2019届高考数学专题二十几何概型总结练习题及答案(最新整理)
2019年高考理科数学一轮单元卷:第二十单元平面解析几何综合B卷(含答案)
一轮单元训练金卷▪高三▪数学卷(B )第二十单元 平面解析几何综合注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若直线4=+ny mx 与圆22:4O x y +=没有交点,则过点(),P m n 的直线与椭圆22194x y +=的交点个数为( ) A .0B .1C .2D .0或12.已知双曲线221124x y -=的右焦点为F ,若过点F 的直线与`双曲线的右支有且只有一个交点,则此直线斜率的取值范围是( )A .⎛ ⎝⎭B .⎡⎢⎣⎦C .(D .⎡⎣3.经过抛物线24x y =的焦点,倾斜角为120︒的直线交抛物线于A ,B 两点,则线段AB 的长为( )A .2B C D .164.若点O 和点F 分别为椭圆13422=+y x 的中心和左焦点,点P 为椭圆上的任意一点, 则OP FP ⋅的最大值为( ) A .2B .3C .6D .85.设双曲线()222210,0x y a b a b-=>>的渐近线与抛物线22y x =+相切,则该双曲线的离心率等于( )A B .2 C D .36.已知椭圆()2221024x y b b+=<<的左、右焦点分别为1F ,2F ,过1F 的直线l 交椭圆于A ,B两点,若22BF AF +的最大值为5,则b 的值是( )A .1BC D7.已知点P 在抛物线24y x =上,那么点P 到点()2,1Q -的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( ) A .1,14⎛⎫- ⎪⎝⎭B .1,14⎛⎫⎪⎝⎭C .()1,2D .()1,2-8.过椭圆221164x y +=内一点()3,1P ,且被这点平分的弦所在直线的方程是( )A .34130x y +-=B .43130x y +-=C .3450x y -+=D .3450x y ++=9.已知椭圆()222210x y a b a b+=>>,过椭圆上一点M 作直线MA ,MB ,分别交椭圆于A ,B 两点,且斜率分别为1k ,2k ,若点A ,B 关于原点对称,则21k k ⋅的值为( )A .13B .12 C .12- D .13-10.已知A ,B 为抛物线2:4C y x =上的不同两点,F 为抛物线C 的焦点,若40FA FB +=, 则直线AB 的斜率为( )A .23±B .34±C .43±D .32±11.双曲线221169x y -=的左、右焦点分别1F 、2F ,P 为双曲线右支上的点,12PF F △的内切圆与x 轴相切于点A ,则圆心I 到y 轴的距离为( )A .1B .2C .3D .412.抛物线22y x =上两点()11,A x y 、()22,B x y 关于直线y x m =+对称,且2121-=⋅x x ,则m 等于( ) A .2 B .1 C .32D .3二、填空题(本大题有4小题,每小题5分,共20分. 请把答案填在题中横线上)13.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,6AB =,P 为C 的准线上一点,则ABP △的面积为 .14.已知双曲线221kx y -=的一条渐近线与直线250x y -+=平行,则双曲线的离心率为 .15.已知焦点在x 轴上椭圆222125x y b +=,点124,5P ⎛⎫ ⎪⎝⎭在椭圆上,过点P 作两条直线与椭圆分别交于A ,B 两点,若椭圆的右焦点F 恰是PAB △的重心,则直线AB 的方程为 .16.过点3,12P ⎛⎫- ⎪⎝⎭作抛物线2ax y =的两条切线PA ,PB (A ,B 为切点),若0PA PB ⋅=,则a 的值为 .三、解答题(本大题有6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(10分)在平面直角坐标系xOy 中,直线l 与抛物线24y x =相交于不同的A ,B 两点. (1)如果直线l 过抛物线的焦点,求OA OB ⋅的值;(2)如果4OA OB ⋅=-,证明:直线l 必过一定点,并求出该定点.18.(12分)已知圆22:20G x y x +-=经过椭圆22221x y a b+=()0a b >>的右焦点F 及上顶点B .过椭圆外一点(),0M m ,()m a >作倾斜角为56π的直线l 交椭圆于C ,D 两点.(1)求椭圆的方程;(2)若右焦点F 在以线段CD 为直径的圆E 的内部,求m 的取值范围.19.(12分)如图所示,已知圆()22:18C x y ++=,定点()1,0A ,M 为圆上一动点,点P 在AM 上,点N 在CM 上,且满足2AM AP =,0NP AM ⋅=,点N 的轨迹为曲线E . (1)求曲线E 的方程;(2)过点A 且倾斜角是45︒的直线l 交曲线E 于两点H ,Q ,求HQ .20.(12分)已知直线:l y x =,圆22:5O x y +=,椭圆()2222:10y x E a b a b+=>>的离心率e ,直线l被圆O 截得的弦长与椭圆的短轴长相等. (1)求椭圆E 的方程;(2)过圆O 上任意一点P 作椭圆E 的两条切线,若切线都存在斜率,求证两切线斜率之积为定值.21.(12分)如图,椭圆长轴端点为A ,B ,O 为椭圆中心,F 为椭圆的右焦点,且1AF FB ⋅=,1OF =. (1)求椭圆的标准方程;(2)记椭圆的上顶点为M ,直线l 交椭圆于P ,Q 两点,问:是否存在直线l ,使点F 恰为PQM △的垂心?若存在,求出直线l 的方程;若不存在,请说明理由.22.(12分)设椭圆()2222:10x y C a b a b+=>>的焦点分别为()11,0F -,()1,0,点()2,0A a ,且122AF AF =.(1)求椭圆C 的方程;(2)过1F 、2F 分别作互相垂直的两直线与椭圆分别交于D 、E 、M 、N 四点(如图所示),试求四边形DMEN 面积的最大值和最小值.一轮单元训练金卷▪高三▪数学卷答案(B )第二十单元 平面解析几何综合一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】C【解析】∵直线4mx ny +=与圆22:4O x y +=2>,∴422<+n m ,∴22194m n +<,∴点(),m n 在椭圆内,故选C .2.【答案】B【解析】由题意知,焦点为()4,0F ,双曲线的两条渐近线方程为y x =. 当过点F 的直线与渐近线平行时,满足与右支只有一个交点,画出图象,数形结合可知应选B . 3.【答案】D【解析】设()11,A x y ,()22,B x y ,由题意知AB的方程为1y =+,由214y x y⎧=+⎪⎨=⎪⎩,得240x +-=,12x x ∴+=-124x x =-,∴AB =16==,故选D .4.【答案】C【解析】由椭圆的方程得()1,0F -,()0,0O ,设(),P x y ,()22x -≤≤为椭圆上任意一点,则()2222221131322444x OP FP x x y x x x x x ⎛⎫⋅=++=++-=++=++ ⎪⎝⎭,当且仅当2x =时,OP FP ⋅取得最大值6,故选C . 5.【答案】D【解析】双曲线22221x y a b-=的一条渐近线方程为b y x a =,由方程组22⎧=⎪⎨⎪=+⎩b y x a y x ,消去y , 得220b x x a -+=有唯一解,所以280b a∆⎛⎫=-= ⎪⎝⎭,所以b a =223c a b e a +===,故选D . 6.【答案】C【解析】由椭圆的方程可知2=a ,由椭圆的定义可知,2248AF BF AB a ++==,所以()2283AB AF BF =-+≥,由椭圆的性质可知,过椭圆焦点的弦中通径最短,且223b a=,∴23b =,b =C . 7.【答案】A 【解析】如图,∵点()2,1Q -在抛物线的内部,由抛物线的定义,PF 等于点P 到准线1x =-的距离, 过Q 作1x =-的垂线QH 交抛物线于点K ,则点K 为取最小值时所求的点.当1y =-时,由41x =得14x =,所以点P 的坐标为1,14⎛⎫- ⎪⎝⎭,故选A . 8.【答案】A【解析】设直线与椭圆交于()11,A x y ,()22,B x y 两点,由于A ,B 两点均在椭圆上,故22111164x y +=,22221164x y +=,两式相减得()()()()121212120164x x x x y y y y +⋅-+⋅-+=, ∵126x x +=,122y y +=,∴()()121212121344AB x x y y k x x y y +-==-⨯=--+,∴直线AB 的方程为()3134y x -=--,即34130x y +-=,故选A . 9.【答案】D【解析】设点(),M x y ,()11,A x y ,()11,B x y --,∴111211y y y y k k x x x x -+⋅=⋅-+ 222212222222221111113x x b b a a b c e x x a a ⎛⎫⎛⎫--- ⎪⎪⎝⎭⎝⎭==-=-=-=--,∴21k k ⋅的值为13-,故选D . 10.【答案】C【解析】∵40FA FB +=,∴4FA FB =-,∴4FA FB =,设FB t =,则4FA t =,设点A ,B 在抛物线C 准线上的射影分别为1A ,1B ,过A 作1BB 的垂线,交线段1BB 的延长线于点M ,则113BM AA BB AF BF t =-=-=,5AB AF BF t =+=, ∴4AM t =,∴34tan =∠ABM ,由对称性可得直线AB 的斜率为43±,故选C .11.【答案】D故选D . 12.【答案】C 【解析】∵21211AB y y k x x -==--,又()2221212y y x x -=-,∴2112x x +=-,由于212122x x y y ++⎛⎫⎪⎝⎭,在直线y x m =+上,即212122y y x x m ++=+,21212y y x x m +=++, ∵2112y x =,2222y x =,∴()22212122x x x x m +=++,即()2212121222x x x x x x m ⎡⎤+-=++⎣⎦,∵2112x x +=-,2121-=⋅x x ,∴23m =,32m =.故选C .二、填空题(本大题有4小题,每小题5分,共20分. 请把答案填在题中横线上) 13.【答案】9【解析】设抛物线C 的方程为22y px =,则26AB p ==,∴3=p ,∴192ABP S AB p =⨯=△. 14.2【解析】由双曲线221kx y -=知,它的渐近线方程为y k x =,∵一条渐近线与直线250x y -+=12=,则14k =,∴双曲线方程为2214x y -=, 则2a =,1b =,c =c e a ==. 15.【答案】2015680x y --=【解析】将点P 代人椭圆的方程可得216b =,所以椭圆的方程为2212516x y +=,椭圆的焦点225a =,216b =,22225169c a b =-=-=,(3,0)F ,设()11,A x y ,()22,B x y ,直线AB 的斜率为k ,由12121212435312125503x x x x y y y y ++⎧=⎪+=⎧⎪⎪⇒⎨⎨+=-++⎪⎪⎩=⎪⎩,代人椭圆的方程可得22111212222214251602516312516x y x x y y k k x y ⎧+=⎪++⎪⇒+⨯=⇒=⎨⎪+=⎪⎩, ∴AB 的中点坐标为56,25⎛⎫- ⎪⎝⎭,所求的直线方程为2015680x y --=.16.【答案】14【解析】设切线方程为312y k x ⎛⎫=-- ⎪⎝⎭,由2312y ax y k x ⎧=⎪⎨⎛⎫=-- ⎪⎪⎝⎭⎩,联立并化简得01232=++-k kx ax ,由题意,234102k a k ∆⎛⎫=-+= ⎪⎝⎭,即0462=--a ak k ,又两切线垂直,∴1241k k a =-=-,∴14a =.三、解答题(本大题有6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.【答案】(1)3-;(2)见解析.【解析】(1)由题意知,抛物线焦点为()1,0,设:1l x ty =+,代入抛物线24y x =, 消去x 得2440y ty --=.设()11,A x y ,()22,B x y ,则124y y t +=,124y y =-,∴()()()212121212121212111OA OB x x y y ty ty y y t y y t y y y y ⋅=+=+++=++++ 2244143t t =-++-=-.(2)设:l x ty b =+,代入抛物线24y x =,消去x 得2440y ty b --=, 设()11,A x y ,()22,B x y ,则124y y t +=,124y y b =-,∴()()()2212121212121212OA OB x x y y ty b ty b y y t y y tb y y b y y ⋅=+=+++=++++ 222244444bt bt b b b b =-++-=-=-,∴2b =.∴直线l 过定点()2,0.∴若4OA OB ⋅=-,则直线l 必过一定点()2,0.18.【答案】(1)22162x y +=;(2)).【解析】(1)∵圆22:20G x y x +-=经过点F ,B ,∴()2,0F,(B ,∴2c =,b ,∴2226a b c =+=,椭圆的方程为22162x y +=.(2)由题意知直线l的方程为)y x m =-,m >,由)22162x y y x m⎧+=⎪⎪⎨⎪=-⎪⎩消去y ,整理得222260x mx m -+-=. 由()224860m m ∆=-->,解得m -<,∵mm <设()11,C x y ,()22,D x y ,则12x x m +=,21262m x x -=,∴))()2121212121333m m y y x m x m x x x x ⎡⎤⎡⎤=-⋅-=-++⎢⎥⎢⎥⎣⎦⎣⎦.∴()()()()112212122,2,22FC FD x y x y x x y y ⋅=-⋅-=-⋅-+ ()()21212234643333m m m m x x x x -+=-+++=. ∵点F 在圆E 内部,∴0FC FD ⋅<,即()2303m m -<,解得03m <<.m <<3m <,故m的取值范围是).19.