等差数列性质及习题

合集下载

等差数列的性质、求和知识点及训练

等差数列的性质、求和知识点及训练

等差数列的性质、求和知识点及训练重点:掌握等差数列的通项公式、求和公式以及等差中项的求法难点:对等差数列的综合考察一知识梳理1.定义:d a a n n =--1(d 为常数)(2≥n ); 2.等差数列通项公式:*11(1)()n a a n d dn a d n N =+-=+-∈ , 首项:1a ,公差:d ,末项:n a 推广: d m n a a m n )(-+=. 从而mn a a d mn --=;3.等差中项(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2ba A +=或b a A +=2(2)等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a4.等差数列的前n 项和公式:1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-2An Bn =+ (其中A 、B 是常数) (当d ≠0时,S n 是关于n 的二次式且常数项为0) 5.等差数列的判定方法(1)定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列.(2)等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a .(3)数列{}n a 是等差数列⇔b kn a n +=(其中b k ,是常数)。

(4)数列{}n a 是等差数列⇔2n S An Bn =+,(其中A 、B 是常数)。

6.等差数列的证明方法定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列.7.提醒:(1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,其中1a 、d 称作为基本元素。

等差数列知识点及习题

等差数列知识点及习题

第06课 等差数列1. 等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差.2. 等差中项:由三个数b A a ,,组成的等差数列可以看成最简单的等差数列. 这时,A 叫做b a 与的等差中项.3. 等差数列的通项公式:一般地,如果等差数列{}n a 的首项是1a ,公差是d ,可以得到等差数列的通项公式为:()d n a a n 11-+=4. 等差数列的性质:(1)通项公式的推广:()d m n a a m n -+= ()*N m n ∈,. (2)若{}n a 为等差数列,且n m l k +=+ ()*N m n l k ∈,,,,则n m l k a a a a +=+.(3)若{}n a 为等差数列,公差为d ,则{}n a 2也是等差数列,公差为d 2.(4)若{}n a 、{}n b 为等差数列,则{}n n qb pa +是等差数列.(5)若{}n a 为等差数列,则()*2N m k a a a m k m k k ∈⋅⋅⋅++,,,,组成公差为md 的等差数列.5.例1. 下列说法,正确的是___________(1)若{}n a 为等差数列,则{}n a 2也为等差数列; (2)若{}n a 为等差数列,则{}1++n n a a 为等差数列;(3)若正数数列{}n a 满足()5312252-=-n n a n ,则数列{}n a 是等差数列;(4)若数列{}n a 的通项公式为n n a n +=2,则数列{}n a 为等差数列.例2. 等差数列{}n a 中,13573==a a ,,求其通项公式.例3. 已知单调递增的等差数列{}n a 的前三项之和为21,前三项之积为231,求数列的通项公式.例4. 等差数列{a n }中, 3(a 3+a 5) +2(a 7+a 10+a 13) =24, 则a 4+a 10等于( )A. 3B. 4C. 5D. 12例5. 在数列{a n }中, a 1=2, a n+1=a n +2n +1.(1) 求证: 数列{a n -2n }为等差数列;(2) 设数列{b n }满足b n =2log 2(a n +1-n), 求{b n }的通项公式.【课堂训练】1. 在等差数列{a n }中, a 2=2, a 3=4, 则a 10=( )A. 12B. 14C. 16D. 182. 等差数列{a n }的首项为70, 公差为-9, 则这个数列中绝对值最小的一项为( )A. a 8B. a 9C. a 10D. a 113. 在数列{a n }中, a 1=15, 3a n+1=3a n -2, 则该数列中相邻两项乘积为负值的项是() A. a 21和a 22 B. a 22和a 23C. a 23和a 24D. a 24和a 254. 等差数列{a n }中, a 5+a 6=4, 则()1021222log 2a a a⋅⋅⋅⋅=( )A. 10B. 20C. 40D. 2+log 255. 等差数列{a n }中, a 1+a 5=10, a 4=7, 则数列{a n }的公差为( )A. 1B. 2C. 3D. 46. 已知{a n }为等差数列, a 1+a 3+a 5=105, a 2+a 4+a 6=99, 则a 20等于( )A. -1B. 1C. 3D. 77. 如果一个数列的前3项分别是1, 2, 3, 下列结论中正确的是( )A. 它一定是等差数列B. 它一定是递增数列C. 通项公式是a n =nD. 以上结论都不一定对8. 一个首项为23, 公差为整数的等差数列中, 前6项均为正数, 从第7项起为负数, 则公差d 为( )A. -2B. -3C. -4D. -59. 设数列{a n }, {b n }都是等差数列, 且a 1=25, b 1=75, a 2+b 2=100, 那么数列{a n +b n }的第37项为( )A. 0B. 37C. 100D. -3710. 已知递减的等差数列{a n }满足9212a a =, 则a 5=( )A. -1B. 0C. -1或0D. 4或511. 在等差数列{a n }中, 首项a 1=0, 公差d≠0, 若a k =a 1+a 2+a 3+…+a 7, 则k=( )A. 21B. 22C. 23D. 2412. nn n a a a 311+=+, a 1=2, 则a 4为( ) A.78 B. 58 C. 516 D. 19213. 设数列{a n }是公差不为零的等差数列, 且a 20=22, |a 11|=|a 51|, 则a n = .14. 在等差数列{}n a 中,已知9852=++a a a ,21753-=a a a ,求数列的通项公式.15. 已知数列{log 2(a n -1) }(n ∈N *) 为等差数列, 且a 1=3, a 3=9, 求数列{a n }的通项公式.16. 已知等差数列{a n }中, a 1=a, 公差d=1, 若b n =122+-n n a a(n ∈N *), 试判断数列{b n }是否为等差数列, 并证明你的结论.【强化训练】1. 已知数列{a n }满足a 1=2, a n+1-a n =a n+1a n , 那么a 31等于( ) A. 583-B. 592-C. 301-D. 602-2. 已知数列{a n }中, a 3=2, a 5=1, 若⎭⎬⎫⎩⎨⎧+n a 11是等差数列, 则a 11等于( ) A. 0 B.61 C. 31 D. 21 3. 若lg 2, lg(2x -1), lg(2x +3) 成等差数列, 则x 的值为( )A. 1B. 0或32C. 32D. log 254. 已知函数f(x)是R 上的单调增函数且为奇函数, 数列{a n }是等差数列, a 3> 0, 则f(a 1) +f(a 3) + f(a 5)的值( )A. 恒为正数B. 恒为负数C. 恒为0D. 可正可负5. 如果有穷数列a 1, a 2, …, a m (m 为正整数) 满足条件: a 1=a m , a 2=a m-1, …, a m =a 1, 则称其为“对称” 数列. 例如, 数列1, 2, 5, 2, 1与数列8, 4, 2, 4, 8都是“对称” 数列. 已知在21项的“对称” 数列{c n }中, c 11, c 12, …, c 21是 以1为首项, 2为公差的等差数列, 则c 2= .6. 数列{a n }是公差为正数的等差数列, a 1=f(x-1), a 2=0, a 3=f(x+1), 其中f(x) =x 2-4x+2, 则数列{a n }的通项公式a n = .7. 在数列{a n }中, a 1=3, 且对任意大于1的正整数n, 点()1-n n a a ,在直线x-y-3=0上, 则a n = .8. 已知无穷等差数列{a n }中, 首项a 1=3, 公差d=-5, 依次取出序号能被4除余3的项组成数列{b n }.(1) 求b 1和b 2;(2) 求{b n}的通项公式;(3) {b n}中的第503项是{a n}中的第几项?。

第30讲 等差数列的概念及性质(讲义 练习)(解析版)

第30讲 等差数列的概念及性质(讲义 练习)(解析版)

