电液伺服系统详解共75页

合集下载

第五章 电液伺服系统

第五章 电液伺服系统
第五章 电液伺服系统
5.1 电液位置伺服系统 5.2 电液速度伺服系统 5.3 电液伺服系统在轧钢中的应用
5.1 电液位置伺服系统
系统组成原理图 系统工作原理与方框图 系统的传递函数 液压控制系统技术指标 系统精度分析 系统的校正
系统组成原理图
系统的工作原理(一)
电液伺服阀控缸位置控制系统,两个电 位器组成的电桥测量输入(指令电位器) 与输出(工作台位置)之间的位置偏差 信号(用电压表示)。若反馈信号电位 器的滑臂指示电位与指令电位器的滑臂 指示电位不等时,则生产偏差电压。
系统的传递函数(一)
根据双电位器阀控缸的位置控制的方框图,可 以写出系统的开环传递函数为:
Au ( s ) = Kv s s 2 2ξ sv s 2 2ξ h s ω + 1 ω 2 + ω + 1 ω 2 + ω + 1 sv h a sv h
液压控制系统的技术指标
一个具体的液压控制系统,除了要满足 一些常规的技术指标外,还有控制系统 特有的技术要求,主要表现在: 控制系统的稳定性 控制系统的响应特性 系统的控制精度(误差)
控制系统的稳定性
稳定是一个控制系统正常工作的必要条 件,是首要考虑的指标。稳定性是指系 统在偏离平衡状态后外作用消失,系统 恢复到新的或原来的平衡状态的能力。 判定系统的稳定性,可以用劳斯判据。 对三阶方程 a3 s 3 + a2 s 2 + a1s + a0 = 0 其稳定条 件是 a0 a3 < a1a2 。 另一种则是利用开环对数频率特性。
τ c = RC
速度控制系统的校正(二)
校正后系统的开环方框图为:
速度控制系统的校正(结束)

电液伺服系统详解

电液伺服系统详解
电液伺服系统
电液伺服系统
系统组成:由EH供油系统、电液执行器、保护 系统和试验模块
汽轮机数字电液控制系统
Digital Electro-Hydraulic Control System
EH供油系统 向电液执行器提供符合压力要求和清洁度、酸 度等品质要求的安全、可靠、稳定的液压油。由高压油泵、过 滤器、再生装置、冷油器EH油箱、高压蓄能器、低压蓄能器 等组成。 电液执行器 主汽门和调节汽门的执行调节器。有电液伺服阀 和电磁阀2种控制方式,前者为位置连续调节,后者为开、关2 种状态。 保护系统 “2取1”带电动作OPC电磁阀,“4取2”失电动作电 磁阀,及试验回路。超速保护控制和自动停机遮断,前者用于 超速预警和保护,后者用于事故工况下紧急停机。 试验模块 低润滑油压、低EH油压、推力轴承磨损、低真空 等试验系统。 油路系管路、OPC保护油路或AST停机油路、低压回油油路和无压回 油油路。前3种与电液执行器相连,保护系统的回油经无压回 油油路直接排至主油箱。
EH油系统 运 行
EH油系统概述 随着大容量、高参数汽轮发电机组的发展, 机组调节系统工作介质的额定压力随之升高, 对其工作介质的要求亦越来越高。通常所用 的矿物油自燃点为350℃左右,若在高参数大 容量机组使用,便增加了油泄漏到主蒸汽管 道(>530℃)导致火灾的危险性。为保证机组 的安全经济运行,汽轮机电液调节系统的控 制液普遍采用了磷酸酯抗燃油。
柱塞变量油泵



系统采用进口高压变量柱塞泵,并采用双泵并联工作系统, 当一台泵工作,则另一台泵备用,以提高供油系统的可靠性, 二台泵布置在油箱的下方,以保证正的吸入压头。 由交流马达驱动高压柱塞泵,通过油泵吸入滤网将油箱中的 抗燃油吸入,从油泵出口的油经过压力滤油器通过单向阀流 入和高压蓄能器联接的高压油母管将高压抗燃油送到各执行 机构和危急遮断系统。 泵输出压力可在0-21MPa之间任意设置。本系统允许正常工 作压力设置在11.0~15.0MPa,本系统额定工作压力为 14.5MPa。 油泵启动后,油泵以全流量约85 L/min向系统供油,同时也 给蓄能器充油,当油压到达系统的整定压力14.5MPa时,高 压油推动恒压泵上的控制阀,控制阀操作泵的变量机构,使 泵的输出流量减少,当泵的输出流量和系统用油流量相等时, 泵的变量机构维持在某一位置,当系统需要增加或减少用油 量时,泵会自动改变输出流量,维护系统油压在14.5MPa。 当系统瞬间用油量很大时,蓄能器将参与供油。