【答案】(1)2212x y +=;(2)3.【解析】(1)2AM AP =,0NP AM ⋅=,∴NP 为AM 的垂直平分线,∴NA NM =,又CN NM +=2CN AN ∴+=>,∴动点N 的轨迹是以点()1,0C -,()1,0A 为焦点的椭圆,且椭圆长轴长为2a =焦距22c=,a ∴,1c =,21b =.∴曲线E 的方程为2212x y +=.(2)直线l 的斜率tan451k =︒=,∴直线l 的方程为1y x =-, 由22112y x x y =-⎧⎪⎨+=⎪⎩,消去y 得2340x x -=. 设()11,H x y ,()22,Q x y ,则1243x x +=,120x x =,∴12HQ x -. 20.【答案】(1)22132y x +=;(2)见解析. 【解析】(1)设随圆半焦距为c ,圆心O 到l的距离d ==l 被圆O 截得弦长为以b =.由题意得222c a a b c ⎧=⎪⎨⎪=+⎩,又b =,∴23a =,22b =. ∴椭圆E 的方程为22132y x +=.(2)设点()00,P x y ,过点P 的椭圆E 的切线0l 的方程为()00y y k x x -=-,联立直线0l 与椭圆E 的方程得:()0022132y k x x y y x ⎧=-+⎪⎨+=⎪⎩消去y 并整理得:()()()2220000324260k x k y kx x kx y ++-+--=,∵0l 与椭圆E 相切.∴()()()22200004432260k y kx k kx y ∆⎡⎤⎡⎤=--+--=⎣⎦⎣⎦, 整理得:()()22200002230x k kx y y -+--=,设满足题意的椭圆E 的两条切线的斜率分别为1k ,2k ,则20122032y k k x -⋅=--,∵点P 在圆O 上,∴22005x y +=,∴2012205312x k k x --⋅=-=--. ∴两条切线斜率之积为常数1-.21.【答案】(1)2212x y +=;(2)存在,43y x =-.【解析】(1)如图建系,设椭圆方程为()222210x y a b a b+=>>,则1c =,又∵1AF FB ⋅=,即()()221a c a c a c +⋅-==-,∴22a =.故椭圆方程为2212x y +=.(2)假设存在直线l 交椭圆于P ,Q 两点,且F 恰为PQM △的垂心,则设()11,P x y ,()22,Q x y ,∵()0,1M ,()1,0F ,故1PQ k =,于是设直线l 为y x m =+,由2222y x mx y =+⎧⎨+=⎩,得2234220x mx m ++-=, ∵()()1221011MP FQ x x y y ⋅==-+-,又()1,2i i y x m i =+=, 得()()()1221110x x x m x m -+++-=, 即()()21212210x x x x m m m ++-+-=,由韦达定理得()2222421033m mm m m -⋅--+-=,解得43m =-或1m =(舍去),经检验43m =-符合条件.∴直线l 的方程为43y x =-.22.【答案】(1)22132x y +=;(2)最大值为4,最小值为9625. 【解析】(1)由题意,1222F F c ==,∵122AF AF =,∴2F 为1AF 的中点.∴23a =,22b =,所以椭圆方程为22132x y +=.(2)当直线DE 与x轴垂直时,22b DE a ==,此时2MN a == 四边形DMEN 的面积142S DE MN =⋅=. 同理当MN 与x 轴垂直时,也有四边形DMEN 的面积142S DE MN =⋅=.当直线DE ,MN 均与x 轴不垂直时,设():1DE y k x =+,代入消去y 得()()2222236360k x k x k +++-=, 设()11,D x y ,()22,E x y ,则212221226233623k x x k k x x k ⎧-+=⎪⎪+⎨-⎪=⎪+⎩,所以12x x -=,所以12DE x =-=,同理()22221113322k k MN k k⎡⎤⎛⎫-+⎢⎥⎪+⎝⎭⎢⎥⎣⎦==++,所以四边形的面积()()22221111223232k k S DE MN k k ++=⋅=⋅⋅++, ()242242221242242116136613k k k k k k k k ⎛⎫⋅++ ⎪⋅++⎝⎭==++⎛⎫++ ⎪⎝⎭, 令221t k k=+,则()24244613136t S t t +==-++, ∵2212t k k =+≥,()'224()0136S t t =>+, ∴()44136S t t=-+为[)2,t ∈+∞上的增函数,当2t =,即1k =±时,9625S =,∴96425S ≤<,综上可知,96425S ≤≤.故四边形DMEN 面积的最大值为4,最小值为9625.。
完整版几何概型的经典题型及答案
几何概型的常见题型及典例分析一•几何概型的定义1. 定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或 体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型 .2. 特点:(1) 无限性,即一次试验中,所有可能出现的结果(基本事件)有无限 多个;(2) 等可能性,即每个基本事件发生的可能性均相等 . 构成事件A 的区域长度(面积或体 积) 试验的全部结果所构成的区域长度(面积或体积)说明:用几何概率公式计算概率时,关键是构造出随机事件所对应 的几何图形,并对几何图形进行度量. 4.古典概型和几何概型的区别和联系:(1) 联系:每个基本事件发生的都是等可能的.(2) 区别:①古典概型的基本事件是有限的, 几何概型的基本事件是无 限的;②两种概型的概率计算公式的含义不同..常见题型(一)、与长度有关的几何概型分析:在区间[1,1]上随机取任何一个数都是一个基本事件.所取的数是 区间[1,1]的任意一个数,基本事件是无限多个,而且每一个基本事件的 发生都是等可能的,因此事件的发生的概率只与自变量x 的取值范围的3.计算公式:P (A )例1、在区间[1,1]上随机取一个数x 1X ,cos 2-的值介于0到2之间的概率为().A.- 3B.C.D.区间长度有关,符合几何概型的条件 解:在区间[1,1]上随机取一个数X ,即x [0到-之间,需使x或 x22 2 33 2 2 2••• 1 x 2或-x 1,区间长度为3 3由几何概型知使cos —x 的值介于0到1之间的概率为2 22符合条件的区间长度 J 1所有结果构成的区间长 度 2 3 .例2、如图,A,B 两盏路灯之间长度是30米,由于光线较暗,想在其间 再随意安装两盏路灯 C,D ,问A 与C,B 与D 之间的距离都不小于10米的 概率是多少?思路点拨从每一个位置安装都是一个基本事件,基本事件有无限 多个,但在每一处安装的可能性相等,故是几何概型.解 记E : “ A 与C,B 与D 之间的距离都不小于10米”,把AB1等分,由于中间长度为妙3=10米,方法技巧我们将每个事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样,而一个随机事件的发生 则理解为恰好取到上述区域内的某个指定区域中的点,这样的概率模型 就可以用几何概型来求解.例3、在半径为R 的圆内画平行弦,如果这些弦与垂直于弦的直径的交 点在该直径上的位置是等可能的,求任意画的弦的长度不小于 R 的概率 思考方法:由平面几何知识可知,垂直于弦的直径平分这条弦,所以, 地分布在于平行弦垂直的直径上(如图1-1 ) O 也就是说,样本空间所对应的区域 G 是一维空 间(即直线)上的线段 MN 而有利场合所对 应的区域G 是长度不小于R 的平行弦的中点K 所在的区间。
2019年高考理科数学一轮单元卷:第二十单元平面解析几何综合B卷(含答案)
一轮单元训练金卷▪高三▪数学卷(B )第二十单元 平面解析几何综合注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若直线4=+ny mx 与圆22:4O x y +=没有交点,则过点(),P m n 的直线与椭圆22194x y +=的交点个数为( ) A .0B .1C .2D .0或12.已知双曲线221124x y -=的右焦点为F ,若过点F 的直线与`双曲线的右支有且只有一个交点,则此直线斜率的取值范围是( ) A .33⎛ ⎝⎭B .33⎡⎢⎣⎦C .(3,3-D .3,3⎡-⎣3.经过抛物线24x y =的焦点,倾斜角为120︒的直线交抛物线于A ,B 两点,则线段AB 的长为( ) A .2B 3C 43D .164.若点O 和点F 分别为椭圆13422=+y x 的中心和左焦点,点P 为椭圆上的任意一点, 则OP FP ⋅的最大值为( ) A .2B .3C .6D .85.设双曲线()222210,0x y a b a b-=>>的渐近线与抛物线22y x =+相切,则该双曲线的离心率等于( )A 3B .2C 5D .36.已知椭圆()2221024x y b b+=<<的左、右焦点分别为1F ,2F ,过1F 的直线l 交椭圆于A ,B两点,若22BF AF +的最大值为5,则b 的值是( ) A .1B 2C 3D 57.已知点P 在抛物线24y x =上,那么点P 到点()2,1Q -的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( ) A .1,14⎛⎫- ⎪⎝⎭B .1,14⎛⎫⎪⎝⎭C .()1,2D .()1,2-8.过椭圆221164x y +=内一点()3,1P ,且被这点平分的弦所在直线的方程是( )A .34130x y +-=B .43130x y +-=C .3450x y -+=D .3450x y ++=9.已知椭圆()222210x y a b a b+=>>6M 作直线MA ,MB ,分别交椭圆于A ,B 两点,且斜率分别为1k ,2k ,若点A ,B 关于原点对称,则21k k ⋅的值为( )A .13B .12 C .12- D .13-10.已知A ,B 为抛物线2:4C y x =上的不同两点,F 为抛物线C 的焦点,若40FA FB +=, 则直线AB 的斜率为( )A .23±B .34±C .43±D .32±11.双曲线221169x y -=的左、右焦点分别1F 、2F ,P 为双曲线右支上的点,12PF F △的内切圆与 x 轴相切于点A ,则圆心I 到y 轴的距离为( )A .1B .2C .3D .412.抛物线22y x =上两点()11,A x y 、()22,B x y 关于直线y x m =+对称,且2121-=⋅x x ,则m 等于( ) A .2 B .1 C .32D .3二、填空题(本大题有4小题,每小题5分,共20分. 请把答案填在题中横线上)13.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,6AB =,P 为C 的准线上一点,则ABP △的面积为 .14.已知双曲线221kx y -=的一条渐近线与直线250x y -+=平行,则双曲线的离心率为 .15.已知焦点在x 轴上椭圆222125x y b+=,点124,5P ⎛⎫⎪⎝⎭在椭圆上,过点P 作两条直线与椭圆分别交于A ,B 两点,若椭圆的右焦点F 恰是PAB △的重心,则直线AB 的方程为 .16.过点3,12P ⎛⎫- ⎪⎝⎭作抛物线2ax y =的两条切线PA ,PB (A ,B 为切点),若0PA PB ⋅=,则a 的值为 .三、解答题(本大题有6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(10分)在平面直角坐标系xOy 中,直线l 与抛物线24y x =相交于不同的A ,B 两点. (1)如果直线l 过抛物线的焦点,求OA OB ⋅的值;(2)如果4OA OB ⋅=-,证明:直线l 必过一定点,并求出该定点.18.(12分)已知圆22:220G x y x +-=经过椭圆22221x y a b +=()0a b >>的右焦点F 及上顶点B .过椭圆外一点(),0M m ,()m a >作倾斜角为56π的直线l 交椭圆于C ,D 两点.(1)求椭圆的方程;(2)若右焦点F 在以线段CD 为直径的圆E 的内部,求m 的取值范围.19.(12分)如图所示,已知圆()22:18C x y ++=,定点()1,0A ,M 为圆上一动点,点P 在AM 上, 点N 在CM 上,且满足2AM AP =,0NP AM ⋅=,点N 的轨迹为曲线E . (1)求曲线E 的方程;(2)过点A 且倾斜角是45︒的直线l 交曲线E 于两点H ,Q ,求HQ .20.(12分)已知直线:6l y x =圆22:5O x y +=,椭圆()2222:10y x E a b a b+=>>的离心率e =直线l 被圆O 截得的弦长与椭圆的短轴长相等. (1)求椭圆E 的方程;(2)过圆O 上任意一点P 作椭圆E 的两条切线,若切线都存在斜率,求证两切线斜率之积为定值.21.(12分)如图,椭圆长轴端点为A ,B ,O 为椭圆中心,F 为椭圆的右焦点,且1AF FB ⋅=,1OF =. (1)求椭圆的标准方程;(2)记椭圆的上顶点为M ,直线l 交椭圆于P ,Q 两点,问:是否存在直线l ,使点F 恰为PQM △的垂心?若存在,求出直线l 的方程;若不存在,请说明理由.22.(12分)设椭圆()2222:10x y C a b a b+=>>的焦点分别为()11,0F -,()1,0,点()2,0A a ,且122AF AF =. (1)求椭圆C 的方程;(2)过1F 、2F 分别作互相垂直的两直线与椭圆分别交于D 、E 、M 、N 四点(如图所示),试求四边形DMEN 面积的最大值和最小值.一轮单元训练金卷▪高三▪数学卷答案(B )第二十单元 平面解析几何综合一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】C【解析】∵直线4mx ny +=与圆22:4O x y +=222m n >+,∴422<+n m ,∴22194m n +<,∴点(),m n 在椭圆内,故选C .2.【答案】B【解析】由题意知,焦点为()4,0F ,双曲线的两条渐近线方程为3y =. 当过点F 的直线与渐近线平行时,满足与右支只有一个交点,画出图象,数形结合可知应选B . 3.