第30讲 等差数列的概念及性质知识点概要1.等差数列的概念一般地,如果数列{a n }从第2项起,每一项与它的前一项之差都等于同一个常数d ,即a n +1-a n =d 恒成立,则称{a n }为等差数列,其中d 称为等差数列的公差.拓展:等差数列定义的理解(1)“每一项与它的前一项之差”这一运算要求是指“相邻且后项减去前项”强调了:①作差的顺序;②这两项必须相邻.(2)定义中的“同一常数”是指全部的后项减去前一项都等于同一个常数,否则这个数列不能称为等差数列.2.等差数列的通项公式及其推广若等差数列{a n }的首项为a 1,公差为d ,则其通项公式为a n =a 1+(n -1)d .该式可推广为a n =a m +(n -m )d (其中n ,m ∈N +).思考:等差数列的通项公式a n =a 1+(n -1)d 是什么函数模型? [答案] d ≠0时,一次函数;d =0时,常数函数. 3.等差数列的单调性等差数列{a n }中,若公差d >0,则数列{a n }为递增数列;若公差d <0,则数列{a n }为递减数列.等差数列的判定方法有以下三种:(1)定义法:a n +1-a n =d (常数)(n ∈N +)⇔{a n }为等差数列; (2)等差中项法:2a n +1=a n +a n +2(n ∈N +)⇔{a n }为等差数列; (3)通项公式法:a n =an +b (a ,b 是常数,n ∈N +)⇔{a n }为等差数列. 但如果要证明一个数列是等差数列,则必须用定义法或等差中项法. 4.等差中项如果x ,A ,y 是等差数列,那么称A 为x 与y 的等差中项,且A =x +y2.在一个等差数列中,中间的每一项都是它的前一项与后一项的等差中项. 思考1:在等差数列中,任意两项都有等差中项吗? [答案] 是. 5.等差数列的性质{a n }是公差为d 的等差数列,若正整数s ,t ,p ,q 满足s +t =p +q ,则a s +a t =a p +a q . ①特别地,当p +q =2s (p ,q ,s ∈N +)时,a p +a q =2a s .②对有穷等差数列,与首末两项“等距离”的两项之和等于首末两项的和,即a 1+a n=a 2+a n -1=…=a k +a n -k +1=….思考2:在等差数列{a n }中,2a n =a n +1+a n -1(n ≥2)成立吗?2a n =a n +k +a n -k (n >k >0)是否成立?[答案] 令s =t =n ,p =n +1,q =n -1,可知2a n =a n +1+a n -1成立;令s =t =n ,p =n +k ,q =n -k ,可知2a n =a n +k +a n -k 也成立.拓展:(1)从等差数列中,每隔一定的距离抽取一项,组成的数列仍为等差数列. (2)若{a n }是公差为d 的等差数列,则①{c +a n }(c 为任一常数)是公差为d 的等差数列; ②{ca n }(c 为任一常数)是公差为cd 的等差数列; ③{a n +a n +k }(k 为常数,k ∈N +)是公差为2d 的等差数列.(3)若{a n },{b n }分别是公差为d 1,d 2的等差数列,则数列{pa n +qb n }(p ,q 是常数)是公差为pd 1+qd 2的等差数列.(4){a n }的公差为d ,则d >0⇔{a n }为递增数列; d <0⇔{a n }为递减数列;d =0⇔{a n }为常数列.精选同步练习一、填空题1.若三个数成等差数列,它们的和为9,平方和为59,则这三个数的积为_____. 【答案】-21 【分析】设这三个数为a d -,a ,a d +,依题意得到方程组,解得,a b ,即可得到这三个数,从而得解; 【解析】解:设这三个数为a d -,a ,a d +,则2229()()59a d a a d a d a a d -+++=⎧⎨-+++=⎩,, 解得34a d =⎧⎨=⎩或34a d =⎧⎨=-⎩∴这三个数为1-,3,7或7,3,1-. ∴它们的积为21-故答案为:21-2.在等差数列{}n a 中,1018a =,3078a =,则25a =______. 【答案】63 【分析】应用等差数列的性质:()m na a d m n m n-=≠-以及通项公式,即得解由等差数列的性质,可知公差301078183301020a a d --===-,所以()251025101815363a a d =+-=+⨯=. 故答案为:633.已知{a n }为等差数列,且a 6=4,则a 4a 7的最大值为________. 【答案】18 【分析】由题意,a 4a 7=(a 6-2d )(a 6+d )转化为二次函数的最大值,即得解 【解析】设等差数列的公差为d ,则a 4a 7=(a 6-2d )(a 6+d )=(4-2d )(4+d )=-2(d +1)2+18, 即a 4a 7的最大值为18. 故答案为:184.已知b 是a ,c 的等差中项,且a b c >>,若()lg 1a +,()lg 1b -,()lg 1c -成等差数列,15a b c ++=,则a 的值为______.【答案】7 【分析】根据等差中项的性质列出方程组,解方程组即可求出结果. 【解析】由题意,知()()()22lg 1lg 1lg 115b a cb ac a b c a b c=+⎧⎪-=++-⎪⎨++=⎪⎪>>⎩,解得753a b c =⎧⎪=⎨⎪=⎩,故答案为:7.5.在如下数表中,已知每行、每列中的数都成等差数列,那么位于表中的第n 行第n +1列的数是________. 【答案】2n n +## 【分析】由题中数表知,第n 行中的项满足a 1=n ,d =2n -n =n ,由等差数列的通项公式即得解由题中数表知,第n 行中的项分别为n,2n,3n ,…,组成一等差数列,设为{a n }, 则a 1=n ,d =2n -n =n ,所以a n +1=n +n ·n =n 2+n ,即第n 行第n +1列的数是n 2+n . 故答案为:n 2+n6.在等差数列5-,132-,2-,12-,…的每相邻两项间插入一个数,使之成为一个新的等差数列{}n a ,则新数列的通项公式为n a =________.【答案】32344n -【分析】根据首项和第三项构造方程求得新等差数列的公差d ,利用等差数列通项公式可得结果. 【解析】设{}n a 的公差为d ,则()732522d =---=,解得:34d =,{}n a ∴是以5-为首项,34为公差的等差数列,()332351444n a n n ∴=-+-=-. 故答案为:32344n -.7.已知数列{a n }中,a 1=2,a n +1=22nn a a +(n ∈N *),则数列{a n }的通项公式a n =________. 【答案】2n【分析】根据题意可判断1n a ⎧⎫⎨⎬⎩⎭为等差数列,即可求出通项公式.【解析】 ∵a n +1=22n n a a +,a 1=2,∴a n ≠0,∴11n a +=1n a +12,即11n a +-1n a =12,又a 1=2,则11a =12, ∴1n a ⎧⎫⎨⎬⎩⎭是以12为首项,12为公差的等差数列.∴1n a =11a +(n -1)×12=2n ,∴a n =2n.故答案为:2n.8.已知数列{}n a 为等差数列,公差()0d d ≠,且满足344651222024a a a a a a d ++=,则6511a a -=___________. 【答案】1506- 【分析】利用等差数列的基本量法化简得出56506a a d =,进而可求得6511a a -的值. 【解析】()()()()34465124444442228a a a a a a a d a a a d a d a d ++=-+++++()()()22224444445641284324242024a a d d a a d d a d a d a a d =++=++=++==,所以,56506a a d =,因此,566556111506506a a d a a a a d ---===-. 故答案为:1506-. 9.已知数列{}n a 中,135a =,()()111n n na n a n n +=+++,则数列{}n a 的通项公式为______.【答案】225n a n n =-【分析】将()()111n n na n a n n +=+++两边同时除以()1n n +,进而化为111n na a n n+-=+,然后结合等差数列的定义得到答案. 【解析】 由题意,可得111n n a a n n +=++,即111n n a a n n +-=+.又135a =,∴数列n a n ⎧⎫⎨⎬⎩⎭是以1315a =为首项,为1公差的等差数列,∴()32155n a n n n =+-=-,∴225n a n n =-. 故答案为:225n a n n =-.10.在数列{}n a 中,若11a =,212a =,()*12211++=+∈n n n n N a a a ,则该数列的通项为__________. 【答案】1n a n= 【分析】由题设知1{}na 是等差数列,根据等差数列通项公式有1n n a ,即可写出{}n a 的通项.【解析】 ∵()*12211++=+∈n n n n N a a a , ∴数列1{}n a 是等差数列,又21111a a -=且111a ,∴11(1)n n n a =+-=,故1n a n=. 故答案为:1n a n=. 11.已知数列{}n a 满足12123371,2,3,,N n n n na a a a a a n a *++++====∈,下列说法正确的是________. ①49a =;②N ,n n a ∀*∈都是整数; ③21221,,k k k a a a -+成等差数列;④21N ,N ,n n n k n a a ka ∃∀**++∈∈+=.【答案】②③ 【分析】根据12123371,2,3,,N n n n n a a a a a a n a *++++====∈,直接求得4a ,由递推公式1237n n n na a a a ++++=得()()22413n n n n n n a a a a a a +++++++=,令21n n n n a a b a +++=,则有2n n b b +=, 从而的出数列{}n b 的通项,从而可判断②③④的对错. 【解析】 解:2341713a a a a ⋅+==,故①错误; 因为1237n n n na a a a ++++=,即3127n n n n a a a a +++-= 则41237n n n n a a a a ++++=-,两式相减得:()()32124n n n n n n a a a a a a ++++++=+, 所以()()22413n n n n n n a a a a a a +++++++=,令21n n n n a a b a +++=,则有2n n b b +=, 又13122a a b a +==,24235a a b a +==, 所以2,21,5,2,n n k k N b n k k N ++=-∈⎧=⎨=∈⎩,所以21n n n n a b a a ++=⋅-,又因1231,2,3a a a ===均为整数,所以N ,n n a ∀*∈都是整数,故②正确;当n 为奇数时,则1n +为偶数,2n +为奇数, 212n n n a a a +++=,即212n n n a a a +++=, 即212122k k k a a a -++=,所以21221,,k k k a a a -+成等差数列,故③正确;因为2,21,5,2,n n k k N b n k k N ++=-∈⎧=⎨=∈⎩,所以当n 为奇数时,212n n n a a a +++=, 所以当n 为偶数时,215n n n a a a +++=, 故④错误. 故答案为:②③.12.有一列向量{}{}{}1112222:(,),:(,),,:(,)n n n n n a a x y a a x y a a x y ===,如果从第二项起,每一项与前一项的差都等于同一个向量,那么这列向量称为等差向量列.已知等差向量列{}na ,满足13(20,13),(18,15)a a =-=-,那么这列向量{}n a 中模最小的向量的序号n =_______【答案】4或5 【分析】由题意结合等差向量列的定义首先确定向量{}n a 的坐标表示,然后求解向量的模即可确定最小的向量的序号. 【解析】由题意可得:()()()3118,1520,132,2a a -=---=, 则每一项与前一项的差所得的同一个向量为:()1,1, 结合等差向量列的定义和等差数列通项公式可得:()201121n x n n =-+-⨯=-,()131112n y n n =+-⨯=+,即:()21,12n a n n =-+,这列向量{}n a 的模:(n a n =考查二次函数()2218585f x x x =-+,当18942x ==时,二次函数有最小值, 则这列向量{}n a 中模最小的向量的序号n =4或5. 故答案为:4或5. 【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.二、单选题13.已知等差数列{}n a 的公差为2,且15919a a a ++=,则3711a a a ++=( ) A .21 B .25C .31D .35【答案】C 【分析】由题意可得出37111596d a a a a a a ++=+++,即可求得结果. 【解析】设等差数列{}n a 的公差为d ,则2d =,则()37111591592226196231a a a a d a d a d a a a d ++=+++++=+++=+⨯=, 故选:C.14.在等差数列{}n a 中,已知113a =,45163a a +=,33k a =,则k =( )A .50B .49C .48D .47【答案】A 【分析】求出等差数列{}n a 的公差d 的值,利用等差数列的通项公式结合已知条件可求得k 的值. 【解析】设等差数列{}n a 的公差为d ,则45121627733a a a d d +=+=+=,解得23d =,所以,()()121121133333k k k a a k d --=+-=+==,解得50k =. 故选:A.15.已知数列{}n a ,32a =,71a =,若11n a ⎧⎫⎨⎬+⎩⎭为等差数列,则11a =( )A .12B .23C .1D .2【答案】A 【分析】利用等差中项的性质可求得11a 的值. 【解析】由于数列11n a ⎧⎫⎨⎬+⎩⎭为等差数列,则7311211111a a a =++++,所以,117312121211111213a a a =-=-=+++++,解得1112=a .故选:A.16.已知数列{}n a 是首项为a ,公差为1的等差数列,数列{}n b 满足1.nn na b a +=若对任意的*n ∈N ,都有6n b b ≥成立,则实数a 的取值范围是( )A .[]6,5--B .()6,5--C .[]5,4--D .()5,4--【答案】B 【分析】依题意,对任意的*n ∈N ,都有6n b b ≥成立,即611n a a ≥,利用数列{}n a 的单调性可得670,0a a <>,即可求解.【解析】 由已知111n n n na b a a +==+, 对任意的*n ∈N ,都有6n b b ≥成立,即61111n a a +≥+,即611n a a ≥, 又数列{}n a 是首项为a ,公差为1的等差数列,1n a a n ∴=+-,且{}n a 是单调递增数列,当n →+∞时,10na →, 670,0a a ∴<>,即5060a a +<⎧⎨+>⎩,解得65a -<<-.故选:B. 【点睛】关键点睛:本题考查等差数列通项公式及数列单调性的应用,解题的关键是要利用数列的单调性结合已知条件得到670,0a a <>.17.数列{}n a 中,115a =,()*1332+=-∈n n a a n N ,则该数列中相邻两项的乘积是负数的是( ) A .2122,a a B .2223,a aC .2324,a aD .2425,a a【答案】C 【分析】由数列中项的递推关系可得4723n n a -=,由相邻两项积为负有(452)(472)09n n --<,即可得n 的值,进而确定符合条件的相邻两项. 【解析】123n n a a +-=-,则247215(1)33-⎛⎫=+--= ⎪⎝⎭n na n .要使10n n a a +<,即(452)(472)09n n --<,可得454722n <<,*n N ∈,∴n =23.则该数列中相邻两项的乘积为负数的项是23a 和24a , 故选:C18.已知各项均大于1的数列{}n a 满足()1 2.71828a e e =≈,{}n a 中任意相邻两项具有差为2的关系.记n a 的所有可能值构成的集合为n A ,n A 中所有元素之和为n S ,*N n ∈,下列四个结论:①2A 为单元素集; ②6312S e =+; ③2212n n S S n --=;④若将23n A +中所有元素按照从小到大的顺序排列得到数列{}n b ,则{}n b 是等差数列. 其中所有正确结论的编号为( ) A .①② B .①③C .①③④D .②③④【答案】C 【分析】由各项均大于1且{}n a 中任意相邻两项具有差为2的关系,分别列举出数列{}n a 的前几项,并由n a 的所有可能值构成的集合为n A ,n A 中所有元素之和为n S ,*N n ∈分别检验得出答案. 【解析】 由题意12345678121481046810,2,,,4,6,,,24622e e e e e e e e a e a e a a a e a e a a e e e e e e e e ++⎧⎧++⎧⎧⎪⎪++++⎧⎧⎪⎪⎪⎪==+===+=+==⎨⎨⎨⎨⎨⎨+++⎩⎩⎪⎪⎪⎪+⎩⎩⎪⎪+⎩⎩①2a 的所有可能值构成的集合为{}22A e =+为单元素集,正确;②6A 中所有元素之和为61062318e e e e S =+++++=+,错误;③由归纳关系,2n S 和21n S -都有n 个数,且从小到大排列对应相减均为2,故2212n n S S n --=,正确;④23n A +为23n a +可能值构成的集合,从小到大排列为以e 为首项,公差为4的等差数列,正确; 故选:C【点睛】关键点点睛:本题考查归纳推理,考查数列的应用,解决本题的关键点是归纳出数列的前几项,并得到2n S 和21n S -都有n 个数,且从小到大排列对应相减均为2,以及每项的可能值构成的集合,从小到大排列为公差为4的等差数列,结合题目得出选项,考查学生逻辑推理能力,属于中档题.三、解答题19.已知等差数列{a n },a 6=5,a 3+a 8=5.(1)求{a n }的通项公式a n ;(2)若数列{b n }满足b n =a 2n -1,求{b n }的通项公式b n .【答案】(1)a n =5n -25(n ∈N +);(2)10n -30(n ∈N +).【分析】(1)结合等差数列的通项公式的公式求出首项和公差,进而求出结果;(2)结合(1)的结果,将2n -1代入即可求出结果.【解析】(1)设{a n }的首项是a 1,公差为d ,依题意得1155295a d a d +=⎧⎨+=⎩,∴1205a d =-⎧⎨=⎩, ∴a n =5n -25(n ∈N +).(2)由(1)知,a n =5n -25,∴b n =a 2n -1=5(2n -1)-25=10n -30,∴b n =10n -30(n ∈N +).20.已知等差数列{}n a 中,112220,86a a ==.(1)求数列{}n a 的公差d 和1a ;(2)满足10150n a <<的共有几项.【答案】(1)1406a d =-⎧⎨=⎩;(2)23. 【分析】(1)用基本量1a ,d 表示题设条件,联立即得解;(2)写出{}n a 通项公式646n a n =-,解不等式,结合n 为整数,即得解.【解析】(1)设首项为1a ,公差为d ,由已知得111020,2186.a d a d +=⎧⎨+=⎩ 解方程组,得140,6.a d =-⎧⎨=⎩ (2)由(1)知140,6.a d =-⎧⎨=⎩1(1)40(1)6646n a a n d n n ∴=+-=-+-⋅=-由10150n a <<,又646n a n =-,10646150n ∴<-<.解不等式,得289833n <<, 取整数共有23项.21.已知f (x )=22x x +,在数列{x n }中,x 1=13,x n =f (x n -1)(n ≥2,n ∈N *),试说明数列{1n x }是等差数列,并求x 95的值.【答案】说明见解析,x 95=150. 【分析】 首先利用递推关系,变形求得1n x -11n x -=12(n ≥2),根据数列1n x ⎧⎫⎨⎬⎩⎭是等差数列,求通项公式,即可求得95x .【解析】因为当n ≥2时,x n =f (x n -1),所以x n =1122n n x x --+(n ≥2),即x n x n -1+2x n =2x n -1(n ≥2), 得1122n n n n x x x x ---=1(n ≥2),即1n x -11n x -=12(n ≥2).又11x =3,所以数列{1nx }是以3为首项,12为公差的等差数列, 所以1n x =3+(n -1)×12=52n +,所以x n =25n +,所以x 95=2955+=150.22.甲、乙两人连续6年对某县农村养鸡业规模进行调查,提供两个不同的信息图如图所示.甲调查表明:从第1年每个养鸡场出产1万只鸡上升到第6年平均每个养鸡场出产2万只鸡.乙调查表明:由第1年养鸡场个数30个减少到第6年10个. 甲 乙请你根据提供的信息回答问题.(1)第2年养鸡场的个数及全县出产鸡的总只数;(2)到第6年这个县的养鸡业规模比第1年是扩大了还是缩小了?请说明理由.【答案】(1)第2年养鸡场有26个,全县出产鸡31.2万只;(2)缩小了,理由见解析.【分析】从第1年到第6年平均每个养鸡场出产的鸡数成等差数列,记为{a n },从第1年到第6年的养鸡场个数也成等差数列,记为{b n },由图易得通项公式,n n a b ,从第1年到第6年全县出产鸡的总只数记为数列{c n },则c n =a n b n .(1)计算2c 即得;(2)计算6c 与1c 比较可得.【解析】由题图可知,从第1年到第6年平均每个养鸡场出产的鸡数成等差数列,记为{a n },公差为d 1,且a 1=1,a 6=2;从第1年到第6年的养鸡场个数也成等差数列,记为{b n },公差为d 2,且b 1=30,b 6=10;从第1年到第6年全县出产鸡的总只数记为数列{c n },则c n =a n b n .(1)由a 1=1,a 6=2,得1111,52,a a d =⎧⎨+=⎩∴111,0.2,a d =⎧⎨=⎩得a 2=1.2; 由b 1=30,b 6=10,得11230,510,b b d =⎧⎨+=⎩∴1230,4,b d =⎧⎨=-⎩得b 2=26. ∴c 2=a 2b 2=1.2×26=31.2,即第2年养鸡场有26个,全县出产鸡31.2万只.(2)∵c 6=a 6b 6=2×10=20<c 1=a 1b 1=30,∴到第6年这个县的养鸡业规模比第1年缩小了. 23.已知数列{a n }满足a 1=2,a n +1=22n n a a +. (1)数列1n a ⎧⎫⎨⎬⎩⎭是否为等差数列?说明理由. (2)求a n .【答案】(1)是等差数列,理由见解析;(2)a n =2n.【分析】(1)由已知得11n a +-1n a =12,根据等差数列的定义可得证; (2)根据等差数列的通项公式可求得答案.【解析】解:(1)数列1n a ⎧⎫⎨⎬⎩⎭是等差数列,理由如下: ∵a 1=2,a n +1=22n n a a +,∴11n a +=22n na a +=12+1n a ,∴11n a +-1n a =12, 所以数列1n a ⎧⎫⎨⎬⎩⎭是以首项为11a =12,公差为d =12的等差数列. (2)由(1)可知,1n a =11a +(n -1)d =2n ,∴a n =2n. 24.已知数列{a n }中,a 1=12,a n +1=112n n a a ++(n ∈N *). (1)求证:11n a ⎧⎫⎨⎬-⎩⎭是等差数列; (2)求数列{a n }的通项公式.【答案】(1)证明见解析;(2)a n =1n n +. 【分析】(1)由已知求得a n +1=12na -,然后由等差数列的定义作差可证; (2)利用(1)的结论先求出11n a -,然后可得结论. 【解析】(1)证明:因为对于n ∈N *,a n +1=112n n a a ++,所以a n +1=12n a -, 所以111n a +--11n a -=1112n a ---11n a -=211n n a a ---=-1. 所以数列11n a ⎧⎫⎨⎬-⎩⎭是首项为111a -=-2,公差为-1的等差数列. (2)由(1)知11n a -=-2+(n -1)(-1)=-(n +1),所以a n -1=-11n +,即a n =1n n +. 25.已知数列{a n }满足a 1a 2…a n =1-a n .(1)求证数列{11n a -}是等差数列,并求数列{a n }的通项公式; (2)设T n =a 1a 2……a n ,b n =a n 2T n 2,证明:b 1+b 2+…+b n <25. 【答案】(1)证明见解析,a n =1n n +;(2)证明见解析. 【分析】(1)由题设得112n na a +=-,进而构造11n a -与111n a +-的关系式,利用等差数列的定义证明结论,然后求a 1,即可得a n ;(2)由(1)求得T n 与b n ,再利用放缩法与裂项相消法证明结论.【解析】(1)∵a 1a 2…a n =1-a n ①,则a 1a 2…a n +1=1-a n +1②, ∴两式相除得:1111n n n a a a ++-=-,整理得112n n a a +=-, ∴1111122n n n n a a a a +--=-=--,则12111111n n n n a a a a +-==----, ∴111111n n a a +-=---,又n =1时有a 1=1-a 1,解得:112a =, ∴1121a =--, ∴数列{11n a -}是以2-为首项,1-为公差的等差数列, ∴12(1)11n n n a =---=---,即1n n a n =+. (2)由(1)得:T n =a 1a 2...a n =121 (2311)n n n ⨯⨯⨯=++, ∴b n =2222221111()()()1351121(2)(2)()()22n n n n n n n n n n n ⨯==<<=+++++++++1135()()22n n -++, ∴b 1+b 2+...+b n <222222222 (577923255255)n n n -+-++-=-<+++,得证. 26.已知数列{}n a 与{}n b 满足112()n n n n a a b b ++-=-,N n *∈. (1)若35n b n =+,且11a =,求数列{}n a 的通项公式;(2)设{}n a 的第0n 项是最大项,即0(N )n n a a n *≥∈,求证:数列{}n b 的第0n 项是最大项;(3)设130a λ=<,()N n n b n λ*=∈,求λ的取值范围,使得对任意m ,*N n ∈,0n a ≠,且1,66mn a a ⎛⎫∈ ⎪⎝⎭.【答案】(1)65n a n =-;(2)证明见解析;(3)1(,0)4-.【分析】(1)由题知{}n a 是等差数列,即求;(2)由题得{}2n n a b -为常数列,可证;(3)由()N n n b n λ*=∈可得2nn a λλ=+,由指数函数的单调性知,{}n a 的最大值为2220a λλ=+<,最小值为13a λ=,结合条件即得.【解析】(1)因为112()n n n n a a b b ++-=-,35n b n =+, 所以112()2(3835)6n n n n a a b b n n ++-=-=+--=, 所以{}n a 是等差数列,首项为11a =,公差为6, ∴65n a n =-.(2)由()112n n n n a a b b ++-=-,得1122n n n n a b a b ++-=-. 所以{}2n n a b -为常数列,1122n n a b a b -=-,即1122n n a b a b =+-. 因为0n n a a ≥,n *∈N ,所以011112222n n b a b b a b +-≥+-,即0n n b b ≥. 故{}n b 的第0n 项是最大项.(3)因为n n b λ=,所以()112n nn n a a λλ++-=-,当2n ≥时,()()()112211n n n n n a a a a a a a a ---=-+-+⋅⋅⋅+-+ ()()()11222223n n n n λλλλλλλ---=-+-+⋅⋅⋅+-+ 2n λλ=+.当1n =时,13a λ=,符合上式.所以2nn a λλ=+.因为130a λ=<,且对任意*N n ∈,11(,6)6na a ∈,故0n a <,特别地2220a λλ=+<,于是1(,0)2λ∈-, 此时对任意*N n ∈,0n a ≠, 当102λ-<<时,222||n n a λλλ=+>,21212||n n a λλλ--=-+<,由指数函数的单调性知,{}n a 的最大值为2220a λλ=+<,最小值为13a λ=,∴m n a a 的最大值及最小值分别是12321a a λ=+及21213a a λ+=, 由21136λ+>及3621λ<+,解得104,综上所述,λ的取值范围是1(,0)4-.。

等差数列的性质及应用

等差数列的性质及应用

D.8
【解析】选 A.因为 OB=a1 OA +a200 OC,且 A,B,C 三点共线,所以 a1+a200=1,
所以 a99+a102=a1+a200=1.
4.已知{an}是等差数列,若 a1+a5+a9=8π,则 cos (a3+a7)的值为( )
A.
3 2
B.-
3 2
C.12
D.-12
【解析】选 D.{an} 是等差数列,a1+a5+a9=8π=3a5 得 a5=83π ,a3+a7=2a5=163π ,
1.在 1 和 17 之间插入 n-2 个数,使这 n 个数成等差数列,若这 n-2 个数中第一个
为 a,第 n-2 个为 b,当1a +2b5 取最小值时,n 的值为(
)
A.6 B.7 C.8 D.9
【解析】选 D.由已知得 a+b=18,则
1 a
+2b5
=1a+2b5
a+b × 18
=118 1+25+ba+2b5a ≥118 26+10 =2,
等差数列的性质及应用
(15 分钟 30 分) 1.已知等差数列{an}中,a7+a9=16,a4=1,则 a12 等于( ) A.15 B.30 C.31 D.64
【解析】选 A.a7+a9=a a4+a6+a8+a10+a12=120,则 a9-13 a11 的值为(
6.已知{an} 是等差数列,且 a1-a4+a8-a12+a15=2,则 a3+a13 的值为________.
【解析】由{an} 是等差数列,a1+a15=a4+a12=2a8,
所以 a1-a4+a8-a12+a15=a8=2,所以 a3+a13=2a8=4. 答案:4
7.已知等差数列{an}中,a1+a4+a7=15,a2a4a6=45,求此数列的通项公式.

