微分方程数值解问题复习题
偏微分方程数值解法试题与答案
一.填空(1553=⨯分)1.若步长趋于零时,差分方程的截断误差0→lmR ,则差分方程的解lm U 趋近于微分方程的解lm u . 此结论_______(错或对); 2.一阶Sobolev 空间{})(,,),()(21Ω∈''=ΩL f f f y x f H y x关于内积=1),(g f _____________________是Hilbert 空间;3.对非线性(变系数)差分格式,常用 _______系数法讨论差分格式的_______稳定性; 4.写出3x y =在区间]2,1[上的两个一阶广义导数:_________________________________, ________________________________________;5.隐式差分格式关于初值是无条件稳定的. 此结论_______(错或对)。
二.(13分)设有椭圆型方程边值问题用1.0=h 作正方形网格剖分 。
(1)用五点菱形差分格式将微分方程在内点离散化; (2)用截断误差为)(2h O 的差分法将第三边界条件离散化; (3)整理后的差分方程组为 三.(12)给定初值问题xut u ∂∂=∂∂ , ()10,+=x x u 取时间步长1.0=τ,空间步长2.0=h 。
试合理选用一阶偏心差分格式(最简显格式), 并以此格式求出解函数),(t x u 在2.0,2.0=-=t x 处的近似值。
1.所选用的差分格式是: 2.计算所求近似值:四.(12分)试讨论差分方程()ha h a r u u r u u k l k l k l k l ττ+-=-+=++++11,1111逼近微分方程0=∂∂+∂∂xu a t u 的截断误差阶R 。
思路一:将r 带入到原式,展开后可得格式是在点(l+1/2,k+1/2)展开的。
思路二:差分格式的用到的四个点刚好是矩形区域的四个顶点,可由此构造中心点的差分格式。
偏微分方程数值习题解答
偏微分⽅程数值习题解答李微分⽅程数值解习题解答 1-1 如果0)0('=?,则称0x 是)(x J 的驻点(或稳定点).矩阵A 对称(不必正定),求证0x 是)(x J 的驻点的充要条件是:0x 是⽅程组 b Ax =的解证明:由)(λ?的定义与内积的性线性性质,得),()),((21)()(0000x x b x x x x A x x J λλλλλ?+-++=+=),(2),()(200x Ax x b Ax x J λλ+-+=),(),()(0'x Ax x b Ax λλ?+-=必要性:由0)0('=?,得,对于任何n R x ∈,有0),(0=-x b Ax ,由线性代数结论知,b Ax b Ax ==-00,0充分性: 由b Ax =0,对于任何n R x ∈,0|),(),()0(00'=+-==λλ?x Ax x b Ax即0x 是)(x J 的驻点. §1-2补充: 证明)(x f 的不同的⼴义导数⼏乎处处相等.证明:设)(2I L f ∈,)(,221I L g g ∈为)(x f 的⼴义导数,由⼴义导数的定义可知,对于任意)()(0I C x ∞∈?,有-=ba ba dx x x f dx x x g )()()()('1?? ??-=ba ba dx x x f dx x x g )()()()('2?? 两式相减,得到)(0)()(021I C x g g ba ∞∈?=- 由变分基本引理,21g g -⼏乎处处为零,即21,g g ⼏乎处处相等.补充:证明),(v u a 的连续性条件(1.2.21) 证明: 设'|)(|,|)(|M x q M x p ≤≤,由Schwarz 不等式||||.||||||||.|||||)(||),(|'''''v u M v u M dx quv v pu v u a ba +≤+=?11*||||.||||2v u M ≤,其中},max{'*M M M =习题:1 设)('x f 为)(x f 的⼀阶⼴义导数,试⽤类似的⽅法定义)(x f 的k 阶导数,...2,1(=k ) 解:⼀阶⼴义导数的定义,主要是从经典导数经过分部积分得到的关系式来定义,因此可得到如下定义:对于)()(2I L x f ∈,若有)()(2I L x g ∈,使得对于任意的)(0I C ∞∈?,有 ?-=bak kba dx x x f dx x x g )()()1()()()(??则称)(x f 有k 阶⼴义导数,)(x g 称为)(x f 的k 阶⼴义导数,并记kk dxfd x g =)(注:⾼阶⼴义导数不是通过递推定义的,可能有⾼阶导数⽽没有低阶导数.2.利⽤)(2I L 的完全性证明))()((1I H I H m 是Hilbert 空间.证明:只证)(1I H 的完全性.设}{n f 为)(1I H 的基本列,即0||||||||||||0''01→-+-=-m n m n m n f f f f f f因此知}{},{'n n f f 都是)(2I L 中的基本列(按)(2I L 的范数).由)(2I L 的完全性,存在)(,2I L g f ∈,使0||||,0||||0'0→-→-g f f f n n ,以下证明0||||1→-f f n (关键证明dxdfg =)由Schwarz 不等式,有00||||.|||||)())()((|??f f x x f x f n ba n -≤-?00'''|||||||||)())()((|??f f dx x x g x f n ba n -≤-?对于任意的)()(0I C x ∞∈?,成⽴=∞a ba n n dx x x f dx x x f )()()()(lim ??=∞→ba b a nn dx x x g dx x x f )()()()(lim '??由?-=ba n ba ndx x x f dx x x f )()()()(''??取极限得到dx x x f dx x x g ba ba ??-=)()()()('??即')(f x g =,即)(1I H f ∈,且0||||||||||||0''01→-+-=-f f f f f f n n n故)(1I H 中的基本列是收敛的,)(1I H 是完全的. 3.证明⾮齐次两点边值问题证明:边界条件齐次化令)()(0a x x u -+=βα,则0u u w -=满⾜齐次边界条件.w 满⾜的⽅程为00Lu f Lu Lu Lw -=-=,即w 对应的边值问题为==-=0)(,0)('b w a w Lu f Lw (P) 由定理知,问题P 与下列变分问题等价求)(min )(,**12*1w J w J H C w Ew E ∈=∈其中),(),(21)(0*w Lu f w w a w J --=.