第四讲 MATLAB中求代数方程的近似根(解)final

合集下载

MATLAB解代数方程

MATLAB解代数方程

例 用QR分解求解 线性方程组。 分解求解 线性方程组。 命令如下: 命令如下: A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4]; b=[13,-9,6,0]'; [Q,R]=qr(A); x=R\(Q\b) 或采用QR分解的第 种格式,命令如下: 分解的第2种格式 或采用 分解的第 种格式,命令如下: [Q,R,E]=qr(A); x=E*(R\(Q\b))
(3) Cholesky分解 分解
如果矩阵X是对称正定的, 分解将矩阵X分解成 如果矩阵 是对称正定的,则Cholesky分解将矩阵 分解成 是对称正定的 分解将矩阵 一个下三角矩阵和上三角矩阵的乘积。设上三角矩阵为R, 一个下三角矩阵和上三角矩阵的乘积。设上三角矩阵为 , 则下三角矩阵为其转置, 则下三角矩阵为其转置,即X=R‘R。 。 MATLAB函数 函数chol(X)用于对矩阵 进行 用于对矩阵X进行 分解, 函数 用于对矩阵 进行Cholesky分解,其调 分解 用格式为: 用格式为: R=chol(X):产生一个上三角阵 ,使R'R=X。若X为非对称 :产生一个上三角阵R, 。 为非对称 正定,则输出一个出错信息。 正定,则输出一个出错信息。 [R,p]=chol(X):这个命令格式将不输出出错信息。当X为对 :这个命令格式将不输出出错信息。 为对 称正定的,则p=0,R与上述格式得到的结果相同;否则p 称正定的, , 与上述格式得到的结果相同;否则 与上述格式得到的结果相同 为一个正整数。如果X为满秩矩阵 为满秩矩阵, 为一个正整数。如果 为满秩矩阵,则R为一个阶数为 为一个阶数为 q=p-1的上三角阵,且满足 的上三角阵, 的上三角阵 且满足R'R=X(1:q,1:q)。 。 实现Cholesky分解后,线性方程组 分解后, 变成R‘Rx=b,所以 实现 分解后 线性方程组Ax=b变成 变成 , x=R\(R’\b)。 。

专题实验四 方程近似解的求法

专题实验四  方程近似解的求法

(4)、fsolve(fun,x0)
%求非线性方程fun=0在
估计值x0附近的近似解
解:>>fsolve('x-exp(-x)',0)
结果: 0.56714316503697
(5)、fzero(fun,x0)
%求函数fun在x0附近的根
例:求方程x-10x+2=0在x0=0.5附近的根 解:>>y=@(x)x-10^x+2;
qujian=input(‘请输入区间=');
err=input(‘请输入误差=');
a=qujian(1); b=qujian(2);
yc=1;
while((b-a)>err)&(yc~=0);
c=(a+b)/2;
ya=subs(f,x,a); yb=subs(f,x,b); yc=subs(f,x,c);
>>fplot(y,[-1,1]) %注意不能用plot
>>fzero(y,0.5)
结果:0.3758
三、 函数极值的求法
(1)一元函数极值的求法
Matlab中,求一元函数极值的函数为 fminbnd
1、此函数最简输入格式为:x=fminbnd(f,a,b)
含义为:求函数f在区间[a,b]上的最小值点(自变量值).
f 1 0与f x同号 所以取x0=1为迭代初始值
运用以上程序,得结果:x0=0.67065731072581
练习:
1、用二分法求方程 x3 x 1 0 在区间(1,1.5)
内的实根(要求准确到小数点后的第2位)
2、用迭代法求方程 x ex 在附近的一个根,要求精度