(完整版)等差数列练习题有答案

(完整版)等差数列练习题有答案

数列A 、等差数列知识点及例题一、数列由与的关系求n a n S na 由求时,要分n=1和n≥2两种情况讨论,然后验证两种情况可否用统一的解析式表示,若不能,则用分段函数的n S n a 形式表示为。

11(1)(2)n n n S n a S S n -=⎧=⎨-≥⎩〖例〗根据下列条件,确定数列的通项公式。

{}na 分析:(1)可用构造等比数列法求解;(2)可转化后利用累乘法求解;(3)将无理问题有理化,而后利用与的关系求解。

n a n S 解答:(1)(2)……累乘可得,故(3)二、等差数列及其前n 项和(一)等差数列的判定1、等差数列的判定通常有两种方法:第一种是利用定义,,第二种是利用等差中项,即。

1()(2)n n a a d n --=≥常数112(2)n n n a a a n +-=+≥2、解选择题、填空题时,亦可用通项或前n 项和直接判断。

(1)通项法:若数列{}的通项公式为n 的一次函数,即=An+B,则{}是等差数列;n a n a n a (2)前n 项和法:若数列{}的前n 项和是的形式(A ,B 是常数),则{}是等差数列。

n a n S 2n S An Bn =+n a 注:若判断一个数列不是等差数列,则只需说明任意连续三项不是等差数列即可。

〖例〗已知数列{}的前n 项和为,且满足n a n S 111120(2),2n n n n S S S S n a ---+=≥=A (1)求证:{}是等差数列;1nS (2)求的表达式。

n a 分析:(1)与的关系结论;1120n n n n S S S S ---+=A →1n S 11n S -→(2)由的关系式的关系式1nS →n S →n a 解答:(1)等式两边同除以得-+2=0,即-=2(n≥2).∴{}是以==2为首1n n S S -A 11n S -1n S 1n S 11n S -1n S 11S 11a 项,以2为公差的等差数列。

等差数列典型例题及详细解答

等差数列典型例题及详细解答

1.等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母__d __表示. 2.等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是a n =a 1+(n -1)d . 3.等差中项 如果A =a +b2,那么A 叫做a 与b 的等差中项.4.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. 5.等差数列的前n 项和公式设等差数列{a n }的公差为d ,其前n 项和S n =n a 1+a n2或S n =na 1+n n -12d .6.等差数列的前n 项和公式与函数的关系S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n .数列{a n }是等差数列⇔S n =An 2+Bn (A 、B 为常数). 7.等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最__大__值;若a 1<0,d >0,则S n 存在最__小__值. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( × )(2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( √ ) (3)等差数列{a n }的单调性是由公差d 决定的.( √ )(4)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( × ) (5)数列{a n }满足a n +1-a n =n ,则数列{a n }是等差数列.( × )(6)已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列.( √ )1.(2015·重庆)在等差数列{a n }中,若a 2=4,a 4=2,则a 6等于( ) A .-1 B .0 C .1 D .6 答案 B解析 由等差数列的性质,得a 6=2a 4-a 2=2×2-4=0,选B.2.(2014·福建)等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ) A .8 B .10 C .12 D .14 答案 C解析 由题意知a 1=2,由S 3=3a 1+3×22×d =12,解得d =2,所以a 6=a 1+5d =2+5×2=12,故选C.3.在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11等于( ) A .58 B .88 C .143 D .176 答案 B 解析 S 11=11a 1+a 112=11a 4+a 82=88.4.设数列{a n }是等差数列,若a 3+a 4+a 5=12,则a 1+a 2+…+a 7等于( ) A .14 B .21 C .28 D .35 答案 C解析 ∵a 3+a 4+a 5=3a 4=12,∴a 4=4, ∴a 1+a 2+…+a 7=7a 4=28.5.(2014·北京)若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大. 答案 8解析 因为数列{a n }是等差数列,且a 7+a 8+a 9=3a 8>0,所以a 8>0.又a 7+a 10=a 8+a 9<0,所以a 9<0.故当n =8时,其前n 项和最大.题型一 等差数列基本量的运算例1 (1)在数列{a n }中,若a 1=-2,且对任意的n ∈N *有2a n +1=1+2a n ,则数列{a n }前10项的和为( ) A .2 B .10(2)已知在等差数列{a n }中,a 2=7,a 4=15,则前10项和S 10等于( ) A .100 B .210 C .380 D .400答案 (1)C (2)B解析 (1)由2a n +1=1+2a n 得a n +1-a n =12,所以数列{a n }是首项为-2,公差为12的等差数列,所以S 10=10×(-2)+10×10-12×12=52.(2)因为a 2=7,a 4=15,所以d =4,a 1=3, 故S 10=10×3+12×10×9×4=210.思维升华 (1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了方程的思想.(1)(2015·课标全国Ⅱ)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5等于( )A .5B .7C .9D .11(2)已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 22=1,则数列{a n }的公差是( )B .1C .2D .3 答案 (1)A (2)C解析 (1)∵{a n }为等差数列,∴a 1+a 5=2a 3, ∴a 1+a 3+a 5=3a 3=3,得a 3=1, ∴S 5=5a 1+a 52=5a 3=5.故选A.(2)∵S n =n a 1+a n2,∴S n n =a 1+a n 2,又S 33-S 22=1,得a 1+a 32-a 1+a 22=1,即a 3-a 2=2,∴数列{a n }的公差为2.题型二 等差数列的判定与证明例2 已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).(1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由. (1)证明 因为a n =2-1a n -1(n ≥2,n ∈N *),b n =1a n -1(n ∈N *),所以b n +1-b n =1a n +1-1-1a n -1=12-1a n-1-1a n -1=a n a n -1-1a n -1=1. 又b 1=1a 1-1=-52. 所以数列{b n }是以-52为首项,1为公差的等差数列.(2)解 由(1)知b n =n -72,则a n =1+1b n =1+22n -7.设f (x )=1+22x -7,则f (x )在区间(-∞,72)和(72,+∞)上为减函数.所以当n =3时,a n 取得最小值-1,当n =4时,a n 取得最大值3. 引申探究例2中,若条件变为a 1=35,na n +1=(n +1)a n +n (n +1),探求数列{a n }的通项公式.解 由已知可得a n +1n +1=a nn+1, 即a n +1n +1-a n n =1,又a 1=35, ∴⎩⎨⎧⎭⎬⎫a n n 是以a 11=35为首项,1为公差的等差数列,∴a n n =35+(n -1)·1=n -25, ∴a n =n 2-25n .思维升华 等差数列的四个判定方法(1)定义法:证明对任意正整数n 都有a n +1-a n 等于同一个常数.(2)等差中项法:证明对任意正整数n 都有2a n +1=a n +a n +2后,可递推得出a n +2-a n +1=a n +1-a n =a n -a n -1=a n -1-a n -2=…=a 2-a 1,根据定义得出数列{a n }为等差数列.(3)通项公式法:得出a n =pn +q 后,得a n +1-a n =p 对任意正整数n 恒成立,根据定义判定数列{a n }为等差数列.(4)前n 项和公式法:得出S n =An 2+Bn 后,根据S n ,a n 的关系,得出a n ,再使用定义法证明数列{a n }为等差数列.(1)若{a n }是公差为1的等差数列,则{a 2n -1+2a 2n }是( )A .公差为3的等差数列B .公差为4的等差数列C .公差为6的等差数列D .公差为9的等差数列(2)在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项为( )A .a n =1nB .a n =2n +1C .a n =2n +2D .a n =3n答案 (1)C (2)A解析 (1)∵a 2n -1+2a 2n -(a 2n -3+2a 2n -2) =(a 2n -1-a 2n -3)+2(a 2n -a 2n -2) =2+2×2=6,∴{a 2n -1+2a 2n }是公差为6的等差数列. (2)由已知式2a n +1=1a n +1a n +2可得1a n +1-1a n =1a n +2-1a n +1,知{1a n }是首项为1a 1=1,公差为1a 2-1a 1=2-1=1的等差数列,所以1a n=n ,即a n =1n.题型三 等差数列的性质及应用命题点1 等差数列的性质例3 (1)(2015·广东)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________. (2)已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________. 答案 (1)10 (2)60解析 (1)因为{a n }是等差数列,所以a 3+a 7=a 4+a 6=a 2+a 8=2a 5,a 3+a 4+a 5+a 6+a 7=5a 5=25,即a 5=5,a 2+a 8=2a 5=10.(2)∵S 10,S 20-S 10,S 30-S 20成等差数列,且S 10=10,S 20=30,S 20-S 10=20, ∴S 30-30=10+2×10=30,∴S 30=60. 命题点2 等差数列前n 项和的最值例4 在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 取得最大值,并求出它的最大值. 解 ∵a 1=20,S 10=S 15,∴10×20+10×92d =15×20+15×142d ,∴d =-53.方法一 由a n =20+(n -1)×⎝ ⎛⎭⎪⎫-53=-53n +653. 得a 13=0.即当n ≤12时,a n >0,当n ≥14时,a n <0. ∴当n =12或13时,S n 取得最大值,且最大值为S 12=S 13=12×20+12×112×⎝ ⎛⎭⎪⎫-53=130.方法二 S n =20n +n n -12·⎝ ⎛⎭⎪⎫-53=-56n 2+1256n=-56⎝ ⎛⎭⎪⎫n -2522+3 12524.∵n ∈N *,∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130. 方法三 由S 10=S 15得a 11+a 12+a 13+a 14+a 15=0. ∴5a 13=0,即a 13=0.∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130. 引申探究例4中,若条件“a 1=20”改为a 1=-20,其他条件不变,求当n 取何值时,S n 取得最小值,并求出最小值.解 由S 10=S 15,得a 11+a 12+a 13+a 14+a 15=0, ∴a 13=0.又a 1=-20,∴a 12<0,a 14>0, ∴当n =12或13时,S n 取得最小值, 最小值S 12=S 13=13a 1+a 132=-130.思维升华 (1)等差数列的性质:①项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n=d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.②和的性质:在等差数列{a n }中,S n 为其前n 项和,则a .S 2n =n (a 1+a 2n )=…=n (a n +a n +1);b .S 2n -1=(2n -1)a n .(2)求等差数列前n 项和S n 最值的两种方法:①函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解. ②邻项变号法:a .当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值S m ;b .当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值S m .(1)等差数列{a n }的前n 项和为S n ,已知a 5+a 7=4,a 6+a 8=-2,则当S n 取最大值时,n 的值是( ) A .5 B .6 C .7 D .8(2)设数列{a n }是公差d <0的等差数列,S n 为前n 项和,若S 6=5a 1+10d ,则S n 取最大值时,n 的值为( )A .5B .6C .5或6D .11(3)已知等差数列{a n }的首项a 1=20,公差d =-2,则前n 项和S n 的最大值为________. 答案 (1)B (2)C (3)110解析 (1)依题意得2a 6=4,2a 7=-2,a 6=2>0,a 7=-1<0;又数列{a n }是等差数列,因此在该数列中,前6项均为正数,自第7项起以后各项均为负数,于是当S n 取最大值时,n =6,选B.(2)由题意得S 6=6a 1+15d =5a 1+10d ,所以a 6=0,故当n =5或6时,S n 最大,选C. (3)因为等差数列{a n }的首项a 1=20,公差d =-2,代入求和公式得,S n =na 1+n n -12d =20n -n n -12×2=-n 2+21n =-⎝⎛⎭⎪⎫n -2122+⎝ ⎛⎭⎪⎫2122,又因为n ∈N *,所以n =10或n =11时,S n 取得最大值,最大值为110.6.等差数列的前n 项和及其最值典例 (1)在等差数列{a n }中,2(a 1+a 3+a 5)+3(a 7+a 9)=54,则此数列前10项的和S 10等于( ) A .45 B .60 C .75D .90(2)在等差数列{a n }中,S 10=100,S 100=10,则S 110=________.(3)等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为( ) A .S 4 B .S 5 C .S 6 D .S 7思维点拨 (1)求等差数列前n 项和,可以通过求解基本量a 1,d ,代入前n 项和公式计算,也可以利用等差数列的性质:a 1+a n =a 2+a n -1=…;(2)求等差数列前n 项和的最值,可以将S n 化为关于n 的二次函数,求二次函数的最值,也可以观察等差数列的符号变化趋势,找最后的非负项或非正项. 解析 (1)由题意得a 3+a 8=9, 所以S 10=10a 1+a 102=10a 3+a 82=10×92=45.(2)方法一 设数列{a n }的公差为d ,首项为a 1,则⎩⎪⎨⎪⎧10a 1+10×92d =100,100a 1+100×992d =10,解得⎩⎪⎨⎪⎧a 1=1 099100,d =-1150.所以S 110=110a 1+110×1092d =-110.方法二 因为S 100-S 10=a 11+a 100×902=-90,所以a 11+a 100=-2, 所以S 110=a 1+a 110×1102=a 11+a 100×1102=-110.(3)因为⎩⎪⎨⎪⎧a 4+a 7=a 5+a 6<0,a 5>0,所以⎩⎪⎨⎪⎧a 5>0,a 6<0,所以S n 的最大值为S 5. 答案 (1)A (2)-110 (3)B温馨提醒 (1)利用函数思想求等差数列前n 项和S n 的最值时,要注意到n ∈N *; (2)利用等差数列的性质求S n ,突出了整体思想,减少了运算量.[方法与技巧]1.在解有关等差数列的基本量问题时,可通过列关于a 1,d 的方程组进行求解.2.证明等差数列要用定义;另外还可以用等差中项法,通项公式法,前n 项和公式法判定一个数列是否为等差数列.3.等差数列性质灵活使用,可以大大减少运算量.4.在遇到三个数成等差数列问题时,可设三个数为(1)a ,a +d ,a +2d ;(2)a -d ,a ,a +d ;(3)a -d ,a +d ,a +3d 等,可视具体情况而定. [失误与防范]1.当公差d ≠0时,等差数列的通项公式是n 的一次函数,当公差d =0时,a n 为常数. 2.公差不为0的等差数列的前n 项和公式是n 的二次函数,且常数项为0.若某数列的前n 项和公式是常数项不为0的二次函数,则该数列不是等差数列,它从第二项起成等差数列.A 组 专项基础训练 (时间:35分钟)1.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( ) A .63 B .45 C .36 D .27 答案 B解析 由{a n }是等差数列,得S 3,S 6-S 3,S 9-S 6为等差数列. 即2(S 6-S 3)=S 3+(S 9-S 6), 得到S 9-S 6=2S 6-3S 3=45,故选B.2.(2015·北京)设{a n }是等差数列,下列结论中正确的是( ) A .若a 1+a 2>0,则a 2+a 3>0 B .若a 1+a 3<0,则a 1+a 2<0 C .若0<a 1<a 2,则a 2>a 1a 3 D .若a 1<0,则(a 2-a 1)(a 2-a 3)>0 答案 C解析 设等差数列{a n }的公差为d ,若a 1+a 2>0,a 2+a 3=a 1+d +a 2+d =(a 1+a 2)+2d ,由于d 正负不确定,因而a 2+a 3符号不确定,故选项A 错;若a 1+a 3<0,a 1+a 2=a 1+a 3-d =(a 1+a 3)-d ,由于d 正负不确定,因而a 1+a 2符号不确定,故选项B 错;若0<a 1<a 2,可知a 1>0,d >0,a 2>0,a 3>0,所以a 22-a 1a 3=(a 1+d )2-a 1(a 1+2d )=d 2>0,所以a 2>a 1a 3,故选项C 正确;若a 1<0,则(a 2-a 1)·(a 2-a 3)=d ·(-d )=-d 2≤0,故选项D 错.3.设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m 等于( ) A .3 B .4 C .5 D .6答案 C解析 ∵数列{a n }为等差数列,且前n 项和为S n , ∴数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列.∴S m -1m -1+S m +1m +1=2S m m ,即-2m -1+3m +1=0,解得m =5,经检验为原方程的解,故选C.4.数列{a n }的首项为3,{b n }为等差数列,且b n =a n +1-a n (n ∈N *),若b 3=-2,b 10=12,则a 8等于( )A .0B .3C .8D .11答案 B解析 设{b n }的公差为d ,∵b 10-b 3=7d =12-(-2)=14,∴d =2. ∵b 3=-2,∴b 1=b 3-2d =-2-4=-6. ∴b 1+b 2+…+b 7=7b 1+7×62d=7×(-6)+21×2=0.又b 1+b 2+…+b 7=(a 2-a 1)+(a 3-a 2)+…+(a 8-a 7)=a 8-a 1=a 8-3=0, ∴a 8=3.故选B.5.已知数列{a n }满足a n +1=a n -57,且a 1=5,设{a n }的前n 项和为S n ,则使得S n 取得最大值的序号n 的值为( ) A .7 B .8 C .7或8 D .8或9 答案 C解析 由题意可知数列{a n }是首项为5,公差为-57的等差数列,所以a n =5-57(n -1)=40-5n7,该数列前7项是正数项,第8项是0,从第9项开始是负数项,所以S n 取得最大值时,n =7或8,故选C. 6.已知数列{a n }中,a 1=1且1a n +1=1a n +13(n ∈N *),则a 10=________. 答案 14解析 由已知得1a 10=1a 1+(10-1)×13=1+3=4, 故a 10=14.7.已知递增的等差数列{a n }满足a 1=1,a 3=a 22-4,则a n =________. 答案 2n -1解析 设等差数列的公差为d , ∵a 3=a 22-4,∴1+2d =(1+d )2-4, 解得d 2=4,即d =±2.由于该数列为递增数列,故d =2. ∴a n =1+(n -1)×2=2n -1.8.设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________. 答案 130解析 由a n =2n -10(n ∈N *)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0得n ≥5,∴n ≤5时,a n ≤0,当n >5时,a n >0,∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+110=130.9.若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列;(2)求数列{a n }的通项公式.(1)证明 当n ≥2时,由a n +2S n S n -1=0, 得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2,又1S 1=1a 1=2,故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)解 由(1)可得1S n =2n ,∴S n =12n .当n ≥2时,a n =S n -S n -1=12n -12n -1=n -1-n 2n n -1=-12n n -1.当n =1时,a 1=12不适合上式.故a n=⎩⎪⎨⎪⎧12,n =1,-12n n -1,n ≥2.10.等差数列{a n }中,设S n 为其前n 项和,且a 1>0,S 3=S 11,则当n 为多少时,S n 最大解 方法一 由S 3=S 11得3a 1+3×22d =11a 1+11×102d ,则d =-213a 1.从而S n =d 2n 2+⎝⎛⎭⎪⎫a 1-d 2n =-a 113(n -7)2+4913a 1,又a 1>0,所以-a 113<0.故当n =7时,S n 最大. 方法二 由于S n =an 2+bn 是关于n 的二次函数,由S 3=S 11,可知S n =an 2+bn 的图象关于n =3+112=7对称.由方法一可知a =-a 113<0,故当n =7时,S n 最大. 方法三 由方法一可知,d =-213a 1.要使S n 最大,则有⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎪⎨⎪⎧a 1+n -1⎝ ⎛⎭⎪⎫-213a 1≥0,a 1+n ⎝ ⎛⎭⎪⎫-213a 1≤0,解得≤n ≤,故当n =7时,S n 最大. 方法四 由S 3=S 11,可得2a 1+13d =0, 即(a 1+6d )+(a 1+7d )=0,故a 7+a 8=0,又由a 1>0,S 3=S 11可知d <0, 所以a 7>0,a 8<0,所以当n =7时,S n 最大.B 组 专项能力提升 (时间:20分钟)11.设S n 为等差数列{a n }的前n 项和,(n +1)S n <nS n +1(n ∈N *).若a 8a 7<-1,则( ) A .S n 的最大值是S 8 B .S n 的最小值是S 8 C .S n 的最大值是S 7 D .S n 的最小值是S 7答案 D解析 由条件得S n n <S n +1n +1,即n a 1+a n 2n <n +1a 1+a n +12n +1,所以a n <a n +1,所以等差数列{a n }为递增数列.又a 8a 7<-1,所以a 8>0,a 7<0,即数列{a n }前7项均小于0,第8项大于零,所以S n 的最小值为S 7,故选D.12.设等差数列{a n }的前n 项和为S n ,若a 1=-3,a k +1=32,S k =-12,则正整数k =________.答案 13解析 S k +1=S k +a k +1=-12+32=-212,又S k +1=k +1a 1+a k +12=k +1⎝⎛⎭⎪⎫-3+322=-212,解得k =13.13.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________.答案1941解析 ∵{a n },{b n }为等差数列, ∴a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6. ∵S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941, ∴a 6b 6=1941. 14.已知数列{a n }是首项为a ,公差为1的等差数列,b n =1+a n a n,若对任意的n ∈N *,都有b n ≥b 8成立,则实数a 的取值范围为________. 答案 (-8,-7)解析 依题意得b n =1+1a n,对任意的n ∈N *,都有b n ≥b 8,即数列{b n }的最小项是第8项,于是有1a n ≥1a 8.又数列{a n }是公差为1的等差数列,因此有⎩⎪⎨⎪⎧a 8<0,a 9>0,即⎩⎪⎨⎪⎧a +7<0,a +8>0,由此解得-8<a <-7,即实数a 的取值范围是(-8,-7).15.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22. (1)求通项a n ; (2)求S n 的最小值;(3)若数列{b n }是等差数列,且b n =S nn +c,求非零常数c .解 (1)因为数列{a n }为等差数列, 所以a 3+a 4=a 2+a 5=22.又a 3·a 4=117, 所以a 3,a 4是方程x 2-22x +117=0的两实根, 又公差d >0,所以a 3<a 4, 所以a 3=9,a 4=13,所以⎩⎪⎨⎪⎧a 1+2d =9,a 1+3d =13,所以⎩⎪⎨⎪⎧a 1=1,d =4.所以通项a n =4n -3. (2)由(1)知a 1=1,d =4, 所以S n =na 1+n n -12×d =2n 2-n =2⎝ ⎛⎭⎪⎫n -142-18.所以当n =1时,S n 最小, 最小值为S 1=a 1=1. (3)由(2)知S n =2n 2-n , 所以b n =S nn +c =2n 2-nn +c,所以b 1=11+c ,b 2=62+c ,b 3=153+c .因为数列{b n }是等差数列, 所以2b 2=b 1+b 3, 即62+c ×2=11+c +153+c, 所以2c 2+c =0,所以c =-12或c =0(舍去),经验证c =-12时,{b n }是等差数列,故c =-12.。