伺服控制(电液伺服系统 )课件

伺服控制(电液伺服系统 )课件
20
(二)系统的闭环刚度特性
闭环惯性环节转折频率的无因次曲线
17
闭环振荡环节固有频率无因次曲线
当h和Kv/h较小时
nc h
18
当h和Kv/h较小时
2 nc 2 h — Kv / h
闭环振荡环节阻尼系数无因次曲线
19
系统频宽主要受h和h的影响 和限制,应适当提高h和 h , 但过大的 h会降低nc,影响响
应速度。
电液位置控制系统闭环频率特性曲线
4)只有在工作频率接近谐振频率h时才有稳定性问题。当工作频率 接近h时,负载压力且也将接近ps了,也就是说压力趋于饱和,Kc变得很
大,阻尼系数比较高。
14
P116页使系统满足一定稳定要求的参数估算
由于以上几点原因,估算时一般可用
Kv
h
3
电液位置伺服系统难于得到较大的幅值稳定裕量Kg,而相位稳定
裕量 易于保证。
6
位置比较用电压比较代替 缸
电液伺服阀 液压能源
样板 给定
xi 位移 ei 比较eg 电伺服 I
传感器
- 放大器
ef
力矩 马达
液压 放大元件
扰动
液压 xp
执行件
位移 传感器1
A 双传感器阀控位置控制系统
7
由计算机图 形代替样板
程序 ei 比较eg
给定
-
ef
电液伺服阀 液压能源
电伺服 i 放大器
力矩 马达
11
将电液伺服阀看成比例环节
Kv
Ke Kd Ka Ksv iDm
TL
K V ce
iD K m
4
s
t
1
e ce
i +

电液伺服系统概述

电液伺服系统概述
电液比例控制系统分类及组成难点电液比例控制系统工作原理教具液压气动实验台挂图模型多媒体复习提问新知识点考查液压气压系统的多级调速与多级调压原理作业课后回忆备注教员教研室主任批阅查意见项目一电液比例与伺服控制系统概述提出任务液压气压系统的多级调速与多级调压可用什么方法实现
课题
电液比例与伺服控制系统概述
能结合传统的多级调速与多级调压掌握电液比例控制系统的原理,并能明确两者之间的区别。
二、自主学习
1、了解电液比例与伺服控制技术的发展概况
2、某重型机床工作台的位置伺服系统
图1-1液压伺服控制系统原理图
图中展示的是液压缸输出位移对阀芯输入位移的跟随运动。
图1-2液压伺服系统工作原理方块图
通过以上学习,应分析出液压伺服系统具备以下工作特点:
电液比例控制系统分类及组成
难点
电液比例控制系统工作原理
教具
液压气动实验台、挂图、模型、多媒体
复习
提问
新知识点考查
液压气压系统的多级调速与多级调压原理
布置
作业
课后
回忆
备注
教员
教研室
主任批阅
系部审
查意见
项目一电液比例与伺服控制系统概述
一、提出任务
液压气压系统的多级调速与多级调压可用什么方法实现。
教学目的
图1-5开关型液压控制阀的多级速度控制系统
液比例调速阀1控制,阀1能够根据输入电流的大小自动控制输出流量,并与输入电流成比例。可方便的实现多级和无级调速。
图1-6开环比例速度控制系统
2、多级调压系统
⑴图1-7为采用传统的开关型电磁阀和溢流阀的多级压力控制系统。该回路可实现三级调压及液压卸荷功能。由于是开关型控制,系统会出现压力超调,而且采用元件也较多。