Matlab数值实验求代数方程的近似根(解)教程

Matlab数值实验求代数方程的近似根(解)教程

Matlab数值实验求代数方程的近似根(解)教程一、问题背景和实验目的二、相关函数(命令)及简介三、实验内容四、自己动手一、问题背景和实验目的求代数方程的根是最常见的数学问题之一(这里称为代数方程,主要是想和后面的微分方程区别开.为简明起见,在本实验的以下叙述中,把代数方程简称为方程),当是一次多项式时,称为线性方程,否则称之为非线性方程.当是非线性方程时,由于的多样性,尚无一般的解析解法可使用,但如果对任意的精度要求,能求出方程的近似根,则可以认为求根的计算问题已经解决,至少能满足实际要求.本实验介绍一些求方程实根的近似值的有效方法,要求在使用这些方法前先确定求根区间,或给出某根的近似值.在实际问题抽象出的数学模型中,可以根据物理背景确定;也可根据的草图等方法确定,还可用对分法、迭代法以及牛顿切线法大致确定根的分布情况.通过本实验希望你能:1. 了解对分法、迭代法、牛顿切线法求方程近似根的基本过程;2. 求代数方程(组)的解.二、相关函数(命令)及简介1.abs( ):求绝对值函数.2.diff(f):对独立变量求微分,f 为符号表达式.diff(f, 'a'):对变量a求微分,f 为符号表达式.diff(f, 'a', n):对变量 a 求 n 次微分,f 为符号表达式.例如:syms x tdiff(sin(x^2)*t^6, 't', 6)ans=720*sin(x^2)3.roots([c(1), c(2), …, c(n+1)]):求解多项式的所有根.例如:求解:.p = [1 -6 -72 -27];r = roots(p)r =12.1229-5.7345-0.38844.solve('表达式'):求表达式的解.solve('2*sin(x)=1')ans =1/6*pi5.linsolve(A, b):求线性方程组 A*x=b 的解.例如:A= [9 0; -1 8]; b=[1; 2];linsolve(A, b)ans=[ 1/9][19/72]6.fzero(fun, x0):在x0附近求fun 的解.其中fun为一个定义的函数,用“@函数名”方式进行调用.例如:fzero(@sin, 3)ans=3.14167.subs(f, 'x ', a):将 a 的值赋给符号表达式 f 中的 x,并计算出值.例如:subs('x^2 ', 'x ', 2)ans = 4三、实验内容首先,我们介绍几种与求根有关的方法:1.对分法对分法思想:将区域不断对分,判断根在某个分段内,再对该段对分,依此类推,直到满足精度为止.对分法适用于求有根区间内的单实根或奇重实根.设在上连续,,即,或,.则根据连续函数的介值定理,在内至少存在一点,使.下面的方法可以求出该根:(1) 令,计算;(2) 若,则是的根,停止计算,输出结果.若,则令,,若,则令,;.……,有、以及相应的.(3) 若 (为预先给定的精度要求),退出计算,输出结果;反之,返回(1),重复(1),(2),(3).以上方法可得到每次缩小一半的区间序列,在中含有方程的根.当区间长很小时,取其中点为根的近似值,显然有以上公式可用于估计对分次数.分析以上过程不难知道,对分法的收敛速度与公比为的等比级数相同.由于,可知大约对分10次,近似根的精度可提高三位小数.对分法的收敛速度较慢,它常用来试探实根的分布区间,或求根的近似值.2. 迭代法1) 迭代法的基本思想:由方程构造一个等价方程从某个近似根出发,令,可得序列,这种方法称为迭代法.若收敛,即,只要连续,有即可知,的极限是的根,也就是的根.当然,若发散,迭代法就失败.以下给出迭代过程收敛的一些判别方法:定义:如果根的某个邻域中,使对任意的,迭代过程,收敛,则称迭代过程在附近局部收敛.定理1:设,在的某个邻域内连续,并且,,则对任何,由迭代决定的序列收敛于.定理2:条件同定理 1,则定理3:已知方程,且(1) 对任意的,有.(2) 对任意的,有,则对任意的,迭代生成的序列收敛于的根,且.以上给出的收敛定理中的条件要严格验证都较困难,实用时常用以下不严格的标准:当根区间较小,且对某一,明显小于1时,则迭代收敛 (参见附录3).2) 迭代法的加速:a) 松弛法:若与同是的近似值,则是两个近似值的加权平均,其中称为权重,现通过确定看能否得到加速.迭代方程是:其中,令,试确定:当时,有,即当,时,可望获得较好的加速效果,于是有松弛法:,松弛法的加速效果是明显的 (见附录4),甚至不收敛的迭代函数经加速后也能获得收敛.b) Altken方法:松弛法要先计算,在使用中有时不方便,为此发展出以下的 Altken 公式:,是它的根,是其近似根.设,,因为,用差商近似代替,有,解出,得由此得出公式;;,这就是Altken 公式,它的加速效果也是十分明显的,它同样可使不收敛的迭代格式获得收敛(见附录5).3. 牛顿(Newton)法(牛顿切线法)1) 牛顿法的基本思想:是非线性方程,一般较难解决,多采用线性化方法.记:是一次多项式,用作为的近似方程.的解为记为,一般地,记即为牛顿法公式.2) 牛顿法的收敛速度:对牛顿法,迭代形式为:注意分子上的,所以当时,,牛顿法至少是二阶收敛的,而在重根附近,牛顿法是线性收敛的.牛顿法的缺点是:(1)对重根收敛很慢;(2)对初值要求较严,要求相当接近真值.因此,常用其他方法确定初值,再用牛顿法提高精度.4. 求方程根(解)的其它方法(1) solve('x^3-3*x+1=0')(2) roots([1 0 -3 1])(3) fzero('x^3-3*x+1', -2)(4) fzero('x^3-3*x+1', 0.5)(5) fzero('x^3-3*x+1', 1.4)(6) linsolve([1, 2, 3; 4, 5, 6; 7, 8, 0], [1, 2, 3]')体会一下,(2)(5) 用了上述 1 3 中的哪一种方法?以下是本实验中的几个具体的实验,详细的程序清单参见附录.具体实验1:对分法先作图观察方程:的实根的分布区间,再利用对分法在这些区间上分别求出根的近似值.输入以下命令,可得的图象:f='x^3-3*x+1';g='0';ezplot(f, [-4, 4]);hold on;ezplot(g, [-4, 4]); %目的是画出直线 y=0,即 x 轴grid on;axis([-4 4 -5 5]);hold off请填写下表:在某区间上求根的近似值的对分法程序参见附录1.具体实验2:普通迭代法采用迭代过程:求方程在 0.5 附近的根,精确到第 4 位小数.构造等价方程:用迭代公式:,用 Matlab 编写的程序参见附录2.请利用上述程序填写下表:分析:将附录2第4行中的分别改为以及,问运行的结果是什么?你能分析得到其中的原因吗?看看下面的“具体实验3”是想向你表达一个什么意思.用 Matlab 编写的程序参见附录3.具体实验3:收敛/发散判断设方程的三个根近似地取,和,这些近似值可以用上面的对分法求得.迭代形式一:收敛 (很可能收敛,下同)不收敛 (很可能不收敛,下同)不收敛迭代形式二:收敛不收敛不收敛迭代形式三:不收敛收敛收敛具体实验4:迭代法的加速1——松弛迭代法,,迭代公式为程序参见附录4.具体实验5:迭代法的加速2——Altken迭代法迭代公式为:,,程序参见附录5.具体实验6:牛顿法用牛顿法计算方程在-2到2之间的三个根.提示:,迭代公式:程序参见附录6 (牛顿法程序).具体实验7:其他方法求下列代数方程(组)的解:(1)命令:solve('x^5-x+1=0')(2)命令:[x, y]=solve('2*x+3*y=0', '4*x^2+3*y=1')(3) 求线性方程组的解,已知,命令:for i=1:5for j=1:5m(i, j)=i+j-1;endendm(5, 5)=0;b=[1:5]'linsolve(m, b)思考:若,或是类似的但阶数更大的稀疏方阵,则应如何得到?四、自己动手1.对分法可以用来求偶重根附近的近似解吗? 为什么?2.对照具体实验2、4、5,你可以得出什么结论?3.选择适当的迭代过程,分别使用:(1)普通迭代法;(2)与之相应的松弛迭代法和Altken 迭代法.求解方程在 1.4 附近的根,精确到4位小数,请注意迭代次数的变化.4.分别用对分法、普通迭代法、松弛迭代法、Altken 迭代法、牛顿切法线等5种方法,求方程的正的近似根,.(建议取.时间许可的话,可进一步考虑的情况.)。

专题4 使用MATLAB求解线性方程组的不同方法

专题4 使用MATLAB求解线性方程组的不同方法

Z = null(A) 求出 Ax=0 的基础解系后,将基础解系的向量正交单位化,存储在 Z 中. MATLAB 源代码如下: A=[1 2 2 1;2 1 -2 -2;1 -1 -4 -3]
A= 12 2 1 2 1 -2 -2 1 -1 -4 -3
Rank(A) Ans= 2 A=sym(A) A= [1,2,2,1] [2,1,-2,-2] [1,-1,-4,-3] null(A) ans= [2, 5/3] [-2,-4/3] [1, 0] [0, 1]
运行结果为: rank_A =
2 rank_B =
2 S_H =
-2
1
1
0
0
2
0
1
S_P =
0
1.7500
0
-0.5000
则该线性方程组有无穷多解为:
2 1 0
x

k1
1 0


k2

0 2



7 0
/
4


,
k1
,Leabharlann k2R 0 1 1/ 2
nulla?r?求系数矩阵为a的齐次线性方程组ax0的基础解系结果为有理数bnulla求出ax0的基础解系后将基础解系的向量正交单位化存储在zmatlab源代码如下
专题 4 使用 MATLAB 求解线性方程组的方法
x1 2 x2 2x3 x4 0
【例
1】求齐次方程组

2 x1
end end
x1 2x2 2x3 3x4 2 【例 1.3】使用 Matlab 求解方程组 2x1 4x2 3x3 4x4 5

matlab中方程根的近似计算

matlab中方程根的近似计算

实验一方程根的近似计算一、问题求非线性方程的根二、实验目的1、学会使用matlab中内部函数roots、solve、fsolve、fzero求解方程,并用之解决实际问题。

4、熟悉Matlab的编程思路,尤其是函数式M文件的编写方法。

三、预备知识方程求根是初等数学的重要内容之一,也是科学和工程中经常碰到的数值计算问题。

它的一般形式是求方程f(x)=0的根。

如果有x*使得f(x*)=0,则称x*为f(x)=0的根,或函数f(x)的零点。

并非所有的方程都能求出精确解或解析解。

理论上已经证明,用代数方法可以求出不超过3次的代数方程的解析解,但对于次数大于等于5的代数方程,没有代数求根方法,即它的根不能用方程系数的解析式表示。

至于超越方程,通常很难求出其解析解。

不存在解析解的方程就需要结合具体方程(函数)的性质,使用作图法或数值法求出近似解。

而计算机的发展和普及又为这些方法提供了广阔的发展前景,使之成为科学和工程中最实用的方法之一。

下面介绍几种常见的求近似根的方法。

1. 求方程近似解的简单方法1.1 图形方法—放大法求根图形的方法是分析方程根的性态最简洁的方法。

不过,不要总是想得到根的精确值。

这些值虽然粗糙但直观,多少个根,在何范围,一目了然。

并且还可以借助图形局部放大功能,将根定位得更加准确一些。

例1.1 求方程x5+2x2+4=0的所有根及其大致分布范围。

解(1)画出函数f(x)=x5+2x2+4的图形,确定方程的实数根的大致范围。

为此,在matlab命令窗中输入clfezplot x-x,grid onhold onezplot('x^5+2*x^2+4',[-2*pi,2*pi])1-1 函数f(x)=x5+2x2+4的图形clfx=-2*pi:0.1:2*pi;y1=zeros(size(x));y2= x.^5+2*x.^2+4;plot(x,y1,x,y2)grid onaxis tighttitle('x^5+2x^2+4')xlabel('x')从图1-1可见,它有一个实数根,大致分布在-2与2之间。