⽽Cu u a u Lu u J u u Lu f u u u u a w J +-+=-----=),(),()(~),(),(21)(000000*⽽200)()(),(),(C b u b p u u a u Lu +-=-β从⽽**)()()(~)(C b u b p u Jw J +-=β则关于w 的变分问题P 等价于:求α=∈)(,12*a u H C u使得)(min )()(*1u J u J a u H u α=∈=其中)()(),(),(21)(b u b p u f u u a u J β--=4就边值问题(1.2.28)建⽴虚功原理解:令)(0a x u -+=βα,0u u w -=,则w 满⾜)(,0)('00==-=-=b w a w Lu f Lu Lu Lw等价于:1E H v ∈?0),(),(0=--v Lu f v Lw应⽤分部积分,+-=-=-b a b a b a dx dx dv dx dw p v dx dw p vdx dx du p dx d v dx dw p dx d |)()),((还原u ,)()(),(),(),(),(),(),(),(),(000b v b p v f v u a v u a v Lu v f v u a v Lu f v w a β--=-+-=--于是,边值问题等价于:求α=∈)(,1a u H u ,使得1E H v ∈?,成⽴0)()(),(),(=--b v b p v f v u a β注:形式上与⽤v 去乘⽅程两端,应⽤分部积分得到的相同. 5试建⽴与边值问题等价的变分问题.解:取解函数空间为)(20I H ,对于任意)(20I H v ∈⽤v 乘⽅程两端,应⽤分部积分,得到0),(),(44=-+=-v f u dx ud v f Lu⽽??-==b a b a b a dx dxdvdx u d v dx u d vdx dx u d v dx u d .|),(33334444 dx dxv d dx u d dx dx vd dx u d dx dv dx u d b a b a b a ??=+-=2222222222| 上式为),(][2222v f dx uv dx vd dx u d b a =+?定义dx uv dxvd dx u d v u a ba ][),(2222+=?,为双线性形式.变分问题为:求)(20I H u ∈,)(20I H v ∈?),(),(v f v u a =1-41.⽤Galerkin Ritz -⽅法求边值问题==<<=+-1)1(,0)0(102"u u x x u u 的第n 次近似)(x u n ,基函数n i x i x i ,...,2,1),sin()(==π?解:(1)边界条件齐次化:令x u =0,0u u w -=,则w 满⾜齐次边界条件,且)1(,0)0(20==-=-=w w x x Lu Lu Lw第n 次近似n w 取为∑==n i i i n c w 1,其中),...2,1(n i c i =满⾜的Galerkin Ritz -⽅程为n j x x c a j ni i j i ,...,2,1),(),(21=-=∑= ⼜xd jx ix ij dx x j x i dxx j x i ij dx a j i jij i ?-=+=+=ππππππππ)cos()cos(2)sin()sin()cos()cos()(),(1010210''-+πππjx ix sin sin 21由三⾓函数的正交性,得到≠=+=j i j i i a j i ,0,212),(22π??⽽]1)1[()(2)sin()1(),(3102--=-=-?jj j dx x j x x x x ππ? 于是得到+-=-=为偶数为奇数j j j j a x x c j j j j 0 )1()(8),(),(2232ππ最后得到∑+=-+---+=]21[1233])12(1[)12(])12sin[(8)(n k n k k x k x x u ππ 2.在题1中,⽤0)1(=u 代替右边值条件,)(x u n 是⽤Galerkin Ritz -⽅法求解相应问题的第n 次近似,证明)(x u n 按)1,0(2L 收敛到)(x u ,并估计误差.证明:n u 对应的级数绝对收敛,由}{sin x i π的完全性知极限就是解)(x u ,其误差估计为338nR n π≤3.就边值问题(1.2.28)和基函数),...,2,1()()(n i a x x i i =-=?,写出Galerkin Ritz -⽅程解:边界条件齐次化,取)(0a x u -+=βα,0u u w -=, w 对应的微分⽅程为)(,0)('00==-=-=b w a w Lu f Lu Lu Lw对应的变分⽅程为0),(),(0=--v Lu f v w a)]([)(000a x q dx dpqu dx du p dx d Lu -++-=+-=βαβ+-=-ba b a dx x pv b v b p v dxdp )()()(' 变分⽅程为dx v qu x pv b v b p v f v w a ba ?--+=])([)()(),(),(0'ββ取n i a x x i i ,...,2,1,)()(=-=?,则Galerkin -Ritz ⽅程为∑-++--+=-=ba i ba i i nj j jidxa x x q dx a x i x pb b p fc a )]()[()()()()(),(),(11βαβ?β??+=ba j i j i j i dx q p a ][),(''取1,0,1===f q p ,具体计算1=n , )(1),(11a b dx a ba -==221)(21)()()(21a b a b a b a b d -=---+-=ββ, )(211a b c -=,即解)(2101a x u u -+= 2=n :22111)()(2),(),(),(a b dx a x a a b a ba -=-=-=3222)(34)(4),(a b dx a x a ba -=-=3223222)(31)()()(31)(2)()(a b a b a b a b dxa x ab dx a x d ba b a -=---+-=---+-=??ββββ得到⽅程组为 --=----3221322)(31)(21c )(34)()(a b a b c a b a b a b a b特别取1,0==b a ,有= 31213411121c c求解得到1,21,6131122=-=-=c c c其解为202)(21)(a x a x u u ---+=C h2 椭圆与抛物型⽅程有限元法§1.1 ⽤线性元求下列边值问题的数值解: 10,2sin242"<<=+-x x y y ππ0)1(,0)0('==y y此题改为4/1,0)1()0(,1"====+-h y y y y解: 取2/1=h ,)2,1,0(==j jh x j ,21,y y 为未知数. Galerkin 形式的变分⽅程为),(),(v f v Lu =,其中+-=10210"4),(uvdx vdx u v Lu π,?=1)(2sin 2),(dx x xv v f π⼜dx v u dx v u v u vdx u =+-=-10''10''10'10"|因此dx uv v u v u a )4(),(12''?+=π在单元],[1i i i x x I -=中,应⽤仿射变换(局部坐标)hx x i 1--=ξ节点基函数为)3,2,1(,0,,,1)(111=≤≤-=≤≤-=-=--+i other x x x h x x x x x h x x x i i i i i i i ξξξξ?-+++=++=1022210222222'111)1(41]41[]4[),(1021ξξπξξπ?πd h d hh dxa x x x x取2/1=h ,则计算得124),(211π??+=a122)1(41[),(210221πξξξπ??