电液伺服控制系统

电液伺服控制系统

1电液伺服控制系统1.1电液控制系统的发展历史概述液压控制技术的历史最早可以追溯到公元前240年,一位古埃及人发明的液压伺服机构———水钟。

而液压控制技术的快速发展则是在18世纪欧洲工业革命时期,在此期间,许多非常实用的发明涌现出来,多种液压机械装置特别是液压阀得到开发和利用,使液压技术的影响力大增。

18世纪出现了泵、水压机及水压缸等。

19世纪初液压技术取得了一些重大的进展,其中包括采用油作为工作流体及首次用电来驱动方向控制阀等。

第二次世界大战期间及战后,电液技术的发展加快。

出现了两级电液伺服阀、喷嘴挡板元件以及反馈装置等。

20世纪50~60年代则是电液元件和技术发展的高峰期,电液伺服阀控制技术在军事应用中大显身手,特别是在航空航天上的应用。

这些应用最初包括雷达驱动、制导平台驱动及导弹发射架控制等,后来又扩展到导弹的飞行控制、雷达天线的定位、飞机飞行控制系统的增强稳定性、雷达磁控管腔的动态调节以及飞行器的推力矢量控制等。

电液伺服驱动器也被用于空间运载火箭的导航和控制。

电液控制技术在非军事工业上的应用也越来越多,最主要的是机床工业。

在早些时候,数控机床的工作台定位伺服装置中多采用电液系统(通常是液压伺服马达)来代替人工操作,其次是工程机械。

在以后的几十年中,电液控制技术的工业应用又进一步扩展到工业机器人控制、塑料加工、地质和矿藏探测、燃气或蒸汽涡轮控制及可移动设备的自动化等领域。

电液比例控制技术及比例阀在20世纪60年代末70年代初出现。

70年代,随着集成电路的问世及其后微处理器的诞生,基于集成电路的控制电子器件和装置广泛应用于电液控制技术领域。

现代飞机上的操纵系统。

如驼机、助力器、人感系统,发动机与电源系统的恒速与恒频调节,火力系统中的雷达与炮塔的跟踪控制等大都采用了电液伺服控制系统。

飞行器的地面模拟设备,包括飞行模拟台、负载模拟器大功率模拟振动台、大功率材料实验加载等大多采用了电液控制,因此电液伺服控制的发展关系到航空与宇航事业的发展,在其他的国防工业中如机器人也大量使用了电液控制系统。

电液伺服控制系统

电液伺服控制系统

组成电液比例控制系统的基本元件: 1)指令元件 2 比较元件 3 电控器 4 比例阀 5 液压执行器 6 检测反馈元件
第6章 电液伺服控制系统
4
6.1 概述
6.1.2 电 液 比 例 控 制 系 统 的 特 点 及 组成
第6章 电液伺服控制系统
5
6.1 概述
电液比例控制的主要优点是: 1)操作方便,容易实现遥控 2 自动化程度高,容易实现编程控制 3 工作平稳,控制精度较高 4 结构简单,使用元件较少,对污染不敏感 5 系统的节能效果好。
6.功率放大级
功率放大级式比例控制放大器的 核心单元。由信号放大和功率驱动电路 组成。
根据功率放大级工作原理不同,分 为:模拟式和开关式。
第6章 电液伺服控制系统
29
6.3 电液比例电控技术
(1)模拟式功率放大级
第6章 ห้องสมุดไป่ตู้液伺服控制系统
30
6.3 电液比例电控技术
(2)开关式功率放大级
第6章 电液伺服控制系统
比例放大器根据受控对象、功率级工作原理不同,分为: 1 单路和双路比例控制放大器 2 单通道、双通道和多通道比例控制放大器 3 电反馈和不带电反馈比例控制放大器 4 模拟式和开关式比例控制放大器 5 单向和双向比例控制放大器 6 恒压式和恒流式比例控制放大器
第6章 电液伺服控制系统
16
6.3 电液比例电控技术
第6章 电液伺服控制系统
18
6.3 电液比例电控技术
第6章 电液伺服控制系统
19
6.3 电液比例电控技术
2.输入接口单元 (1)模拟量输入接口
2 数字量输入接口 3 遥控接口
第6章 电液伺服控制系统
20