MATLAB解代数方程

MATLAB解代数方程

例 用Jacobi迭代法求解下列线性方程组。设迭代初值为0, 迭代精度为10-6。 在命令中调用函数文件Jacobi.m,命令如下: A=[10,-1,0;-1,10,-2;0,-2,10]; b=[9,7,6]'; x= [x,n]=jacobi(A,b,[0,0,0]',1.0e-6) 0.9958
x= -66.5556 25.6667 -18.7778 26.5556
(2) QR分解 对矩阵X进行QR分解,就是把X分解为一个正交矩阵Q和一 个上三角矩阵R的乘积形式。QR分解只能对方阵进行。 MATLAB的函数qr可用于对矩阵进行QR分解,其调用格 式为: [Q,R]=qr(X):产生一个正交矩阵Q和一个上三角矩阵R,使 之满足X=QR。 [Q,R,E]=qr(X):产生一个一个正交矩阵Q、一个上三角矩阵 R以及一个置换矩阵E,使之满足XE=QR。 实现QR分解后,线性方程组Ax=b的解x=R\(Q\b)或 x=E(R\(Q\b))。
-1.7556 n= n1 =
4
1011
非线性方程数值求解
单变量非线性方程求解 在MATLAB中提供了一个fzero函数,可以用来求单变量 非线性方程的根。该函数的调用格式为: z=fzero('fname',x0,tol,trace) 其中fname是待求根的函数文件名,x0为搜索的起点。一个 函数可能有多个根,但fzero函数只给出离x0最近的那个 根。tol控制结果的相对精度,缺省时取tol=eps,trace• 指 定迭代信息是否在运算中显示,为1时显示,为0时不显示, 缺省时取trace=0。
例 用LU分解求解线性方程组。 命令如下: A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4]; b=[13,-9,6,0]'; [L,U]=lu(A); x=U\(L\b) 采用LU分解的第2种格式,命令如下: [L,U ,P]=lu(A); x=U\(L\P*b)

matlab牛顿迭代法求多项式方程的根

matlab牛顿迭代法求多项式方程的根

matlab牛顿迭代法求多项式方程的根【主题】matlab牛顿迭代法求多项式方程的根1. 引言在数学和工程领域中,求解多项式方程的根是一项常见且重要的任务。

牛顿迭代法是一种有效的数值方法,可以用来逼近多项式方程的根。

本文将详细介绍如何利用matlab实现牛顿迭代法,以及该方法的应用和局限性。

2. 牛顿迭代法简介牛顿迭代法是一种基于导数的数值逼近方法,用于求解方程 f(x)=0 的根。

该方法的基本思想是从一个初始近似值开始,通过逐步改进来逼近方程的根。

牛顿迭代法的迭代公式为:\[x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}\]其中,\(x_n\)是第n次迭代的近似根,f(x)是方程,\(f'(x)\)是f关于x的导数。

3. 在matlab中实现牛顿迭代法在matlab中,我们可以利用函数和循环结构来实现牛顿迭代法。

需要定义方程f(x)以及其导数f'(x)的函数表达式。

选择一个初始值作为近似根,通过迭代公式不断改进,直到满足预设的精度要求。

4. 应用实例我们将以一个具体的多项式方程为例,来演示如何利用matlab的牛顿迭代法来求解其根。

假设我们要求解方程\(x^2-2=0\)的根。

我们可以定义方程及其导数的matlab函数表达式,然后选择一个适当的初始值,进行迭代计算,最终得到方程的根。

5. 算法优化与局限性虽然牛顿迭代法在求解多项式方程的根上表现出色,但也存在一些局限性。

需要提前知道方程的导数表达式;初始值的选取可能影响迭代结果的精度等。

在实际应用中,需要根据具体情况灵活选择迭代算法,甚至进行一些优化来提高求解效率。

6. 结语通过matlab实现牛顿迭代法求解多项式方程的根,不仅可以帮助我们深入理解数值计算方法,也可以应用到实际工程问题中。

对于复杂的多项式方程,利用数值方法求解是一种有效的途径。

当然,在应用过程中需要注意算法的优化和局限性,以确保求解的准确性和稳定性。

Matlab中方程求解的基本命令

Matlab中方程求解的基本命令
symssolvef如果不指明变量系统默认为x也可指定自变量比如指定b为自变量symsbxax4fsolvefunx0求非线性方程fun0在估计值x0附近的近似解
Matlab中方程求解的基本命令
Hale Waihona Puke 1.roots(p) %求多项式的根,其中p是多项式向量. 例求 x x +x1=0 的根. 解:>>roots([1,-1,1,-1]) 注: [1,-1,1,-1]在matlab中表示多项式
2 2
4.fsolve(fun,x0) %求非线性方程fun=0在估 计值x0附近的近似解. 例:用fsolve求方程 x = ex 在0附近的根. 解:>>fsolve('x-exp(-x)',0)
5.fzero(fun,x0) %求函数fun在x0附近的零点 例:求方程 x 10x + 2 = 0 在x0=0.5附近的根 解:>>fzero('x-10^x+2',0.5)

3 2
x3 x2 + x 1
2.solve(fun)
%求方程fun=0的符号解,如果不 能求得精确的符号解,可以计算可变精度的数值解 例:用solve求方程
x 9 + x 8 + 1 = 0 的根.
解:>>solve('x^9+x^8+1') 给出了方程的数值解(32位有效数字的符号量)
3.solve(fun,var) %对指定变量var求代数方 程fun=0的符号解. 例:解方程 ax + bx + c = 0 解:>>syms a b c x; >>f=a*x^2+b*x+c; >>solve(f) 如果不指明变量,系统默认为x,也可指定自变量,比如指定b 为自变量 >>syms a b c x; >> f=a*x^2+b*x+c; >>solve(f,b)

MATLAB求代数方程的近似根(解)

MATLAB求代数方程的近似根(解)
k = polyder(p) k = polyder(p,q) [k,d] = polyder(p,q)
y = polyval(p,x) Y = polyvalm(p,X)
多项式运算中, 使用的是多项式
系数向量,
不涉及符号计算!
x = roots(p)
线性方程组求解
线性方程组求解
linsolve(A,b):解线性方程组 Ax b
p2 2x 1 p1 p2 2x3 x2 2x 4
[2, 1, 0, 3] [ 0, 0[,2,1] [2, 1, 2, 4]
多项式四则运算
多项式乘法运算: k = conv(p,q)
例:计算多项式 2x3 x2 3 和 2x 1 的乘积 >> p=[2,-1,0,3]; >> q=[2,1]; >> k=conv(p,q);
多项式除法运算: [k,r] = deconv(p,q) 其中 k 返回的是多项式 p 除以 q 的商,r 是余式。 [k,r]=deconv(p,q) <==> p=conv(q,k)+r
多项式的求导
polyder
k=polyder(p) : 多项式 p 的导数; k=polyder(p,q): p*q 的导数; [k,d]=polyder(p,q): p/q 的导数,k 是分子,d 是分母
fsolve [x,fval,flag,out]=fsolve(fun,x0,options): 参数大部分与fzero相同,优化参数更多,更灵活。 注意x0的长度必须与变量的个数相等。
它与fzero的区别是,算法不同,fsolve的功能强大多很多,它可 以直接方便的求解多变量方程组,线性和非线性,超静定和静不 定方程,还可求解复数方程。 fun同样可以是句柄、inline函数或M文件,但是一般M文件比较 多,这是由于fsolve是解方程组的,目标函数一般比较烦,直接 写比较困难

matlab实验报告--求代数方程的近似根

matlab实验报告--求代数方程的近似根

数学实验报告实验序号: 日期: 年 月 日班级姓名学号实验名称:求代数方程的近似根 问题背景描述:求代数方程0)(=x f 的根是最常见的数学问题之一,当)(x f 是一次多项式时,称0)(=x f 为线性方程,否则称之为非线性方程.当0)(=x f 是非线性方程时,由于)(x f 的多样性,尚无一般的解析解法可使用,但如果对任意的精度要求,能求出方程的近似根,则可以认为求根的计算问题已经解决,至少能满足实际要求.本实验介绍一些求方程实根的近似值的有效方法,要求在使用这些方法前先确定求根区间],[b a ,或给出某根的近似值0x .实验目的:1. 了解代数方程求根求解的四种方法:对分法、迭代法、牛顿切线法2. 掌握对分法、迭代法、牛顿切线法求方程近似根的基本过程。