等差数列的性质(含解析)

等差数列的性质(含解析)

等差数列的性质班级______________ 姓名______________一、选择题1.在等差数列{a n }中,已知a 4+a 8=16,则a 2+a 10=( )A .12B .16C .20D .242.在等差数列{a n }中,a 2 016=log 27,a 2 022=log 217,则a 2 019=( ) A .0B .7C .1D .493.下列说法中正确的是( )A .若a ,b ,c 成等差数列,则a 2,b 2,c 2成等差数列B .若a ,b ,c 成等差数列,则log 2a ,log 2b ,log 2c 成等差数列C .若a ,b ,c 成等差数列,则a +2,b +2,c +2成等差数列D .若a ,b ,c 成等差数列,则2a,2b,2c 成等差数列4.在等差数列{a n }中,a 1=2,a 3+a 5=10,则a 7=( )A .5B .8C .10D .14 5.已知等差数列{a n }的公差为d (d ≠0),且a 3+a 6+a 10+a 13=32,若a m =8,则m 等于( )A .8B .4C .6D .126.已知数列{a n }为等差数列,若a 1+a 5+a 9=π,则cos(a 2+a 8)的值为( )A .-12B .-22C.12D.32 7.若方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为14的等差数列,则|m -n |=( )A .1B.34C.12D.388.《九章算术》是我国古代的数学名著,书中《均属章》有如下问题:今有五人分六钱,令前三人所得与后二人等,各人所得均增,问各得几何?其意思是“已知A ,B ,C ,D ,E五个人分重量为6钱(‘钱’是古代的一种重量单位)的物品,A ,B ,C 三人所得钱数之和与D ,E 二人所得钱数之和相同,且A ,B ,C ,D ,E 每人所得钱数依次成递增等差数列,问五个人各分得多少钱的物品?”在这个问题中,C 分得物品的钱数是( )A.25B.45C.65D.75二、填空题9.若三个数成等差数列,它们的和为9,平方和为59,则这三个数的积为________.10.已知数列{a n }是等差数列,若a 4+a 7+a 10=17,a 4+a 5+a 6+…+a 12+a 13+a 14=77,且a k =13,则k =________.三、解答题11.在等差数列{a n }中,若a 1+a 2+…+a 5=30,a 6+a 7+…+a 10=80,求a 11+a 12+…+a 15.12.数列{a n }为等差数列,n a n b ⎪⎭⎫ ⎝⎛=21,又已知b 1+b 2+b 3=218,b 1b 2b 3=18,求数列{a n }的通项公式.等差数列的性质(解析)班级______________ 姓名______________一、选择题1.在等差数列{a n}中,已知a4+a8=16,则a2+a10=()A.12B.16C.20D.24解析:选B因为数列{a n}是等差数列,所以a2+a10=a4+a8=16.2.在等差数列{a n}中,a2 016=log27,a2 022=log217,则a2 019=()A.0 B.7C.1 D.49解析:选A∵数列{a n}是等差数列,∴由等差数列的性质可知2a2 019=a2 016+a2 022=log27+log217=log21=0,故a2 019=0.3.下列说法中正确的是()A.若a,b,c成等差数列,则a2,b2,c2成等差数列B.若a,b,c成等差数列,则log2a,log2b,log2c成等差数列C.若a,b,c成等差数列,则a+2,b+2,c+2成等差数列D.若a,b,c成等差数列,则2a,2b,2c成等差数列解析:选C因为a,b,c成等差数列,则2b=a+c,所以2b+4=a+c+4,即2(b+2)=(a+2)+(c+2),所以a+2,b+2,c+2成等差数列.4.在等差数列{a n}中,a1=2,a3+a5=10,则a7=()A.5B.8C.10D.14解析:选B由等差数列的性质可得a1+a7=a3+a5=10,又a1=2,所以a7=8.5.已知等差数列{a n}的公差为d(d≠0),且a3+a6+a10+a13=32,若a m=8,则m等于()A.8B.4C.6D.12解析:选A因为a3+a6+a10+a13=4a8=32,所以a8=8,即m=8.6.已知数列{a n}为等差数列,若a1+a5+a9=π,则cos(a2+a8)的值为()A .-12B .-22C.12D.32 解析:选A ∵数列{a n }为等差数列,a 1+a 5+a 9=π,∴a 1+a 5+a 9=3a 5=π,解得a 5=π3, ∴a 2+a 8=2a 5=2π3, ∴cos(a 2+a 8)=cos2π3=-cos π3=-12.故选A. 7.若方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为14的等差数列,则|m -n |=( )A .1B.34C.12D.38解析:选C 设方程的四个根a 1,a 2,a 3,a 4依次成等差数列,则a 1+a 4=a 2+a 3=2, 再设此等差数列的公差为d ,则2a 1+3d =2,∵a 1=14,∴d =12, ∴a 2=14+12=34,a 3=14+1=54,a 4=14+32=74, ∴|m -n |=|a 1a 4-a 2a 3|=⎪⎪⎪⎪14×74-34×54=12.8.《九章算术》是我国古代的数学名著,书中《均属章》有如下问题:今有五人分六钱,令前三人所得与后二人等,各人所得均增,问各得几何?其意思是“已知A ,B ,C ,D ,E 五个人分重量为6钱(‘钱’是古代的一种重量单位)的物品,A ,B ,C 三人所得钱数之和与D ,E 二人所得钱数之和相同,且A ,B ,C ,D ,E 每人所得钱数依次成递增等差数列,问五个人各分得多少钱的物品?”在这个问题中,C 分得物品的钱数是( ) A.25B.45C.65D.75解析:选C 设5个人分得的物品的钱数为等差数列中的项a 1,a 2,a 3,a 4,a 5,则a 1+a 2+a 3=a 4+a 5,a 1+a 2+a 3+a 4+a 5=6=5a 3,a 3=65. 二、填空题9.若三个数成等差数列,它们的和为9,平方和为59,则这三个数的积为________.解析:设这三个数为a -d ,a ,a +d ,则⎩⎪⎨⎪⎧ a -d +a +a +d =9,(a -d )2+a 2+(a +d )2=59. 解得⎩⎪⎨⎪⎧ a =3,d =4或⎩⎪⎨⎪⎧a =3,d =-4. ∴这三个数为-1,3,7或7,3,-1.∴它们的积为-21.答案:-2110.已知数列{a n }是等差数列,若a 4+a 7+a 10=17,a 4+a 5+a 6+…+a 12+a 13+a 14=77,且a k =13,则k =________.解析:∵a 4+a 7+a 10=3a 7,∴a 7=173.∵a 4+…+a 14=11a 9,∴a 9=7,d =23. ∴a k -a 9=(k -9)d ,即13-7=(k -9)×23,解得k =18. 答案:18三、解答题11.在等差数列{a n }中,若a 1+a 2+…+a 5=30,a 6+a 7+…+a 10=80,求a 11+a 12+…+a 15.解:法一:由等差数列的性质得a 1+a 11=2a 6,a 2+a 12=2a 7,…,a 5+a 15=2a 10.∴(a 1+a 2+…+a 5)+(a 11+a 12+…+a 15)=2(a 6+a 7+…+a 10). ∴a 11+a 12+…+a 15=2(a 6+a 7+…+a 10)-(a 1+a 2+…+a 5)=2×80-30=130. 法二:∵数列{a n }是等差数列,∴a 1+a 2+…+a 5,a 6+a 7+…+a 10,a 11+a 12+…+a 15也成等差数列,即30,80,a 11+a 12+…+a 15成等差数列.∴30+(a 11+a 12+…+a 15)=2×80,∴a 11+a 12+…+a 15=130.12.数列{a n }为等差数列,b n =⎝⎛⎭⎫12an ,又已知b 1+b 2+b 3=218,b 1b 2b 3=18,求数列{a n }的通项公式.解:∵b 1+b 2+b 3=⎝⎛⎭⎫12a 1+⎝⎛⎭⎫12a 2+⎝⎛⎭⎫12a 3=218,b 1b 2b 3=⎝⎛⎭⎫12a 1+a 2+a 3=18, ∴a 1+a 2+a 3=3.∵a 1,a 2,a 3成等差数列,∴a 2=1,故可设a 1=1-d ,a 3=1+d , 由⎝⎛⎭⎫121-d +12+⎝⎛⎭⎫121+d =218,得2d +2-d =174,解得d =2或d =-2. 当d =2时,a 1=1-d =-1,a n =-1+2(n -1)=2n -3;当d =-2时,a 1=1-d =3,a n =3-2(n -1)=-2n +5.。

等差数列的性质练习 含答案

等差数列的性质练习 含答案

时间:45分钟满分:100分课堂训练1.若一个数列的通项公式是a n=k·n+b(其中b,k为常数),则下列说法中正确的是( )A.数列{a n}一定不是等差数列B.数列{a n}是以k为公差的等差数列C.数列{a n}是以b为公差的等差数列D.数列{a n}不一定是等差数列【答案】B【解析】a n+1-a n=k(n+1)+b-kn-b=k.2.等差数列中,若a3+a4+a5+a6+a7+a8+a9=420,则a2+a10等于( )A.100 B.120C.140 D.160【答案】B【解析】∵a3+a4+a5+a6+a7+a8+a9=7a6=420,则a6=60,∴a2+a10=2a6=2×60=120.3.在等差数列{a n}中,a15=33,a25=66,则a35=________.【答案】99【解析】a15,a25,a35成等差数列,∴a35=2a25-a15=99.4.已知单调递增的等差数列{a n}的前三项之和为21,前三项之积为231,求数列{a n}的通项公式.【分析】关键是求出数列{a n}的首项和公差.【解析】由于数列为等差数列,因此可设等差数列的前三项为a -d ,a ,a +d ,于是可得⎩⎪⎨⎪⎧a -d +a +a +d =21,a -d a a +d =231,即⎩⎪⎨⎪⎧3a =21,a a 2-d2=231,即⎩⎪⎨⎪⎧a =7,d 2=16,由于数列为单调递增数列,因此d =4,a 1=3,从而{a n }的通项公式为a n =4n -1.【规律方法】 此解法恰到好处地设定等差数列的项,为我们的解题带来了极大的方便,特别是大大降低了运算量.一般来说,已知三个数成等差数列时,可设成:a -d ,a ,a +d ,四个数成等差数列时,可设成:a -3d ,a -d ,a +d ,a +3d ,其余依此类推,如五个可设成:a -2d ,a -d ,a ,a +d ,a +2d .课后作业一、选择题(每小题5分,共40分)1.在等差数列{a n }中,a 5=3,a 9=5,则a 7=( ) A .4 B .-4 C .7 D .1【答案】 A【解析】 由题意知a 7为a 5,a 9的等差中项,故a 7=12(a 5+a 9)=12×(3+5)=4.2.在等差数列{a n }中,若a 3+a 5+a 7+a 9+a 11=100,则3a 9-a 13的值为( )A .20B .30C .40D .50 【答案】 C【解析】 ∵a 3+a 11=a 5+a 9=2a 7,∴a 3+a 5+a 7+a 9+a 11=5a 7=100, ∴a 7=20.∴3a 9-a 13=3(a 7+2d )-(a 7+6d )=2a 7=40.3.在等差数列{a n }中,a 1+a 4+a 7=39,a 2+a 5+a 8=33,则a 3+a 6+a 9的值为( )A .30B .27C .24D .21【答案】 B【解析】 方法一:由等差数列的性质知,a 1+a 4+a 7,a 2+a 5+a 8,a 3+a 6+a 9成等差数列,所以(a 1+a 4+a 7)+(a 3+a 6+a 9)=2(a 2+a 5+a 8),则a 3+a 6+a 9=2×33-39=27. 方法二:(a 2+a 5+a 8)-(a 1+a 4+a 7) =3d (d 为数列{a n }的公差),则d =-2,a 3+a 6+a 9=(a 2+a 5+a 8)+3d =33-6=27.4.把100个面包分给5个人,使每个人所得成等差数列,且使较大的三份之和的 17是较小的两份之和,问最小的1份是( )【答案】 C【解析】 设这5份为a -2d ,a -d ,a ,a +d ,a +2d , 由已知得a =20,且17(a +a +d +a +2d )=a -2d +a -d ,∴d =556,∴a -2d =53. 5.等差数列{a n }的公差d <0,且a 2a 4=12,a 1+a 5=8,则其通项公式为( )A .a n =2n -2B .a n =2n +4C .a n =-2n +12D .a n =-2n +10【答案】 D【解析】 由等差数列的性质得a 2+a 4=a 1+a 5=8. 又a 2a 4=12,所以a 2,a 4为方程x 2-8x +12=0的两根,解得⎩⎪⎨⎪⎧a 2=2,a 4=6或⎩⎪⎨⎪⎧a 2=6,a 4=2.当a 2=2,a 4=6时,d =a 4-a 24-2=2>0(舍去), 当a 2=6,a 4=2时,d =a 4-a 24-2=-2.所以数列的通项公式为a n =a 2+(n -2)d =6+(n -2)×(-2)=-2n +10.即a n =-2n +10.6.设{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37等于( )A .0B .37C .100D .-37【答案】 C【解析】 设{a n },{b n }的公差分别是d 1,d 2,∴(a n +1+b n +1)-(a n+b n )=(a n +1-a n )+(b n +1-b n )=d 1+d 2,∴{a n +b n }为等差数列. 又∵a 1+b 1=a 2+b 2=100, ∴a 37+b 37=100. 故正确答案为C.7.一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是( )A .-2B .-3C .-4D .-5【答案】 C【解析】 设该数列的公差为d ,则由题设条件知:a 6=a 1+5d >0,a 7=a 1+6d <0.又∵a 1=23,∴⎩⎪⎨⎪⎧d >-235,d <-236,即-235<d <-236.又∵d 是整数,∴d =-4,故选C.8.已知数列{a n }、{b n }都是公差为1的等差数列,其首项分别为a 1、b 1,且a 1+b 1=5,a 1,b 1∈N +.设c n =ab n (n ∈N +),则数列{c n }的前10项和等于( )A .55B .70C .85D .100【答案】 C【解析】 由题c n =ab n (n ∈N +),则数列{c n }的前10项和等于ab 1+ab 2+…+ab 10=ab 1+ab 1+1+…+ab 1+9.∵ab 1=a 1+(b 1-1)=4,∴ab 1+ab 1+1+…+ab 1+9=4+5+…+13=85. 二、填空题(每小题10分,共20分)9.已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20=________.【答案】1【解析】∵a1+a3+a5=105,即3a3=105,∴a3=35,同理a4=33,∴d=a4-a3=-2,∴a20=a4+(20-4)d=1.10.等差数列{a n}中,a1+a4+a10+a16+a19=150,则a18-2a14=________.【答案】-30【解析】由a1+a4+a10+a16+a19=5a10=150,得a10=30,a18-2a14=(a10+8d)-2(a10+4d)=-a10=-30.三、解答题(每小题20分,共40分.解答应写出必要的文字说明、证明过程或演算步骤)11.(1)已知数列{a n}为等差数列,若a1-a5+a9-a13+a17=117,求a3+a15.(2)在等差数列{a n}中,已知a2+a5+a8=9,a3a5a7=-21,求数列{a n}的通项公式.【解析】(1)方法一:∵数列{a n}是等差数列,∴设数列{a n}的首项为a1,公差为d,则由题意得a1-(a1+4d)+(a1+8d)-(a1+12d)+(a1+16d)=117,∴a1+8d=117.从而a3+a15=(a1+2d)+(a1+14d)=2(a1+8d)=234.方法二:由等差数列的性质知,a1+a17=a5+a13=a3+a15=2a9.∵a1-a5+a9-a13+a17=117,∴a9=117,∴a3+a15=2a9=234.(2)∵a2+a5+a8=9,a3a5a7=-21,a2+a8=a3+a7=2a5,∴a5=3,∴a3+a7=2a5=6,a3a7=-7,解得a3=-1,a7=7或a3=7,a7=-1.又a7=a3+4d,∴当a3=-1,a7=7时,可得d=2;当a3=7,a7=-1时,可得d=-2.根据a n=a3+(n-3)d,可得当a3=-1,d=2时,a n=2n-7;当a3=7,d=-2时,a n=-2n+13.12.已知无穷等差数列{a n}中,首项a1=3,公差d=-5,依次取出序号能被4除余3的项组成数列{b n}.(1)求b1和b2;(2)求{b n}的通项公式;(3){b n}中的第503项是{a n}的第几项?【解析】数列{b n}是数列{a n}的一个子数列,其序号构成以3为首项,4为公差的等差数列,由于{a n}是等差数列,则{b n}也是等差数列.(1)∵a1=3,d=-5,∴a n=3+(n-1)(-5)=8-5n.数列{a n}中序号能被4除余3的项是{a n}中的第3项,第7项,第11项,…,∴b1=a3=-7,b2=a7=-27.(2)设{a n}中的第m项是{b n}的第n项,即b n=a m,则m=3+4(n-1)=4n-1,∴b n=a m=a4n-1=8-5(4n-1)=13-20n.即{b n}的通项公式为b n=13-20n.(3)b503=13-20×503=-10 047,设它是{a n}中的第m项,则-10 047=8-5m,则m=2 011,即{b n}中的第503项是{a n}中的第2 011项.。