【答案】D【解析】设()11,A x y ,()22,B x y ,由题意知AB 的方程为31y x =-+,由2314y x x y⎧=-+⎪⎨=⎪⎩,得24340x x +-=,1243x x ∴+=-124x x =-,∴()()22121214AB k x x x x ⎡⎤++-⎣⎦16,故选D .4.【答案】C【解析】由椭圆的方程得()1,0F -,()0,0O ,设(),P x y ,()22x -≤≤为椭圆上任意一点,则()2222221131322444x OP FP x x y x x x x x ⎛⎫⋅=++=++-=++=++ ⎪⎝⎭,当且仅当2x =时,OP FP ⋅取得最大值6,故选C . 5.【答案】D【解析】双曲线22221x y a b-=的一条渐近线方程为b y x a =,由方程组22⎧=⎪⎨⎪=+⎩b y x a y x ,消去y ,得220b x x a -+=有唯一解,所以280b a ∆⎛⎫=-= ⎪⎝⎭,所以22b a =223c a b e a +==,故选D . 6.【答案】C【解析】由椭圆的方程可知2=a ,由椭圆的定义可知,2248AF BF AB a ++==,所以()2283AB AF BF =-+≥,由椭圆的性质可知,过椭圆焦点的弦中通径最短,且223b a=,∴23b =,3b =C . 7.【答案】A 【解析】如图,∵点()2,1Q -在抛物线的内部,由抛物线的定义,PF 等于点P 到准线1x =-的距离, 过Q 作1x =-的垂线QH 交抛物线于点K ,则点K 为取最小值时所求的点.当1y =-时, 由41x =得14x =,所以点P 的坐标为1,14⎛⎫- ⎪⎝⎭,故选A . 8.【答案】A【解析】设直线与椭圆交于()11,A x y ,()22,B x y 两点,由于A ,B 两点均在椭圆上,故22111164x y +=,22221164x y +=,两式相减得()()()()121212120164x x x x y y y y +⋅-+⋅-+=, ∵126x x +=,122y y +=,∴()()121212121344AB x x y y k x x y y +-==-⨯=--+,∴直线AB 的方程为()3134y x -=--,即34130x y +-=,故选A . 9.【答案】D【解析】设点(),M x y ,()11,A x y ,()11,B x y --,∴111211y y y y k k x x x x -+⋅=⋅-+ 2222122222221111113x x b b a a b c e x x a a ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭==-=-=-=--,∴21k k ⋅的值为13-,故选D . 10.【答案】C【解析】∵40FA FB +=,∴4FA FB =-,∴4FA FB =,设FB t =,则4FA t =,设点A ,B 在抛物线C 准线上的射影分别为1A ,1B ,过A 作1BB 的垂线,交线段1BB 的延长线于点M ,则113BM AA BB AF BF t =-=-=,5AB AF BF t =+=, ∴4AM t =,∴34tan =∠ABM ,由对称性可得直线AB 的斜率为43±,故选C .11.【答案】D故选D . 12.【答案】C 【解析】∵21211AB y y k x x -==--,又()2221212y y x x -=-,∴2112x x +=-,由于212122x x y y ++⎛⎫⎪⎝⎭,在直线y x m =+上,即212122y y x x m ++=+,21212y y x x m +=++, ∵2112y x =,2222y x =,∴()22212122x x x x m +=++,即()2212121222x x x x x x m ⎡⎤+-=++⎣⎦,∵2112x x +=-,2121-=⋅x x ,∴23m =,32m =.故选C .二、填空题(本大题有4小题,每小题5分,共20分. 请把答案填在题中横线上) 13.【答案】9【解析】设抛物线C 的方程为22y px =,则26AB p ==,∴3=p ,∴192ABP S AB p =⨯=△. 14.5【解析】由双曲线221kx y -=知,它的渐近线方程为y kx =±,∵一条渐近线与直线250x y -+=12k =,则14k =,∴双曲线方程为2214x y -=, 则2a =,1b =,5c =52c e a ==. 15.【答案】2015680x y --=【解析】将点P 代人椭圆的方程可得216b =,所以椭圆的方程为2212516x y +=,椭圆的焦点225a =,216b =,22225169c a b =-=-=,(3,0)F ,设()11,A x y ,()22,B x y ,直线AB 的斜率为k ,由12121212435312125503x x x x y y y y ++⎧=⎪+=⎧⎪⎪⇒⎨⎨+=-++⎪⎪⎩=⎪⎩, 代人椭圆的方程可得22111212222214251602516312516x y x x y y k k x y ⎧+=⎪++⎪⇒+⨯=⇒=⎨⎪+=⎪⎩, ∴AB 的中点坐标为56,25⎛⎫- ⎪⎝⎭,所求的直线方程为2015680x y --=.16.【答案】14【解析】设切线方程为312y k x ⎛⎫=-- ⎪⎝⎭,由2312y a x y k x ⎧=⎪⎨⎛⎫=-- ⎪⎪⎝⎭⎩,联立并化简得01232=++-k kx ax ,由题意,234102k a k ∆⎛⎫=-+= ⎪⎝⎭,即0462=--a ak k ,又两切线垂直,∴1241k k a =-=-,∴14a =. 三、解答题(本大题有6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.【答案】(1)3-;(2)见解析.【解析】(1)由题意知,抛物线焦点为()1,0,设:1l x ty =+,代入抛物线24y x =, 消去x 得2440y ty --=.设()11,A x y ,()22,B x y ,则124y y t +=,124y y =-,∴()()()212121212121212111OA OB x x y y ty ty y y t y y t y y y y ⋅=+=+++=++++2244143t t =-++-=-.(2)设:l x ty b =+,代入抛物线24y x =,消去x 得2440y ty b --=, 设()11,A x y ,()22,B x y ,则124y y t +=,124y y b =-,∴()()()2212121212121212OA OB x x y y ty b ty b y y t y y tb y y b y y ⋅=+=+++=++++ 222244444bt bt b b b b =-++-=-=-,∴2b =.∴直线l 过定点()2,0.∴若4OA OB ⋅=-,则直线l 必过一定点()2,0.18.【答案】(1)22162x y +=;(2))6,3.【解析】(1)∵圆22:220G x y x y +-=经过点F ,B ,∴()2,0F ,(2B ,∴2c =,2b =2226a b c =+=,椭圆的方程为22162x y +=.(2)由题意知直线l 的方程为)3y x m =-,6m 由)221623x y y x m⎧+=⎪⎪⎨⎪=-⎪⎩消去y ,整理得222260x mx m -+-=. 由()224860m m ∆=-->,解得2323m -< ∵6m >623m <设()11,C x y ,()22,D x y ,则12x x m +=,21262m x x -=,∴))()212121212331333m m y y x m x m x x x x ⎡⎤⎡⎤=-⋅-=-++⎢⎥⎢⎥⎣⎦⎣⎦.∴()()()()112212122,2,22FC FD x y x y x x y y ⋅=-⋅-=-⋅-+ ()()21212234643333m m m m x x x x -+=-+++=. ∵点F 在圆E 内部,∴0FC FD ⋅<,即()2303m m -<,解得03m <<.23m <63m <,故m 的取值范围是)6,3.19.【答案】(1)2212x y +=;(242.【解析】(1)2AM AP =,0NP AM ⋅=,∴NP 为AM 的垂直平分线,∴NA NM =,又22CN NM +=222CN AN ∴+=,∴动点N 的轨迹是以点()1,0C -,()1,0A 为焦点的椭圆,且椭圆长轴长为222a =焦距22c =,2a ∴1c =,21b =.∴曲线E 的方程为2212x y +=.(2)直线l 的斜率tan 451k =︒=,∴直线l 的方程为1y x =-, 由22112y x x y =-⎧⎪⎨+=⎪⎩,消去y 得2340x x -=. 设()11,H x y ,()22,Q x y ,则1243x x +=,120x x =, ∴()222212121244211423HQ k x kx x x x ⎛⎫=+-=++- ⎪⎝⎭.20.【答案】(1)22132y x +=;(2)见解析. 【解析】(1)设随圆半焦距为c ,圆心O 到l 的距离6311d ==+则直线l被圆O 截得弦长为所以2b =2223c a a b c ⎧=⎪⎨⎪=+⎩,又2b =,∴23a =,22b =. ∴椭圆E 的方程为22132y x +=.(2)设点()00,P x y ,过点P 的椭圆E 的切线0l 的方程为()00y y k x x -=-,联立直线0l 与椭圆E 的方程得:()0022132y k x x y y x ⎧=-+⎪⎨+=⎪⎩消去y 并整理得:()()()2220000324260k x k y kx x kx y ++-+--=,∵0l 与椭圆E 相切.∴()()()22200004432260k y kx k kx y ∆⎡⎤⎡⎤=--+--=⎣⎦⎣⎦,整理得:()()22200002230x k kx y y -+--=,设满足题意的椭圆E 的两条切线的斜率分别为1k ,2k ,则20122032y k k x -⋅=--,∵点P 在圆O 上,∴22005x y +=,∴2012205312x k k x --⋅=-=--. ∴两条切线斜率之积为常数1-.21.【答案】(1)2212x y +=;(2)存在,43y x =-.【解析】(1)如图建系,设椭圆方程为()222210x y a b a b+=>>,则1c =,又∵1AF FB ⋅=,即()()221a c a c a c +⋅-==-,∴22a =.故椭圆方程为2212x y +=.(2)假设存在直线l 交椭圆于P ,Q 两点,且F 恰为PQM △的垂心, 则设()11,P x y ,()22,Q x y ,∵()0,1M ,()1,0F ,故1PQ k =,于是设直线l 为y x m =+,由2222y x m x y =+⎧⎨+=⎩,得2234220x mx m ++-=, ∵()()1221011MP FQ x x y y ⋅==-+-,又()1,2i i y x m i =+=, 得()()()1221110x x x m x m -+++-=, 即()()21212210x x x x m m m ++-+-=,由韦达定理得()2222421033m mm m m -⋅--+-=,解得43m =-或1m =(舍去),经检验43m =-符合条件.∴直线l 的方程为43y x =-.22.【答案】(1)22132x y +=;(2)最大值为4,最小值为9625. 【解析】(1)由题意,1222F F c ==,∵122AF AF =,∴2F 为1AF 的中点.∴23a =,22b =,所以椭圆方程为22132x y +=.(2)当直线DE 与x 轴垂直时,223b DE a ==223MN a == 四边形DMEN 的面积142S DE MN =⋅=.同理当MN 与x 轴垂直时,也有四边形DMEN 的面积142S DE MN =⋅=.当直线DE ,MN 均与x 轴不垂直时,设():1DE y k x =+,代入消去y 得()()2222236360k x k x k +++-=, 设()11,D x y ,()22,E x y ,则212221226233623k x x k k x x k ⎧-+=⎪⎪+⎨-⎪=⎪+⎩, 所以()221212124314k x x x x x x ⋅+-=+-,所以221243(1)1k DE k x ⋅+=+-=,同理()222214314313322k k MN k k⎡⎤⎛⎫-+⎢⎥⎪+⎝⎭⎢⎥⎣⎦==++, 所以四边形的面积()()222243143111223232k k S DE MN k k ++=⋅=⋅⋅++, ()242242221242242116136613k k k k k k k k ⎛⎫⋅++ ⎪⋅++⎝⎭==++⎛⎫++ ⎪⎝⎭, 令221t k k =+,则()24244613136t S t t +==-++,∵2212t k k =+≥,()'224()0136S t t =>+, ∴()44136S t t=-+为[)2,t ∈+∞上的增函数,当2t =,即1k =±时,9625S =,∴96425S ≤<,综上可知,96425S ≤≤.故四边形DMEN 面积的最大值为4,最小值为9625.。
(完整word版)2019届高考数学专题二十几何概型总结练习题及答案