+-=-+-=?d h h a-+++=10101)1)(2121(2sin )0(2sin [2),(ξξξπξξξπ?d d h h f ??-++=1010)1(4)1(sin 2sin ξξξπξξξπd d hξξξπ?d h f ?+=102)2121(2sin 2),(代数⽅程组为= ),(),(),(),(),(),(212122212111f f y y a a a a 代如求值.取4/1=h ,未知节点值为4321,,,u u u u ,⽅程为4,3,2,1),(),(41==∑=j f ua j i iji应⽤局部坐标ξ表⽰,-+++=10221022])1(41[)41(),(ξξπξξπ??d hh d h h a j j248]88[21022πξξπ+=+=?dξξξπ??d hh a j j ])1(41[),(1021?-+-=++964)1(164212πξξξπ+-=-+-=?d 964),(21π??+-=-j j a系数矩阵为}964,248,964{222πππ+-++-=diag A取1=f ,41)1(),(1010=-+=??ξξξξ?d h d h f j-+++=+10110)1)]((2sin[2)](2sin[2),(ξξξπξξξπd h x h d h x h f j j j -++++=1010)1)](4 41(2sin[21)]44(2sin[42ξξξπξξξπd j d j++?=+++++-+=100110|)]8)1([cos(821]8)1(sin[21]8)1(sin[]8)(sin[21ξππξξπξξξπξπj d j d j j+2.就⾮齐次第三边值条件22'11')()(,)()(βαβα=+=+b u b u a u a u导出有限元⽅程.解:设⽅程为f qu pu Lu =+-='')( 则由),()]()[()()]()[()(),(|),)((''1122'''''v pu a u a v a p b u b v b p v pu v pu v pu b a----=-=αβαβ变分形式为:),(1b a H v ∈?)()()()(),()()()()()()(),(),(1212''a v a p b v b p v f a v a u a p b v b u b p v qu v pu ββαα-+=-++)(),(0b u u a u u N ==记)()()()(),()()()()()()()(),(),(),(1212''a v a p b v b p v f v F a v a u a p b v b u b p v qu v pu v u A ββαα-+=-++=则上述变分形式可表⽰为)(),(v F v u A =设节点基函数为),...,2,1,0)((N j x j =? 则有限元⽅程为),...,1,0()(),(0N j F u A j Ni i j i ==∑=具体计算使⽤标准坐标ξ.。
数值计算方法试题和答案解析
数值计算方法试题一一、填空题(每空1分,共17分)1、如果用二分法求方程在区间内的根精确到三位小数,需对分()次。
2、迭代格式局部收敛的充分条件是取值在()。
3、已知是三次样条函数,则=( ),=(),=()。
4、是以整数点为节点的Lagrange插值基函数,则( ),( ),当时( )。
5、设和节点则和。
6、5个节点的牛顿-柯特斯求积公式的代数精度为,5个节点的求积公式最高代数精度为。
7、是区间上权函数的最高项系数为1的正交多项式族,其中,则。
8、给定方程组,为实数,当满足,且时,SOR迭代法收敛。
9、解初值问题的改进欧拉法是阶方法。
10、设,当()时,必有分解式,其中为下三角阵,当其对角线元素满足()条件时,这种分解是唯一的。
二、二、选择题(每题2分)1、解方程组的简单迭代格式收敛的充要条件是()。
(1), (2) , (3) , (4)2、在牛顿-柯特斯求积公式:中,当系数是负值时,公式的稳定性不能保证,所以实际应用中,当()时的牛顿-柯特斯求积公式不使用。
(1),(2),(3),(4),(1)二次;(2)三次;(3)四次;(4)五次4、若用二阶中点公式求解初值问题,试问为保证该公式绝对稳定,步长的取值范围为()。
(1), (2), (3), (4)三、1、2、(15(1)(1) 试用余项估计其误差。
(2)用的复化梯形公式(或复化 Simpson公式)计算出该积分的近似值。
四、1、(15分)方程在附近有根,把方程写成三种不同的等价形式(1)对应迭代格式;(2)对应迭代格式;(3)对应迭代格式。
判断迭代格式在的收敛性,选一种收敛格式计算附近的根,精确到小数点后第三位。
选一种迭代格式建立Steffensen迭代法,并进行计算与前一种结果比较,说明是否有加速效果。
2、(8分)已知方程组,其中,(1)(1)列出Jacobi迭代法和Gauss-Seidel迭代法的分量形式。
(2)(2)求出Jacobi迭代矩阵的谱半径,写出SOR 迭代法。
偏微分方程数值解期末试题及参考答案
《偏微分方程数值解》试卷参考答案与评分标准专业班级信息与计算科学开课系室考试日期 2006.4.14命题教师王子亭偏微分方程数值解试题(06A)参考答案与评分标准信息与计算科学专业一(10分)、设矩阵A 对称正定,定义)(),(),(21)(n R x x b x Ax x J ∈-=,证明下列两个问题等价:(1)求n R x ∈0使 )(min )(0x J x J nRx ∈=;(2)求下列方程组的解:b Ax =解: 设n R x ∈0是)(x J 的最小值点,对于任意的n R x ∈,令),(2),()()()(2000x Ax x b Ax x J x x J λλλλϕ+-+=+=, (3分)因此0=λ是)(λϕ的极小值点,0)0('=ϕ,即对于任意的n R x ∈,0),(0=-x b Ax ,特别取b Ax x -=0,则有0||||),(2000=-=--b Ax b Ax b Ax ,得到b Ax =0. (3分) 反之,若nR x ∈0满足bAx =0,则对于任意的x ,)(),(21)0()1()(00x J x Ax x x J >+==+ϕϕ,因此0x 是)(x J 的最小值点. (4分)评分标准:)(λϕ的表示式3分, 每问3分,推理逻辑性1分二(10分)、 对于两点边值问题:⎪⎩⎪⎨⎧==∈=+-=0)(,0)(),()(b u a u b a x f qu dxdu p dx d Lu 其中]),([,0]),,([,0)(min )(]),,([0min ],[1b a H f q b a C q p x p x p b a C p b a x ∈≥∈>=≥∈∈建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的Ritz 形式和Galerkin 形式的变分方程。