实验原理与数学模型:1.对分法对分法思想:将区域不断对分,判断根在某个分段内,再对该段对分,依此类推,直到满足精度为止.对分法适用于求有根区间内的单实根或奇重实根.设)(x f 在],[b a 上连续,0)()(<⋅b f a f ,即 ()0f a >,()0f b <或()0f a <,()0f b >.则根据连续函数的介值定理,在),(b a 内至少存在一点 ξ,使()0f ξ=.下面的方法可以求出该根:(1) 令02a bx +=,计算0()f x ;(2) 若0()0f x =,则0x 是()0f x =的根,停止计算,输出结果0x x =.若 0()()0f a f x ⋅<,则令1a a =,10b x =,若0()()0f a f x ⋅>,则令10a x =,1b b =;1112a b x +=. ……,有k a 、k b 以及相应的2k kk a b x +=. (3) 若()k f x ε≤ (ε为预先给定的精度要求),退出计算,输出结果2k kk a b x +=; 反之,返回(1),重复(1),(2),(3).以上方法可得到每次缩小一半的区间序列{[,]}k k a b ,在(,)k k a b 中含有方程的根.当区间长k k b a -很小时,取其中点2k kk a b x +=为根的近似值,显然有 1111111()()()2222k k k k k k x b a b a b a ξ--+-≤-=⨯⨯-==-以上公式可用于估计对分次数k .2. 迭代法1) 迭代法的基本思想:由方程()0f x =构造一个等价方程()x x φ=从某个近似根0x 出发,令1()k k x x φ+=, ,2,1,0=k可得序列{}k x ,这种方法称为迭代法.若 {}k x 收敛,即*lim k k x x →∞=,只要()x φ连续,有1lim lim ()(lim )k k k k k k x x x φφ+→∞→∞→∞==即可知,{}k x 的极限*x 是()x x φ=的根,也就是()0f x =的根.当然,若k x 发散,迭代法就失败. 迭代过程1()k k x x φ+=收敛的常用判别标准:当根区间[,]a b 较小,且对某一0[,]x a b ∈,()'x φ明显小于1时,则迭代收敛2) 迭代法的加速:a) 松弛法:若()x φ与k x 同是*x 的近似值,则1(1)()k k k k k x x x ωωφ+=-+是两个近似值的加权平均,其中k ω称为权重,现通过确定k ω看能否得到加速.迭代方程是:()x x ψ←其中()(1)()x x x ψωωφ=-+,令'()1'()0x x ψωωφ=-+=,试确定ω:当'()1x φ≠时,有11'()x ωφ=-,即当11'()k k x ωφ=-,'()11'()k k k x x φωφ--=-时,可望获得较好的加速效果,于是有松弛法:1(1)()k k k k k x x x ωωφ+=-+,11'()k k x ωφ=-b) Altken 方法:**()x x φ=,*x 是它的根,0x 是其近似根. 设10()x x φ=,21()x x φ=,因为****222121[][()()]()()x x x x x x x x 'x x φφφξ=+-=+-=+-, 用差商10211010()()x x x x x x x x φφ--=--近似代替()'φξ,有 **212110()x x x x x x x x -≈+-- , 解出*x ,得**()x x φ=2*212210()2x x x x x x x -≈--+ 由此得出公式(1)()k k x x φ= ; (2)(1)()k k x x φ=;(2)(1)2(2)1(2)(1)()2k k k kk k kx x x xx x x +-==-+, ,2,1,0=k 这就是Altken 公式。

Matlab 求代数方程的近似解

Matlab 求代数方程的近似解
k k k


x*
即 x* ( x*)
( x*)
f ( x*) 0
注:若得到的点列发散,则迭代法失效!
迭代法收敛性判断
如果存在 x* 的某个 邻域 =(x*- , x* + ), 使 定义: 得对 x0 开始的迭代 xk+1 = (xk) 都收敛, 则称该迭代法在 x* 附近局部收敛。 设 x* =(x*),的某个邻域 内连续,且对 定理 1: x 都有 |’(x)|q< 1, 则对 x0 ,由迭 代 xk+1 = (xk) 得到的点列都收敛。
f 是符号表达式,也可以是字符串 默认变量由 findsym(f,1) 确定
>> syms x >> f=sin(x)+3*x^2; >> g=diff(f,x) >> g=diff('sin(x)+3*x^2','x')
Matlab 解方程函数
roots(p):多项式的所有零点,p 是多项式系数向量。 fzero(f,x0):求 f=0 在 x0 附近的根,f 可以使用
inline、字符串、或 @,但不能是方程或符号表达式!
linsolve(A,b):解线性方程组。 solve(f,v):求方程关于指定自变量的解,f 可以是用
得到一个迭代序列
k = 0, 1, 2, ... ...
xk k 0

f (x) = 0 f (x) 的零点
等价变换
x = (x)
(x) 的不动点
迭代法的收敛性
收敛性分析
若 ,假设 (x) 连续,则 xk x * xk 收敛,即lim k

matlab中方程根的近似计算

matlab中方程根的近似计算

matlab中方程根的近似计算实验一方程根的近似计算一、问题求非线性方程的根二、实验目的1、学会使用matlab中内部函数roots、solve、fsolve、fzero求解方程,并用之解决实际问题。

4、熟悉Matlab的编程思路,尤其是函数式M文件的编写方法。

三、预备知识方程求根是初等数学的重要内容之一,也是科学和工程中经常碰到的数值计算问题。

它的一般形式是求方程f(x)=0的根。

如果有x*使得f(x*)=0,则称x*为f(x)=0的根,或函数f(x)的零点。

并非所有的方程都能求出精确解或解析解。

理论上已经证明,用代数方法可以求出不超过3次的代数方程的解析解,但对于次数大于等于5的代数方程,没有代数求根方法,即它的根不能用方程系数的解析式表示。

至于超越方程,通常很难求出其解析解。

不存在解析解的方程就需要结合具体方程(函数)的性质,使用作图法或数值法求出近似解。

而计算机的发展和普及又为这些方法提供了广阔的发展前景,使之成为科学和工程中最实用的方法之一。

下面介绍几种常见的求近似根的方法。

1. 求方程近似解的简单方法1.1 图形方法—放大法求根图形的方法是分析方程根的性态最简洁的方法。

不过,不要总是想得到根的精确值。

这些值虽然粗糙但直观,多少个根,在何范围,一目了然。

并且还可以借助图形局部放大功能,将根定位得更加准确一些。

例1.1 求方程x5+2x2+4=0的所有根及其大致分布范围。

解(1)画出函数f(x)=x5+2x2+4的图形,确定方程的实数根的大致范围。

为此,在matlab命令窗中输入clfezplot x-x,grid onhold onezplot('x^5+2*x^2+4',[-2*pi,2*pi])1-1 函数f(x)=x5+2x2+4的图形clfx=-2*pi:0.1:2*pi;y1=zeros(size(x));y2= x.^5+2*x.^2+4;plot(x,y1,x,y2)grid onaxis tighttitle('x^5+2x^2+4')xlabel('x')从图1-1可见,它有一个实数根,大致分布在-2与2之间。