专题二十 几何概型1.长度类几何概型 例1:已知函数()22f x x x =--,[]5,5x ∈-,在定义域内任取一点0x ,使()00f x ≤的概率是( ) A .110 B .23C .310D .45【答案】C【解析】先解出()00f x ≤时0x 的取值范围:22012x x x --≤⇒-≤≤,从而在数轴上[]1,2-区间长度占[]5,5-区间长度的比例即为事件发生的概率,∴310P =,故选C .2.面积类几何概型 (1)图形类几何概型例2-1:如图所示,在矩形ABCD 中,2AB a =,AD a =,图中阴影部分是以AB 为直径的半圆,现在向矩形ABCD 内随机撒4000粒豆子(豆子的大小忽略不计),根据你所学的概率统计知识,下列四个选项中最有可能落在阴影部分内的豆子数目是( )A .1000B .2000C .3000D .4000【答案】C【解析】在矩形ABCD 中,2AB a =,AD a =,面积为22a ,半圆的面积为212a π, 故由几何概型可知,半圆所占比例为4π,随机撒4000粒豆子,落在阴影部分内的豆子数目大约为3000,故选C . (2)线性规划类几何概型例2-2:甲乙两艘轮船都要在某个泊位停靠6小时,假定他们在一昼夜的时间段中随机地到达,试求这两艘船中至少有一艘在停泊位时必须等待的概率( ) A .14 B.13C .34D .716【答案】D【解析】设甲船到达的时间为x ,乙船到达的时间为y ,则所有基本事件构成的区域满足024024x y ≤≤≤≤⎧⎨⎩,这两艘船中至少有一艘在停泊位时必须等待包含的基本事件构成的区域A 满足0240246x y x y ⎧≤≤⎪≤≤⎨⎪-≤⎩,作出对应的平面区域如图所示:这两艘船中至少有一艘在停泊位时必须等待的概率为()181871242416S P A S Ω⨯==-=⨯阴,故选D .(3)利用积分求面积例2-3:如图,圆222:O x y +=π内的正弦曲线sin y x =与x 轴围成的区域记为M (图中阴影部分),随机往圆O 内投一个点A ,则点A 落在区域M 内的概率是( )A .24π B .34πC .22πD .32π【答案】B【解析】构成试验的全部区域为圆内的区域,面积为3π, 正弦曲线sin y x =与x 轴围成的区域记为M ,根据图形的对称性得:面积为002sin dx 2cos 4S x x ππ==-=⎰,由几何概率的计算公式可得,随机往圆O 内投一个点A ,则点A 落在区域M 内的概率34P =π,故选B .3.体积类几何概型例3:一个多面体的直观图和三视图所示,M 是AB 的中点,一只蝴蝶在几何体ADF BCE -内自由飞翔,由它飞入几何体F AMCD -内的概率为( )A .34 B .23C .13D .12【答案】D【解析】所求概率为棱锥F AMCD -的体积与棱柱ADF BCE -体积的比值. 由三视图可得AD DF CD a ===,且AD ,DF ,CD 两两垂直, 可得31122ADF BCE ADF V SDC AD DF DC a -=⋅=⋅⋅=, 棱锥体积13F AMCD ADMC V DF S -=⋅,而()21324ADCMS AD AM CD a =⋅+=, ∴214F AMCD V a -=.从而12F AMCD ADF BCEV P V --==.故选D .一、单选题1.如图,边长为2的正方形中有一阴影区域,在正方形中随机撒一粒豆子,它落在阴影区域内的概率为23.则阴影区域的面积约为( )A .23 B .43C .83D .无法计算【答案】C【解析】设阴影区域的面积为s ,243s =,∴83s =.故选C .2.某景区在开放时间内,每个整点时会有一趟观光车从景区入口发车,某人上午到达景区入口,准备乘坐观光车,则他等待时间不多于10分钟的概率为( )A .110B .16C .15D .56【答案】B【解析】由题意,此人在50分到整点之间的10分钟内到达,等待时间不多于10分钟,∴概率101606P ==.故选B .3.一只蚂蚁在边长为4的正三角形区域内随机爬行,则它在离三个顶点距离都大于2的区域内的概率为( ) A .31-π B .34C .3π D . 14【答案】A【解析】满足条件的正三角形如图所示:其中正三角形ABC 的面积31643S ==三角形满足到正三角形ABC 的顶点A ,B ,C 的距离都小于2的平面区域如图中阴影部分所示,则2S =π阴,则使取到的点到三个顶点A ,B ,C 的距离都大于2的概率为:31143P ==.故选A .4.在区间[]0,1上随机取两个数x ,y ,记P 为事件2""3x y +≤的概率,则P =( )A .23 B .12C .49D .29【答案】D【解析】如图所示,01x ≤≤,01y ≤≤表示的平面区域为ABCD ,平面区域内满足23x y +≤的部分为阴影部分的区域APQ ,其中203P ⎛⎫⎪⎝⎭,,203Q ⎛⎫⎪⎝⎭,,结合几何概型计算公式可得满足题意的概率值为1222233119p ⨯⨯==⨯,故选D .5.在区间[]02,上随机取一个数,sin 2x π的值介于0到12之间的概率为( )A .13B .2πC .12D .23【答案】A【解析】由10sin 22x π≤≤,得026x ππ≤≤,或562x ππ≤≤π,∴103x ≤≤或523x ≤≤, 记sin 2A x =π的值介于0到12之间,则构成事件A 的区域长度为15202333-+-=;全部结果的区域[]02,长度为2;∴()21323P A ==,故选A .6.点P 在边长为1的正方形ABCD 内运动,则动点P 到定点A 的距离1PA <的概率为( ) A .14 B .12C .π4D .π【答案】C【解析】满足条件的正方形ABCD ,如图所示:其中满足动点P 到定点A 的距离1PA <的平面区域如图中阴影部分所示,则正方形的面积1S=正,阴影部分的面积14S=π阴.故动点P到定点A的距离1PA<的概率π4SPS==阴正.故选C.7.如图所示,在椭圆2214xy+=内任取一个点P,则P恰好取自椭圆的两个端点连线与椭圆围成阴影部分的概率为()A.1142-πB.1144-πC.18D.1188-π【答案】A【解析】先求椭圆面积的14,由2214xy+=知214xy=-,∴22220011dx4dx442S xx=-=-⎰⎰椭圆,而224dxx-⎰表示24y x=-与0x=,2x=围成的面积,即圆224x y+=面积的14,∴224dxx-=π⎰,∴2214dx422Sxπ=-=⎰椭圆,∴2S=π椭圆,∴概率1112242Pπ-==-ππ,故选A.8.如图,若在矩形OABC中随机撒一粒豆子,则豆子落在图中阴影部分的概率为()A .21-π B .2πC .22πD .221-π【答案】A【解析】1S =π⨯=π矩形,又()00sin dx cos cos cos02x ππ=-=-π-=⎰,∴2S =π-阴影,∴豆子落在图中阴影部分的概率为221π-=-ππ.故选A .9.把不超过实数x 的最大整数记为[]x ,则函数()[]f x x =称作取整函数,又叫高斯函数,在[]14,上任取x ,则[]2x x ⎡⎤=⎣⎦的概率为( )A .14 B .13C .12D .23【答案】D【解析】当[)12x ∈,时,则21x ⎡⎤=⎣⎦,满足[]2x x ⎡⎤=⎣⎦;当[)2,3x ∈时,[]2x =,)22,6x ⎡∈⎣,则22x ⎡⎤=⎣⎦,满足[]2x x ⎡⎤=⎣⎦; 当[)3,4x ∈时,[]3x =,)2622x ⎡∈⎣,,则22x ⎡⎤=⎣⎦不满足[]2x x ⎡⎤=⎣⎦;当4x =时,[]4x =,222x =,则22x ⎡⎤=⎣⎦,不满足[]2x x ⎡⎤=⎣⎦.综上,满足[]2x x ⎡⎤=⎣⎦的[)1,3x ∈,则[]2x x ⎡⎤=⎣⎦的概率为312413--=, 故选D .10.关于圆周率π,数学发展史上出现过许多有创意的求法,如著名的普丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请120名同学每人随机写下一个x ,y 都小于1的正实数对()x y ,,再统计其中能与1构成钝角三角形三边的数对()x y ,的个数m ,最后根据统计个数m 估计π的值.如果统计结果是34m =,那么可以估计π的值为( ) A .227B .4715C .5116D .5317【答案】B【解析】由题意,120对都小于的正实数()x y,,满足0101xy<<⎧⎨<<⎩,面积为1,两个数能与1构成钝角三角形的三边的数对()x y,,满足221x y+<且0101xy<<⎧⎨<<⎩,面积为142π-,∵统计两数能与1构成钝角三角形三边的数对()x y,的个数为34m=,则34112042π=-,∴4715π=,故选B.11.为了节省材料,某市下水道井盖的形状如图1所示,其外围是由以正三角形的顶点为圆心,正三角形的边长为半径的三段圆弧组成的曲边三角形,这个曲边三角形称作“菜洛三角形”.现有一颗质量均匀的弹珠落在如图2所示的莱洛三角形内,则弹珠恰好落在三角形ABC内的概率为()A3223π-B3223π+C3D.31【答案】A【解析】弹珠落在莱洛三角形内的每一个位置是等可能的,由几何概型的概率计算公式可知所求概率:222212sin60321112233222sin602sin602322ABCABCSPSπ⨯⨯===⎛⎫π-⨯⨯⨯-⨯⨯⨯+⨯⨯⎪⎝⎭ou u u u u u o ou r△△(ABCS u u u u u u u r△为莱洛三角形的面积),故选A.12.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为I ,黑色部分记为II ,其余部分记为III .在整个图形中随机取一点,此点取自I ,II ,III 的概率分别记为1p ,2p ,3p ,则( )A .12p p =B .13p p =C .23p p =D .123p p p =+【答案】A【解析】设AC b =,AB c =,BC a =,则有222b c a +=, 从而可以求得ABC △的面积为112S bc =,黑色部分的面积为22222221122224442c b a c b a S bc bc ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=π⋅+π⋅-π⋅-=π+-+⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦22211422c b a bc bc +-=π⋅+=,其余部分的面积为223112242a a S bc bc π⎛⎫=π⋅-=- ⎪⎝⎭,∴有12S S =,根据面积型几何概型的概率公式,可以得到12p p =,故选A .二、填空题13.在区间[]02,内任取一个实数a ,则使函数()()21log a f x x -=在()0+∞,上为减函数的概率是___________.【答案】14【解析】∵函数()()21log a f x x -=在()0+∞,上为减函数,∴0211a <-<,112a <<,因此所求概率为1112204-=-.14.记集合(){}2216A x y xy =+≤,,集合()(){}40, B x y x y x y A =+-≤∈,,表示的平面区域分别为1Ω,2Ω.若在区域1Ω内任取一点()P x y ,,则点P 落在区域2Ω中的概率为__________. 【答案】324π+π【解析】画出(){}2216A x y x y =+≤,表示的区域1Ω,即图中以原点为圆心,半径为2的圆;集合()(){}40, B x y x y x y A =+-≤∈,,表示的区域2Ω,即图中的阴影部分. 由题意可得116S Ω=π,231164412842S Ω=⨯π+⨯⨯=π+,根据几何概型概率公式可得所求概率为21324S P S ΩΩπ+==π.15.如图,曲线sin32xy π=+把边长为4的正方形OABC 分成黑色部分和白色部分.在正方形内随机取一点,则此点取自黑色部分的概率是__________.【答案】14【解析】由题意可知,阴影部分的面积4410 024sin3dx cos422xS x x⎡π⎤π⎛⎫⎛⎫=-+=-⨯=⎪ ⎪⎢⎥π⎝⎭⎝⎭⎣⎦⎰,正方形的面积:24416S=⨯=,由几何概型计算公式可知此点取自黑色部分的概率:1241 164SpS===.16.父亲节小明给爸爸从网上购买了一双运动鞋,就在父亲节的当天,快递公司给小明打电话话说鞋子已经到达快递公司了,马上可以送到小明家,到达时间为晚上6点到7点之间,小明的爸爸晚上5点下班之后需要坐公共汽车回家,到家的时间在晚上5点半到6点半之间.求小明的爸爸到家之后就能收到鞋子的概率(快递员把鞋子送到小明家的时候,会把鞋子放在小明家门口的“丰巢”中)为__________.【答案】18【解析】设爸爸到家时间为x,快递员到达时间为y,以横坐标表示爸爸到家时间,以纵坐标表示快递送达时间,建立平面直角坐标系,爸爸到家之后就能收到鞋子的事件构成区域如下图:根据题意,所有基本事件构成的平面区域为() 5.5 6.567x x y y ⎧⎫≤≤⎧⎪⎪⎨⎨⎬≤≤⎩⎪⎪⎩⎭,,面积1S =,爸爸到家之后就能收到鞋子的事件,构成的平面区域为() 5.5 6.5670x x y y x y ⎧⎫≤≤⎧⎪⎪⎪≤≤⎨⎨⎬⎪⎪⎪-≥⎩⎩⎭,, 直线0x y -=与直线 6.5x =和6y =交点坐标分别为()66,和()6.56.5,,2111228S ⎛⎫=⨯= ⎪⎝⎭阴影, 由几何概型概率公式可得,爸爸到家之后就能收到鞋子的概率:18S P S==阴影. 故答案为18.。
2019年高考数学试题及答案word版
2019年高考数学试题及答案word版一、选择题(本题共8小题,每小题4分,共32分。
在每小题给出的四个选项中,只有一项是正确的。
)1. 若函数f(x)=x^2-4x+m,且f(1)=-3,则m的值为多少?A. 0B. 2C. 5D. 32. 已知等差数列{an}的首项a1=1,公差d=3,求该数列的第5项a5。
A. 13B. 16C. 19D. 223. 计算三角函数值:sin(π/6) + cos(π/3)。
A. 1B. √3/2C. √2D. 24. 已知圆C的方程为(x-2)^2 + (y+1)^2 = 9,求圆C的半径。
A. 1B. 2C. 3D. 45. 若直线l的方程为y=2x+3,且点P(1,2)在直线l上,则直线l的斜率是多少?A. 1/2B. 2C. 3D. 46. 已知复数z=3+4i,求|z|的值。
A. 5B. √7C. √13D. √257. 计算定积分∫(0到1) (x^2 - 2x + 1) dx。
A. 0B. 1/3C. 1D. 2/38. 已知向量a=(2, -1),b=(1, 3),求向量a与向量b的数量积。
A. 1B. 3C. 5D. 7二、填空题(本题共4小题,每小题4分,共16分。
)9. 若函数f(x)=x^3-6x^2+11x-6,求f'(x)。
________________。
10. 已知双曲线C的方程为x^2/a^2 - y^2/b^2 = 1,且双曲线C的渐近线方程为y=±(b/a)x,求双曲线C的离心率e。
________________。
11. 计算二项式展开式(1+x)^5的第3项。
________________。
12. 已知抛物线y=x^2-4x+4,求抛物线的顶点坐标。
________________。
三、解答题(本题共3小题,共52分。
解答应写出文字说明、证明过程或演算步骤。
)13. (本题满分12分)已知函数f(x)=x^3-3x^2+2,求证f(x)在区间[1,2]上单调递增。
几何概型、古典概型常考经典好题(史上最全面含答案)