解: 设}0)()(),,(|{110==∈=b u a u b a H u u H 为求解函数空间,检验函数空间.取),(10b a H v ∈,乘方程两端,积分应用分部积分得到 (3分))().(),(v f fvdx dx quv dxdv dx du pv u a b a ba ==+=⎰⎰,),(10b a H v ∈∀ 即变分问题的Galerkin 形式. (3分)令⎰-+=-=b a dx fu qu dxdup u f u u a u J ])([21),(),(21)(22,则变分问题的Ritz 形式为求),(10*b a H u ∈,使)(min )(1*u J u J H u ∈= (4分)评分标准:空间描述与积分步骤3分,变分方程3分,极小函数及其变分问题4分,三(20分)、对于边值问题⎪⎩⎪⎨⎧=⨯=∈-=∂∂+∂∂∂0|)1,0()1,0(),(,12222G u G y x yux u (1)建立该边值问题的五点差分格式(五点棱形格式又称正五点格式),推导截断误差的阶。
微分方程数值解法答案
微分⽅程数值解法答案包括基本概念,差分格式的构造、截断误差和稳定性,这些内容是贯穿整个教材的主线。
解答问题关键在过程,能够显⽰出你已经掌握了书上的内容,知道了解题⽅法。
这次考试题⽬的类型:20分的选择题,主要是基本概念的理解,后⾯有五个⼤题,包括差分格式的构造、截断误差和稳定性。
习题⼀1.略2. y y x f -=),(,梯形公式:n n n n n n y hh y y y h y y )121(),(2111+-+=+-=+++,所以0122)1(01])121[()121()121(y hh y h h y h h y hhn h h n n n +--+--+-+=+-+==+-+= ,当0→h 时,x n e y -→。
同理可以证明预报-校正法收敛到微分⽅程的解.3.局部截断误差的推导同欧拉公式;整体截断误差:++++++-++≤1),())(,(11111n nx x n n n n n n n dx y x f x y x f R εε11)(++-++≤n n n y x y Lh R ε,这⾥R R n ≤ ⽽111)(+++-=n n n y x y ε,所以 R Lh n n +=-+εε1)1(,不妨设1()]11111[1111101---++-+-+-≤≤-+-=n n n n Lh Lh Lh R Lh Lh R Lh εεε ]1[2)(02)(00-+≤--x X L x X L eLh R eε4.中点公式的局部截断误差: dx x y x f hx y h x f x y x f yx y n n x x n n n n n n))](,(2)(,2())(,([)(11*1?+++-=-++dx x y x f hx y h x f h x y h x f h x y x y dxx y x f hx y h x f hx y h x f h x y h x f x y x f n n n n x x n n n n n n n x x n n n n n n n n))](,(2)(,2())2(,2([)]2()([))](,(2)(,2())2(,2())2(,2())(,([11++-++++'-'=++-+++++-=??++所以上式为+--+''=?++dx hx x x y e n nx x n n n )2()(11θdx x y x f h x y h x f h x y h x f n n n n x x n n n n))](,(2)(,2())2(,2([1++-++?+ 3218)(LMh h x y Lh e n n ≤+''≤+?中点公式的整体截断误差:dx y x f hy h x f x y x f y x y y x y n n x x n n n n n n n n)],(2,2())(,([)()(111?+++-+-=-++dxy x f hy h x f x y x f h x y h x f x y x f hx y h x f x y x f y x y n n n n n n n n x x n n n n n n n n))],(2,2()))(,(2)(,2()))(,(2)(,2())(,([)(1++-+++++-+-=?+因⽽n n n L h Lh R εεε)21(1+++≤+,R L h Lh n n +++≤-122)21(εε≤≤])21()21(1[2)21(1222222022-+++++++--+++n nL h Lh L h Lh Lh Lh RL h Lh ε )1(00-+≤--x X L x X L e LhR eε 5.略 6.略 7.略8.(1)欧拉法:2.0≤h ;四阶Runge-Kutta ⽅法:278.0≤h (2)欧拉法:3 54≤h ;四阶Runge-Kutta ⽅法:3556.5≤h(3)欧拉法:1≤h ;四阶Runge-Kutta ⽅法:278.0≤h 9.略 10.略习题21.略 2.略 3.略4.差分格式写成矩阵形式为:n n M n M n n n M n M n n e u u u u r t r r r t r r r t r r r t u u u u +?--------= --+-+-++12211221121212121 αβαααβαααβαααβ矩阵的特征值为:)cos(221Mj r r t j πααβλ+-?-=,要使格式稳定,则特征值须满⾜t c j ?+≤1λ,即21≤r α5.利⽤泰勒展式可以得到古典隐式差分格式的截断误差为)(2h t O +?。
数值分析复习题
数值分析复习题⼀、填空1.近似数x*=0.4231关于真值x=0.4229有位有效数字.2.设f(x)可微,则求⽅程x 2=f(x)根的⽜顿迭代格式为 .3.对f(x)=x 3+3x 2-x+5,差商f[0,1,2,3,4]= .4.⽅阵A 的谱半径是指 .5.求积分?ba dx x f )(的近似值,其⾟⼘⽣公式为 .⼆、已知观测数据(1,-5),(2,0),(4,5),(5,6),试⽤最⼩⼆乘法求形如xb ax x +=)(?的经验公式。
(10分)三、求⼀个次数不⾼于4的多项式p 4(x),满⾜下列插值条件 x 0 1 2f(x) 0 1 1)(x f '0 1四、写出计算线性⽅程组=+-=+-=+-272135223121321x x x x x x x 的⾼斯⼀赛德尔迭代格式,并分析此格式的敛散性.五、⽤预估⼀校正法求初值问题=≤≤-='1)0(102y x y x y y在x=0.2处的数值解,步长取h=0.1。
(要求保留⼩数点后4位)六、把区间分成两等份,⽤复化⾟⼘⽣公式计算dxx+1七、在求⾮线性f(x)=0根的近似值时,论证简单迭代法⼀般为线性收敛,⽽⽜顿迭代法为平⽅收敛.⼀填空1.近似数x*=0.4231关于真值x=0.4229有位有效数字.2.设643()35f x x x x =-+-,则差商[0,1,2,3,4,5,6]f = 3.求积分()ba f x dx ?的近似值,其复化梯形公式为4.5点⾼斯求积公式,其代数精度为5.设f(x)可微,则求⽅程x 2=f(x)根的近似值的⽜顿迭代格式为 6.利⽤⼆分法求()0f x =在[,]a b 上根的近似值,误差限为 7.⽅阵A 的谱半径是指 8.矩阵A 的条件数是指 9.能⽤⾼斯消元法求解A x b =的充要条件是 10.设215314278A -??=,则1||||A = ⼆给定线性⽅程组1231232231242122316x x x x x x x x x -++=??-++=??++=? 1. ⽤列主元消元法求解所给线性⽅程组。
偏微分方程数值解期末试题及参考答案