电液控制-机液伺服系统

电液控制-机液伺服系统

四、液压转矩放大器
Hale Waihona Puke 反馈机构为 螺杆、螺母 液压马达轴完全跟 踪阀芯输入转角而 转动。但输出力矩 比输入力矩要大得 多,故称液压转矩 放大器。
电液步进马达
以惯性负载为主时,可分析得
方框图为:
则系统方框图为:
§系统稳定性分析
液压伺服系统的动态分析和设计一般都是以稳定性要求为 中心进行的。
令G(s)为前向通道的传递函数,H(s)为反馈通道的传递函 数,由以上的方框图可得系统的开环传递函数为:
含有一个积分环节,故系统为Ⅰ型系统。
可绘制开环系统伯德图,如下图所示:
对伯德图的分析
幅值穿越频率ωc≈Kv 相位穿越频率ωc=ωg 为了使系统稳定, 必须有足够的相位裕 量和增益裕量。 由图可见,相位裕 度已为正值,为使幅 值裕度为正值,可计 算求得要求: K 2
与全闭环系统相比,半闭环系统的稳定性好得多,但精度较低。
综上所述,由于结构柔度的影响,产生了结构谐振和液压谐 振的耦合,使系统出现了频率低、阻尼比小的综合谐振,综合谐 振频率ωn和综合阻尼比ξn常常成为影响系统稳定性和限制系统频 宽的主要因素,因此提高具有重要意义。 提高ωn 就需要提高结构谐振频率ωs,就要求负载惯量减小 (但已由负载特性决定),结构刚度增大(提高安装固定刚度和 传动机构刚度,尤其是靠近负载处的传动机构的结构刚度)。 增大执行元件到负载的传动比,可提高液压固有频率;提高 液压弹簧刚度的方法也可提高液压固有频率,从而提高综合谐振 频率。
反馈从活塞输出端Xp取出时,构成为半闭环系统,其方框图 为:
此时系统开环传函中含有二阶微分环节,当ωs2和ωn靠得很 近时,会有零极点相消现象,使综合谐振峰值减小,从而改善 系统稳定性,如曲线b所示。 系统闭环传函为:

电液伺服系统原理

电液伺服系统原理

电液伺服系统原理
电液伺服系统是一种通过控制液压油流来实现位置、速度和力的精确控制的系统。

它由液压系统、电气系统和机械执行部分组成。

液压系统是电液伺服系统的核心部分,它包括液压泵、液压缸、液压阀和液压油箱。

液压泵通过压力油将液压油推送给液压缸,从而产生力或运动。

液压阀用于控制液压油的流动方向和流量。

液压油箱用于储存液压油,并保持其温度和清洁度。

电气系统通过控制电信号来控制液压系统。

它包括传感器、控制器和执行器。

传感器用于检测被控对象的位置、速度和力,并将其转化为电信号。

控制器接收传感器反馈的电信号,经过计算和处理后,输出控制信号给执行器。

执行器接收控制信号,并控制液压阀的开关状态,从而控制液压系统的运动和力。

机械执行部分将液压系统的力和运动传递给被控对象。

它包括液压缸、阀门、连接杆等元件。

液压缸接收液压油的力,并将其转化为线性运动。

阀门用于控制液压油流的方向和流量。

连接杆将液压缸的运动传递给被控对象,实现位置、速度和力的控制。

总之,电液伺服系统通过控制液压油流来实现位置、速度和力的精确控制。

液压系统、电气系统和机械执行部分相互配合,完成对被控对象的精确控制。

电液伺服控制系统概述

电液伺服控制系统概述

电液伺服控制系统概述摘要:电液伺服控制是液压领域的重要分支。

多年来,许多工业部门和技术领域对高响应、高精度、高功率——重量比和大功率液压控制系统的需要不断扩大,促使液压控制技术迅速发展。

特别是控制理论在液压系统中的应用、计算及电子技术与液压技术的结合,使这门技术不论在原件和系统方面、理论与应用方面都日趋完善和成熟,并形成一门学科。

目前液压技术已经在许多部门得到广泛应用,诸如冶金、机械等工业部门及飞机、船舶部门等。

关键词:电液伺服控制液压执行机构伺服系统又称随机系统或跟踪系统,是一种自动控制系统。

在这种系统中,执行元件能以一定的精度自动地按照输入信号的变化规律动作。

液压伺服系统是以液压为动力的自动控制系统,由液压控制和执行机构所组成。

一、电液控制系统的发展历史液压控制技术的历史最早可以追溯到公元前240年,一位古埃及人发明的液压伺服机构——水钟。

而液压控制技术的快速发展则是在18世纪欧洲工业革命时期,在此期间,许多非常实用的发明涌现出来,多种液压机械装置特别是液压阀得到开发和利用,使液压技术的影响力大增。