几何概型、古典概型常考经典题(史上最全面)1.在长为2的线段AB 上任意取一点C ,则以线段AC 为半径的圆的面积小于π的概率为( ) A .14 B.12 C .34 D.π42.已知正棱锥S-ABC 的底面边长为4,高为3,在正棱锥内任取一点P ,使得V P-ABC <12V S-ABC 的概率是( ) A .34 B.78 C .12 D.143.如图所示,A 是圆上一定点,在圆上其他位置任取一点A ′,连接AA ′,得到一条弦,则此弦的长度小于或等于半径长度的概率为( )A .12 B.32 C .13 D.144.在区间⎣⎢⎡⎦⎥⎤-π6,π2上随机取一个数x ,则sin x +cos x ∈[1, 2 ]的概率是( ) A .12 B.34 C .38 D.585.若m ∈(0,3),则直线(m +2)x +(3-m)y -3=0与x 轴、y 轴围成的三角形的面积小于98的概率为________.6.如图,正四棱锥S-ABCD 的顶点都在球面上,球心O 在平面ABCD 上,在球O 内任取一点,则这点取自正四棱锥内的概率为________.7.平面区域A 1={}(x ,y )|x 2+y 2<4,x ,y ∈R ,A 2={(x ,y )||x |+|y |≤3,x ,y ∈R}.在A 2内随机取一点,则该点不在A 1内的概率为________.8.在边长为4的等边三角形OAB 及其内部任取一点P ,使得OA ―→·OP ―→≤4的概率为( )A.12B.14C.13D.189.已知事件“在矩形ABCD 的边CD 上随机取一点P ,使△APB 的最大边是AB ”发生的概率为35,则AD AB =________. 10.某人对某台的电视节目进行了长期的统计后得出结论,他任意时间打开电视机看该台节目时,看不到广告的概率为910,那么该台每小时约有________分钟的广告.11.小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为________.12.在面积为S 的ABC ∆ 的边AB 上任取一点P ,则PBC ∆的面积大于4S 的概率为 .13.在ABC ∆中,060,2,6ABC AB BC ∠===,在BC 上任取一点D ,则使ABD ∆为钝角三角形的概率为( )A .16B .13C .12D .23 14.从区间[0,1]上随机抽取2n 个数1212,,,,,,,n n x x x y y y ,构成n 个数对11(,)x y ,22(,)x y ,[来源:学+,(,)n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为__________. A .4n m B .2n m C .4m n D .m n15. 在等腰Rt △ABC 中, (1)在斜边A B 上任取一点M ,求AM 的长小于AC 的长的概率.(2)过直角顶点C 在ACB ∠内作一条射线CM ,与线段AB 交于点M ,求AM<AC 的概率.(3)已知P 是△ABC 所在平面内一点,PB +PC +2PA =0,现将一粒黄豆随机撒在△PBC 内,则黄豆落在△PBC 内的概率是( )A .14B .13C .23D .1216.节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯在4秒内为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率。
最新最全2019高考数学(全国卷、北京卷、江苏、天津、浙江)立体几何汇编含选择填空解答题
2019高考数学立体几何汇编1.设α,β为两个平面,则α∥β的充要条件是A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面2.祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容易”称为祖暅原理,利用该原理可以得到柱体体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示,则该柱体的体积是A.158 B.162C.182 D.323.如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则A.BM=EN,且直线BM、EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM、EN是异面直线D.BM≠EN,且直线BM,EN是异面直线4.设α,β为两个平面,则α∥β的充要条件是A.α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面5.已知三棱锥P -ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,PB 的中点,∠CEF =90°,则球O 的体积为A .B .C .D6.设三棱锥V -ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P -AC -B 的平面角为γ,则 A .β<γ,α<γB .β<α,β<γC .β<α,γ<αD .α<β,γ<β7.某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.8.已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________. 9.学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O −EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.9.某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.10.已知l,m是平面α外的两条不同直线.给出下列三个论断:①l⊥m;②m∥α;③l⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.11.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_ ________.(本题第一空2分,第二空3分.)12.如图,长方体1111ABCD A B C D 的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是▲.13.已知∠ACB=90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BC ,那么P 到平面ABC 的距离为___________.14. 图1是由矩形ADEB 、Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的四边形ACGD 的面积.15.如图,在四棱锥中,底面为平行四边形,为等边三角形,平面平面,,,,(Ⅰ)设分别为的中点,求证:平面; (Ⅱ)求证:平面;(Ⅲ)求直线与平面所成角的正弦值.16.如图,AE ⊥平面ABCD ,,CF AE AD BC ∥∥,,1,2AD AB AB AD AE BC ⊥====.(Ⅰ)求证:BF ∥平面ADE ;(Ⅱ)求直线CE 与平面BDE 所成角的正弦值; (Ⅲ)若二面角E BD F --的余弦值为13,求线段CF 的长.P ABCD -ABCD PCD PAC ⊥PCD PA CD ⊥2CD =3AD=G H ,PB AC ,GH ∥PAD PA ⊥PCD ADPAC17.图1是由矩形ADEB 、R t △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B-CG-A 的大小.18.如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C 的体积.19.如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,求二面角B–EC–C1的正弦值.20.如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.21.如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求二面角A-MA1-N的正弦值.22.如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.23.如图,已知三棱柱111ABC A B C -,平面11A AC C ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.24.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底部ABCD 为菱形,E 为CD 的中点.(Ⅰ)求证:BD ⊥平面PAC ;(Ⅱ)若∠ABC =60°,求证:平面PAB ⊥平面PAE ;(Ⅲ)棱PB 上是否存在点F ,使得CF ∥平面PAE ?说明理由.25.如图,在四棱锥P–ABCD中,PA⊥平面ABCD,AD⊥CD,AD∥BC,PA=AD=CD=2,BC=3.E为PD的中点,点F在PC上,且13 PFPC=.(Ⅰ)求证:CD⊥平面PAD;(Ⅱ)求二面角F–AE–P的余弦值;(Ⅲ)设点G在PB上,且23PGPB=.判断直线AG是否在平面AEF内,说明理由.。
2019-2020年高考数学大题专题练习——立体几何(一)
2019-2020年高考数学大题专题练习——立体几何(一)1.如图所示,四棱锥P ABCD 中,底面ABCD 为正方形,⊥PD 平面ABCD ,2PD AB ,点,,E F G 分别为,,PC PD BC 的中点.(1)求证:EF PA ⊥;(2)求二面角D FG E 的余弦值.2.如图所示,该几何体是由一个直角三棱柱ADE BCF 和一个正四棱锥P ABCD 组合而成,AF AD ⊥,2AEAD .(1)证明:平面⊥PAD 平面ABFE ;(2)求正四棱锥P ABCD 的高h ,使得二面角C AF P 的余弦值是223.3.四棱锥P ABCD-中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ABCD是面积为ADC∠为锐角,M为PB的中点.(Ⅰ)求证:PD∥面ACM.(Ⅱ)求证:PA⊥CD.(Ⅲ)求三棱锥P ABCD-的体积.4.如图,四棱锥S ABCD-满足SA⊥面ABCD,90DAB ABC∠=∠=︒.SA AB BC a===,2AD a=.(Ⅰ)求证:面SAB⊥面SAD.(Ⅱ)求证:CD⊥面SAC.SB A DMC BAPD5.在四棱锥P ABCD -中,底面ABCD 为矩形,测棱PD ⊥底面ABCD ,PD DC =,点E 是BC 的中点,作EF PB ⊥交PB 于F . (Ⅰ)求证:平面PCD ⊥平面PBC . (Ⅱ)求证:PB ⊥平面EFD .6.在直棱柱111ABC A B C -中,已知AB AC ⊥,设1AB 中点为D ,1A C 中点为E . (Ⅰ)求证:DE ∥平面11BCC B . (Ⅱ)求证:平面11ABB A ⊥平面11ACC A .E DABC C 1B 1A 1DAB CEF P7.在四棱锥P ABCD -中,PA ⊥平面ABCD ,//AB CD ,AB AD ⊥,PA PB =,::2:2:1AB AD CD =.(1)证明BD PC ⊥;(2)求二面角A PC D --的余弦值;(3)设点Q 为线段PD 上一点,且直线AQ 平面PAC 所成角的正弦值为23,求PQ PD的值.8.在正方体1111ABCD A B C D -中,O 是AC 的中点,E 是线段D 1O 上一点,且D 1E =λEO . (1)若λ=1,求异面直线DE 与CD 1所成角的余弦值; (2)若λ=2,求证:平面CDE ⊥平面CD 1O .9.如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,135BCD =︒∠,侧面PAB ⊥底面ABCD ,90BAP =︒∠,2AB AC PA ===,E ,F 分别为BC ,AD 的中点,点M 在线段PD 上.(Ⅰ)求证:EF ⊥平面PAC .(Ⅱ)若M 为PD 的中点,求证:ME ∥平面PAB . (Ⅲ)如果直线ME 与平面PBC 所成的角和直线ME 与平面ABCD 所在的角相等,求PMPD的值.10.如图,在三棱柱111ABC A B C -,1AA ⊥底面ABC ,AB AC ⊥,1AC AB AA ==,E ,F 分别是棱BC ,1A A 的中点,G 为棱1CC 上的一点,且1C F ∥平面AEG . (1)求1CGCC 的值. (2)求证:1EG AC ⊥. (3)求二面角1A AG E --的余弦值.A 1B 1C 1G F AB CEM F E CBAPD11.如图,在四棱锥P ABCD -中,PB ⊥底面ABCD ,底面ABCD 为梯形,AD BC ∥,AD AB ⊥,且3PB AB AD ===,1BC =.(Ⅰ)若点F 为PD 上一点且13PF PD =,证明:CF ∥平面PAB .(Ⅱ)求二面角B PD A --的大小. (Ⅲ)在线段PD 上是否存在一点M ,使得CM PA ⊥?若存在,求出PM 的长;若不存在,说明理由.12.如图,在四棱锥E ABCD -中,平面EAD ⊥平面ABCD ,CD AB ∥,BC CD ⊥,EA ED ⊥,4AB =,2BC CD EA ED ====.Ⅰ证明:BD AE ⊥.Ⅱ求平面ADE 和平面CDE 所成角(锐角)的余弦值.DABCEPF DBCA13.己知四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是菱形,且2PA AB ==.60ABC ∠=︒,BC 、PD 的中点分别为E ,F .(Ⅰ)求证BC PE ⊥.(Ⅱ)求二面角F AC D --的余弦值.(Ⅲ)在线段AB 上是否存在一点G ,使得AF 平行于平面PCG ?若存在,指出G 在AB 上的位置并给予证明,若不存在,请说明理由.14.如图,ABCD 是边长为3的正方形,DE ⊥平面ABCD ,AF DE ∥,3DE AF =,BE 与平面ABCD 所成角为60︒.(Ⅰ)求证:AC ⊥平面BDE . (Ⅱ)求二面角F BE D --的余弦值.(Ⅲ)设点M 线段BD 上一个动点,试确定点M 的位置,使得AM ∥平面BEF ,并证明你的结论.DDABCEF15.如图,PA ⊥面ABC ,AB BC ⊥,22AB PA BC ===,M 为PB 的中点. (Ⅰ)求证:AM ⊥平面PBC . (Ⅱ)求二面角A PC B --的余弦值. (Ⅲ)在线段PC 上是否存在点D ,使得BD AC ⊥,若存在,求出PDPC的值,若不存在,说明理由.16.