matlab用迭代法求方程

matlab用迭代法求方程

matlab用迭代法求方程Matlab是一种常用的科学计算软件,可用于解决各种数学问题。

其中,迭代法可以用来求解方程,是一种简单但非常有效的算法。

本文将介绍如何在Matlab中使用迭代法求解方程的步骤。

步骤一:构造迭代式迭代法的核心在于构造一个迭代式,通过不断迭代的方式逼近方程的解。

在求解方程f(x)=0时,一般可以构造形如x(n+1)=g(x(n))的递推公式来进行迭代。

其中,g(x)是一个函数,可以通过试错与调整来确定。

步骤二:设定初值x(0)在开始迭代之前,需要确定初值x(0),即从哪个点开始进行迭代。

初值不同可能会得到不同的解,在实际应用中需要特别注意。

步骤三:设定迭代停止条件为了避免无限迭代,需要设定迭代停止的条件。

常用的条件有两种:一种是设定迭代次数,即达到一定迭代次数后停止迭代;另一种是设置收敛条件,即在一定误差范围内停止迭代。

步骤四:编写Matlab代码完成以上准备工作后,可以开始编写Matlab代码。

具体实现可以采用for循环或while循环的方式进行迭代,根据设定的迭代停止条件来决定何时停止迭代。

以求解方程f(x)=x^3-x-1为例,其迭代式可以构造为:x(n+1)=x(n)-(x(n)^3-x(n)-1)/(3*x(n)^2-1)初值设为x(0)=1,迭代停止条件设为当两次迭代之差小于0.0001时停止。

则对应的Matlab代码可写为:x(1)=1;tol=0.0001;for n=1:100x(n+1)=x(n)-(x(n)^3-x(n)-1)/(3*x(n)^2-1);if abs(x(n+1)-x(n))<tolbreak;endend步骤五:运行程序并解读结果编写完Matlab代码后,可以运行程序并查看结果。

对于上述例子,最终的解为x=1.3247,满足收敛条件。

在使用迭代法求解方程时,需要注意函数的收敛性、初值选择、迭代次数等问题。

此外,迭代法也存在无法收敛或收敛速度慢的情况,需要特别注意。

matlab代数方程近似解

matlab代数方程近似解
inline、字符串、或 @,但不能是方程或符号表达式!
linsolve(A,b):解线性方程组。 solve(f,v):求方程关于指定自变量的解,f 可以是用
字符串表示的方程、符号表达式; solve 也可解方程组(包含非线性); 得不到解析解时,给出数值解。
上机作业

1.根据二分法的步骤编写程序bisec.m求
相关概念
线性方程 与 非线性方程
f ( x) 0
如果 f(x) 是一次多项式,称上面的方程为线性方 程;否则称之为非线性方程。
本节主要讨论非线性方程的数值求解
对分法
基本思想
将有根区间进行对分,判断出解在某个分段内,然后 再对该段对分,依次类推,直到满足给定的精度为止。
适用范围
(4) 令 x1 (a1 b1 ) / 2, 若 | f ( x1 ) | ,则停止计算, 输出结果 x x1; 若 f (a1 ) f ( x1 ) 0,令 a2 a1, b2 x1; 否则令 a2 x1, b2 b1;
... ...
Matlab程序见 bisec.m
f ( x ) f ( x0 ) f '( x0 )( x x0 ) 2! ( x x0 )
f ( x0 ) f '( x0 )( x x0 )
令: P ( x ) 0
P( x)
( f '( x0 ) 0)
f ( x0 ) x x0 f '( x0 )
(1) 令 x0 (a b) / 2,计算 f ( x0 ); (2) 若 | f ( x0 ) | ,则 x0 就是我们所要的近似根,
停止计算, 输出结果 x x0;

matlab实验报告--求代数方程近似根1

matlab实验报告--求代数方程近似根1

连续函数的介值定理,在 (a,b) 内至少存在一点 ,使 f ( ) 0 .
下面的方法可以求出该根:
(1)
令 x0
a b ,计算 2
f (x0 ) ;
(2) 若 f (x0 ) 0 ,则 x0 是 f (x) 0 的根,停止计算,输出结果 x x0 .

f
(a)
f
(x0)
0
,则令 a1
, k
1 1 '(xk )
b) Altken 方法: x* (x* ) , x* 是它的根, x0 是其近似根.
设 x1 (x0 ) , x2 (x1) ,因为 x* x2 [x* x2 ] x2 [ (x* ) (x1)] x2 ' ( )(x* x1) ,
用差商 x2 x1 (x1) (x0 ) 近似代替'( ) ,有
当 f (x) 0 是非线性方程时,由于 f (x) 的多样性,尚无一般的解析解法可使用,但如果对任意 的精度要求,能求出方程的近似根,则可以认为求根的计算问题已经解决,至少能满足实际要求.
本实验介绍一些求方程实根的近似值的有效方法,要求在使用这些方法前先确定求根区间[a,b] , 或给出某根的近似值 x0 .
a
, b1
x0
,若
f
(a)
f
(x0)
0
,则令
a1
x0
, b1
b
; x1
a1
b1 2

……,有 ak
、 bk
以及相应的 xk
ak
bk 2

(3) 若 f (xk )
(
为预先给定的精度要求),退出计算,输出结果 xk
ak

matlab中方程根的近似计算

matlab中方程根的近似计算

实验一方程根的近似计算一、问题求非线性方程的根二、实验目的1、学会使用matlab中内部函数roots、solve、fsolve、fzero求解方程,并用之解决实际问题。

4、熟悉Matlab的编程思路,尤其是函数式M文件的编写方法。

三、预备知识方程求根是初等数学的重要内容之一,也是科学和工程中经常碰到的数值计算问题。

它的一般形式是求方程f(x)=0的根。

如果有x*使得f(x*)=0,则称x*为f(x)=0的根,或函数f(x)的零点。

并非所有的方程都能求出精确解或解析解。

理论上已经证明,用代数方法可以求出不超过3次的代数方程的解析解,但对于次数大于等于5的代数方程,没有代数求根方法,即它的根不能用方程系数的解析式表示。

至于超越方程,通常很难求出其解析解。

不存在解析解的方程就需要结合具体方程(函数)的性质,使用作图法或数值法求出近似解。

而计算机的发展和普及又为这些方法提供了广阔的发展前景,使之成为科学和工程中最实用的方法之一。

下面介绍几种常见的求近似根的方法。

1. 求方程近似解的简单方法1.1 图形方法—放大法求根图形的方法是分析方程根的性态最简洁的方法。

不过,不要总是想得到根的精确值。

这些值虽然粗糙但直观,多少个根,在何范围,一目了然。

并且还可以借助图形局部放大功能,将根定位得更加准确一些。

例1.1 求方程x5+2x2+4=0的所有根及其大致分布范围。

解(1)画出函数f(x)=x5+2x2+4的图形,确定方程的实数根的大致范围。

为此,在matlab命令窗中输入clfezplot x-x,grid onhold onezplot('x^5+2*x^2+4',[-2*pi,2*pi])1-1 函数f(x)=x5+2x2+4的图形clfx=-2*pi:0.1:2*pi;y1=zeros(size(x));y2= x.^5+2*x.^2+4;plot(x,y1,x,y2)grid onaxis tighttitle('x^5+2x^2+4')xlabel('x')从图1-1可见,它有一个实数根,大致分布在-2与2之间。

matlab牛顿迭代法求根

matlab牛顿迭代法求根

matlab牛顿迭代法求根下面是使用matlab编写的牛顿迭代法求根的示例代码:```matlabfunction root = newtonMethod(f, df, x0, tolerance, maxIterations) % f: 目标函数% df: 目标函数的导数% x0: 初始估计解% tolerance: 迭代终止的容差% maxIterations: 最大迭代次数root = x0;for i=1:maxIterations% 计算函数值和导数值fx = feval(f, root);dfx = feval(df, root);% 更新解x1 = root - fx / dfx;% 判断是否达到终止条件if abs(x1 - root) < toleranceroot = x1;return;endroot = x1; % 更新根值endend```这个函数接受目标函数(f)、目标函数的导数(df)、初始估计解(x0)、迭代终止的容差(tolerance)和最大迭代次数(maxIterations)作为输入参数。