《偏微分方程数值解》试卷参考答案与评分标准专业班级信息与计算科学开课系室考试日期 2006.4.14命题教师王子亭偏微分方程数值解试题(06A)参考答案与评分标准信息与计算科学专业一(10分)、设矩阵A 对称正定,定义)(),(),(21)(n R x x b x Ax x J ∈-=,证明下列两个问题等价:(1)求n R x ∈0使 )(min )(0x J x J nRx ∈=;(2)求下列方程组的解:b Ax =解: 设n R x ∈0是)(x J 的最小值点,对于任意的n R x ∈,令),(2),()()()(2000x Ax x b Ax x J x x J λλλλϕ+-+=+=, (3分)因此0=λ是)(λϕ的极小值点,0)0('=ϕ,即对于任意的n R x ∈,0),(0=-x b Ax ,特别取b Ax x -=0,则有0||||),(2000=-=--b Ax b Ax b Ax ,得到b Ax =0. (3分) 反之,若nR x ∈0满足bAx =0,则对于任意的x ,)(),(21)0()1()(00x J x Ax x x J >+==+ϕϕ,因此0x 是)(x J 的最小值点. (4分)评分标准:)(λϕ的表示式3分, 每问3分,推理逻辑性1分二(10分)、 对于两点边值问题:⎪⎩⎪⎨⎧==∈=+-=0)(,0)(),()(b u a u b a x f qu dxdu p dx d Lu 其中]),([,0]),,([,0)(min )(]),,([0min ],[1b a H f q b a C q p x p x p b a C p b a x ∈≥∈>=≥∈∈建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的Ritz 形式和Galerkin 形式的变分方程。
解: 设}0)()(),,(|{110==∈=b u a u b a H u u H 为求解函数空间,检验函数空间.取),(10b a H v ∈,乘方程两端,积分应用分部积分得到 (3分))().(),(v f fvdx dx quv dxdv dx du pv u a b a ba ==+=⎰⎰,),(10b a H v ∈∀ 即变分问题的Galerkin 形式. (3分)令⎰-+=-=b a dx fu qu dxdup u f u u a u J ])([21),(),(21)(22,则变分问题的Ritz 形式为求),(10*b a H u ∈,使)(min )(1*u J u J H u ∈= (4分)评分标准:空间描述与积分步骤3分,变分方程3分,极小函数及其变分问题4分,三(20分)、对于边值问题⎪⎩⎪⎨⎧=⨯=∈-=∂∂+∂∂∂0|)1,0()1,0(),(,12222G u G y x yux u (1)建立该边值问题的五点差分格式(五点棱形格式又称正五点格式),推导截断误差的阶。
第六章_常微分方程初值问题的数值解法_习题课
h2 h3 y ( x n ) y ( x n ) O(h 4 ) 2 6 而且 y ( x n ) f ( x n , y ( x n )) , y ( x n 1 ) f ( x n 1 , y ( x n 1 )) ,对 y ( x n 1 ) 也在 x n 处作 Talor 展开, y ( x n 1 ) y ( x n ) hy ( x n )
湖北民族学院理学院《数值计算方法》教学辅导材料
陈以平编写
h2 h3 y ( x n ) y ( x n ) O(h 4 ) 2 6 h h h2 h3 y ( x n ) y ( x n ) y ( x n ) y ( x n ) y ( x n ) O(h 4 ) 2 2 2 12 h3 y ( x n ) O(h 4 ) O(h 3 ) 12 h3 所以,梯形公式是 2 阶方法,其截断误差的主项是 y ( x n ) 。 12 y ( x n ) hy ( x n )
y k (0.9 0.1y k sin x k ) 0.1( y k 1 y k 1 sin x k 1 )
2
当 k=0,x0=1, y0=1 时,x1=1.2,有 y y (. . y sin x ) (. sin ) .
y f ( x, y ) 3.求解初值问题 欧拉法的局部截断误差是( y ( x ) y 改进欧拉法的局部截断误差是( ); 四阶龙格-库塔法的局部截断误差是( ). (A)O(h2) (B)O(h3) (C)O(h4) (D)O(h5)
4. 改进欧拉法的平均形式公式是( ) y p y k hf ( x k , y k ) y p y k hf ( x k , y k ) (B) y c y k hf ( x k , y p ) .(A) y c y k hf ( x k , y p ) y k ( y p y c ) y k ( y p y c ) y p y k hf ( x k , y k ) y p y k hf ( x k , y k ) (C) y c y k hf ( x k , y p ) (D) y c y k hf ( x k , y p ) y k h ( y p y c ) y k ( y p y c ) (D) 答案:
微分方程数值解法(戴嘉尊)习题解答
+
R Lh
(eL( X
− x0 )
−1)
电子文档制作:成都信息工程学院 数学学院 杨韧 吴世良,2010 年 4 月
成都信息工程学院>>精品课程>>微分方程数值解
11、解:令 f(x,y)=-y+x+1
y y y x y x y x = + h(− + +1) = (1− h) + h( +1) = 0.9 + + 0.1
0.0988*1.0e-3
0.9
0.4973
0.4972
0.0640*1.0e-3
1
0.5002
0.5000
0.1773*1.0e-3
2.解:显然, y = e−x 是原初值问题的准确解。 由梯形公式得
整理可得: 于是:
yn+1
=
yn
+
h 2
[
f
(
xn
,
yn
)
+
f
(xn+1, yn+1)]
=
yn
+
h 2
成都信息工程学院>>精品课程>>微分方程数值解
微分方程数值解 习题解答
杨韧 吴世良(编)
成都信息工程学院 数学学院
二 O 一 O 年四月编写
电子文档制作:成都信息工程学院 数学学院 杨韧 吴世良,2010 年 4 月
目
成都信息工程学院>>精品课程>>微分方程数值解
录
第一章 常微分方程数值解 ......................................................................3 第二章 抛物型方程的差分方法 ..............................................................8 第三章 椭圆型方程的差分方法 ............................................................16 第四章 双曲型方程的差分方法 ............................................................25
数值分析复习题
一、判断题1. 区间[a,b]上,若f(a)f(b)<0,则方程f(x)=0在[a,b]内一定有实根。
2. 22/7作为π=3.1415926……近似值,它有3位有效数字。
3. 设P(x)和Q(x)都是n 次多项式,如果在n +1 个不同的节点x i 上都有P(x i )=Q(x i ),则P(x)≡Q(x) 。