如图所示,在四棱锥P -ABCD 中,AB ⊥平面,//,PAD AB CD E 是PB 的中点,2,5,3,2AHPD PA AB AD HD===== . (1)证明:PH ⊥平面ABCD ;(2)若F 是CD 上的点,且23FC FD ==,求二面角B EF C --的正弦值.MDABCP17.如图,DC ⊥平面ABC ,//EB DC ,22AC BC EB DC ====,120ACB ∠=︒,Q为AB 的中点.(Ⅰ)证明:CQ ⊥平面ABE ; (Ⅱ)求多面体ACED 的体积; (Ⅲ)求二面角A -DE -B 的正切值.18.如图1 ,在△ABC 中,AB =BC =2, ∠B =90°,D 为BC 边上一点,以边AC 为对角线做平行四边形ADCE ,沿AC 将△ACE 折起,使得平面ACE ⊥平面ABC ,如图2.(1)在图 2中,设M 为AC 的中点,求证:BM 丄AE ; (2)在图2中,当DE 最小时,求二面角A -DE -C 的平面角.19.如图所示,在已知三棱柱ABF -DCE 中,90ADE ∠=︒,60ABC ∠=︒,2AB AD AF ==,平面ABCD ⊥平面ADEF ,点M在线段BE 上,点G 是线段AD 的中点.(1)试确定点M 的位置,使得AF ∥平面GMC ; (2)求直线BG 与平面GCE 所成角的正弦值.20.已知在四棱锥P -ABCD 中,底面ABCD 是菱形,AC =AB ,P A ⊥平面ABCD ,E ,F 分别是AB ,PD 的中点.(Ⅰ)求证:AF ∥平面PCE ;(Ⅱ)若22AB AP ==,求平面P AD 与平面PCE 所成锐二面角的余弦值.21.如图,五面体P ABCD 中,CD ⊥平面P AD ,ABCD 为直角梯形,,2BCD PD BC CD π∠===1,2AD AP PD =⊥. (1)若E 为AP 的中点,求证:BE ∥平面PCD ; (2)求二面角P -AB-C 的余弦值.22.如图(1)所示,已知四边形SBCD 是由Rt △SAB 和直角梯形ABCD 拼接而成的,其中90SAB SDC ∠=∠=︒.且点A 为线段SD 的中点,21AD DC ==,2AB =.现将△SAB沿AB 进行翻折,使得二面角S -AB -C 的大小为90°,得到图形如图(2)所示,连接SC ,点E ,F 分别在线段SB ,SC 上. (Ⅰ)证明:BD AF ⊥;(Ⅱ)若三棱锥B -AEC 的体积为四棱锥S -ABCD 体积的25,求点E 到平面ABCD 的距离.23.四棱锥S-ABCD中,AD∥BC,,BC CD⊥060SDA SDC∠=∠=,AD DC=1122BC SD==,E为SD的中点.(1)求证:平面AEC⊥平面ABCD;(2)求BC与平面CDE所成角的余弦值.24.已知三棱锥P-ABC,底面ABC是以B为直角顶点的等腰直角三角形,P A⊥AC,BA=BC=P A=2,二面角P-AC-B的大小为120°.(1)求直线PC与平面ABC所成角的大小;(2)求二面角P-BC-A的正切值.25.如图,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,090=∠=∠BCD ABC ,AB CB DC PD PA 21====,E 是PB 的中点, (Ⅰ)求证:EC ∥平面APD ;(Ⅱ)求BP 与平面ABCD 所成的角的正切值; (Ⅲ)求二面角P -AB -D 的余弦值.26.四棱锥P ﹣ABCD 的底面ABCD 为边长为2的正方形,P A =2,PB =PD =22,E ,F ,G ,H 分别为棱P A ,PB ,AD ,CD 的中点.(1)求CD 与平面CFG 所成角的正弦值;(2)探究棱PD 上是否存在点M ,使得平面CFG ⊥平面MEH ,若存在,求出PDPM的值;若不存在,请说明理由.试卷答案1以点D 为坐标原点,建立如图所示的空间直角坐标系D xyz ,则 0,0,0D ,0,2,0A ,2,0,0C,0,0,2P ,1,0,1E ,0,0,1F ,2,1,0G .(1)∵0,2,2PA ,1,0,0EF,则0PA EF ,∴PA EF .(2)易知0,0,1DF,2,11FG, 设平面DFG 的法向量111,,m x y z ,则m DF m FG ,即1111020z x yz ,令11x ,则1,2,0m 是平面DFG 的一个法向量,同理可得0,1,1n 是平面EFG 的一个法向量,∴210cos ,552m n m nm n, 由图可知二面角D FG E 为钝角, ∴二面角D FG E 的余弦值为105.2.(1)证明:直三棱柱ADE BCF 中,AB 平面ADE ,所以:AB AD ,又AD AF ,所以:AD平面ABFE ,AD 平面PAD ,所以:平面PAD 平面ABFE .(2)由(1)AD平面ABFE ,以A 为原点,,,AB AE AD 方向为,,x y z 轴建立空间直角坐标系A xyz ,设正四棱锥P ABCD 的高h ,2AE AD ,则0,0,0A ,2,2,0F ,2,0,2C ,1,,1P h . 2,2,0AF,2,0,2AC,1,,1APh .设平面ACF 的一个法向量111,,m x y z ,则:1111220220m AF x y n ACx z ,取11x ,则111y z ,所以:1,1,1m .设平面AFP 的一个法向量222,,n x y z ,则222222200n AF x y n APx hy z ,取21x ,则21y ,21z h ,所以:1,1,1n h ,二面角C AF P 的余弦值是223,所以:211122cos ,3321m n h m n m nh , 解得:1h .3.E ODPABC M(Ⅰ)证明:连结AC 交BD 于O ,则O 是BD 中点, ∵在PBD △中,O 是BD 的中点,M 是PB 的中点, ∴PD MO ∥,又PD ⊄平面ACM ,MO ⊂平面ACM ,∴PD ∥平面ACM .(Ⅱ)证明:作PE CD ⊥,则E 为CD 中点,连结AE , ∵底面ABCD 是菱形,边长为2,面积为,∴11sin 222sin 222S AD DC ADC ADC =⨯⨯⨯∠⨯=⨯⨯∠⨯=∴sin ADC ∠,60ADC ∠=︒, ∴ACD △是等边三角形, ∴CD AE ⊥, 又∵CD PE ⊥, ∴CD ⊥平面PAE , ∴CD PA ⊥.(Ⅲ)11233P ABCD ABCD V S PE -=⨯=⨯.4.DABCSE(1)证明:∵SA ⊥平面ABCD ,AB ⊂平面ABCD , ∴AB SA ⊥, 又∵90BAD ∠=︒, ∴AB AD ⊥, ∵SA AD A =, ∴AB ⊥平面SAD , 又AB ⊂平面SAB , ∴平面SAB ⊥平面SAD . (Ⅱ)证明:取AD 中点为E ,∵90DAB ABC ∠=∠=︒,2AD a =,BC a =,E 是AD 中点, ∴ABCE ∠是矩形,CE AB a ==,DE a =,∴CD =,在ACD △中,AC,CD =,2AD a =, ∴222AC CD AD +=, 即CD AC ⊥,又∵SA ⊥平面ABCD ,CD ⊂平面ABCD , ∴CD SA ⊥, ∴CD ⊥平面PAC . 5.P F ECB AD(Ⅰ)证明:∵PD ⊥底面ABCD ,BC ⊂平面ABCD , ∴PD BC ⊥,又∵底面ABCD 为矩形, ∴BC CD ⊥, ∴BC ⊥平面PCD , ∵BC ⊂平面PBC , ∴平面PCD ⊥平面PBC .(Ⅱ)证明:∵PD DC =,E 是PC 中点, ∴DE PC ⊥,又平面PCD ⊥平面PBC ,平面PCD 平面PBC PC =, ∴DE ⊥平面PBC , ∴DE PB ⊥, 又∵EF PB ⊥,EF DE E =,∴PB ⊥平面EFD .6.E A 1B 1C 1CBAD(Ⅰ)证明:连结1A B , ∵D 是1AB 的中点, ∴D 是1A B 的中点,∵在1A BC △中,D 是1A B 的中点,E 是1A C 的中点, ∴DE BC ∥,又DE ⊄平面11BCC B ,BC ⊂平面11BCC B , ∴DE ∥平面11BCC B .(Ⅱ)证明:∵111ABC A B C -是直棱柱, ∴1AA ⊥平面ABC , ∴1AA AB ⊥, 又AB AC ⊥, ∴AB ⊥平面11ACC A , ∵AB ⊂平面11ABB A , ∴平面11ABB A ⊥平面11ACC A .7.以A 为坐标原点,建立空间直角坐标系(2,0,0)B,D ,(0,0,2)P,C(1)(BD =-,(1,2)PC =-, ∵0BD PC •=∴BD PC ⊥(2)(1,AC =,(0,0,2)AP =,平面PAC 的法向量为(2,1,0)m =-(0,2)DP =,(1,0,0)AP =,平面DPC 的法向量为(0,2,1)n =--.2cos ,3m n m n m n•==•,二面角B PC D --的余弦值为3.(3)∵AQ AP PQ AP tPD =+=+,[]0,1t ∈ ∴(0,0,2)(0,2,2)(0,2,22)AQ t t t =+-=- 设θ为直线AQ 与平面PAC 所成的角2sin cos ,3AQ m AQ m AQ mθ•===• 2222223684332(22)tt t t t t =⇒=-++-,解得2t =(舍)或23. 所以,23PQ PD =即为所求.8.解:(1)不妨设正方体的棱长为1,以DA ,DC ,1DD 为单位正交基底建立如图所示的空间直角坐标系D xyz -. 则A (1,0,0),()11022O ,,,()010C ,,,D 1(0,0,1), E ()111442,,, 于是,.由cos==.所以异面直线AE 与CD 1所成角的余弦值为36. (2)设平面CD 1O 的向量为m =(x 1,y 1,z 1),由m ·CO =0,m ·1CD =0 得 取x 1=1,得y 1=z 1=1,即m =(1,1,1) .由D 1E =λEO ,则E ,.又设平面CDE 的法向量为n =(x 2,y 2,z 2),由n ·CD =0,n ·DE =0. 得取x 2=2,得z 2=-λ,即n =(-2,0,λ) .因为平面CDE ⊥平面CD 1F ,所以m ·n =0,得λ=2.9.(Ⅰ)证明:在平行四边形ABCD 中, ∵AB AC =,135BCD =︒∠,45ABC =︒∠, ∴AB AC ⊥,∵E ,F 分别为BC ,AD 的中点, ∴EF AB ∥,∴EF AC ⊥,∵侧面PAB ⊥底面ABCD ,且90BAP =︒∠, ∴PA ⊥底面ABCD ,∴PA EF ⊥, 又∵PAAC A =,PA ⊂平面PAC ,AC ⊂平面PAC ,∴EF ⊥平面PAC .(Ⅱ)证明:∵M 为PD 的中点,F 为AD 的中点, ∴MF PA ∥,又∵MF ⊄平面PAB ,PA ⊂平面PAB , ∴MF ∥平面PAB ,同理,得EF ∥平面PAB , 又∵MFEF F =,MF ⊂平面M EF ,EF ⊂平面M EF ,∴平面MEF ∥平面PAB ,又∵ME ⊂平面M EF , ∴ME ∥平面PAB .(Ⅲ)解:∵PA ⊥底面ABCD ,AB AC ⊥,∴AP ,AB ,AC 两两垂直,故以AB ,AC ,AP 分别为x 轴,y 轴和z 轴建立如图空间直角坐标系,则(0,0,0)A ,(2,0,0)B ,(0,2,0)C ,(0,0,2)P ,(2,2,0)D -,(1,1,0)E , 所以(2,0,2)PB =-,(2,2,2)PD =--,(2,2,0)BC =-, 设([0,1])PMPDλλ=∈,则(2,2,2)PM λλλ=--, ∴(2,2,22)M λλλ--,(12,12,22)ME λλλ=+--, 易得平面ABCD 的法向量(0,0,1)m =, 设平面PBC 的法向量为(,,z)n x y =,则:n BC n PB ⎧⋅=⎪⎨⋅=⎪⎩,即220220x y x z -+=⎧⎨-=⎩,令1x =,得(1,1,1)n =, ∴直线ME 与平面PBC 所成的角和此直线与平面ABCD 所成的角相等, ∴|cos ,||cos ,|ME m ME n <>=<>,即||||||||||||ME m ME n ME m ME n ⋅⋅=⋅⋅,∴|21|λ-=,解得λ=或λ=(舍去),故PM PD .D10.(1)∵1C F ∥平面AEG ,又1C F ⊂平面11ACC A ,平面11ACC A 平面AEG AG =,∴1C F AG ∥,∵F 为1AA 的点,且侧面11ACC A 为平行四边形, ∴G 为1CC 中点, ∴112CG CC =. (2)证明:∵1AA ⊥底面ABC ,1AA AB ⊥,1AA AC ⊥, 又AB AC ⊥,如图,以A 为原点建立空间直角坐标系A xyz -,设2AB =,则由1AB AC AA ==可得(2,0,0)C ,(0,2,0)B ,1(2,0,2)C ,1(0,0,2)A , ∵E ,G 分别是BC ,1CC 的中点,∴(1,1,0)E ,(2,0,1)G , ∴1(1,1,1)(2,0,2)0EG CA ⋅=-⋅-=, ∴1EG CA ⊥, ∴1EG AC ⊥. (3)设平面AEG 的法向量为(,,)n x y z =,则:0n AE n AG ⎧⋅=⎪⎨⋅=⎪⎩,即020x y x z +=⎧⎨+=⎩,令1x =,则1y =-,2z =-, ∴(1,1,2)n =--,由已知可得平面1A AG 的法向量(0,1,0)m =, ∴6cos ,6||||n m n m n m ⋅<>==-⋅由题意知二面角1A AG E --为钝角, ∴二面角1A AG E --的余弦值为.111.(Ⅰ)证明:过点F 作FH AD ∥, 交PA 于H ,连结BH ,如图所示,∵13PF PD =,∴13HF AD BC ==,又FH AD ∥,AD BC ∥,HF BC ∥, ∴四边形BCFH 为平行四边形, ∴CF BH ∥,又BH ⊄平面PAB ,CF ⊄平面PAB , ∴CF ∥平面PAB .z D(Ⅱ)解:∵梯形ABCD 中,AD BC ∥,AD AB ⊥, ∴BC AB ⊥, ∵PB ⊥平面ABCD , ∴PB AB ⊥,PB BC ⊥,∴如图,以B 为原点,BC ,BA ,BP 所在直线为x ,y ,z 轴建立空间直角坐标系, 则(1,0,0)C ,(3,0,0)D ,(0,3,0)A ,(0,0,3)P ,设平面BPD 的一个法向量为(,,)n x y z =, 平面APD 的一个法向量为(,,)m a b c =, ∵(3,3,3)PD =-,(0,0,3)BP =,∴00PD n BP n ⎧⋅=⎪⎨⋅=⎪⎩,即333030x y z z +-=⎧⎨=⎩,令1x =得(1,1,0)n =-,同理可得(0,1,1)m =, ∴1cos ,2||||n m n m n m ⋅<>==-⋅,∵二面角B PD A --为锐角, ∴二面角B PD A --为π3. (Ⅲ)假设存在点M 满足题意,设(3,3,3)PM PD λλλλ=-, ∴(13,3,33)CM CP PD λλλλ=+=-+-,∵(0,3,3)PA =-,∴93(33)0PA CM λλ⋅=+-=,解得12λ=,∴PD 上存在点M 使得CM PA ⊥,且12PM PD =.12.