(完整版)等差数列知识点总结及练习(精华版)

(完整版)等差数列知识点总结及练习(精华版)

等差数列的性质总结1.等差数列的定义:(d 为常数)();d a a n n =--12≥n 2.等差数列通项公式:, 首项:,公差:d ,末项:*11(1)()n a a n d dn a d n N =+-=+-∈1a n a 推广: . 从而;d m n a a m n )(-+=mn a a d mn --=3.等差中项(1)如果,,成等差数列,那么叫做与的等差中项.即:或a A b A a b 2ba A +=b a A +=2(2)等差中项:数列是等差数列{}n a )2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a 4.等差数列的前n 项和公式:1()2n n n a a S +=1(1)2n n na d -=+特别地,当项数为奇数时,是项数为2n+1的等差数列的中间项21n +1n a +5.等差数列的判定方法(1) 定义法:若或(常数) 是等差数列. d a a n n =--1d a a n n =-+1*∈N n ⇔{}n a (2) 等差中项:数列是等差数列. {}n a )2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a (3) 数列是等差数列(其中是常数)。

{}n a ⇔b kn a n +=b k ,(4) 数列是等差数列,(其中A 、B 是常数)。

{}n a ⇔2n S An Bn =+6.等差数列的证明方法定义法:若或(常数) 是等差数列.d a a n n =--1d a a n n =-+1*∈N n ⇔{}n a 7.提醒:等差数列的通项公式及前n 项和公式中,涉及到5个元素:,其中n a n S n n S a n d a 及、、、1称作为基本元素。

只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2.d a 、18. 等差数列的性质:(1)当公差时,0d ≠等差数列的通项公式是关于的一次函数,且斜率为公差;11(1)n a a n d dn a d =+-=+-n d 前和是关于的二次函数且常数项为0.n 211(1)(222n n n d dS na d n a n -=+=+-n (2)若公差,则为递增等差数列,若公差,则为递减等差数列,若公差,则为常数列。

高三等差数列练习题及答案解析

高三等差数列练习题及答案解析

高三等差数列练习题及答案解析在高中数学的学习过程中,等差数列是一个非常重要的概念。

在这篇文章中,我们将提供一些高三等差数列练习题并给出详细的答案解析。

希望这些题目能够帮助学生们更好地理解和掌握等差数列的性质和运算规律。

练习题一:已知等差数列的首项为a,公差为d。

若第7项等于2a+5d,第10项等于8a+11d,则求该等差数列的首项和公差。

解析:设该等差数列的首项为a,公差为d。

根据已知条件,我们可以列出以下方程组:a + 6d = 2a + 5d --(1)a + 9d = 8a + 11d --(2)我们先来解第一个方程:将方程(1)化简,得到:d = a --(3)然后,我们将方程(3)代入方程(2),得到:a + 9(a) = 8a + 11(a)10a = 18a由此可知,a = 0。

将a代入方程(3),得到:d = 0所以该等差数列的首项为0,公差也为0。

练习题二:已知等差数列的前n项和为Sn,公差为d。

若前m项和为Sm,其中m < n,则求从第m+1项到第n项的和。

解析:设从第m+1项到第n项的和为Sn',则根据等差数列的性质,有:Sn' = Sn - Sm练习题三:已知等差数列的前n项和为Sn,公差为d。

若将每一项都乘以-1后得到新的数列,求新数列的前n项和。

解析:设新数列的前n项和为S'n。

根据等差数列的性质,有:S'n = -Sn练习题四:已知等差数列的前n项和为Sn,公差为d。

若将每一项都平方后得到新的数列,求新数列的前n项和。

设新数列的前n项和为S''n。

根据等差数列的性质,有:S''n = a^2 + (a+d)^2 + (a+2d)^2 + ... + (a+(n-1)d)^2我们可以利用平方公式将每一项展开,然后进行简化,得到:S''n = (n/6)(2a^2 + (n-1)d^2 + 4ad(n-1) + 2d^2(n-1)(2n-1))练习题五:已知等差数列的前n项和为Sn,公差为d。

等差数列的通项及性质7大题型 (解析版)

等差数列的通项及性质7大题型  (解析版)