4. 取节点01231, 0, 2 ,4x x x x =-===作2()f x x =的插值多项式()p x ,则()p x 次数为2,插值基函数的次数为3。
5. 插值多项式严格通过所有的节点(x i ,y i )。
6. 若k<=n ,P(x)和Q(x)分别是 x k的通过n +1 个不同的节点的牛顿插值多项式和拉格朗日插值多项式则P(x)≡Q(x)≡x k。
7. 插值多项式次数越高,逼近效果越好。
8. 任何一组互异数据,逼近它们的多项式插值函数仅有一个。
9. 插值多项式次数与拟合曲线都严格通过所给定的数据点。
10. 求积公式:⎰30)(dx x f ≈。
f f f f 是插值型的)]3()2(3)1(3)0([83+++11. 牛顿-科特斯求积公式中的求积节点是等分的。
12. 牛顿法求方程ƒ(x)=0的单根, 在ƒ(x)可导的情况下, 至少二阶收敛。
13. 高斯型求积公式是插值型的。
14. 一阶亚当姆斯格式是单步法。
15. 显式的亚当姆斯公式:+-=+-()n n n n h y y f f 1132是单步法。
16. 求初值问题数值解的四阶亚当姆斯公式是多步法。
17. 如果有一常微分方程数值解法的局部截断误差3111()()n n n T y x y O h +++=-=,则该方法是3阶的。
18. 用一般迭代法求方程()0f x =的根,如其迭代过程()1k k x x ϕ+=发散,则方程()0f x = 的无解。
19. 牛顿法求方程ƒ(x)=0的根, 在ƒ(x)可导的情况下, 至少二阶收敛。
数值分析复习题答案
数值分析复习题一、填空Chapterl 绪论近似数x*=0.4231关于真值x=0.4229有3 位有效数字.用1000.1近似真值1000时,其有效数字有4 位,已知准确值X*与其有t位有效数字的近似值兀=°“冬…6 xlO' (q H 0)的绝对误差为|x*-x| <^-xlO J_/设F = 2.40315是真值x = 2.40194的近似值,则F有3位有效数字。
J_xl0-4 = -xl0-4设一近似数x*=2.5231具有5位有效数字,则其相对误差限是2x2 4,其-xlO-4绝对误差限是2 oyJx+l — \/x = / --- 7=当X很大时,为防止损失有效数字,应该使V A +1+V.VChapter2插值方法设几丫) = 3十 + 6〒一5亍+ 1,则亢—3,-2,- 1,0丄2,3]= 3。
若f(x) = 2x4+x~ ・3,则f[l,2,3,4,5,6] = °对f(x)=x3+3x2-x+5 商f[0J ,2,3,4]= 0 .设/⑴二十一3疋+疋一5,则差商/[0丄2,3,4,5,6]= }已知尸f(x)的均差 /[ v o^2,x i] = 5 , /[兀,兀入]=9,幷x4, x3, x2]=14, ffxO, x3, x2]=8,.那么均差f{x4, x2, x0]= 9 o (交换不变性)x -1 1 2设有数据,° 3 2则其2次Laiange插值多项式为-3 2——(x + l)(x 一2) + —(x+l)(x -1)2 3 , 2次拟合多项式为(最佳平方逼近可求)。
???以n + 1个整数点k (k =0JZ…,n)为节点的Lagrange插值基函数为y则有拉格朗口插值公式: (k=0丄2,…则k・o ??(注:(x) = ^y k l k (x) k-0科特斯公式满足)? ?i3 11f(x)dx = -f(-) + -f(l)姒诅卒协公八'434的代数精度为:2次代数精度° (依次将函数l,x,x',…代入验证是否满足,可得代数精度)「f\x)clx Q 丄[2/(丄)-/(-) + 2/(-)] 求积公式3 4 24」的代数精度为:3次代数精度。
《数值分析》复习题(14)
《数值分析》复习题一、填空题1. 已知近似数 1.28y *=-,则其绝对误差限为 -0.005 ,相对误差限是 0.39% 。
2. 测量一支铅笔长是16cm , 那么测量的绝对误差限是 0.5cm ,测量的相对误差限是3.125% 。
3. 度量一根杆子长250厘米,则其绝对误差限为 0.5cm ,相对误差限是 0.20% 。
4. 在数值计算中,当a1/(√(a+1) +√a ) 5. 在数值计算中,计算356-应变成3561+来计算。
6. 在数值计算中,计算1cos3-应变为2)5.1(sin 2⨯来计算。
7. 若543()2792100f x x x x x =-+-+,则12345[1,4,4,4,4,4]f =____2__________,123456[1,3,3,3,3,3,3]f = 0 。
8. 函数()f x 关于三个节点012,,x x x 的拉格朗日二次插值多项式为 f(x)=f(x0)[(x-x1)(x-x2)/(x0-x1)(x0-x2)] ,9. 当()f x x =时,(,)n B f x =∑f (k/n )Pk(x)=x 。
10. 代数式222236()66x xR x x x +=++ ______________,323222122()23x x R x x x ++=++ __________________. 11. 已知方程组123123123103127322115x x x x x x x x x --=-⎧⎪-++=⎨⎪+-=-⎩,那么收敛的Jacobi 迭代格式为:,收敛的G S -迭代格式为:收敛理由是方程组的系数矩阵为严格对角占优阵12. 已知线性方程组1233111193234184x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,那么收敛的Jacobi 迭代格式:收敛的G-S 迭代格式: 。
收敛理由是 严格对角占优矩阵 ,13. 求积公式0()nn kk k I Af x ==∑至少有n 次代数精度的充要条件是__严格对角占优矩阵 __________________;当n 是偶数时,牛顿-柯特斯公式()0()()nn n kk k I b a Cf x ==-∑至少有___n+1________次代数精度;高斯求积公式()()()nbk k ak f x x dx A f x ρ=≈∑⎰至少有___2n+1_______次代数精度。
数值分析复习题(钟尔杰)
a nn
的根满足||< 1。
9/16
Ex 19. 设A是对称矩阵,将A分裂为A = D – L – U。 Gauss-Seidel迭代格式的向前和向后两种形式分别为 x(k+1) = x(k) + (D – L )-1(b – A x(k) ) x(k+1) = x(k) + (D – U )-1(b – A x(k) ) 如果将向前和向后迭代格式交替进行,则有 x(k+2) = x(k) + M-1(b – A x(k) ) 试证明:M-1= (D – U)-1D(D – L)-1。
Ex 12 求上三角(下三角)矩阵的条件数
1 2 1 2 1 1 2 3 3 3
1 2 1 2 2 1 1 1 0 1
6/16
Ex13.对任意x,y∈Rn,利用向量范数的三角形不 等式证明:
|| x || || y || || x y ||
T T F11F21 I m1e1 m2e2
Ex17.有方程组Ax = b,其中A为对称正定阵,且有
迭代公式
X
( k 1)
X
(k )
(b AX )
(k )
讨论使迭代序列收敛的 的取值范围.