Ⅰ∵BC CD ⊥,2BC CD ==,∴BD =,同理EA ED ⊥,2EA ED ==,∴AD =,又∵4AB =,∴由勾股定理可知222BD AD AB +=,BD AD ⊥, 又∵平面EAD ⊥平面ABCD ,平面EAD 平面ABCD AD =,BD ⊂平面ABCD ,∴BD ⊥平面AED , 又∵AE ⊂平面AED , ∴BD AE ⊥.Ⅱ解:取AD 的中点O ,连结OE ,则OE AD ⊥, ∵平面EAD ⊥平面ABCD ,平面EAD 平面ABCD AD =,∴OE ⊥平面ABCD ,取AB 的中点F ,连结DF BD ∥,以O 为原点,建立如图所示的空间直角坐标系O xyz -,则(D ,(C -,E ,(DC =-,(2,0,DE =, 设平面CDE 的法向量为(,,)n x y z =,则00DC n DE n ⎧⋅=⎪⎨⋅=⎪⎩即00x z x y +=⎧⎨-+=⎩,令1x =,则1z =-,1y =,∴平面CDE 的法向量(1,1,1)n =-, 又平面ADE 的一个法向量为1(0,1,0)n =, 设平面ADE 和平面CDE 所成角(锐角)为θ, 则1113cos |cos ,|3||||nn n n n n θ⋅=<>==⋅,∴平面ADE 和平面CDE. C13.(1)证明:连结AE ,PE .∵PA ⊥平面ABCD ,BC ⊂平面ABCD , ∴PA BC ⊥.又∵底面ABCD 是菱形,AB BC =,60ABC ∠=︒, ∴ABC △是正三角形. ∵E 是BC 的中点, ∴AE BC ⊥.又∵PA AE A =,PA ⊂平面PAE ,PE ⊂平面PAE ,∴BC ⊥平面PAE , ∴BC PE ⊥.(2)由(1)得AE BC ⊥,由BC AD ∥可得AE AD ⊥. 又∵PA ⊥底面ABCD ,∴PA AE ⊥,PA AD ⊥.∴以A 为原点,分别以AE ,AD ,AP 为x 轴,y 轴,z 轴建立空间直角坐标系A xyz -,如图所示,则(0,0,0)A,E ,(0,2,0)D ,(0,0,2)P,1,0)B -,C ,(0,1,1)F .∵PA ⊥平面ABCD ,∴平面ABCD 的法向量为(0,0,2)AP =. 又∵(3,1,0)AC =,(0,1,1)AF =. 设平面ACF 的一个法向量(,,)n x y z =,则:AC n AF n ⎧⋅=⎪⎨⋅=⎪⎩,即00y y z +==⎪⎩+,令1x =,则y =z ,∴(1,3,n =-. ∴21cos ,7||||AP n AP n AP n ⋅==. ∵二面角F AC D --是锐角, ∴二面角F AC D -- (3)G 是线段AB 上的一点,设(01)AG t AB t =≤≤. ∵(3,1,0)AB =-,∴,,0)G t -. 又∵(3,1,2)PC =-,(3,,2)PG t t =--. 设平面PCG 的一个法向量为(,,)n x y z =,则:1100PC n PGn ⎧⋅=⎪⎨⋅=⎪⎩,即1111112020yz ty z-=--=+,∴1()n t t =-+, ∵AF ∥平面PCG ,∴AF n ⊥,0AF n ⋅=1)0t -=, 解得12t =. 故线段AB 上存在一点G ,使得AF 平行于平面PCG ,G 是AB 中点.14.(1)证明:∵DE ⊥平面ABCD ,AC ⊂平面ABCD , ∴DE AC ⊥. ∵ABCD 是正方形, ∴AC BD ⊥. 又DEBD D =,∴AC ⊥平面BDE .(2)∵DA ,DC ,DE 两两重叠,∴建立空间直角坐标系D xyz -如图所示.∵BE 与平面ABCD 所成角为60︒,即60DBE ∠=︒,∴EDDB. 由3AD =,可知DZ =AF ,则(3,0,0)A,F,E ,(3,3,0)B ,(0,3,0)C .∴(0,BF =-,(3,0,EF =-, 设平面BEF 的法向量为(,,)n x y z =,则00n BF n EF ⎧⋅=⎪⎨⋅=⎪⎩,即3030y x ⎧-=⎪⎨-=⎪⎩,令z (4,2,6)n =. ∵AC ⊥平面BDE ,∴CA 为平面BDE 的一个法向量,(3,3,0)CA =-,∴cos ,||||32n CA n CA n CA ⋅==.∵二面角F BE D --为锐角, ∴二面角F BE D -- (3)点M 线段BD 上一个动点,设(,,0)M t t ,则(3,,0)AM t t =-.∵AM ∥平面BEF ,∴0AM n ⋅=,即4(3)20t t -+=,解得2t =,此时,点M 坐标为(2,2,0),13BM BD =,符合题意.15.(1)证明:∵PA ⊥平面ABC ,BC ⊂平面ABC , ∴PA BC ⊥.∵BC AB ⊥,PA AB A =, ∴BC ⊥平面PAB . 又AM ⊂平面PAB , ∴AM BC ⊥.∵PA AB =,M 为PB 的中点, ∴AM PB ⊥. 又∵PBBC B =,∴AM ⊥平面PBC .(2)如图,在平面ABC 内作AZ BC ∥,则AP ,AB ,AZ 两两垂直,建立空间直角坐标系A xyz -.则(0,0,0)A ,(2,0,0)P ,(0,2,0)B ,(0,2,1)C ,(1,1,0)M . (2,0,0)AP =,(0,2,1)AC =,(1,1,0)AM =.设平面APC 的法向量为(,,)n x y z =,则:0n AP n AC ⎧⋅=⎪⎨⋅=⎪⎩,即020x y z =⎧⎨+=⎩,令1y =,则2z =-. ∴(0,1,2)n =-.由(1)可知(1,1,0)AM =为平面PBC 的一个法向量,∴cos||||5AM nn AMAM n⋅⋅==∵二面角A PC B--为锐角,∴二面角A PC B--.(3)证明:设(,,)D v wμ是线段PC上一点,且PD PCλ=,(01)λ≤≤,即(2,,)(2,2,1)v wμλ-=-,∴22μλ=-,2vλ=,wλ=.∴(22,22,)BDλλλ=--.由0BD AC⋅=,得4[0,1]5λ=∈,∴线段PC上存在点D,使得BD AC⊥,此时45PDPCλ==.16.解:(1)证明:因为AB⊥平面PAD,所以PH AB⊥,因为3,2AHADHD==,所以2,1AH HD==,设PH x=,由余弦定可得,22221cos22x HD PH xPHDx HD x+--∠==⋅22221cos24x HA PH xPHAx HA x+--∠==⋅因为cos cosPHD PHA∠=-∠,故1PH x==,所以PH AD⊥,因为AD AB A=,故PH⊥平面ABCD.(2)以H为原点,以,,HA HP HP所在的直线分别为,,x y z轴,建立空间直角坐标系,则3139(2,3,0),(0,0,1),(1,,),(1,,0),(1,,0)2222B P E F C--,所以可得,3311(3,,0),(1,,),(2,0,),(0,3,0)2222BF BE EF FC=--=--=-=,设平面BEF的法向量(,,)n x y z=,则有:33002(1,2,4)30022x yBF nnzBE n x y⎧--=⎪⎧⋅=⎪⎪⇒⇒=-⎨⎨⋅=⎪⎪⎩--+=⎪⎩,设平面EFC的法向量(,,)m x y z=,则有:020(1,0,4)2030z EF m x m FC m y ⎧⎧⋅=--=⎪⎪⇒⇒=-⎨⎨⋅=⎪⎪⎩=⎩,故17cos ,21n m n m n m⋅===⋅设二面角B EF C --的平面角为θ ,则sin 21θ=.17.解(Ⅰ)证明:∵DC ⊥平面ABC ,//BE DC ∴BE ⊥平面ABC ∴CQ BE ⊥ ①又∵2AC BC ==,点Q 为AB 边中点 ∴CQ AB ⊥ ②AB BE B =故由①②得CQ ⊥平面ABE(Ⅱ)过点A 作AM BC ⊥交BC 延长线于点M ∵,AM BC AM BE ⊥⊥ ∴AM ⊥平面BEDC ∴13A CED CDE V S AM -∆=sin33AM AC π==11212CDE S ∆=⨯⨯= ∴113A CED V -=⨯= (Ⅲ)延长ED 交BC 延长线于S ,过点M 作MQ ES ⊥于Q ,连结AQ 由(Ⅱ)可得:AQM ∠为A DE B --的平面角∵1//2CD BC ∴2SC CB == ∴SE ==1MC MS ==∵SQM ∆∽SBE ∆∴QM SM BE SE=∴1225QM=即55QM=∴3tan1555AMAQMQM∠===18.(1)证明:∵在中,,∴当为的中点时,∵平面平面,平面,平面平面∴平面∵平面∴(2)如图,分别以射线,的方向为,轴的正方向,建立空间直角坐标系设,则,,,∵,,平面平面∴∴当且仅当时,最小,此时,设,平面,则,即∴令,可得,,则有∴∴观察可得二面角的平面角19.(1)取FE 的中点P ,连接CP 交BE 于点M ,M 点即为所求的点. 连接PG ,∵G 是AD 的中点,P 是FE 的中点,∴//PG AF , 又PG ⊂平面MGC ,AF ⊄平面MGC ,所以直线//AF 平面MGC , ∵//PE AD ,//AD BC ,∴//PE BC ,∴2BM BCME PE==, 故点M 为线段BE 上靠近点E 的三等分点. (2)不妨设2AD =,由(1)知PG AD ⊥, 又平面ADEF ⊥平面ABCD ,平面ADEF平面ABCD AD =,PG ⊂平面ADEF ,∴PG ⊥平面ABCD .故PG GD ⊥,PG GC ⊥,以G 为坐标原点,GC ,GD ,GP 分别为x ,y ,z 轴建立空间直角坐标系G xyz -,∵60ABC ∠=︒,2AB AD AF ==,∴ADC ∆为正三角形,3GC =,∴(0,0,0)G ,3,0,0)C ,(0,1,0)D ,(0,1,1)E ,∴(0,1,1)GE =,(3,0,0)GC =,设平面CEG 的一个法向量1(,,)n x y z =,则由10n GE ⋅=,10n GC ⋅=可得0,30,y z x +=⎧⎪⎨=⎪⎩令1y =,则1(0,1,1)n =-,∵(3,1,0)CD =-BA =,且(0,1,0)A -,故3,2,0)B -,故(3,2,0)BG =-, 故直线BG 与平面GCE 所成角的正弦值为11||14sin 7||||n BG n BG θ⋅==⋅.20.(Ⅰ)取PC 中点H ,连接、EH FH .∵E 为AB 的中点,ABCD 是菱形,∴//AE CD ,且12AE CD =,又F 为PD 的中点,H 为PC 的中点,∴//FH CD ,且12FH CD =,∴//AE FH ,且AE FH =,则四边形AEHF 是平行四边形,∴//AF EH .又AF ⊄平面PCE ,EH ⊂面PCE ,∴//AF 平面PCE .(Ⅱ)取BC 的中点为O ,∵ABCD 是菱形,AC AB =,∴AO BC ⊥,以A 为原点,,,AO AD AP 所在直线分别为,,z x y 轴,建立空间直角坐标系A xyz -,则)()()3,1,0,3,1,0,0,2,0BCD -,)()313,0,0,0,0,1,,02OP E ⎫-⎪⎪⎝⎭,∴()333,1,1,,,022PC EC ⎛⎫=-= ⎪ ⎪⎝⎭,()3,0,0AO =,设平面的法向量为()1,,n x y z =,则1100n PC n EC ⎧⋅=⎪⎨⋅=⎪⎩,即3033022x y z x y ⎧+-=⎪+=⎪⎩,令1y =-,则3,2x z ==,∴平面PCE 的一个法向量为)13,1,2n =-,又平面PAD 的一个法向量为()21,0,0n =.∴12121236cos ,|n ||n |4314n n n n ⋅<>===⋅++.即平面PAD 与平面PCE 621.解:(1)证明:取PD 的中点F ,连接,EF CF , 因为,E F 分别是,PA PD 的中点,所以//EF AD 且12EF AD =, 因为1,//2BC AB BC AD =,所以//EF BC 且EF BC =,所以//BE CF , 又BE ⊄平面,PCD CF ⊂平面PCD ,所以//BE 平面PCD .(2)以P 为坐标原点,,PD PA 所在直线分别为x 轴和y 轴,建立如图所示的空间直角坐标系,不妨设1BC =,则13(0,0,0),3,0),(1,0,0),(1,0,1),(2P A D C B , 13(0,3,0),(,1),(1,3,0)2PA AB AD ==-=-,设平面PAB 的一个法向量为(,,)n x y z =,则30013002n PA yn AB x z ⎧=⎧⋅=⎪⎪⇒⎨⎨⋅=+=⎪⎪⎩⎩, 令2x =,得(2,0,1)n =-, 同理可求平面ABD 的一个法向量为6(3,3,0)cos ,55n m m n m n m⋅=⇒===⨯,平面ABD 和平面ABC 为同一个平面, 所以二面角P AB C --.22.解:(Ⅰ)证明:因为二面角S AB C --的大小为90°,则SA AD ⊥, 又SA AB ⊥,故SA ⊥平面ABCD ,又BD ⊂平面ABCD ,所以SA BD ⊥; 在直角梯形ABCD 中,90BAD ADC ∠=∠=︒,21AD CD ==,2AB =, 所以1tan tan 2ABD CAD ∠=∠=,又90DAC BAC ∠+∠=︒, 所以90ABD BAC ∠+∠=︒,即AC BD ⊥; 又ACSA A =,故BD ⊥平面SAC ,因为AF ⊂平面SAC ,故BD AF ⊥.(Ⅱ)设点E 到平面ABCD 的距离为h ,因为B ABC E ABC V V --=,且25E ABC S ABCD V V --=,故511215*********ABCD S ABCD E ABCABC S SAV V S h h --∆⨯⋅⨯===⋅⨯⨯⨯梯形,故12h =,做点E 到平面ABCD 的距离为12.23.(1)E 为SD 的中点,01,602AD DC SD SDA SDC ==∠=∠=.ED EC AD DC ∴===设O 为AC 的中点,连接,EO DO 则EO AC ⊥//,AD BC BC CD ⊥ .AD BC ∴⊥又OD OA OC ==EOC EOD ∴∆≅∆ 从而EO OD ⊥AC ABCD = DO ⊂面ABCD 0AC DO =EO ∴⊥面ABCD EO ⊂面AEC∴面EAC ⊥面ABCD ………………6分(2)设F 为CD 的中点,连接OF EF 、,则OF 平行且等于12AD AD ∥BC EF ∴∥BC不难得出CD ⊥面OEF (EO CD ⊥ FO CD ⊥)∴面ECD ⊥面OEFOF 在面ECD 射影为EF ,EFO ∠的大小为BC 与面ECD 改成角的大小设AD a =,则2aOF =32EF a = 3os OF c EFO EF <== 即BC 与ECD 3(亦可以建系完成) ………………12分24.