18世纪出现了泵、水压机及水压缸等。

19世纪初液压技术取得了一些重大的进展,其中包括采用油作为工作流体及首次用电来驱动方向控制阀等。

第二次世界大战期间及战后,电液技术的发展加快。

出现了两级电液伺服阀、喷嘴挡板元件以及反馈装置等。

20世纪50~60年代则是电液元件和技术发展的高峰期,电液伺服阀控制技术在军事应用中大显身手,特别是在航空航天上的应用。

这些应用最初包括雷达驱动、制导平台驱动及导弹发射架控制等,后来又扩展到导弹的飞行控制、雷达天线的定位、飞机飞行控制系统的增强稳定性、雷达磁控管腔的动态调节以及飞行器的推力矢量控制等。

电液伺服驱动器也被用于空间运载火箭的导航和控制。

电液控制技术在非军事工业上的应用也越来越多,最主要的是机床工业。

在早些时候,数控机床的工作台定位伺服装置中多采用电液系统(通常是液压伺服马达)来代替人工操作,其次是工程机械。

电液伺服系统的原理及应用

电液伺服系统的原理及应用

电液伺服系统的原理及应用一.电液伺服系统概述电液伺服系统在自动化领域是一类重要的控制设备,被广泛应用于控制精度高、输出功率大的工业控制领域.液体作为动力传输和控制的介质,跟电力相比虽有许多不甚便利之处且价格较贵,但其具有响应速度快、功率质量比值大及抗负载刚度大等特点,因此电液伺服系统在要求控制精度高、输出功率大的控制领域占有独特的优势。

电液伺服控制系统是以液压为动力,采用电气方式实现信号传输和控制的机械量自动控制系统。

按系统被控机械量的不同,它又可以分为电液位置伺服系统、电液速度伺服控制系统和电液力控制系统三种。

我国的电液伺服发展水平目前还处在一个发展阶段,虽然在常规电液伺服控制技术方面,我们有了一定的发展。

但在电液伺服高端产品及应用技术方面,我们距离国外发达国家的技术水平还有着很大差距。

电液伺服技术是集机械、液压和自动控制于一体的综合性技术,要发展国内的电液伺服技术必须要从机械、液压、自动控制和计算机等各技术领域同步推进。

二.电液伺服的组成电液控制系统是电气液压控制系统简称,它由电气控制及液压两部分组成。

在电子-液压混合驱动技术里,能量流是由电子控制,由液压回路传递,充分结合了电子控制和液压传动两者混合驱动技术的优点避免了它们各自的缺陷。

⑴电子驱动技术的特点①高精度、高效率,低能耗、低噪音②高性能动态能量控制③稳定的温度性能④能量再生及反馈电网⑤在循环空闲的时间没有能量损失⑵液压驱动技术的特点①高(力/功)密度②结构紧凑③液压马达(油缸)是大功率且经济的执行元件④在液压系统做压力控制的时候有明显的能量流失液压部分:以液体为传动介质,靠受压液体的压力能来实现运动和能量传递。

基于液压传动原理,系统能够根据机械装备的要求,对位置、速度、加速度、力等被控量按一定的精度进行控制,并且能在有外部干扰的情况下,稳定、准确的工作,实现既定的工艺目的。

(工控网)液压伺服阀是输出量与输入量成一定函数关系,并能快速响应的液压控制阀,是液压伺服系统的重要元件。

电液伺服系统工作原理

电液伺服系统工作原理

电液伺服系统工作原理
电液伺服系统是一种通过电气信号控制液压执行机构的系统。

它利用电液转换装置将电能转换为液压能,并通过液压传动将能量传递到执行机构上,从而实现机械装置的运动控制。

电液伺服系统具有快速、准确、可靠的特点,在工业自动化控制领域得到广泛应用。

电液伺服系统的工作原理主要包括信号处理、电液转换、液压传动和执行机构四个部分。

信号处理部分将控制信号转换为电压或电流信号,经过调节后送至电液转换部分。

电液转换部分由电液转换器和液压放大器组成,其主要功能是将电信号转换为液压信号,并放大转换后的液压信号,以便驱动液压执行机构。

液压传动部分是电液伺服系统的核心部分,通过液压传动装置将液压能量传递到执行机构上。

液压传动装置通常由液压泵、液压阀、液压缸等组成。

液压泵负责产生压力油液,液压阀用于控制液压油液的流动方向和流量,液压缸则是执行机构的核心部件,它根据液压信号产生的压力油液推动活塞运动,从而实现机械装置的运动控制。