等差数列的通项及性质7大题型【考点预测】一.等差数列的有关概念(1)等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母表示,定义表达式为d (常数).1--=n n a a d *()2,∈≥n N n (2)等差中项 若三个数,,成等差数列,则叫做与的等差中项,且有a A b A a b =2+a bA .(3)等差数列的通项公式如果等差数列的首项为,公差为,那么它的通项公式是.{}n a 1a d 1(1)=+-n a a n d 二.等差数列通项的常用性质已知为等差数列,为公差,为该数列的前项和.{}n a d n S n (1)通项公式的推广:.*())(,=+-∈n m a a n m d n m N (2)在等差数列中,当时,.{}n a +=+m n p q *(),,,+=+∈m n p q a a a a m n p q N 特别地,若,则.2+=m n t *()2,,+=∈m n t a a a m n t N (3),…仍是等差数列,公差为.2++,,k k mk ma a a *(),∈md k m N (4)若,是等差数列,则也是等差数列.{}n a {}nb {}+n n pa qb 【题型目录】题型一:等差数列通项公式运用题型二:等差中项问题题型三:等差数列通项的性质题型四:整体看成等差数列问题题型五:等差数列通项公共项问题题型六:几个连续实数成等差数列问题题型七:等差数列通项新文化试题【典型例题】题型一:等差数列通项公式运用【例1】(2022·全国·高二课时练习)在等差数列中,若,,则( ){}n a823a =1132a =66a =A .195B .196C .197D .198【例2】(2022·江西省万载中学高一阶段练习(文))在数列中,,,若n 11a =13n n a a +-=2020n a =,则( )n =A .671B .672C .673D .674【答案】D【分析】分析得到数列是以1为首项,3为公差的等差数列,利用等差数列通项即得解.{}n a【详解】∵,,11a =13n n a a +-=∴13n n a a +-=∴数列是以1为首项,3为公差的等差数列,{}n a∴,解得.()()111312020n a a n d n =+-=+-=674n =故选:D.【例3】(2022·全国·高二课时练习)已知等差数列,若,,则( ){}n a2911a a +=41014a a +=n a =A .B .C .D .2n 21n +n 21n -【答案】C【分析】设公差为d ,利用基本量代换列方程组解出首项和公差,即可写出通项公式.【详解】在等差数列中,设公差为d ,依题意,即{}n a 294101114a a a a +=⎧⎨+=⎩11291121214a d a d +=⎧⎨+=⎩解得公差,,所以.1d =11a =n a n =故选:.C 【例4】(2022·全国·高二课时练习)数列的首项为,为等差数列,且{}n a 3{}nb ()1n n n b a a n N *+=-∈,若,,,则等于( )32b =-1012b =8a A .B .C .D .03811【例5】(2022全国高二课时练习)在等差数列中,若a 1=84,a 2=80,则使an 0,且an +1n ≥<0的n 为( )A .21B .22C .23D .24【答案】B【分析】用基本量表示,列出不等式组,求解即可1,a d 1,n n a a +8840,884(1)0n n -≥⎧⎨-+<⎩【详解】公差d =a 2-a 1=-4,∴an =a 1+(n -1)d =84+(n -1)(-4)=88-4n ,令10,0,n n a a +≥⎧⎨<⎩即8840,884(1)0n n -≥⎧⎨-+<⎩⇒,又∵n ∈N *,2122n <≤∴n =22.故选:B【例6】(2022·全国·高考真题)图1是中国古代建筑中的举架结构,,,,AA BB CC DD''''是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中是举,是相等的步,相邻桁的举步之比分别为1111,,,DD CC BB AA 1111,,,OD DC CB BA .已知成公差为0.1的等差数列,且直线11111231111,0.5,,DD CC BB AAk k k OD DC CB BA ====123,,k k k OA的斜率为0.725,则( )3k =A .0.75B .0.8C .0.85D .0.9【答案】D【解析】设,则,11111OD DC CB BA ====111213,,CC k BB k AA k ===依题意,有,且,31320.2,0.1k k k k -=-=111111110.725DD CC BB AA OD DC CB BA +++=+++所以,故,30.530.30.7254k +-=30.9k =故选:D【例7】(2022·全国·高二课时练习)若数列为等差数列,,,则( ){}n ap a q=()q a p p q =≠p q a +=A .B .0C .D .p q +()p q -+2p q+【答案】B【分析】根据等差数列通项公式的变形形式求解:.()n m a a n m d =+-【详解】设数列的公差为.∵,∴,即.∵,∴{}n ad ()p q a a p q d=+-()q p p q d=+-()q p p q d-=-p q ≠,∴.1d =-()0p q p a a p q p d q p +=++-=-=⎡⎤⎣⎦故选:B .【例8】(2022·全国·高二课时练习)已知数列均为等差数列,若{}{},n n a b1122333,7,13a b a b a b ===,则( )44a b =A .B .C .D .19212327【答案】B【分析】设,得出,令,可得,n n a an b b cn d =+=+2()n n a b acn bc ad n bd =+++n n n c a b =1n n nd c c +=-构成一个等差数列,求得公差,即可求得的值.4c 【详解】由题意,设,,n n a an b b cn d =+=+则,()()2()n n a b an b cn d acn bc ad n bd=++=+++令,可得构成一个等差数列,n n n c a b =12()n n n d c c acn ac ad bc +=-=+++所以由已给出的 ,,113a b =227a b =3313a b =,,所以121734d c c =-=-=2321376d c c =-=-=4434138d c c c =-=-=解得:,即.421c =4421a b =故选:B【例9】(2022全国高二课时练习)(1)在等差数列{an }中,已知a 3+a 8=10,则3a 5+a 7=________.(2)已知等差数列{an }中,a 1+a 4+a 7=39,a 2+a 5+a 8=33,则a 3+a 6+a 9=________.【答案】 20 27【分析】(1)利用等差数列的性质求解即可,(2)利用等差数列的性质求解,或设等差数列{an }的公差为d ,利用已知条件求出公差,再利用等差数的性质求解【详解】(1)3a 5+a 7=2a 5+(a 5+a 7)=2a 5+2a 6=2(a 3+a 8)=20.(2)法一 由性质可知,数列a 1+a 4+a 7,a 2+a 5+a 8,a 3+a 6+a 9是等差数列,所以2(a 2+a 5+a 8)=(a 1+a 4+a 7)+(a 3+a 6+a 9),则a 3+a 6+a 9=2×33-39=27.法二 设等差数列{an }的公差为d ,则(a 2+a 5+a 8)-(a 1+a 4+a 7)=(a 2-a 1)+(a 5-a 4)+(a 8-a 7)=3d =-6,解得d =-2,所以a 3+a 6+a 9=a 2+d +a 5+d +a 8+d =27.故答案为:(1)20 (2)27【例10】(2022全国高二专题练习)在等差数列中,,且{}n a 138a a +=2429a a a =⋅(1)求数列的首项、公差;{}n a(2)设,若,求正整数m 的值.()()1218n n n a a b -+=13m m m b b b +++=【题型专练】1.(2021·全国·高二单元测试)已知等差数列满足,则中一定为零的项是( ){}n a3243a =a {}n aA .B .C .D .6a 7a 8a 9a 【答案】A【分析】先设等差数列的公差,根据题中条件,得出首项与公差之间关系,即可得出结果.【详解】设等差数列的公差为,由得,∴,{}n ad 3243a =a 15a d =-6150a a d =+=故选:A .2.(2021·全国·高二专题练习)已知等差数列中,,,则等于( ){}n a3822a a +=67a =4a A .B .1523C .D .729【答案】B【分析】求出等差数列的公差的值,由此可求得的值.{}n ad 4a【详解】设等差数列的公差为,则,解得,{}n ad ()()3866632222a a a d a d a d +=-++=-=8d =-因此,.()46272823a a d =-=-⨯-=故选:B.3.(2021·江苏·高二专题练习)在等差数列中,已知,,,则( ){}n a113a =45163a a +=33k a =k =A .B .5049C .D .48474.(2022·广东·佛山市南海区狮山高级中学高二阶段练习)在数列中,,n 12a =1221n n a a +-=,则的值为( )101a A .52B .51C .50D .495.(2022·全国·高二课时练习)已知数列是首项为3,公差为n a d d ∈N 的等差数列,若2023是该数列的一项,则公差d 可能是( )A .2B .3C .5D .6P 条弦的长度组成一个等差数列,最短弦长为,最长弦长为,且公差,则1a n a 2,13d ⎛⎤∈ ⎥⎝⎦n的取值可能是( )A .B .C .D .56781123A .公差d =-4B .a 2=7C .数列{an }为递增数列D .a 3+a 4+a 5=84【答案】BC【分析】根据等差数列性质公式及基本量计算,对选项一一判断即可.【详解】解析:∵a 1+a 2+a 3=21,∴3a 2=21,∴a 2=7.∵a 1=3,∴d =4.∴数列{an }为递增数列,a 4=a 2+2d =15.∴a 3+a 4+a 5=3a 4=45.故选:BC8.(2022·全国·高二单元测试)已知数列为等差数列,,,则公差d 为______.{}n a36a =918a =【答案】2【分析】由等差数列性质得,即可求得公差d936a a d =+【详解】数列为等差数列,则,可解得.{}n a9361866d a a d =+⇒=+2d =故答案为:29.(2022·全国·高二课时练习)等差数列2,4,6,…的第18项为______.【答案】36【分析】由条件确定数列的公差,再确定其通项公式,由此求其第18项.【详解】设数列的第项为,n n a 由已知数列为等差数列,且,,{}n a12a =24a =所以数列的公差,{}n a2d =所以,2(1)22n a n n =+-⨯=所以,1836a =故答案为:36.10.(2022·全国·高二单元测试)设是公差为-2的等差数列,如果{}n a1479750a a a a ++++= ,那么______.36999a a a a ++++= 【答案】-82【分析】根据等差数列通项公式化简求解.【详解】∵是公差为-2的等差数列,{}n a ∴()()()()36999147972222a a a a a d a d a d a d ++++=++++++++ .147973325013282a a a a d =+++++⨯=-=- 故答案为:-8211.(2022·全国·高二课时练习)已知等差数列为递增数列,若,{}n a 22110101a a +=5611a a +=,则数列的公差d 的值为______.{}n a【答案】112.(2022·全国·高二课时练习)若,且两数列a , , ,b 和a ,,,a b ¹12123,b 都是等差数列,则________.3121y y x x -=-【答案】##32 1.513.(2022·全国·高二课时练习)已知等差数列的前三项分别为,,n 1a -21a +7a +,则此数列的通项公式为______.n a =【答案】43n -【分析】根据等差数列前三项可求出,即可得出首项和公差,求出通项公式.a 【详解】由题意,得,所以,()17221a a a -++=+2a =所以的前三项分别为1,5,9,公差为4,故.{}n a()11443n a n n =+-⨯=-故答案为:.43n -14.(2022·全国·高二课时练习)已知等差数列满足,则____________.{}n a2438a a =-5a =【答案】4【分析】利用表示,整理可得.1,a d 2438a a =-5a 【详解】设等差数列的公差为,则由得:,{}n ad 2438a a =-()11338a d a d +=+-整理可得:,即.()1128248a d a d +=+=5144a a d =+=故答案为:.415.(2020·全国·高二课时练习)已知等差数列{an },且a 3+a 5=10,a 2a 6=21,则an =____________.【答案】或.1n a n =+9n a n =-+【分析】设等差数列的公差为,根据题意列出方程组,求得的值,即可求解.{}n a d d 【详解】设等差数列的公差为,{}n ad 因为,可得,354210a a a +==45a =又由,2644(2)(2)(52)(52)21a a a d a d d d =-+=-+=解得,所以或,21d =1d =1d =-所以数列的通项公式为或.{}n a1n a n =+9n a n =-+故答案为:或.1n a n =+9n a n =-+16.(2021·全国·高二专题练习)若a ,x 1,x 2,x 3,b 与a ,y 1,y 2,y 3,y 4,y 5,b 均为等差数列,则3131x x y y --=________.17.(2022·全国·高二课时练习)存在条件:①,;②,;③,23d =-37a =713.在这三个条件中任选一个,回答下列问题,已知等差数列满足______.求数列2414a a +={}n a 的通项公式.{}n a【答案】163n a n=-【分析】不管选择哪个条件,都是求首项和公差,再求通项公式.【详解】若选择①,,1213a a d =-=数列的通项公式,{}n a()()()111313163n a a n d n n=+-=+-⨯-=-即;163n a n =-若选择②,,解得:,,112765ad a d +=⎧⎨+=-⎩113a =3d =-数列的通项公式;{}n a163n a n =-若选择条件③,解得:,,1122202414a d a d +=⎧⎨+=⎩113a =3d =-数列 的通项公式.{}n a 163n a n=-题型二:等差中项问题【例1】(2022·全国·高二课时练习)已知则a ,b 的等差中项为()a =b =A B C D 间的角是多少度( )A .30°B .60°C .90°D .45°【答案】B【分析】设三内角由小到大依次为,,A B C,利用等差数列定义结合三角形三内角和定理列式计算作答.【详解】设三角形三内角由小到大依次为,依题意,,而,,,A B C 2A+C =B 180A B C ++=则有,解得,3180B =60B =所以中间的角是.60故选:B【例3】(2022·全国·高二课时练习)已知和的等差中项是4,和的等差中项是5,则和m 2n 2m n m n 的等差中项是( )A .8B .6C .D .34.5【例4】(2022·全国·高三专题练习(理))数列{an }满足,且,是函数122n n n a a a ++=+4a 4040a 的两个零点,则的值为( )2()83f x x x =-+2022a A .4B .-4C .4040D .-4040【答案】A【分析】由题设可得+=8,根据已知条件易知{an }是等差数列,应用等差中项的性质求4a 4040a .2022a 【详解】由,是的两个零点,即,是x 2-8x +3=0的两个根,4a 4040a 2()83f x x x =-+4a 4040a ∴+=8,又,即数列{an }是等差数列,4a 4040a 122n n n a a a ++=+∴+=8,故=4.4a 4040a 20222a =2022a 故选:A.【题型专练】1.(2022·全国·高三专题练习)下列选项中,为“数列{}n a是等差数列”的一个充分不必要条件的是( )A .B .()1122n n n a a a n +-=+≥()2112n n n a a a n +-=⋅≥C .数列的通项公式为D .{}n a23n a n =-()2112n n n n a a a a n ++--=-≥A .2BCD .13.(2022·上海市复旦实验中学高二期末)若b 是2,8的等差中项,则______;b =【答案】0【分析】根据等差中项的性质即可求解.【详解】解:因为8,a ,2,b ,c 是等差数列,所以8222222a a b c b +=⎧⎪+=⨯⎨⎪+=⎩解得514a b c =⎧⎪=-⎨⎪=-⎩所以.0a b c ++=故答案为:.0题型三:等差数列通项的性质【例1】(2022·广东肇庆·高二阶段练习)已知数列是等差数列,且满足,则{}n a2104a a +=26log a =( )A .B .C .D .0123【答案】B【分析】利用等差中项的性质求出的值,进而可求得结果.6a 【详解】由等差中项的性质可得,可得,因此,.621024a a a =+=62a =26log 1a =故选:B.【例2】(2022·全国·高三专题练习)已知等差数列满足,则( ){}n a5796a a a ++=7a =A .B .C D .322-【答案】B【分析】利用等差中项的性质可求得结果.【详解】由等差中项的性质可得,故.579736a a a a ++==72a =故选:B.【例3】(2022·四川省成都市新都一中高一期中(理))已知数列满足,且{}n a ()*122n n n a a a n ++=+∈N ,则( )38132πa a a ++=()79cos a a +=A .B .C .D 12-12【例4】(2023·全国·高三专题练习)已知等差数列中,,,则n a1234a a a ++=131415等于( )789a a a ++A .6B .7C .8D .9(1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列.(2)数列为等差数列的充要条件是对任意,都有.{}n a*N n ∈122n n n a a a ++=+(3)数列为等差数列的充要条件是其通项公式为n 的一次函数.{}n a(4)已知数列的通项公式是(其中p ,q 为常数),则数列一定是等差数列.{}n a n a pn q =+{}n aA .1个B .2个C .3个D .4个【答案】B【分析】利用等差数列定义判断(1);利用等差中项的定义结合充要条件的意义判断(2);利用等差数列定义结合充要条件的意义判断(3);利用等差数列定义判断(4)作答.【详解】对于(1),若一个数列从第2项起每一项与它的前一项的差都是同一个常数,则这个数列是等差数列,(1)不正确;对于(2),因对任意,都有数列*N n ∈121212n n n n n n n a a a a a a a +++++⇔=+-=-⇔{}n a为等差数列,(2)正确;对于(3),因常数列是等差数列,而常数列的通项不是n 的一次函数,则通项公式为n 的一次函数是数列为等差数列的充分不必要条件,(3)不正确;{}n a对于(4),数列的通项公式是(其中p ,q 为常数),则,,即数列{}n an a pn q =+N n *∀∈1n n a a p +-=一定是等差数列,(4)正确,{}n a 所以所给4个命题正确的个数为2.故选:B【题型专练】1.(2021·江西·高三阶段练习(文))设是等差数列,且,,则( ){}n a122a a +=344a a +=56a a +=A .B .C .D .12-0624【答案】C【分析】根据等差数列性质可知,,成等差数列,由此可构造方程求得结果.12a a +34a a +56a a +【详解】解:是等差数列,,,成等差数列,{}n a12a a ∴+34a a +56a a +,.()()()3412562a a a a a a ∴+=+++56826a a ∴+=-=故选:C.2.(2022·重庆·高三阶段练习)已知数列为等差数列,,则( ){}n a286a a +=357a a a ++=A .9B .12C .15D .16【分析】根据等差数列下标和性质计算可得.【详解】解:在等差数列中,所以,{}n a28526a a a +==53a =所以;357539a a a a ++==故选:A3.(2022·河南平顶山·高二期末(文))已知数列是等差数列,且满足,则{}n a891075a a a ++=( )612a a +=A .B .C .D .42485058【答案】C【分析】利用等差中项的性质可求得结果.【详解】由等差中项的性质可得,则,因此,.89109375a a a a ++==925a =6129250a a a +==故选:C.4.(2023·全国·高三专题练习)已知数列为等差数列,若,则的值为( ){}n a15915a a a ++=28a a +A .4B .6C .8D .10【答案】D【分析】由等差中项的性质进行计算【详解】由题意得:,所以,1595315a a a a ++==55a =故285210a a a +==故选:D5.(2022·河南·驻马店市基础教学研究室高二期末(理))已知等差数列中,、是{}n a2a 8a 的两根,则( )221610x x --=()2375a a a +-=A .B .C .D .248601246.(2022·全国·高二课时练习)在等差数列中,若,则______.{}n a34567450a a a a a ++++=19a a +=【答案】180【分析】利用等差中项的性质即可求值.【详解】由,故,37169452a a a a a a a =+=+=+3456755450a a a a a a ++++==所以,则.590a =19a a +=180故答案为:1807.(2022·宁夏·青铜峡市宁朔中学高二开学考试)在等差数列中,若{}n a357911100a a a a a ++++=,则________.212a a +=8.(2021·河北衡水·高三阶段练习)已知等差数列中,分别是方程n 12021,a a 2410x x --=的两个根,则__________.1011a =1项,则这个等差数列的公差为___________.【答案】1【分析】根据题意,利用等差数列等差中项的性质即可求得和,进而求得公差.3a 29a10.(2021·全国·高二课时练习)已知等差数列{an }中,a 1+a 3+a 8=54π,那么cos(a 3+a 5)=________.11.(2022·全国·高二课时练习)已知等差数列,满足,,求数列n 23418a a a ++=23466=a a a n 的通项公式.【答案】或521=-+n a n 59=--n a n 【分析】根据是等差数列且满足求出,代入,中得到{}n a23418a a a ++=3a 23418a a a ++=23466=a a a 的方程组,并解出,从而解出,结合通项公式解出.24,a a 24,a a 1a d ,n a 【详解】是等差数列,且, ,{}n a23418a a a ++=33=18∴a 3=6a ∴解得或2342341866a a a a a a ++=⎧⎨=⎩ 242412,.11,a a a a +=⎧⎨=⎩2411,1a a =⎧⎨=⎩241,11.a a =⎧⎨=⎩当时,,.2411,1a a =⎧⎨=⎩1=16a =5-d ()()()111615521∴=+-=+--=-+n a a n d n n当时,,.241,11a a =⎧⎨=⎩1=4-a =5d ()()1141559∴=+-=-+-=-n a a n d n n 综上:或521=-+n a n 59=--n a n 题型四:整体看成等差数列问题【例1】(2022·全国·高三专题练习)已知数列,为等差数列,且公差分别为,{}n a{}n b12d =21d =,则数列的公差为( ){}23n n a b -A .B .C .D .7531【答案】D【分析】利用即可整理求得公差.112323n n n n a b a b ++--+【详解】,为等差数列,为等差,设其公差为,{}n a {}n b {}23n n a b ∴-d 则.()()111112232323231n n n n n n n n d a b a b a a b b d d ++++=--+=---=-=故选:D.【例2】(2022·全国·高二课时练习)定义:在数列中,若对任意的都满足{}n a n +∈N 211n n n n a a da a +++-=(d 为常数),则称数列为等差比数列.已知等差比数列中,,,则{}n a {}n a 121a a ==33a =20222020a a =( )A .B .C .D .2420221⨯-2420211⨯-2420201⨯-242020⨯【例3】(2022·全国·高二课时练习)已知数列,均为等差数列,若,,则{}n a{}n b110a b +=221a b +=( )n n a b +=A .B .C .D .2n -1n +n1n -【答案】D【分析】利用等差数列的通项公式可求出结果.【详解】设等差数列,的公差分别为,{}n a{}n b12,d d 则,1221212211()()101d d a a b b a b a b +=-+-=+-+=-=所以1112(1)(1)n n a b a n d b n d +=+-++-.1112(1)()1a b n d d n =++-+=-故选:D【例4】(2022·全国·高二课时练习)已知数列均为等差数列,若{}{},n n a b1122333,7,13a b a b a b ===,则( )44a b =A .B .C .D .19212327【答案】B【分析】设,得出,令,可得,n n a an b b cn d =+=+2()n n a b acn bc ad n bd =+++n n n c a b =1n n nd c c +=-构成一个等差数列,求得公差,即可求得的值.4c 【详解】由题意,设,,n n a an b b cn d =+=+则,()()2()n n a b an b cn d acn bc ad n bd=++=+++令,可得构成一个等差数列,n n n c a b =12()n n n d c c acn ac ad bc +=-=+++所以由已给出的 ,,113a b =227a b =3313a b =,,所以121734d c c =-=-=2321376d c c =-=-=4434138d c c c =-=-=解得:,即.421c =4421a b =故选:B【例5】(2022·全国·高二课时练习多选题)已知等差数列,若,,则( )11n a ⎧⎫⎨⎬+⎩⎭114a =41a =A .数列的公差11n a ⎧⎫⎨⎬+⎩⎭110d =B .数列的公差11n a ⎧⎫⎨⎬+⎩⎭110d =-C .1011a =-D .1011a =1.(2021·江苏·高二单元测试多选题)在数列中,若(,,{}n a 221n n a a p --=2n ≥*n N ∈p 为常数),则称为等方差数列,下列对等方差数列的判断正确的有( ){}n aA .若是等差数列,则是等方差数列{}n a {}2n a B .数列是等方差数列(){}1n-C .若数列既是等方差数列,又是等差数列,则数列一定是常数列{}n a{}n aD .若数列是等方差数列,则数列(,为常数)也是等方差数列{}n a{}kn a*k N ∈k 【答案】BCD【分析】利用等方差数列的定义判断.【详解】A.设等差数列的通项公式,则{}n an a kn b =+,不一定是常数,()()()()22111122n n n n n n n n a a a a a a a a d kn k b d-----=+-=+=-+所以不是等方差数列,故错误;{}2naB. 因为,所以数列是等方差数列,故正确;()()()112222110n nn n a a---=---=(){}1n-C.因为数列是等方差数列,则,又数列是等差数列,则{}n a 221n n a a p --={}n a ,()()()221111n n n n n n n n a a a a a d a a pa -----=+-=+=2.(2022·全国·高二课时练习)已知是等差数列,且,,则______.1n a ⎧⎫⎨⎬⎩⎭21a =41a =10a =为等差数列,则______.13a =4.(2022·全国·高二课时练习)数列中,,,若数列是等差数列,则{}n a 32a =71a =11n a ⎧⎫⎨⎬+⎩⎭8a =__________.【例1】(2022·全国·高二课时练习)在1,2,3,…,2021这2021个自然数中,将能被2除余1,且被3除余1的数按从小到大的次序排成一列,构成数列,则等于( ){}n a50a A .289B .295C .301D .307【答案】B【分析】根据题意,得到能被2除余1满足,被3除余1的数满足,进而求得数列21n -32n -{}n a的通项公式,即可求解.65n a n =-【详解】由题意,在1,2,3,…,2021这2021个自然数中,能被2除余1满足,21n -被3除余1的数满足,32n -所以在1,2,3,…,2021这2021个自然数中,能被2除余1,且被3除余1的数,按从小到大的次序排成一列,可得构成的数列是首项为,公差为的等差数列,{}n a16则数列的通项公式,{}n a65n a n =-所以.506505295a =⨯-=故选:B.【例2】(2022·全国·高三专题练习)已知两个等差数列5,8,11,…,302与3,7,11,…,399,则它们所有公共项的个数为( )A .23B .24C .25D .261.(2022·全国·高二课时练习)“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1至2019中被3除余1且被5除余1的数按从小到大的顺序排成一列,构成数列{}n a,则此数列的项数为( )A .134B .135C .136D .137【答案】B【分析】根据已知条件进行转化得到数列通项公式,由题意解出不等式即可判断项数.{}n a【详解】由题意知,被3除余1且被5除余1的数即为被15除余1的数,故.1514,n a n n N *=-∈由,得,15142019n a n =-≤135.5n ≤又因为,所以此数列的项数为135.n *∈N 故选:B2.(2022全国高二单元测试)在数学发展史上,已知各除数及其对应的余数,求适合条件的被除数,这类问题统称为剩余问题.1852年《孙子算经》中“物不知其数”问题的解法传至欧洲,在西方的数学史上将“物不知其数”问题的解法称之为“中国剩余定理”.“物不知其数”问题后经秦九韶推广,得到了一个普遍的解法,提升了“中国剩余定理”的高度.现有一个剩余问题:在的整数中,把被除余数为,被(]1,2021415除余数也为的数,按照由小到大的顺序排列,得到数列,则数列的项数为( )1{}n a{}n aA .B .C .D .1011009998【答案】A【分析】将数列中的项由小到大列举出来,可知数列{}n a{}n a为等差数列,确定该数列的首项和公差,可求得,然后解不等式,即可得解.n a 12021n a <≤【详解】由题意可知,数列中的项由小到大排列依次为、、、、,{}n a21416181L 可知数列是以为首项,以为公差的等差数列,则,{}n a2120()21201201n a n n =+-=+由可得,解得,12021n a <≤12012021n <+≤0101n <≤,则,n N *∈ {}1,2,3,,101n ∈ 因此,数列的项数为.{}n a101故选:A.题型六:几个连续实数成等差数列问题【例1】(2022·江苏·高二课时练习)若直角三角形的三条边的长组成公差为3的等差数列,则三边的长分别为( )A .5,8,11B .9,12,15C .10,13,16D .15,18,21【答案】B【分析】设出三边长,根据直角三角形的勾股定理,解得答案.【详解】由题意直角三角形的三条边的长组成公差为3的等差数列,设可三边长为 ,则,,3,6x x x ++222(3)(6)x x x ++=+解得 ,(舍去),9x =3x =-故三边长为9,12,15 ,故选:B.【例2】(2022·全国·高二课时练习)已知四个数成等差数列,它们的和为28,中间两项的积为40,则这四个数依次为( )A .-2,4,10,16B .16,10,4,-2C .2,5,8,11D .11,8,5,2【答案】AB【分析】根据等差数列的性质,列出方程求解即可【详解】设这四个数分别为,,,,3a d -a d -a d +3a d +则解得或()()3328,40,a d a d a d a d a d a d -+-++++=⎧⎨-+=⎩7,3a d =⎧⎨=⎩7,3,a d =⎧⎨=-⎩所以这四个数依次为-2,4,10,16或16,10,4,-2.故选:AB【例3】(2022·全国·高二课时练习)已知5个数组成一个单调递减的等差数列,且它们的和为5,平方和为165,则这个等差数列的第1项为___________.【答案】9【分析】根据等差数列的性质,直接求解即可【详解】设这个等差数列中的五个数分别为,,x ,2x d -x d -,.由题意,得x d +2x d +()()()()22222225,22165,x d x d x x d x d x d x d x x d x d -+-+++++=⎧⎪⎨-+-+++++=⎪⎩解得或因为这个数列单调递减,所以,1,4x d =⎧⎨=⎩1,4.x d =⎧⎨=-⎩0d <即所以第1项为.1,4.x d =⎧⎨=-⎩()21249x d -=-⨯-=故答案为:9【题型专练】1.(2022·全国·高二课时练习)已知等差数列{}n a前三项的和为-3,前三项的积为8.求等差数列的通项公式.{}n a【答案】或35n a n =-+37n a n =-【分析】结合等差数列的通项公式得到,求出首项与公差即可求出结果.()()111133328a d a a d a d +=-⎧⎨++=⎩【详解】设等差数列的公差为d ,则,.{}n a21a a d =+312a a d =+由题意得,解得或()()111133328a d a a d a d +=-⎧⎨++=⎩123a d =⎧⎨=-⎩143a d =-⎧⎨=⎩所以由等差数列的通项公式可得或.()23135n a n n =--=-+()43137n a n n =-+-=-故或.35n a n =-+37n a n =-2.(2022·全国·高二单元测试)(1)三个数成等差数列,其和为,前两项之积为后一项的96倍,求这三个数.(2)四个数成递增等差数列,中间两数的和为,首末两项的积为,求这四个数.28-【答案】(1),,;(2),,,.4322-024【分析】(1)设这三个数依次为,,,根据已知条件列方程组,求得和a d -a a d +a d 的值即可得这三个数;(2)设这四个数依次为,,, (公差为),根据已知条件列方程组,求得3a d -a d -a d +3a d +20d >和的值即可得这四个数.a d 【详解】(1)设这三个数依次为,,,a d -a a d +由题意可得:,解得:,()()96a d a a d a a d a d -+++=⎧⎨-=+⎩31a d =⎧⎨=-⎩所以这三个数依次为,,.432(2)设这四个数依次为,,, (公差为),3a d -a d -a d +3a d +20d >由题意可得,解得或(舍),()()2338a d a d a d a d -++=⎧⎨-+=-⎩11a d =⎧⎨=⎩11a d =⎧⎨=-⎩故所求的四个数依次为,,,.2-024题型七:等差数列通项新文化试题【例1】(2022·全国·高二课时练习)中国古代有一道数学题:“今有七人差等均钱,甲、乙均七十七文,戊、己、庚均七十五文,问戊、己各若干?”意思是甲、乙、丙、丁、戊、己、庚七个人分钱,所分得的钱数构成等差数列,甲、乙两人共分得77文,戊、己、庚三人共分得75文,则戊、己两人各分得多少文钱?则下列说法正确的是( )A .戊分得34文,己分得31文B .戊分得31文,己分得34文C .戊分得28文,己分得25文D .戊分得25文,己分得28文【答案】C【分析】设甲、乙、丙、丁、戊、己、庚所分钱数分别为,,,,,,3a d -2a d -a d -a a d +2a d +,再根据题意列方程组可解得结果.3a d +【详解】依题意,设甲、乙、丙、丁、戊、己、庚所分钱数分别为,,,,,3a d -2a d -a d -a a d +,,2a d +3a d +则,解得,32772375a d a d a d a d a d -+-=⎧⎨+++++=⎩313a d =⎧⎨=-⎩所以戊分得(文),己分得(文),28a d +=225a d +=故选:C.【例2】(2022全国高二课时练习)中国历法推测遵循以算为主、以测为辅的原则.例如《周髀算经》和《易经》里对二十四节气的晷影长的记录中,冬至和夏至的晷影长是实测得到的,其他节气的晷影长则是按照等差数列的规律计算得出的.下表为《周髀算经》对二十四节气晷影长的记录,其中115.1寸表示115寸1分(1寸=10分).4646节气冬至小寒(大雪)大寒(小雪)立春(立冬)雨水(霜降)惊蛰(寒露)春分(秋分)晷影长/寸135.0125.56115.146105.23695.32685.41675.5节气清明(白露)谷雨(处暑)立夏(立秋)小满(大暑)芒种(小暑)夏至晷影长/寸65.55655.64645.73635.82625.91616.0已知《易经》中记录的冬至晷影长为130.0寸,夏至晷影长为14.8寸,那么《易经》中小寒与清明之间的晷影长之差为( )A .105.6寸B .48寸C .57.6寸D .67.2寸【答案】C【分析】利用等差数列的基本量计算,直接求解即可.全书总结了战国、秦、汉时期的数学成就,其中有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何?”其意思为:“今有5人分5钱,各人所得钱数依次为等差数列,其中前2人所得之和与后3人所得之和相等,问各得多少钱?”则第2人比第4人多得钱数为( )A .钱B .钱C .钱D .钱1613-2313,就是相邻两衡间距离(半径差)为1198333里,给出了计算各衡直径的一般法则,即“预知次衡径,倍而增内衡之径,二而增内衡径,得三衡径”.这段话的意思是说想求出二次衡的直径,须把半径差二倍加上内一衡(最小圆圈)的直径,次三衡以及以后的都这样要求.已知内一衡径=238000里000步(当时300步为1里),则次三衡径为( )A.396666里200步B.357000里000步C.317333里100步D.277666里200步【题型专练】1.(2022·全国·高二课时练习)《周髀算经》中有这样一个问题:冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影子长依次成等差数列,若冬至、立春、春分的日影子长的和是37.5尺,芒种的日影子长为4.5尺,则()A.冬至的日影子长最长,为15.5尺B.立夏比谷雨的日影子长多1尺C.大寒、雨水、春分的日影子长成等差数列D.清明的日影子长为8.5尺【答案】ACD【分析】根据给定条件结合等差数列知识,求出首项、公差,再逐一分析计算作答.【详解】依题意,从冬至起,日影长依次记为,则数列是等差数列,1212,,,a a a {}(N ,12)n a n n *∈≤因此,,而,解得,又,14737.5a a a ++=1742a a a +=412.5a =12 4.5a =设数列的公差为,于是得:,解得,A 正确;{}n a d 11312.511 4.5a d a d +=⎧⎨+=⎩115.5,1a d ==-,立夏比谷雨的日影子长少1尺,B 不正确;1091a a -=-而成等差数列,即大寒、雨水、春分的日影子长成等差数列,C 正确;357,,a a a ,即清明的日影子长为8.5尺.81(81)8.5a a d =+-=故选:ACD2.(2022·全国·高二课时练习)《周髀算经》是中国最古老的天文学和数学著作,书中提到:从冬至之日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影子长依次成等差数列,若冬至、立春、春分的日影子长的和是37.5尺,芒种的日影子长为4.5尺,则立夏的日影子长为___________尺.【答案】6.5【分析】利用等差数列的通项公式求出首项和公差,然后求出其中某一项.【详解】解:由题意得从冬至之日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影子长依次成等差数列,设其公差为{}n ad ,解得14711213937.511 4.5a a a a d a a d ++=+=⎧∴⎨=+=⎩11,15.5d a =-=101915.59 6.5a a d ∴=+=-=故立夏的日影子长为尺.6.5故答案为:6.53.(2021·全国·高二课时练习)现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为________升.。