8/16
Ex18.设有方程组 Ax = b,其系数矩阵主对角元 aii ≠ 0 ( i = 1,2,…,n ) 证明解方程组的Jacobi迭代法收敛的充要条件是
t –2 yk-2 –1 yk-1 0 yk 1
yk+1
2
yk+2
数值分析复习题及答案
数值分析复习题一、选择题1. 和分别作为π的近似数具有( )和( )位有效数字.A .4和3B .3和2C .3和4D .4和42. 已知求积公式()()211211()(2)636f x dx f Af f ≈++⎰,则A =( )A . 16B .13C .12D .233. 通过点()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( )A .()00l x =0,()110l x = B .()00l x =0,()111l x =C .()00l x =1,()111l x = D .()00l x =1,()111l x =4. 设求方程()0f x =的根的牛顿法收敛,则它具有( )敛速。
A .超线性B .平方C .线性D .三次5. 用列主元消元法解线性方程组1231231220223332x x x x x x x x ++=⎧⎪++=⎨⎪--=⎩ 作第一次消元后得到的第3个方程( ).A .232x x -+= B .232 1.5 3.5x x -+= C .2323x x -+= D .230.5 1.5x x -=-二、填空1. 设2.3149541...x *=,取5位有效数字,则所得的近似值x= .2.设一阶差商()()()21122114,321f x f x f x x x x --===---,()()()322332615,422f x f x f x x x x --===--则二阶差商()123,,______f x x x =3. 设(2,3,1)TX =--, 则2||||X = ,=∞||||X 。
4.求方程 21.250x x --= 的近似根,用迭代公式 1.25x x =+,取初始值 01x =, 那么 1______x =。
5.解初始值问题 00'(,)()y f x y y x y =⎧⎨=⎩近似解的梯形公式是 1______k y +≈。
最新偏微分方程数值解试题参考答案
偏微分方程数值解一(10分)、设矩阵A 对称正定,定义)(),(),(21)(n R x x b x Ax x J ∈-=,证明下列两个问题等价:(1)求n R x ∈0使)(min )(0x J x J n Rx ∈=;(2)求下列方程组的解:b Ax = 解: 设n R x ∈0是)(x J 的最小值点,对于任意的n R x ∈,令),(2),()()()(2000x Ax x b Ax x J x x J λλλλϕ+-+=+=, (3分)因此0=λ是)(λϕ的极小值点,0)0('=ϕ,即对于任意的n R x ∈,0),(0=-x b Ax ,特别取b Ax x -=0,则有0||||),(2000=-=--b Ax b Ax b Ax ,得到b Ax =0. (3分) 反之,若nR x ∈0满足bAx =0,则对于任意的x ,)(),(21)0()1()(00x J x Ax x x J >+==+ϕϕ,因此0x 是)(x J 的最小值点. (4分)评分标准:)(λϕ的表示式3分, 每问3分,推理逻辑性1分二(10分)、对于两点边值问题:⎪⎩⎪⎨⎧==∈=+-=0)(,0)(),()(b u a u b a x f qu dxdu p dx d Lu 其中]),([,0]),,([,0)(min )(]),,([0min ],[1b a H f q b a C q p x p x p b a C p b a x ∈≥∈>=≥∈∈建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的Ritz 形式和Galerkin 形式的变分方程。
解: 设}0)()(),,(|{11==∈=b u a u b a H u u H 为求解函数空间,检验函数空间.取),(10b a H v ∈,乘方程两端,积分应用分部积分得到 (3分))().(),(v f fvdx dx quv dxdv dx du p v u a b a ba ==+=⎰⎰,),(1b a H v ∈∀ 即变分问题的Galerkin 形式. (3分)令⎰-+=-=b a dx fu qu dxdup u f u u a u J ])([21),(),(21)(22,则变分问题的Ritz 形式为求),(1*b a H u ∈,使)(m in )(10*u J u J H u ∈= (4分) 评分标准:空间描述与积分步骤3分,变分方程3分,极小函数及其变分问题4分,三(20分)、对于边值问题⎪⎩⎪⎨⎧=⨯=∈-=∂∂+∂∂∂0|)1,0()1,0(),(,12222G u G y x yux u (1)建立该边值问题的五点差分格式(五点棱形格式又称正五点格式),推导截断误差的阶。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解答提示:
常微分方程初值问题的近似解公式
∑ ⎧
⎪ ⎨
yn+1
=
yn
+
k +1 j=0
a*j Δ j
fn− j+1
⎪⎩ y0 , y1,⋅⋅⋅, yk
∫ ∫ 称为 Admas 内插公式,其中, a*j = (−1) j
0⎛
−1
⎜ ⎝
−t j
⎞ ⎟ ⎠
dt
=
1 j!