执行机构接收液压信号并进行相应的动作。

执行机构通常由液压马达、液压缸或液压伺服阀等组成,它们根据液压信号产生的力或位移来控制机械装置的运动。

总的来说,电液伺服系统的工作原理是通过将控制信号转换为液压信号,并通过液压传动装置将液压能量传递到执行机构上,从而实现对机械装置的运动控制。

这种系统具有快速、准确、可靠的特点,广泛应用于工业自动化控制领域。

液压系统电液伺服系统

液压系统电液伺服系统
液压伺服系统
三、液压伺服系统
a) 阀控缸直线位置控制系统
液压伺服系统
图19 阀控缸直线位置控制系统 (a)原理图 (b)系统方块图
三、液压伺服系统
(2)电液伺服系统
b) 阀控马达转角位置控制系统
图20 阀控马达转角位置控制系统 (a)工作原理图 (b)系统方块图
液压伺服系统
三、液压伺服系统
(2)电液伺服系统
c) 电液伺服跑偏控制系统
图21 轧钢机上的电液伺服跑偏控制系统 a)工作示意图 b)液压原理图
液压伺服系统
三、液压伺服系统
(2)电液伺服系统
c) 电液伺服跑偏控制系统 为什么带材连续生产要进行跑偏控制呢?这是因为尽管在机组和设备设
计中采取了许多使带材定心的措施,但跑偏仍是不可避免的。
引起跑偏的主要原因有:张力不适当或张力波动较大;辊系的不平行;
第十章 液压伺服系统
➢ 概述 ➢ 液压伺服元件 ➢ 液压伺服系统
三、液压伺服系统 (2)电液伺服系统
电液伺服系统是由电的信号处理部分与液压的功率输出部分组成的闭环 控制系统,该系统综合了电和液压两方面的特点,具有控制精度高、响应 速度快、信号处理灵活、输出功率大、结构紧凑和重量轻等优点,因此得 到了广泛应用。根据被控的物理量,电液伺服系统可分为:位置伺服控制 系统,速度伺服控制系统,力或压力伺服控制系统等,而最基本和应用最 广的是电液位置伺服控制系统,下面介绍几种电液位置伺服控制系统。
三、液压伺服系统
c) 电液伺服跑偏控制系统
图22 电液伺服跑偏控制系统方块图 该系统中,由于检测器和卷筒一起移动,形成了直接位置反馈,无专门的反馈 元件,系统方块图如图22所示。 图21中电磁换向阀的作用是使伺服液压缸与辅助液压缸互锁,正常卷带时, 右边电磁铁通电,辅助液压缸锁紧;卷带结束时,左边电磁铁通电,伺服液压缸 锁紧。

第六章电液伺服系统

第六章电液伺服系统

对恒值外负载力矩
TL(
s
)

TL0 s
,则有
eL()KvKi2cDem 2 TL0
(三)零漂和死区等引起的静态误差
将零漂、死区等在系统中造成的误差.称为系统的静
差。
TL Tf
K ce
I f I dID
iDm2
r e KeKd
Ka
-
1
K sv
Dm
1
1 c
s
i
静摩擦力矩引起的静态位置误差为
ur -
ue Ka I
1.96 103 s2 2 0.7s 1572 157 1
q0
1 / 168104
s(
s2 882

2 0.3s 88
1)
Xp
系统的开环传递函数为
G (s)H (s)
K v
s1s25 27 21 0.5 7s7 18s228 2 80.3 8s1
当伺服阀的频宽大于液压固有频率(3—5倍)时
KsvGsv(s) QI0 TsK vssv1
当伺服阀的频宽大于液压固有频率(5—10倍)时
KsvGsv(s)QI0 Ksv
在没有弹性负载和不考虑结构柔度的影响时,阀控 液压马达的动态方程为
m