2.3 等差数列的前n项和 作业 及 答案

2.3 等差数列的前n项和 作业 及 答案

等差数列性质及前n 项和 作业1.在等差数列{a n }中,已知a 1=10,d =2,S n =580,则n 等于( )A .10B.15 C .20 D .30解析:选C.因为S n =na 1+12n (n -1)d =10n +12n (n -1)×2=n 2+9n ,所以n 2+9n =580,解得n =20或n =-29(舍).2.设{a n }为等差数列,公差d =-2,S n 为其前n 项和.若S 10=S 11,则a 1=( )A .18B.20 C .22 D .24解析:选B.由S 10=S 11,得a 11=S 11-S 10=0,所以a 1=a 11+(1-11)d =0+(-10)×(-2)=20.3.已知等差数列{a n }的前n 项和为S n ,且S 3=6,a 3=4,则公差d 为( )A .1B.53 C .2 D .3解析:选C.因为S 3=(a 1+a 3)×32=6,而a 3=4,所以a 1=0,所以d =a 3-a 12=2. 4.在等差数列{a n }中,若a 1+a 4+a 7=39,a 3+a 6+a 9=27,则前9项的和S 9等于( )A .66B.99 C .144 D .297解析:选B.根据等差数列的性质得(a 1+a 4+a 7)+(a 3+a 6+a 9)=3(a 1+a 9)=66,所以S 9=9(a 1+a 9)2=99. 5.已知等差数列{a n }中,S n 是其前n 项和,a 1=-11,S 1010-S 88=2,则S 11=( ) A .-11B.11 C .10 D .-10解析:选A.因为{a n }为等差数列,所以⎩⎨⎧⎭⎬⎫S n n 为等差数列,首项S 11=a 1=-11,设⎩⎨⎧⎭⎬⎫S n n 的公差为d ,则S 1010-S 88=2d =2,所以d =1,所以 S 1111=-11+10d =-1,所以S 11=-11. 6.设等差数列{a n }的前n 项和为S n ,若a 6=S 3=12,则{a n }的通项公式a n =________.解析:由已知得⎩⎪⎨⎪⎧a 1+5d =12,3a 1+3d =12⇒⎩⎪⎨⎪⎧a 1=2,d =2,故a n =2n . 答案:2n7.在等差数列{a n }中,a n >0,a 7=12a 4+4,S n 为数列{a n }的前n 项和,则S 19=________. 解析:因为在等差数列{a n }中,a n >0,a 7=12a 4+4,所以a 1+6d =12(a 1+3d )+4,解得a 1+9d =a 10=8,S n 为数列{a n }的前n 项和,则S 19=192(a 1+a 19)=19a 10=152. 答案:1528.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列前10项和S 10=36,前18项和S 18=12,则数列{|a n |}的前18项和T 18=________.解析:由a 1>0,a 10·a 11<0知d <0,且a 10>0,a 11<0,所以T 18=a 1+a 2+…+a 10-a 11-a 12-…-a 18=2S 10-S 18=60.答案:609.已知等差数列{a n }的前n 项和为S n ,a 10=30,a 20=50.(1)求通项公式a n ;(2)若S n =242,求n .解:(1)由a 10=30,a 20=50,得⎩⎪⎨⎪⎧a 1+9d =30a 1+19d =50,解得a 1=12,d =2. 所以a n =a 1+(n -1)d =2n +10.(2)由S n =na 1+n (n -1)2d =242, 得12n +n (n -1)2×2=242, 解得n =11或n =-22(舍去).10.已知等差数列{a n }满足a 2=3,a 3+a 5=2.(1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 及S n 的最大值.解:(1)设数列{a n }的公差为d ,因为等差数列{a n }满足a 2=3,a 3+a 5=2,所以⎩⎪⎨⎪⎧a 1+d =3,2a 1+6d =2,解得a 1=4,d =-1,所以a n =a 1+(n -1)d =4+(n -1)×(-1)=5-n .(2)因为等差数列{a n }中,a 1=4,d =-1,a n =5-n ,所以S n =n (a 1+a n )2=n (4+5-n )2=-12n 2+92n =-12⎝⎛⎭⎫n -922+818,因为n ∈N *, 所以n =4或n =5时,S n 取最大值为10.[B 能力提升]11.(2019·昆明一中期末)已知等差数列{a n }的前n 项和为S n ,若m >1,且a m -1+a m +1-a 2m =0,S 2m -1=38,则m 等于( )A .38B.20 C .10 D .9解析:选C.S 2m -1=(2m -1)(a 1+a 2m -1)2=(2m -1)a m ,a m -1+a m +1-a 2m =0⇔2a m =a 2m ,由S 2m -1=38,可知a m >0,所以a m =2,(2m -1)×2=38,解得m =10,故选C.12.(2019·河北沧州一中高二(上)期中考试)在等差数列{a n }中,前m (m 为奇数)项和为135,其中偶数项之和为63,且a m -a 1=14,则a 100的值为________.解析:因为在前m 项中偶数项之和为S 偶=63,所以奇数项之和为S 奇=135-63=72,设等差数列{a n }的公差为d ,则S 奇-S 偶=2a 1+(m -1)d 2=72-63=9.又a m =a 1+d (m -1),所以a 1+a m 2=9,因为a m -a 1=14,所以a 1=2,a m =16.因为m (a 1+a m )2=135,所以m =15,所以d =14m -1=1,所以a 100=a 1+99d =101. 答案:10113.已知等差数列{a n }的前n 项和为S n ,且a 3+a 5=a 4+7,S 10=100.(1)求{a n }的通项公式;(2)求满足不等式S n <3a n -2的n 的值.解:(1)设数列{a n }的公差为d ,由a 3+a 5=a 4+7,得2a 1+6d =a 1+3d +7,①由S 10=100得10a 1+45d =100,②解得a 1=1,d =2,所以a n =a 1+(n -1)d =2n -1.(2)因为a 1=1,a n =2n -1,所以S n =n (a 1+a n )2=n 2, 由不等式S n <3a n -2,得n 2<3(2n -1)-2,所以,n 2-6n +5<0,解得1<n <5,因为n ∈N *,所以n 的值为2,3,4.14.(选做题)已知数列{a n }的前n 项和S n =100n -n 2(n ∈N *).(1)判断{a n }是不是等差数列,若是,求其首项、公差;(2)设b n =|a n |,求数列{b n }的前n 项和.解:(1)当n ≥2时,a n =S n -S n -1=(100n -n 2)-[100(n -1)-(n -1)2]=101-2n . 因为a 1=S 1=100×1-12=99符合上式,所以a n =101-2n (n ∈N *).因为a n +1-a n =-2为常数,所以数列{a n }是首项为99,公差为-2的等差数列.(2)令a n =101-2n ≥0,得n ≤50.5,因为n ∈N *,所以n ≤50(n ∈N *).①当1≤n ≤50(n ∈N *)时,a n >0,此时b n =|a n |=a n ,所以数列{b n }的前n 项和S ′n =100n -n 2.②当n ≥51(n ∈N *)时,a n <0,此时b n =|a n |=-a n ,由b 51+b 52+…+b n =-(a 51+a 52+…+a n )=-(S n -S 50)=S 50-S n ,得数列{b n }的前n 项和S ′n =S 50+(S 50-S n )=2S 50-S n =2×2 500-(100n -n 2)=5 000-100n +n 2.由①②得数列{b n }的前n 项和为S ′n =⎩⎪⎨⎪⎧100n -n 2(n ∈N *,1≤n ≤50),5 000-100n +n 2(n ∈N *,n ≥51).数列的概念与简单表示法、等差数列(强化练)一、选择题1.已知数列3,3,15,…,3(2n -1),…,那么9在此数列中的项数是( )A .12B.13 C .14D .15 解析:选C.根据题意,a n =3(2n -1).由a n =3(2n -1)=9,解得n =14,即9是此数列的第14项.故选C.2.(2019·湖北荆州检测)在等差数列{a n }中,若a 3+a 4+a 5=3,a 8=8,则a 12的值是( )A .15B.30 C .31 D .64 解析:选A.设等差数列{a n }的公差为d ,因为a 3+a 4+a 5=3,所以3a 4=3,即a 1+3d=1.又由a 8=8得a 1+7d =8,联立解得a 1=-174,d =74,则a 12=-174+74×11=15.故选A. 3.若数列{a n }是公差为1的等差数列,则{a 2n -1+2a 2n }是( )A .公差为3的等差数列B .公差为4的等差数列C .公差为6的等差数列D .公差为9的等差数列解析:选C.设数列{a n }的公差为d ,令b n =a 2n -1+2a 2n ,则b n +1=a 2n +1+2a 2n +2,所以b n +1-b n =a 2n +1+2a 2n +2-(a 2n -1+2a 2n )=(a 2n +1-a 2n -1)+2(a 2n +2-a 2n )=2d +4d =6d =6×1=6.4.(2019·长春十一中月考)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( )A .100B.99 C .98 D .97解析:选C.设等差数列{a n }的公差为d ,因为{a n }为等差数列,且S 9=9a 5=27,所以a 5=3.又a 10=8,解得5d =a 10-a 5=5,所以d =1,所以a 100=a 5+95d =98.5.(2019·湖南濮阳月考)已知等差数列{a n }一共有9项,前4项和为3,最后3项和为4,则中间一项的值为( )A.1720B.5960 C .1 D .6766解析:选D.设等差数列{a n }的公差为d ,由题意得⎩⎪⎨⎪⎧4a 1+6d =3,3a 1+21d =4,解得⎩⎨⎧a 1=1322,d =766. 所以中间一项为a 5=a 1+4d =1322+4×766=6766.故选D. 6.数列{a n }的通项公式a n =n cos n π2,其前n 项和为S n ,则S 2 020等于( ) A .1 006B.2 020 C .505 D .1 010解析:选D.由题意知,a 1+a 2+a 3+a 4=2,a 5+a 6+a 7+a 8=2,…,故a 4k +1+a 4k +2+a 4k +3+a 4k +4=2,k ∈N ,故S 2 020=505×2=1 010.7.已知数列{a n }满足a 1=2,a n +1-a n =a n +1a n ,那么a 31=( )A .-358B.-259 C .-130D .-261 解析:选B.由已知可得1a n +1-1a n=-1,设b n =1a n ,则数列{b n }是以12为首项,公差为-1的等差数列,所以b 31=12+(31-1)×(-1)=-592,故a 31=-259. 8.《张丘建算经》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女不善织,日减功迟,初日织五尺,末日织一尺,今三十织迄,问织几何.”其意思为:有个女子不善于织布,每天比前一天少织同样多的布,第一天织五尺,最后一天织一尺,三十天织完,问三十天共织布( )A .30尺B.90尺 C .150尺 D .180尺解析:选B.由题意知,该女子每天织布的数量组成等差数列{a n },其中a 1=5,a 30=1,所以S 30=30×(5+1)2=90,即共织布90尺. 9.已知数列{a n }满足:a 1=17,对于任意的n ∈N *都有a n +1=72a n (1-a n ),则a 2 019-a 2 020=( )A .-27B.27 C .-37 D .37解析:选D.a 1=17,a 2=72×17×67=37,a 3=72×37×47=67,a 4=72×67×17=37,….归纳可知,当n 为大于1的奇数时,a n =67;当n 为正偶数时,a n =37.故a 2 019-a 2 020=37. 10.在等差数列{a n }中,首项a 1>0,公差d ≠0,前n 项和为S n (n ∈N *).有下列命题: ①若S 3=S 11,则必有S 14=0;②若S 3=S 11,则必有S 7是S n 中最大的项;③若S 7>S 8,则必有S 8>S 9;④若S 7>S 8,则必有S 6>S 9.其中正确命题的个数是( )A .1B.2 C .3 D .4解析:选 D.根据等差数列的性质,若S 11-S 3=4(a 7+a 8)=0,则a 7+a 8=0,S 14=14(a 1+a 14)2=7(a 7+a 8)=0,根据等差数列S n 的图象,当S 3=S 11时,对称轴是n =3+112=7,那么S 7是最大值;若S 7>S 8,则a 8<0,那么d <0,所以a 9<0,所以S 9-S 8<0,即S 8>S 9,S 9-S 6=a 7+a 8+a 9=3a 8<0,即S 6>S 9.故①②③④正确.二、填空题11.已知数列{a n }满足a 1=1,a 2=1,a n +2=a n +a n +1(n ∈N *),则a 6=________. 解析:因为a n +2=a n +a n +1,所以a 3=a 1+a 2=2,a 4=a 2+a 3=3,a 5=a 3+a 4=5,a 6=a 4+a 5=8.答案:812.已知等差数列{a n }中,a 2与a 6的等差中项为5,a 3与a 7的等差中项为7,则a n =________.解析:设等差数列{a n }的公差为d ,依题意,a 4=5,a 5=7,又a 5=a 4+d ,得d =2. 所以a 1=a 4-3d =5-3×2=-1,故a n =a 1+2(n -1)=2n -3.答案:2n -313.已知等差数列{a n }中,a 2=2,a 4=8,若ab n =3n -1,则b 2 018=________.解析:由a 2=2,a 4=8,得公差d =8-22=3,所以a n =2+(n -2)×3=3n -4,所以a n+1=3n -1.又由数列{a n }的公差不为0,所以结合ab n =3n -1,可得b n =n +1,故b 2 018=2 019.答案:2 01914.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意正整数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________. 解析:因为{a n },{b n }为等差数列,所以a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6.因为S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941,所以a 6b 6=1941. 答案:1941三、解答题15.在等差数列{a n }中,(1)已知a 2=-1,S 15=75,求a n 与S n ;(2)已知d =2,S 100=10 000,求a 1与a n .解:(1)设{a n }的公差为d .因为{a n }是等差数列,S n 是其前n 项和,a 2=-1,S 15=75,所以⎩⎪⎨⎪⎧a 2=a 1+d =-1,S 15=15a 1+15×142d =75,解得a 1=-2,d =1,所以a n =-2+(n -1)×1=n -3.S n =-2n +n (n -1)2×1=n 2-5n 2. (2)因为S 100=100a 1+100×(100-1)2×2=10 000, 所以a 1=1,所以a n =a 1+(n -1)d =2n -1.16.设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和,求T n .解:设等差数列{a n }的公差为d ,则S n =na 1+12n (n -1)d .因为S 7=7,S 15=75,所以⎩⎪⎨⎪⎧7a 1+21d =7,15a 1+105d =75.所以a 1=-2,d =1. 所以S n =n 2-5n 2,所以S n n =12n -52, 所以数列⎩⎨⎧⎭⎬⎫S n n 是等差数列,其首项为-2,公差为12. 所以T n =-2n +n (n -1)2×12=14n 2-94n . 17.(2019·福建外国语中学调研)已知等差数列{a n }的公差d >0,前n 项和为S n ,且a 2a 3=45,S 4=28.(1)求数列{a n }的通项公式;(2)若b n =S n n +c(c 为非零常数),且数列{b n }也是等差数列,求c 的值. 解:(1)因为S 4=28,所以(a 1+a 4)×42=28, 所以a 1+a 4=14,则a 2+a 3=14,又a 2a 3=45,公差d >0,所以a 2<a 3,a 2=5,a 3=9,所以⎩⎪⎨⎪⎧a 1+d =5,a 1+2d =9,解得⎩⎪⎨⎪⎧a 1=1,d =4, 所以a n =4n -3.(2)由(1)知S n =2n 2-n ,所以b n =S nn +c =2n 2-n n +c , 所以b 1=11+c ,b 2=62+c ,b 3=153+c. 又{b n }是等差数列,所以b 1+b 3=2b 2,即2×62+c =11+c +153+c , 解得c =-12(c =0舍去). 18.某工厂用分期付款的方式购买40套机器设备,共需1 150万元,购买当天先付150万元,以后每月这一天都交付50万元,并加付欠款利息,月利率为1%,若交付150万元后的第1个月开始算分期付款的第1个月,问分期付款的第10个月应付多少钱?全部按期付清后,买这40套机器设备实际花了多少钱?解:因为购买设备时已付150万元,所以欠款为1 000万元,依据题意,知其后应分20次付款,则每次付款的数额顺次构成数列{a n},且a1=50+1 000×1%=60,a2=50+(1 000-50)×1%=59.5,a3=50+(1 000-50×2)×1%=59,…,a n=50+[1 000-50(n-1)]×1%=60-0.5(n-1)(1≤n≤20,n∈N*),所以数列{a n}是以60为首项,-0.5为公差的等差数列,所以a10=60-9×0.5=55.5,S20=20[60+(60-19×0.5)]2=1 105.所以全部按期付清后,买这40套机器设备实际共花费了1 105+150=1 255(万元).故分期付款的第10个月应付55.5万元,全部按期付清后,买这40套机器设备实际花了1 255万元.。

