向恢复的问题,可以选用耐压比较低的肖特 基,但MOS管的峰值电流相对较大。 如果是大功率的电流比较大,比如3A,你可以设 计成连续模式,这样输出纹波比断续模式要小, 效率要高些,MOS管的峰值电流相对较小,但存在 副边二极管的反向恢复问题当然我这里说的1A、 3A电流也不是太大,具体要看自己的需要。
结束语
以上为个人理解与部分经验,技术水平有限, 错误和不足之处,请各位同事及时指出,谢谢!
取J为2.5~5A/mm2。导线直径的选择还要考虑趋
肤效应。如必要,还要经过变压器温升校核后进
行必要的调整。
什么是导体的趋肤效应?
交变电流通过导体时,由于感应作用引起导体截面上电流 分布不均匀,愈近导体表面电流密度越大,这种现象称 “趋肤效应”。 趋肤效应使导体的有效电阻增加。频率越高,趋肤效应越 显著。当频率很高的电流通过导线时,可以认为电流只在 导线表面上很薄的一层中流过,这等效于导线的截面减小, 电阻增大。 为了削弱趋肤效应,在高频电路中也往往使用多股相互绝 缘细导线编织成束来代替同样截面积的粗导线,这种多股 线束称为辫线。
DCM与CCM模式的选取
同一个电源只能工作于一种模式。因为能 够使DCM稳定的环路是不可能在电源进入 CCM时保持稳定的。
DCM变压器计算时也会留下充足余量以保 证即使最坏情况也还会有充足余量使电源 不进入CCM模式。
DCM与CCM模式的选取
请问一下,开关电源变压器设计中 我看到连续模 式和不连续模式 这两个模式怎样选取?
变压器设计时的主要指标参数:
变压器选型 初次级匝比N的计算 最大占空比Dmax的计算 初级匝数Np的计算 初级峰值电流Ipk的计算 初级电感量Lp的计算 次级匝数Ns及IC供电绕组Nf的计算 初次级线径d的计算
1.变压器选型
AP算法:AP=Aw*Ae(查表法)
以TM5101为例分析开关电源的相关波形
波形分析Vcs(CM)
波形分析Vcs(CCM)
波形分析Vds
波形分析Vgs
输出整流管两端
重要的一点:
以上理论计算公式对实际设计开关电源变压器具 有指导意义,但绝不要依赖它,觉得只要掌握了 以上公式,设计开关电源就没有问题。而实际上, 都是要以设计后测试的为准,再反过来不断调整, 如变压器的感量,变压器绕制的整体饱和度,用 的线径与温升问题等,都要根据实际测试的数据 再做一些修正。 做到设计前计算好,调试样机时测试好,调试后 老化好3点,大家都可以把开关电源做的很好。
什么是开关电源的DCM与CCM?
开关电源的CCM和DCM状态是指: 高频开关变压器次级线圈中感应到的磁化电流, 即输出电流。 磁化电流的非连续状状DCM:Toff>次级电感与 输出电压之比再除以次级峰值电流。 磁化电流的连续状状CCM:Toff≤次级电感与输 出电压之比再除以次级峰值电流。
DCM与CCM模式的选取
DCM模式有Po=0.5Lp*Ipk² *F*η.(应用意义)
连续模式的Ipk会有所不同。
以下为连续模式(CCM)下的理论计算公式
Lp= 【Vin(min)*Dmax】/【Ipk*F】 = 【Vin(min)*Ton】/Ipk 其中:Ipk=Ip2-Ip1=Krp*Ip2 Ip1=Ip2*(1-Krp) Ip2:变压器峰值电流。 Ip1:变压器起始电流。
单端反激式开关电源变压器的计算及 相关波形分析
天微电子培训讲义
技术部 张天雷 2012.12.4
变压器在开关电源中的作用
变压器的构成以及作用:
1)电气隔离 2)储能 3)变压 4)变流
变压器的分类
功率变压器根据拓扑结构分为三大类: (1)反激式变压器; (2)正激式变压器; (3)推挽式变压器(全桥/半桥变换器中的 变压器) 下页表格中各符号的含义: ‘+’=适合; ‘0’=一般;‘-’=不适合。
面积AP法:磁芯截面积Ae与线圈有效窗口 面积Aw的乘积。 其中: Aw-磁芯窗口面积 Ae-磁芯有效截面积
2.初次级匝比N的计算
N=Np/Ns=【Vin(min)*Dmax】/【(Vo+Vd) *(1- Dmax)】
N: 初次级匝比 Np:初级匝数 Ns:次级匝数 Vin(min):输入电压最小值 Dmax:最大占空比 Vo:输出电压 Vd:输出整流管的导通压降
关于变压器的温升问题
做温升实验时元器件的温度不能超过多少,像变压器, MOS管,二极管等,有没有什么标准? 不能一概而论, 变压器主要看漆包线的耐温等级,磁芯的居 里点, 半导体器材主要看允许的工作结温。像变压器B级 的在环境温度25度时,温升不能超过105度,像安规就有 温升要求的。各种电源标准都不一样,如果是电力电源 通信电源等一些大功率电源,一般磁性元件温升不超过80 度,功率器件不超过90度,小DC/DC模块电源一般不超 过100度。(以上源自互联网)
7.次级匝数Ns及IC供电绕组Nf的计算
Ns=Np/N
Nf=【Ns*(Vcc+Vd1)】/(Vo+Vd2) Vd1, Vd2为整流二极管或肖特基的正向导 通压降,一般为0.4-2V之间。
8.初次级线径r的计算
I=3.14*r*r*J
电流以初次级的平均电流为准进行计算。
导线截面(直径)决定于绕组的电流密度。通常
Np=【Vin(min)*Ton】/【Ae* Bm 】= 【Vin(min)*Dmax】/【Ae * Bm *F】
Ton :Ton=D*T(T为高频变压器的实际工 作周 期,D为实际工作时的占空比。) Bm :工作磁通密度(工作磁通密度Bm应该在设计 指标要求之内,Bm<Bs-Br,以避免磁芯出现饱和。 为了防止磁芯的瞬间出现饱和,预留一定裕量, 如取Bm=ΔBmax*0.6=0.198T 取0.2T) F:高频变压器的实际工作频率 其中:T=1/F
相关文档
最新文档