函数使用牛顿迭代法来求解函数f的根,并返回根的近似值。

需要注意的是,目标函数f和其导数df都要按照matlab的函数定义方式来定义,并在调用该函数时作为函数句柄传递给newtonMethod函数。

此外,需要提供一个合适的初始估计解(x0)、迭代终止的容差(tolerance)和最大迭代次数(maxIterations)来控制迭代的终止条件。

以下是一个使用示例:```matlabf = @(x) x^2 - 4;df = @(x) 2*x;x0 = 2; % 初始估计解tolerance = 1e-6; % 迭代终止的容差maxIterations = 100; % 最大迭代次数root = newtonMethod(f, df, x0, tolerance, maxIterations);disp(root);```在这个示例中,我们使用牛顿迭代法来求解函数f(x) = x^2 - 4的根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七讲MATLAB中求方程的近似根(解)教学目的:学习matlab中求根命令,了解代数方程求根求解的四种方法,即图解法、准解析法、数值方法以及迭代方法,掌握对分法、迭代法、牛顿切法线求方程近似根的基本过程;掌握求代数方程(组)的解的求解命令.教学重点:求方程近似解的几种迭代方法,代数方程(组)的解的求解命令的使用方法.利用所学的编程知识,结合具体的实例,编制程序进行近似求根.掌握相关的代数方程(组)的求解命令及使用技巧.教学难点:方程的近似求解和非线性方程(组)的求解.一、问题背景和实验目的求代数方程0xf的根是最常见的数学问题之一(这里称为代数方程,主要是想和(=)后面的微分方程区别开.为简明起见,在本实验的以下叙述中,把代数方程简称为方程),当)f为线性方程,否则称之为非线性方程.(x(=x)f是一次多项式时,称0当0(xf的多样性,尚无一般的解析解法可使用,但如f是非线性方程时,由于))x(=果对任意的精度要求,能求出方程的近似根,则可以认为求根的计算问题已经解决,至少能满足实际要求.同时对于多未知量非线性方程(组)而言,简单的迭代法也是可以做出来的,但在这里我们介绍相关的命令来求解,不用迭代方法求解.通过本实验,达到下面目的:1. 了解对分法、迭代法、牛顿切线法求方程近似根的基本过程;2. 求代数方程(组)的解.首先,我们先介绍几种近似求根有关的方法:1.对分法对分法思想:将区域不断对分,判断根在某个分段内,再对该段对分,依此类推,直到满足精度为止.对分法适用于求有根区间内的单实根或奇重实根.设)af⋅bf,即()0f a>,()0f a<,()0f b<或()0f b>.则),(<(x[bf在]a上连续,0()根据连续函数的介值定理,在)fξ=.a内至少存在一点ξ,使()0,(b下面的方法可以求出该根:(1) 令0()/2x a b =+,计算0()f x ;(2) 若0()0f x =,则0x 是()0f x =的根,停止计算,输出结果0x x =.若 0()()0f a f x ⋅<,则令1a a =,10b x =,若0()()0f a f x ⋅>,则令10a x =,1b b =;111()/2x a b =+.……,有k a 、k b 以及相应的()/2k k k x a b =+.(3) 若()k f x ε≤ (ε为预先给定的精度要求),退出计算,输出结果()/2k k k x a b =+; 反之,返回(1),重复(1),(2),(3).以上方法可得到每次缩小一半的区间序列{[,]}k k a b ,在(,)k k a b 中含有方程的根. 当区间长k k b a -很小时,取其中点()/2k k k x a b =+为根的近似值,显然有2111()/2()/(2)()/2k k k k k k x b a b a b a ξ+---≤-=-==-以上公式可用于估计对分次数k .分析以上过程不难知道,对分法的收敛速度与公比为12的等比级数相同.由于1021024=,可知大约对分10次,近似根的精度可提高三位小数.对分法的收敛速度较慢,它常用来试探实根的分布区间,或求根的近似值. 2. 迭代法a) 松弛法:由方程()0f x =构造一个等价方程()x x φ=.则迭代方程是:1(1)()k k k k k x x x ωωφ+=-+,1/(1'())k k x ωφ=-,其中'()1x φ≠.松弛法的加速效果是明显的 (见附录4),甚至不收敛的迭代函数经加速后也能获得收敛.b) Altken 方法:松弛法要先计算'()k x φ,在使用中有时不方便,为此发展出以下的 Altken 公式:(1)()k k x x φ= ;(2)(1)()k k x x φ=;(2)(2)(1)2(2)(1)1()/(2)k k k k k k k x x x x x x x +=---+, ,2,1,0=k这就是Altken 公式,它的加速效果也是十分明显的,它同样可使不收敛的迭代格式获得收敛(见附录5).3. 牛顿(Newton)法(牛顿切线法)()0f x =是非线性方程其迭代公式为:1(()/'())k k k k x x f x f x +=- ,2,1,0=k即为牛顿法公式.牛顿法的缺点是:(1)对重根收敛很慢;(2)对初值0x 要求较严,要求0x 相当接近真值*x .因此,常用其他方法确定初值0x ,再用牛顿法提高精度. 以下是本实验中的几个具体的实验 具体实验1:对分法先作图观察方程:3310x x -+=的实根的分布区间,再利用对分法在这些区间上分别求出根的近似值.程序如下: function [y,p]=erfen()clc, x=[];a=[];b=[]; a(1)=1;b(1)=2; i=1;x(i)=(a(i)+b(i))/2; e=abs(f(x(i))); ezplot('x^3-3*x+1',[a(1),b(1)]);hold on, plot([a(i),b(i)],[0,0]) while e>10^(-5)plot([a(i),a(i)],[0,100],[x(i) x(i)],[0 100],[b(i) b(i)],[0 100]),pause(0.5) if f(a(i))*f(x(i))<0a(i+1)=a(i);b(i+1)=x(i);x(i+1)=(a(i+1)+b(i+1))/2; elsea(i+1)=x(i);b(i+1)=b(i);x(i+1)=(a(i+1)+b(i+1))/2; ende=abs(f(x(i)));i=i+1; endy=x(i);p=[a;x;b]' function u=f(x) u=x^3-3*x+1; end end图形如下:结果为:1.5321具体实验2:普通迭代法采用迭代过程:1()k k x x φ+=求方程3310x x -+=在 0.5 附近的根,精确到第 4 位小数.构造等价方程:3(1)/3x x =+用迭代公式: 31(1)/3k k x x +=+, ,2,1,0=k 具体实验3:迭代法的加速1——松弛迭代法3()(1)/3x x φ=+,2()'x x φ=,21/(1)k k x ω=-迭代公式为31(1)(1)/3k k k k k x x x ωω+=-++clc;x=[];w=[]; x(1)=1;w(1)=1/(1-x(1)); for i=1:10w(i)=1/(1- x(i)); x(i+1)=(1-w(i))*x(i)+ w(i)*(x(i)^3+1)/3; end x另外有程序可以参考,详见参见附录4. 具体实验4:迭代法的加速2——Altken 迭代法迭代公式为:(1)3(1)/3k k x x =+,(2)(1)3(1)/3k k x x =+(2)(2)(1)2(2)(1)1()/(2)k k k k k k k x x x x x x x +=---+, ,2,1,0=k%(符号计算)syms x fx gx;gx=(x^3+1)/3;fx=x^3-3*x+1; disp('k x x1 x2') x=0.5;k=0; ffx=subs(fx, 'x', x); while abs(ffx)>0.0001;u=subs(gx, 'x', x);v=subs(gx, 'x', u);disp([num2str(k), ' ', num2str(x), ' ', num2str(u), ' ', num2str(v)]) x=v-(v-u)^2/(v-2*u+x);k=k+1;ffx=subs(fx, 'x', x); enddisp([num2str(k), ' ', num2str(x), ' ', num2str(u), ' ', num2str(v)]) %(数值计算)function [y,p]=althken() % 求方根的迭代程序 clc,format long e , x(1)=6; i=1;p=[];ezplot('x^3-3*x+1',[x(1)-9,x(1)+1]);hold on plot([x(1)-20,x(1)+2],[0,0]) while abs(f(x(i)))>=10^(-5) plot(x(i),0,'*')t1=phi(x(i));t2=phi(t1); x(i+1)=t2-(t2-t1)^2/(t2-2*t1+x(i)+eps); p=[p;[i, x(i),t1,t2]]; i=i+1; pause(0.1) endp,y=x(i), i, format function u=phi(x) u=(x^3+1)/3; endfunction u=f(x) u=x^3+1-3*x; end end具体实验5:牛顿法用牛顿法计算方程3310x x -+=在-2到2之间的三个根. 