Kq Dm
Xv

Kce Dm 2
( Vt
4eKce
s1)TL
s
s2
h2
2h h
s1
m

Q0 Dm

Kce iDm2
1
Vt
4eKce
sTL
ss2h2

2h h
s 1

电液伺服控制

电液伺服控制

电液伺服控制1. 引言电液伺服控制是一种在工业自动化领域广泛应用的控制技术,通过控制电液伺服系统的输出来实现对机械装置的精确控制。

本文将介绍电液伺服控制的基本原理、控制策略和应用领域。

2. 电液伺服系统结构电液伺服系统由执行机构、传感器、控制器和液压装置等组成。

执行机构一般由液压缸和阀门组成,传感器用于对执行机构的运动状态进行反馈,控制器根据传感器反馈的信息进行计算和决策,液压装置则负责产生并传递液压能量。

3. 电液伺服控制原理电液伺服控制的基本原理是通过改变液压系统的压力和流量来实现对执行机构的运动控制。

控制器根据预定的信号和传感器反馈的信息计算出对应的控制指令,然后通过控制阀控制液压系统的工作状态,从而实现对执行机构的控制。

4. 电液伺服控制策略电液伺服控制有多种控制策略,常见的包括位置控制、速度控制和力控制。

位置控制是通过对液压缸的运动位置进行控制,实现对机械装置位置的精确控制。

速度控制则是控制液压缸的运动速度,实现对机械装置运动速度的精确控制。

力控制则是控制液压系统的输出力,实现对机械装置施加的力的精确控制。

5. 电液伺服控制的特点电液伺服控制具有以下特点:•高精度:电液伺服控制可以实现对机械装置位置、速度和力的精确控制,满足工业自动化对精度的要求。

•响应快:电液伺服控制系统的响应速度较快,可以实现快速而准确的控制。

•高可靠性:电液伺服系统采用液压传动,具有较高的可靠性和稳定性。

•适应性强:电液伺服控制适用于各种不同工况和负载情况下的控制需求。

6. 电液伺服控制的应用领域电液伺服控制广泛应用于各个工业领域,包括机床、起重机械、注塑机、机器人等。

在机床行业中,电液伺服控制可实现高精度的切削加工;在起重机械领域,电液伺服控制可以实现大力矩的精确控制,提高起重机械的工作效率;在注塑机和机器人领域,电液伺服控制可以实现高速、灵活的动作控制,提高生产效率和产品质量。

7. 总结电液伺服控制是一种在工业自动化领域应用广泛的控制技术,通过控制液压系统的输出来实现对机械装置的精确控制。

电液伺服控制系统

电液伺服控制系统

12
m
1 Dm
QL
Kce Dm2
1
Vt
4e Kce
s
s2
h
2 h h
s
1
s
TL i
电液控制技术-电液伺服控制系统
电液位置伺服系统
一、电液位置伺服系统的方框图与传递函数
自整角机
us
θi
θL
相敏 放大器
ug
t
齿轮传动比
i m L
功率 放大器
t
Δi 力矩马达 电液伺服阀 液压马达 θm
电液伺服控制系统的类型 与性能评价指标
二、电液伺服控制系统的性能评价指标
2、动态特性指标 (1)时域性能指标

超调量 调节时间 峰值时间 衰减比 振荡次数
4
电液控制技术-电液伺服控制系统
电液伺服控制系统的类型 与性能评价指标
二、电液伺服控制系统的性能评价指标
2、动态特性指标 (2)频域性能指标
J 0 t e(t)dt
e(t)dt
J
0
0 x(t)dt
7
电液控制技术-电液伺服控制系统
电液位置伺服系统
电液位置伺服系统是最基本和最常用的一种
液压伺服系统,其输入是电信号,输出是机械位 移信号,常用在机床工作台的位置控制、板带轧 机的板厚控制、飞机和船舶的舵机控制等方面。
电液位置伺服系统分阀控电液位置伺服系统 和泵控电液位置伺服系统。
自整角机
相敏 放大器
功率 放大器
Δi
力矩马达
us
ug
电液伺服阀
液压马达
t
t
θi
θL
θm
电液伺服阀传递函数
TL 负 载