0
t(t +1) ⋅⋅⋅ (t +
−1
h
+
1 2
(
∂2u ∂x2
)mn
h2
h
+⋅⋅⋅
=
(
∂u ∂x
)nm
+
1 2
(
∂2u ∂x2
)mn
h
+
⋅
⋅
⋅
因此,向前差商的误差为 O(h) 。
umn
−
un m−1
h
=
umn
−
⎣⎡⎢umn
−
(
∂u ∂x
)mn
h
+
h
1 2
(
∂2u ∂x2
)
n m
h2
+ ⋅⋅⋅⎤⎥ ⎦
=
(
∂u ∂x
)
n m
−
1 2
(
∂2u ∂x2
因此,
en+1
=
y(xn+1) −
y(xn )
−
h(c1K1*
+
c2
K
* 2
)
=
f
(xn ,
y(xn ))h +
1 2
⎡⎣
fx (xn ,
y(xn )) +
f y (xn ,
y(xn )) f
(xn , y(xn ))⎤⎦ h2
+ O(h3)
− c1hf (xn , y(xn )) − c2h ⎡⎣ f (xn , y(xn )) + fx (xn , y(xn ))a2h + f y (xn , y(xn )) f (xn , y(xn ))b21h + O(h2 )⎤⎦
一.常微分方程数值解问题 1.以 h = 0.1 为步长,用欧拉法求初值问题
⎧⎪ dy = xe− y − y ⎨ dx ⎪⎩ y(0) = 1
的数值解,给出 y(1) 的近似值,精确到小数点后三位。
解答提示:
f (x, y) = xe− y − y ,问题的欧拉格式为
⎧⎪ ⎨ ⎪⎩
yn+1 = y0 = 1
K1,
K2
中
yn
替换为
y(
xn
)
所得。
根据一元函数的泰勒公式以及 dy = f (x, y) ,有 dx
y(xn+1) −
y(xn )
=
f
(xn ,
y(xn ))h +
1 2
⎡⎣
fx (xn ,
y(xn )) +
f y (xn ,
y(xn )) f
(xn , y(xn ))⎤⎦ h2
+ O(h3)
K1* = f (xn , y(xn )) ,
1+ λh + 1 λ2h2 + 1 λ3h3 + 1 λ4h4 ≤ 1
2!
3!
4!
这就是格式的绝对稳定区域。
二.抛物型方程的差分方程
1.(1) 简述用差分方法求解抛物型方程初边值问题的数值解的一般步骤。
(2)
写出近似一阶偏导数
(
∂u ∂x
)
n m
的三种有限差分逼近及其误差阶,写出近似
(
∂2u ∂x2
)mn
h
+⋅⋅⋅
因此,向前差商的误差为 O(h) 。
un m+1
−
un m−1
=
⎡⎢umn ⎣
+
(
∂u ∂x
)mn
h
+
1 2
(
∂2u ∂x2
)mn
h
2
+ ⋅⋅⋅⎤⎥⎦
−
⎡⎢umn ⎣
−
(
∂u ∂x
)
n m
h
+
1 2
(
∂2u ∂x2
)mn
h2
+ ⋅⋅⋅⎤⎥⎦
2h
2h
=
( ∂u ∂x
)
n m
+
1 (∂3u 3! ∂x3
+
⋅⋅⋅
因此,近似公式的误差为 O(h2 ) 。
⎛0 1
⎞
⎜ ⎜
1
0
1
⎟ ⎟
2.求 n 阶矩阵方阵 S = ⎜ % % % ⎟ 的特征值。
⎜ ⎜
1
0
1
⎟ ⎟
⎜⎝
1 0⎟⎠
解答提示:
此为对角矩阵,我们有如下结论:
⎛b c
⎞
⎜ ⎜
a
b
c
⎟ ⎟
n 阶三对角矩阵 A = ⎜ % % % ⎟ 的特征值为
j −1)dt 。
∫ a4*
=1 4!
0
t(t +1)(t + 2)(t + 3)dt
−1
2
具体的计算请自己进行。
5.二级二阶 Runge-Kutta 格式为
⎧ ⎪ ⎨
yn+1 = K1 = f
yn + (xn ,
h(c1K1 yn )
+
c2 K2
)
⎪⎩K2 = f (xn + a2h, yn + b21hK1)
的数值解,给出 y(1) 的近似值,精确到小数点后三位。
解答提示:
f (x, y) = − y + x +1,问题的预报-校正格式为
⎧ ⎪⎪ ⎨
y(0) n+1
yn+1
⎪
= =
yn yn
+ +
hf (xn , yn ) = yn + 0.1(−xn + yn
1 2
h
⎣⎡
f
(xn ,
yn ) +
f
( xn+1 ,
考虑对试验方程 dy = λ y 运用这些格式。作为课程设计问题之一,具体的步 dx
骤已经在上课的时候讲过,请自己写上。例如,对于经典四级四阶 Runge-Kutta 格式,我们如此求其绝对稳定区域。
经典四级四阶 Runge-Kutta 格式为
⎧ ⎪
yn+1
⎪
=
yn
+
1 6
h(K1
+
2K2
+
2K3
+
1 2
λ
2h)
yn
=
(λ
+
1 2
λ
2h
+
1 4
λ
3h2
)
yn
K4
=
f (xn
+ h, yn
+ hK3 ) = λ( yn
+ hK3) = λ yn
+ λhK3
= λ yn
+ λh(λ +
1 λ2h + 2
1 4
λ
3h2
)
yn
=
(λ
+
λ2h
+
1 2
λ3h2
+
1 4
λ
4h3 )
yn
因此,
yn+1
=
yn
+
⎨
j=0
⎪⎩ y0 , y1,⋅⋅⋅, yk
∫ 其中, a j
= (−1) j
1⎛
0
⎜ ⎝
−t j
⎞⎟dt ⎠
就是
Admas
外插公式的系数。
⎛t ⎞
⎜ ⎝
j
⎟ ⎠
=
t(t
−1) ⋅⋅⋅ (t j!
−
j
+ 1)
,特别地,
⎛ ⎜ ⎝
t 0
⎞ ⎟ ⎠
=
1,
⎛t⎞ ⎜⎝1⎟⎠
=
t
。
∫ ∫ aj
= (−1) j
1 6
h(K1
+
2K2
+
2K3
+
K4)
=
yn
+
1 6
h
⎡⎢⎣λ
yn
+
2(λ
+
1 2
λ 2h) yn
+
2(λ
+
1 2
λ2h
+
1 4
λ 3h2 )
yn
+
(λ
+
λ2h
+
1 2
λ 3h2
+
1 4
λ 4h3 ) yn
⎤ ⎥⎦
=
yn
+
1 6
h(6λ
+ 3λ 2h
+
λ3h2
+
1 4
λ 4h3 ) yn
=
(1 +
λh
K
* 2
=
f
( xn
+ a2h, y(xn ) + b21hK1*) =
f (xn , y(xn )) +