提示:3()31f x x x =-+,2'()33f x x =-迭代公式:2321(31)/(33)k k k k k x x x x x +=--+-function [y,p]=newton() % 求方根的迭代程序 clc,format long e , x(1)=6; i=1; p=[]; ezplot('x^3-3*x+1',[x(1)-9,x(1)+1]);hold on plot([x(1)-20,x(1)+2],[0,0]) while abs(f(x(i)))>=10^(-5)plot(x(i),0,'*'), x(i+1)=x(i)-f(x(i))/(df(x(i))+eps); p=[p;[i, x(i)]]; i=i+1; pause(0.1) endformat short , p,y=x(i), i, function u=df(x) u=3*x^2-3; endfunction u=f(x) u=x^3+1-3*x; end end 结果:结果为: 1.5321※进一步思考:用迭代法求3的平方根. 迭代公式为1(3/)/2n n n x x x +=+. 编写M 函数文件My_sqrt.m, 求3正的平方根x . 要求误差小于510-.仅要求写出源程序.试使用以上介绍的迭代法来相互比较 参考程序:function y=my_sqrt(a) % 求方根的迭代程序if nargin~=1|~isa(a,'double') , error('输入数字为一个正数!'),end if a<0, error('输入数字为正数!'), endif a>0format long e , x(1)=0; x(2)=1; i=1; while abs(x(i+1)-x(i))>=10^(-5)i=i+1;x(i+1)=1/2*(x(i)+a/(x(i)+eps));endy=x(i+1);i,format end现在我们简单介绍图解法如何来求解一元方程和二元方程的根: 例:exp(-3*t)*sin(4*t+2)+4*exp(-0.5*t)*cos(2*t)=0.5>>ezplot('exp(-3*t)*sin(4*t+2)+4*exp(-0.5*t)*cos(2*t)-0.5',[0 5]) >>hold on, line([0,5],[0,0])验证:t=3.5203 >>syms x; t=3.5203;vpa(exp(-3*t)*sin(4*t+2)+4*exp(-0.5*t)*cos(2*t)-0.5) ans =-.43167073997540938989914138801396e-4例::x^2*exp(-x*y^2/2)+exp(-x/2)*sin(x*y)=0y^2 *cos(y+x^2) +x^2*exp(x+y)=0>> ezplot('x^2*exp(-x*y^2/2)+exp(-x/2)*sin(x*y)')>> hold onezplot('y^2 *cos(y+x^2) +x^2*exp(x+y)')具体的结果请大家自己下来运行二、关于直接利用函数(命令)求解方程及简介(1) solve('f(x)'),f(x)为一个具体的表达式.(2) roots(A),A为某个多项式按x降幂排列的系数矩阵(3) fzero('f(x)', x0),f(x)为一个具体的表达式,x0为一个具体的数值(4) linsolve(A,b),A为一方程组的系数矩阵,b为方程组右端的常数矩阵.1.单变量的多项式方程求根:命令格式:roots(A)例:x^3-6*(x^2)-72*x-27=0;>>p=[1 -6 -72 -27]>>r=roots(p)r=12.1229-5.7345-0.38842. 多项式型方程的准解析解法命令格式:[x,…]=solve(eqn1,eqn2,…)例:x^2+y^2-1=00.75*x^3-y+0.9=0>>syms x y;>> [x,y]=solve('x^2+y^2-1=0', '75*x^3/100-y+9/10=0')检验:>>[eval('x.^2+y.^2-1'), eval('75*x.^3/100-y+9/10')]具体结果就请大家下来自己运行3. 线性方程组的求解例:求线性方程组b⋅的解,已知m=[1 2 3 4 5;2 3 4 5 6;3 4 5 6 7 8;4 5 6 7 8 ;5 6 7 8 0],m=xb=[1;2;3;4;5]for i=1:5for j=1:5m(i, j)=i+j-1;endendm(5, 5)=0;b=[1:5]'; linsolve(m, b)4. 非线性方程数值求解(1)单变量非线性方程求解在MATLAB中提供了一个fzero函数,可以用来求单变量非线性方程的根.该函数的调用格式为:z=fzero('fname',x0,tol,trace)其中fname是待求根的函数文件名,x0为搜索的起点.一个函数可能有多个根,但fzero 函数只给出离x0最近的那个根.tol控制结果的相对精度,缺省时取tol=eps,trace•指定迭代信息是否在运算中显示,为1时显示,为0时不显示,缺省时取trace=0.例:求f(x)=x-10x+2=0在x0=0.5附近的根.步骤如下:(a) 建立函数文件funx.m.function fx=funx(x)fx=x-10.^x+2;(b)调用fzero函数求根.z=fzero('funx',0.5)z = 0.3758(2)非线性方程组的求解对于非线性方程组F(X)=0,用fsolve函数求其数值解.fsolve函数的调用格式为: X=fsolve('fun',X0,option)其中X为返回的解,fun是用于定义需求解的非线性方程组的函数文件名,X0是求根过程的初值,option为最优化工具箱的选项设定.最优化工具箱提供了20多个选项,用户可以使用optimset命令将它们显示出来.如果想改变其中某个选项,则可以调用optimset()函数来完成.例如,Display 选项决定函数调用时中间结果的显示方式,其中‘off’为不显示,‘iter’表示每步都显示,‘final’只显示最终结果.optim set(‘Display’,‘off’)将设定Display 选项为‘off’. 例: 求下列非线性方程组在(0.5,0.5) 附近的数值解.(a) 建立函数文件myfun.m . function q=myfun(p) x=p(1);y=p(2);q(1)=x-0.6*sin(x)-0.3*cos(y);q(2)=y-0.6*cos(x)+0.3*sin(y); (b) 在给定的初值x0=0.5,y0=0.5下,调用fsolve 函数求方程的根. x=fsolve('myfun',[0.5,0.5]',optimset('Display','off')) x = 0.6354 0.3734将求得的解代回原方程,可以检验结果是否正确,命令如下: q=myfun(x) q = 1.0e-009 * 0.2375 0.2957 可见得到了较高精度的结果.精品案例:螺旋线与平面的交点问题:螺旋线与平面相交的情况多种多样, 根据螺旋线与平面方程的不同可以相交, 也可以不相交. 在相交的情况下, 可以交于一点, 也可以交于好多点. 对于各种相交的情况, 要求其交点的坐标并不是一件容易的事. 本次实验就以此为背景讨论下面的具体问题:已知螺旋线的参数方程为4cos ,4sin ,,08x y z θθθθπ===≤≤.平面的方程为:0.520x y z ++-=. 求该螺旋线与平面的交点. 要求:1)求出所有交点的坐标;2)在同一图形窗口画出螺旋线、平面和交点. 实验过程: 1.1 问题分析可以采用多种方法求螺旋线与平面的交点坐标, 包括fsolve 等. 先对方程化简,减少变量个数,使用图解方法求方程的根.再分别画出螺旋线,平面,及其交点. 1.2 算法描述与分析先对方程化简,减少变量个数,再利用fsolve, 选择适当的初值, 求其数值解;再分别会出图形;最后对图形作出必要的修饰. 