第6章 电液伺服系统(1)

第6章 电液伺服系统(1)

6.3 电液伺服系统的校正
以上讨论了比例控制的电液位置伺服系统,其性能主 要由动力元件参数所决定,对这种系统,单纯靠调整 增益往往满足不了系统的全部性能指标,这时就要对 系统进行校正,高性能的电液伺服系统一般都要加校 正装置。
一、滞后校正
滞后校正的主要作用是通过提高低频段增益,减小系 统的稳态误差,或者在保证系统稳态精度的条件下, 通过降低系统高频段的增益,以保证系统的稳定性。
总位置误差为:
位置控制系统的校正 A)串联滞后校正 作用:提高开环增益以提高精度,其传递函数为:
式中
rc
1 RC
——超前环节的转折频率; ——滞后超前比 >1。
典型滞后校正网络
校正后系统的开环传递函数为
一般要求: 选择不超过10~20; Kg=10~20dB、=40~60; c 位于rc和h之间的-20dB/dec区间。 参数选取方法: 当c确定后,取rc=(1/4~1/5) c,调整 rc 满足稳定裕量要求。
有速度反馈后的系统开环波德图
加速度反馈的实质是把输出速度变化率超前反馈,以阻止输出量 的变化而形成阻尼。提高了系统等速输入时的平稳性。二阶以上系统 用加速度反馈有利于平稳调速,故常用这种校正。
加入速度,加速度反馈校正后:
加速度、速度反馈参数选择原则: 1)根据希望的’h、’h求得K1、 K2, 2)进一步求出Kfa、Kfv,求出K’v可 判定Ka的值 3)通常’h、’h有一定限度。要求 增大后的’c以-20dB/dec穿过零分贝 线。 加入速度及加速度反馈的系统开环波德图
三、压力反馈和动压反馈校正:
采用压力反馈和动压反馈校正的目的是提高系统的阻尼。负 载压力随系统的动态而变化。当系统振动加剧时,负载压力也 增大。如果将负载压力加以反馈,使输入系统的流量减少.则 系统的振动将减弱。起到了增加系统阻尼的作用。可以来用压 力反馈伺服阀或功压反馈伺服阀实现压力反馈和动压反馈。也 可以采用液压机械网络或电反馈实现压力反馈或动压反馈。

液压伺服系统电液伺服系统课件

液压伺服系统电液伺服系统课件
发展趋势
随着科技的不断发展,液压伺服系统也在不断创新和完善。未来,液压伺服系统将朝着智能化、数字 化、网络化方向发展,实现更高效、更精准的控制。同时,液压伺服系统还将更加注重环保和节能, 推动绿色制造和可持续发展。
02 电液伺服系统基础知识
电液转换元件
01
02
03
伺服阀
将电气信号转换为液压流 量或压力,实现液压执行 机构的精确控制。
速度同步
采用液压伺服系统实现多工位、多执行机构的速 度同步,优化生产流程。
航空航天领域中的应用
飞机起落架收放系统
通过电液伺服系统实现飞机起落架的平稳收放,确保飞行安全。
发动机推力控制
利用液压伺服系统对航空发动机进行精确的推力控制,提高飞行 性能。
飞行姿态调整
采用电液伺服系统实现飞行姿态的快速、精确调整,满足复杂飞 行需求。
仿真分析
在系统模型的基础上,进行仿真分析,包括系统动态响应、控制精度、稳定性等方面的评估,以验证设计的合理性。
优化设计
根据仿真分析结果,对系统进行优化设计,包括调整元件参数、改进控制策略等,以提高系统性能。
04 电液伺服系统实现技术
硬件平台搭建
控制器选择
根据系统需求,选用合适的控制器,如PLC、DSP等,确保控制精 度和实时性。
元件选型与计算
元件选型
根据规格书要求,选择合适的液压泵 、马达、阀等元件,确保系统性能达 标。
元件计算
对所选元件进行详细的计算和分析, 包括流量、压力、功率等参数,确保 元件之间的匹配性和系统的稳定性。
系统仿真与优化
系统建模
利用AMESim、MATLAB/Simulink等仿真软件,建立液压伺服系统的数学模型,为后续仿真分析提供基础。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档