等差数列的性质与计算

等差数列的性质与计算

等差数列的性质与计算等差数列是数学中常见的一种数列形式,也被广泛应用在各个领域中。

本文将介绍等差数列的一些基本性质,并讲解如何进行等差数列的计算。

一、等差数列的定义和性质等差数列指的是一个数列中的每个元素与它的前一个元素之差都相等。

通常,等差数列的首项记为 a,公差记为 d。

数列的通项公式可以表示为:An = a + (n - 1)d其中 An 表示数列的第 n 项。

等差数列的性质如下:1. 公差:等差数列中相邻两项的差值称为公差,公差常用字母 d 表示。

2. 首项和末项:等差数列的首项是数列中的第一个元素,记为 a;末项是数列中的最后一个元素。

3. 通项公式:等差数列的通项公式是用来表示数列中任意一项的公式。

4. 项数:指的是等差数列中的项的个数。

5. 数列的和:等差数列的和表示数列中所有项的总和,常用字母 S 表示。

二、等差数列的计算1. 求某一项的值可以使用通项公式来计算等差数列中的任意一项的值。

例如,对于等差数列 3, 6, 9, 12, ...,如果需要计算第 7 项的值,可以使用通项公式An = a + (n - 1)d,代入 a = 3,d = 3,n = 7 进行计算。

A7 = 3 + (7 - 1)3= 3 + 6*3= 3 + 18= 21所以,等差数列 3, 6, 9, 12, ... 的第 7 项的值为 21。

2. 求前 n 项的和对于等差数列的前 n 项和,可以使用以下公式进行计算:Sn = (n/2)(2a + (n - 1)d)其中,Sn 表示等差数列的前 n 项和,a 表示首项,d 表示公差,n 表示项数。

例如,对于等差数列 2, 4, 6, 8, ...,如果需要计算前 5 项的和,可以使用上述公式计算。

S5 = (5/2)(2*2 + (5 - 1)*2)= (5/2)(4 + 4*2)= (5/2)(4 + 8)= (5/2)(12)= 30所以,等差数列 2, 4, 6, 8, ... 的前 5 项的和为 30。

等差数列的判定和性质

等差数列的判定和性质

若{an}是等差数列,则{an}前n项
2 2 d d 2 An Bn .其中,A Байду номын сангаас, B a1 2 2
2
充分性
若数列an 的前n项和Sn An 2 Bn ( n 2)
A B ( n 1) 则a n Sn Sn1 2 An A B 2 An A B (n N )
*
an1 an 2 A, 故数列an 是公差为2 A的等差数列
二、等差数列的性质
an am (1)an=am+(n-m)d, d nm
(3)前n项和为n的二项式(d≠0时),且 常数为0,即Sn =an2+bn;且a=
1 d 2

(特别是:m+n=2p

(2)m+n=p+q, ( m,n,p,q∈N*)
( 4)
f (an ) 1 n 1 1 n
f (a1 ) f (a2 ) f (a100 ) 1 2 100 5050
2 2 2
例2
定义域为-1, 1的函数f ( x )满足:对于任意
x y x、y -1, 1都有f ( x ) f ( y ) f 1 xy (1)判定f ( x )的奇偶性并证明你的结 论; x y (2)证明 : f ( x ) f ( y ) f 1 xy 1 2n ( 3)若a n ( n N ), 证明数列 f (a n )是等差数列; n 1 2 1 (4)若f ( ) 1, 试求f (a1 ) f (a 2 ) f (a100 )的值。 3
等差数列的判定 和性质

等差数列的性质练习题

等差数列的性质练习题

等差数列的性质练习题等差数列是数学中常见的一种数列形式,它具有一些独特的性质和规律。

在本文中,我们将通过练习题的形式来深入探讨等差数列的性质,并解答一些相关问题。

练习题一:已知等差数列的首项为a,公差为d,第n项为an。

若a=2,d=3,an=20,求n的值。

解答一:根据等差数列的通项公式an = a + (n-1)d,代入已知条件可以得到20 = 2 + (n-1)3。

简化方程可以得到18 = (n-1)3,进一步化简得到6 = n-1。

因此,n的值为7。

练习题二:已知等差数列的首项为a,公差为d,前n项和为Sn。

若a=1,d=4,Sn=45,求n的值。

解答二:根据等差数列的前n项和公式Sn = (n/2)(2a + (n-1)d),代入已知条件可以得到45 = (n/2)(2 + 4(n-1))。

简化方程可以得到45 = (n/2)(2 + 4n - 4)。

进一步化简得到45 = (n/2)(4n - 2)。

再次化简得到45 = 2n^2 - n。

将方程变为二次方程的标准形式,得到2n^2 - n - 45 = 0。

通过求解这个二次方程,可以得到n的值为5或-4。

由于数列的项数不能为负数,因此n的值为5。

练习题三:已知等差数列的首项为a,公差为d,第m项为am,第n项为an。

若a=3,d=2,am=11,an=23,求m和n的值。

解答三:根据等差数列的通项公式an = a + (n-1)d,代入已知条件可以得到23 = 3 + (n-1)2。

简化方程可以得到20 = (n-1)2,进一步化简得到10 = n-1。

因此,n的值为11。

同样地,代入已知条件可以得到11 = 3 + (m-1)2。

简化方程可以得到8 = (m-1)2,进一步化简得到4 = m-1。

因此,m的值为5。

通过解答以上练习题,我们可以看出等差数列的性质和规律。

首先,等差数列的通项公式an = a + (n-1)d可以用来求解数列的任意一项。

等差数列的前n项和性质+练习

等差数列的前n项和性质+练习

1、等差数列{a n }前n 项和公式: n S = n a n 2a 1+=d n n n a 2)1(1-+=d n n na n 2)1(--。

等差数列的前n 项之和公式可变形为,若令A =,B =a 1-,则=An 2+Bn.在解决等差数列问题时,如已知,a 1,a n ,d ,,n 中任意三个,可求其余两个。

2、等差数列{a n }前n 项和的性质性质1:S n ,S 2n -S n ,S 3n -S 2n , …也在等差数列,公差为n 2d性质2:(1)若项数为偶数2n,则 S 2n =n(a 1+a 2n )=n(a n +a n+1) (a n ,a n+1为中间两项),此时有:S 偶-S 奇= nd , 性质3:(2)若项数为奇数2n -1,则 S 2n-1=(2n - 1)a n (a n 为中间项), 此时有:S 奇-S 偶= a n ,1-n n s =偶奇s 性质4:数列{nn s }为等差数列 性质5:若数列{a n }与{b n }都是等差数列,且前n 项的和分别为S n 和T n ,则2121n n n n a S b T --= 典型例题:热点考向1:等差数列的基本量(a 1,a n ,d ,,n 中任意三个,可求其余两个)例1、在等差数列{n a }中,已知81248,168S S ==,求1,a 和d 已知6510,5a S ==,求8a 和8S训练: 1、在等差数列{}n a 中,已知102030,50a a ==.(1)求通项公式{}n a ;(2)若242n S =,求n .2.在等差数列{}n a 中,n S 为数列{}n a 的前n 项和,已知7157,75S S ==,n T 为数列{n S n }的前n 项和,求n T 3、已知等差数列的前n 项之和记为S n ,S 10=10 ,S 30=70,则S 40等于 。

4. 已知是等差数列,且满足,则等于________。

等差数列的求和公式及应用练习题

等差数列的求和公式及应用练习题

等差数列的求和公式及应用练习题等差数列是数学中重要的概念,它在数学和其他科学领域的应用非常广泛。

本文将详细介绍等差数列的求和公式以及一些相关的应用练习题。

一、等差数列的定义和性质等差数列是指数列中任意两个相邻元素之间的差值都相等的数列。

设等差数列的首项为a,公差为d,则该数列可以写成如下形式:a,a+d,a+2d,a+3d,...等差数列的求和公式是指数列前n项和的表达式。

下面推导等差数列求和公式的过程:设等差数列的首项为a,公差为d,数列的前n项和为S。

首项a、末项a+(n-1)d之和为:a+a+(n-1)d = 2a+(n-1)d令项数乘以和数(第一次 + 第二次 = 第一次到第二次):n * S = a + a + (a + 2d) + ... + [a + (n-3)d + a + (n-2)d] + [a + (n-2)d + a + (n-1)d]共有n项,则等式右边的式子可以重排为:n * S = n * a + [1 + 2 + 3 + ... + n-3 + n-2 + n-2 + n-1] * d即:n * S = n * a + n(n-1)/2 * d两边同时除以n,得到:S = a + (n-1)/2 * d这就是等差数列前n项和的求和公式。

二、等差数列求和公式的应用练习题1. 求等差数列1,3,5,7,9的前10项和。

根据等差数列求和公式,首项a = 1,公差d = 3-1 = 2,项数n = 10。

代入公式,可得:S = 1 + (10-1)/2 * 2 = 1 + 9 * 2 = 1 + 18 = 19。

所以,等差数列1,3,5,7,9的前10项和为19。

2. 某等差数列的首项为-5,公差为3,若数列的前n项和为123,请求n的值。

根据等差数列求和公式,首项a = -5,公差d = 3,项数n为待求。

代入公式,可得:123 = -5 + (n-1)/2 * 3化简得:123 = -5 + 1.5n -1.5移项得:129 = 1.5n解方程可得:n = 86所以,该等差数列的前n项和为123时,n的值为86。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差数列性质及习题
基础知识回顾
一、定义: an1 an d (n N * )
二、通项公式:an a1 (n 1)d an am (n m)d
三、等差中项:若 a, A,b 成等差数列,则 A a b 2
四、等差数列的判定方法 (1)an+1-an=d(常数) ——{an}是等差数列 (2)2an+1=an+an+2——{an}是等差数列
a2 , b2 , c2 也成等差数列.
(3)an=kn+b(k、b为常数) —{an}是等差数列
六、等差数列的性质
若数列{an}是公差为d的等差数列:
1.d>0, {an}是递增数列; d<0, {an}是递减数列; d=0, {an}是常数列.
2.若m+n=p+q,则am+an=ap+aq m+n=2k,则am+an=2ak
3.数列{kan+b}(k、b是常数)是公差为kd的等
例3 三个数成等差数列,和为6,积为-24,求 这三个数;
等差数列{an}中,若m=p+q,则am=ap+aq成立 吗?
例4 在12与60之间插入3个数,使这5个数成等 差数列,求插入的3个数。
例5 在等差数列{an}中,已知a1+a2=5, a3 +a4=9, 那么a5+a6=_______.
差数列。
4.下标成等差数列且公差为m的项 ak,ak+m,ak+2m, …组成公差为md的等差数列。
5.{bn}也成等差数列,则{an+bn},{kan+bn} (k为非零Hale Waihona Puke 数)也是等差数列。应用举例
例1 已知等差数列{an}中,a7+a9=16,a4=1,则 a12=( )
例2 已知等差数列{an}中,a1+3a8+a15=1,a4=1, 则求2a9-a10的值。
例 3 已知各项均为正数的两个数列an 和 bn .满
足 an1
an bn an2 bn2
, n N .设 bn1
1
bn an
,n
N ,
求证:数列
(
bn an
)2

是等差数列.
例 8 已知 1 , 1 , 1 成等差数列,试证: bc ca ab
相关文档
最新文档