1.3 源程序及注释将螺旋线的参数方程代入平面方程后可得: 等价变形得 : 建立下面M 文件intersect_point.m %使用图解法求交点,并且三维图 %画图确定解的个数和大概位置 theta=0:0.01:8*pi;y1=4*(cos(theta)+sin(theta)); y2=2-0.5*theta;plot(theta,y1,theta,y2) %画出两个函数的图形%画螺旋线%theta=0:pi/100:8*pi; x=4*cos(theta); y=4*sin(theta); z=theta;figure %新建图形窗口plot3(x,y,z) %画含有参数的空间曲线 hold on %透明的画平面%x1=-5:0.1:5; %取值和螺旋线的范围[-4,4]有关. y1=x1;[X1 Y1]=meshgrid(x1,y1);%网格化,画曲面 Z1=4-2*X1-2*Y1;surf(X1,Y1,Z1) %或者使用mesh(X1,Y1,Z1)25.0sin 4cos 4=-++θθθθθθ5.02sin 4cos 4-=+shading flatalpha(0.5) %设置透明度alpha('z') %设置透明度方向%求交点坐标,为避免变量混淆和覆盖,这里用t 代替theta%i=1for n=[2,5,9,11] %根据画图确定解的大概位置作为初值t(i)=fsolve(inline('4*cos(t)+4*sin(t)+0.5 *t-2'),n)%选择不同初值求交点 x0(i)=4*cos(t(i));y0(i)=4*sin(t(i));z0(i)=t(i);i=i+1;endplot3(x0,y0,z0,'ro')1.4 测试结果(写清输入输出情况)从图形可见在 内与三角曲线有4个交点.交点坐标为:theta 的数值解为:t=[2.1961 5.3759 9.1078 11.1023]四个交点的近似坐标为:x0 =[-2.3413 2.4635 -3.8007 0.4261]y0 =[3.2432 -3.1514 1.2468 -3.9772]z0 =[2.1961 5.3759 9.1078 11.1023]πθ80≤≤1.5 调试和运行程序过程中产生的问题及采取的措施求交点的时候会出现重根和漏根的情形,通过选择适当的初值避免了上述情况.1.6 对算法和程序的讨论、分析, 改进设想及其它经验教训solve 函数只能求解一个数值解,不能全部求出;用fsolve 函数好; 为了满足更好的视觉效果,可以对图形进行进一步的修饰.习题1.已知多项式323)(2345+++-=x x x x x f2.解方程组:sin()0x x y ye +-=(1)22x y -= (2)3.求解方程: ex x x =)cos( 4.求解多项式方程 0189=++x x5.求下列代数方程(组)的解:(1) 510x x -+=(2) 230x y += ①2431x y += ②6.选择适当的迭代过程,分别使用:(1)普通迭代法;(2)与之相应的松弛迭代法和 Altken 迭代法.求解方程0133=+-x x 在 1.4 附近的根,精确到4位小数,请注意迭代次数的变化.7.分别用对分法、普通迭代法、松弛迭代法、Altken 迭代法、牛顿切法线等5种方法,求方程 sin()t x x ⋅= 的正的近似根,10≤<t .(建议取 5.0=t .时间许可的话,可进一步考虑 25.0=t 的情况.)五、附录为供近似求根的算法附录1:对分法程序(fulu1.m )syms x fx; a=0;b=1;fx=x^3-3*x+1;x=(a+b)/2;k=0;ffx=subs(fx, 'x', x);if ffx==0;disp(['the root is:', num2str(x)])else disp('k ak bk f(xk)')while abs(ffx)>0.0001 & a<b;disp([num2str(k), ' ', num2str(a), ' ', num2str(b), ' ', num2str(ffx)]) fa=subs(fx, 'x', a);ffx=subs(fx, 'x', x);if fa*ffx<0b=x;elsea=x;endk=k+1;x=(a+b)/2;enddisp([num2str(k), ' ', num2str(a), ' ', num2str(b), ' ', num2str(ffx)]) end注:实验时,可将第 2 行的 a、b 改为其它区间端点进行其它实验.附录2:普通迭代法(fulu2.m)syms x fx gx; gx=(x^3+1)/3;fx=x^3-3*x+1; disp('k x f(x)')x=0.5;k=0; ffx=subs(fx, 'x', x);while abs(ffx)>0.0001;disp([num2str(k), ' ', num2str(x), ' ', num2str(ffx)]);x=subs(gx, 'x', x);ffx=subs(fx, 'x', x);k=k+1;enddisp([num2str(k), ' ', num2str(x), ' ', num2str(ffx)])附录3:收敛/发散判断(fulu3.m)syms x g1 g2 g3 dg1 dg2 dg3;x1=0.347;x2=1.53;x3=-1.88;g1=(x^3+1)/3;dg1=diff(g1, 'x');g2=1/(3-x^2);dg2=diff(g2, 'x');g3=(3*x-1)^(1/3);dg3=diff(g3, 'x');disp(['1 ', num2str(abs(subs(dg1, 'x', x1))), ' ', ...num2str(abs(subs(dg1, 'x', x2))), ' ', num2str(abs(subs(dg1, 'x', x3)))]) disp(['2 ', num2str(abs(subs(dg2, 'x', x1))), ' ', ...num2str(abs(subs(dg2, 'x', x2))), ' ', num2str(abs(subs(dg2, 'x', x3)))]) disp(['3 ', num2str(abs(subs(dg3, 'x', x1))), ' ', ...num2str(abs(subs(dg3, 'x', x2))), ' ', num2str(abs(subs(dg3, 'x', x3)))])附录4:松弛迭代法(fulu4.m)syms fx gx x dgx;gx=(x^3+1)/3;fx=x^3-3*x+1;dgx=diff(gx, 'x');x=0.5;k=0;ggx=subs(gx, 'x', x);ffx=subs(fx, 'x', x);dgxx=subs(dgx, 'x', x);disp('k x w')while abs(ffx)>0.0001;w=1/(1-dgxx); disp([num2str(k), ' ', num2str(x), ' ', num2str(w)]) x=(1-w)*x+w*ggx;k=k+1;ggx=subs(gx, 'x', x);ffx=subs(fx, 'x', x);dgxx=subs(dgx, 'x', x);enddisp([num2str(k), ' ', num2str(x), ' ', num2str(w)])附录5: Altken 迭代法(fulu5.m)syms x fx gx; gx=(x^3+1)/3;fx=x^3-3*x+1;disp('k x x1 x2') x=0.5;k=0;ffx=subs(fx, 'x', x);while abs(ffx)>0.0001;u=subs(gx, 'x', x);v=subs(gx, 'x', u);disp([num2str(k), ' ', num2str(x), ' ', num2str(u), ' ', num2str(v)]) x=v-(v-u)^2/(v-2*u+x);k=k+1;ffx=subs(fx, 'x', x);enddisp([num2str(k), ' ', num2str(x), ' ', num2str(u), ' ', num2str(v)])附录6:牛顿法(fulu6.m)syms x fx gx;fx=x^3-3*x+1;gx=diff(fx, 'x');x1=-2;x2=0.5;x3=1.4;k=0;disp('k x1 x2 x3')fx1=subs(fx, 'x', x1);fx2=subs(fx, 'x', x2);fx3=subs(fx, 'x', x3);gx1=subs(gx, 'x', x1);gx2=subs(gx, 'x', x2);gx3=subs(gx, 'x', x3);while abs(fx1)>0.0001|abs(fx2)>0.0001|abs(fx3)>0.0001;disp([num2str(k), ' ', num2str(x1), ' ', num2str(x2), ' ', num2str(x3)])x1=x1-fx1/gx1;x2=x2-fx2/gx2;x3=x3-fx3/gx3;k=k+1;fx1=subs(fx, 'x', x1);fx2=subs(fx, 'x', x2);fx3=subs(fx, 'x', x3);gx1=subs(gx, 'x', x1);gx2=subs(gx, 'x', x2);gx3=subs(gx, 'x', x3);enddisp([num2str(k), ' ', num2str(x1), ' ', num2str(x2), ' ', num2str(x3)])。

相关文档
最新文档