解(Ⅰ)过点P 作PO ⊥底面ABC ,垂足为O , 连接AO 、CO ,则∠PCO 为所求线面角,,AC PA ⊥,AC PO PA PO P ⊥⋂=且,AC ∴⊥平面PAO .则∠P AO 为二面角P -AC -B 平面角的补角∴∠ 60=PAO ,又23PA =∴,,1sin 2PO PCO CO ∠== 030PCO ∴∠=,直线PC 与面ABC 所成角的大小为30°.(Ⅱ)过O 作OE BC ⊥于点E ,连接PE ,则PEO ∠为二面角P -BC -A 的平面角,AC ⊥平面PAO ,AC OA ⊥045AOE ∠=,设OE 与CA 相交于F 22OE EF FO ∴=+=+在PEO ∆中,3436tan 7222POPEO EO-∠===+则二面角P -BC -A 的正切值为4367-.25.解:(Ⅰ)如图,取PA 中点F ,连接FD EF ,,E 是BP 的中点,AB EF // 且AB EF 21=,又AB DC AB DC 21,//= ∴∴DC EF //四边形EFDC 是平行四边形,故得//EC FD又⊄EC 平面⊂FD PAD ,平面PAD//EC ∴平面ADE(Ⅱ)取AD 中点H ,连接PH ,因为PD PA =,所以AD PH ⊥平面⊥PAD 平面ABCD 于AD ,⊥∴PH 面ABCD ,HB ∴是PB 在平面ABCD 内的射影 PBH ∠∴是PB 与平面ABCD 所成角四边形ABCD 中,090=∠=∠BCD ABC ∴四边形ABCD 是直角梯形AB CB DC 21== 设a AB 2=,则a BD 2=在ABD ∆中,易得a AD DBA 2,450=∴=∠.22212222a a a DH PD PH =-=-=又22224AB a AD BD ==+ABD ∆∴是等腰直角三角形,090=∠ADBa a a DB DH HB 2102212222=+=+=∴ ∴ 在PHB Rt ∆中,5521022tan ===∠a aHB PH PBH(Ⅲ)在平面ABCD 内过点H 作AB 的垂线交AB 于G 点,连接PG ,则HG 是PG 在平面ABCD 上的射影,故AB PG ⊥,所以PGH ∠是二面角D AB P --的平面角, 由a HA a AB 22,2==,又a HG HAB 21450=∴=∠ 在PHG Rt ∆中,22122tan ===∠a aHG PH PGH ∴ 二面角D AB P --的余弦值大小为.3326.(1)∵四棱锥P ﹣ABCD 的底面ABCD 为边长为2的正方形,PA=2,PB=PD=2,∴PA 2+AB 2=PB 2,PA 2+AD 2=PD 2, ∴PA ⊥AB ,PA ⊥AD ,∴以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴, 建立空间直角坐标系,∵E ,F ,G ,H 分别为棱PA ,PB ,AD ,CD 的中点. ∴C (2,2,0),D (0,2,0),B (2,0,0), P (0,0,2),F (1,0,1),G (0,1,0), =(﹣2,0,0),=(﹣1,﹣2,1),=(﹣2,﹣1,0),设平面CFG 的法向量=(x ,y ,z ), 则,取x=1,得=(1,﹣2,﹣3),设CD与平面CFG所成角为θ,则sinθ=|cos<>|===.∴CD与平面CFG所成角的正弦值为.(2)假设棱PD上是否存在点M(a,b,c),且,(0≤λ≤1),使得平面CFG⊥平面MEH,则(a,b,c﹣2)=(0,2λ,﹣2λ),∴a=0,b=2λ,c=2﹣2λ,即M(0,2λ,2﹣2λ),E(0,0,1),H(1,2,0),=(1,2,﹣1),=(0,2λ,1﹣2λ),设平面MEH的法向量=(x,y,z),则,取y=1,得=(,1,),平面CFG的法向量=(1,﹣2,﹣3),∵平面CFG⊥平面MEH,∴=﹣2﹣=0,解得∈[0,1].∴棱PD上存在点M,使得平面CFG⊥平面MEH,此时=.。
2019年高考数学试题分类汇编解析几何附答案详解
2019年高考数学试题分类汇编解析几何一、选择题.1、(2019年高考全国I 卷理科10)双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为 A .2sin40° B .2cos40°C .1sin50︒D .1cos50︒答案:C解析:由题可知,130tan ︒=-a b 即,50tan ︒=a b 则有︒︒=50cos 50sin 2222a b ,即︒︒=-50cos 50sin 22222a a c 所以︒︒=-50cos 50sin 1222e ,︒=50cos 12e ,故选D 2、(2019年高考全国I 卷理科10,文科12)已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=答案:B解析:设x B F =||2,则x B F B F AF AB B F 3||3||||||||2221==+== 由椭圆定义得x a B F B F 42||||21==+,故,23||,2||12aB F a B F ==a AF a AF a AF =-==||2||,||212在21F AF ∆和21F BF ∆中,由余弦定理得a c a a c a F AF 1224cos 22221=⨯⨯-+=∠ a a c a a c a F BF 2222212221249441cos -=⨯⨯-+=∠ 21F AF ∠、21F BF ∠互补得a a a 122=-,解得32=a ,22=b ,方程为12322=+y x 。
故选B 3、(2019年高考全国II 卷理科8,文科9)若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p=A .2B .3C .4D .8 答案:D解析:易知抛物线的焦点为)0,2(p,故椭圆焦点在x 轴上 由p p p b a c 23222=-=-=,则p p 2)2(2=,解得p=8。
高三数学几何概型试题答案及解析
高三数学几何概型试题答案及解析1.若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是()A.B.C.D.【答案】B【解析】由题知,以AB为直径的圆的半径为1,故质点落在以AB为直径的半圆内的概率为=,故选B.考点:几何概型2.在区间上随机取两个数其中满足的概率是()A.B.C.D.【答案】B【解析】在区间[0,2]上随机取两个数x,y,对应区域的面积为4,满足y≥2x,对应区域的面积为×1×2=1,∴所求的概率为,故选B.考点:几何概型3.张先生订了一份《南昌晚报》,送报人在早上6:30-7:30之间把报纸送到他家,张先生离开家去上班的时间在早上7:00-8:00之间,则张先生在离开家之前能拿到报纸的概率是________.【答案】【解析】以横坐标x表示报纸送到时间,以纵坐标y表示张先生离家时间,建立平面直角坐标系,如图.因为随机试验落在方形区域内任何一点是等可能的,所以符合几何概型的条件.根据题意只要点落在阴影部分,就表示张先生在离开家之前能拿到报纸,即所求事件A发生,所以P(A)==.4.已知复数z=x+yi(x,y∈R)在复平面上对应的点为M.(1)设集合P={-4,-3,-2,0},Q={0,1,2},从集合P中随机取一个数作为x,从集合Q中随机取一个数作为y,求复数z为纯虚数的概率;(2)设x∈[0,3],y∈[0,4],求点M落在不等式组:所表示的平面区域内的概率.【答案】(1)(2)【解析】(1)记“复数z为纯虚数”为事件A.∵组成复数z的所有情况共有12个:-4,-4+i,-4+2i,-3,-3+i,-3+2i,-2,-2+i,-2+2i,0,i,2i,且每种情况出现的可能性相等,属于古典概型,其中事件A包含的基本事件共2个:i,2i,∴所求事件的概率为P(A)==.(2)依条件可知,点M均匀地分布在平面区域{(x,y)| }内,属于几何概型,该平面区域的图形为右图中矩形OABC围成的区域,面积为S=3×4=12.而所求事件构成的平面区域为{(x,y)| },其图形如图中的三角形OAD(阴影部分).又直线x+2y-3=0与x轴、y轴的交点分别为A(3,0)、D(0,),∴三角形OAD的面积为S1=×3×=.∴所求事件的概率为P===.5.在区间[-6,6]内任取一个元素x0,抛物线x2=4y在x=x处的切线的倾斜角为α,则α∈[,]的概率为________.【答案】【解析】当切线的倾斜角α∈[,]时,切线斜率的取值范围是(-∞,-1]∪[1,+∞),抛物线x2=4y在x=x0处的切线斜率是x,故只要x∈(-∞,-2]∪[2,+∞)即可,若在区间[-6,6]内取值,则只能取区间[-6,-2]∪[2,6)内的值,这个区间的长度是8,区间[-6,6]的长度是12,故所求的概率是=.6.在可行域内任取一点,规则如流程图所示,求输出数对(x,y)的概率.【答案】【解析】可行域为中心在原点,顶点在坐标轴上的正方形(边长为),x2+y2≤表示半径为的圆及其内部,所以所求概率为=.7.在长为的线段上任取一点,并且以线段为边作正三角形,则这个正三角形的面积介于与之间的概率为()A.B.C.D.【答案】D【解析】解:边长为的正三角形的面积为,由得:在长为的线段上任取一点,有无限个可能的结果,所有可能结果对应一个长度为20的线段,设“以线段为边的正三角形面积介于与之间”为事件M,则包含M的全部基本事对应的是长度为6的线段,所以故选D.【考点】几何概型.8.在平面区域内随机取一点,则所取的点恰好满足的概率是()A.B.C.D.【答案】C【解析】如图,此题为几何概型,,故选C.【考点】几何概型9.一只昆虫在边长分别为、、的三角形区域内随机爬行,则其到三角形顶点的距离小于的地方的概率为 .【答案】.【解析】如下图所示,易知三角形为直角三角形,昆虫爬行的区域是在三角形区域内到以各顶点为圆心,半径为的圆在三角形区域内的部分,实际上就是三个扇形,将这三个扇形拼接起来就是一个半圆,其半径长为,面积为,三角形的面积为,因此昆虫爬行时到三角形顶点的距离小于的地方的概率为.【考点】几何概型10.如图,一半径为的圆形靶内有一个半径为的同心圆,将大圆分成两部分,小圆内部区域记为环,圆环区域记为环,某同学向该靶投掷枚飞镖,每次枚. 假设他每次必定会中靶,且投中靶内各点是随机的.(1)求该同学在一次投掷中获得环的概率;(2)设表示该同学在次投掷中获得的环数,求的分布列及数学期望.【答案】(1);(2)详见解析.【解析】(1)先根据题中条件确定相应的事件为几何概型,然后利用几何概型的概率计算公式(对应区域面积之比)求出相应事情的概率即可;(2)(1)由题意可得是几何概型,设,该同学一次投掷投中环的概率为;(2)由题意可知可能的值为、、、,,,,,的分布列为环,答:的数学期望为环.【考点】1.几何概型;2.离散型随机变量分布列与数学期望11.已知正方体的棱长为2,在四边形内随机取一点,则的概率为_______ ,的概率为_______.【答案】;【解析】四边形为矩形且。
2019年数学高考试题(带答案)
2019年数学高考试题(带答案)一、选择题1.一动圆的圆心在抛物线28y x =上,且动圆恒与直线20x +=相切,则此动圆必过定点( ) A .(4,0) B .(2,0)C .(0,2)D .(0,0)2.已知全集{1,3,5,7}U =,集合{1,3}A =,{3,5}B =,则如图所示阴影区域表示的集合为( )A .{3}B .{7}C .{3,7}D .{1,3,5}3.函数()23x f x x+=的图象关于( )A .x 轴对称B .原点对称C .y 轴对称D .直线y x =对称4.在△ABC 中,a =5,b =3,则sin A :sin B 的值是( ) A .53B .35C .37D .575.已知π,4αβ+=则(1tan )(1tan )αβ++的值是( ) A .-1B .1C .2D .46.函数()ln f x x x =的大致图像为 ( )A .B .C .D .7.在△ABC 中,P 是BC 边中点,角、、A B C 的对边分别是,若0cAC aPA bPB ++=,则△ABC 的形状为( )A .直角三角形B .钝角三角形C .等边三角形D .等腰三角形但不是等边三角形.8.已知i 为虚数单位,复数z 满足(1)i z i +=,则z =( ) A .14B .12C .22D .29.南北朝时代的伟大数学家祖暅在数学上有突出贡献,他在实践的基础上提出祖暅原理:“幂势既同,则积不容异”.其含义是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等,如图,夹在两个平行平面之间的两个几何体的体积分别为12,V V ,被平行于这两个平面的任意平面截得的两个截面的面积分别为12,S S ,则“12,S S 总相等”是“12,V V 相等”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件10.2n n +<n+1(n∈N *),某同学应用数学归纳法的证明过程如下: (1)当n=1时211+不等式成立.(2)假设当n=k(k∈N *)时,不等式成立,2k k +<k+1. 那么当n=k+1时()()()2222(k 1)k 1k 3k 2k3k 2k 2(k 2)+++=++<+++++所以当n=k+1时,不等式也成立.根据(1)和(2),可知对于任何n∈N *,不等式均成立.则上述证法( ) A .过程全部正确 B .n=1验得不正确C .归纳假设不正确D .从n=k 到n=k+1的证明过程不正确11.已知复数 ,则复数在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限12.在等比数列{}n a 中,44a =,则26a a ⋅=( ) A .4B .16C .8D .32二、填空题13.已知曲线ln y x x =+在点()1,1处的切线与曲线()221y ax a x =+++相切,则a= .14.事件,,A B C 为独立事件,若()()()111,,688P A B P B C P A B C ⋅=⋅=⋅⋅=,则()P B =_____.15.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,4c =,42sin a A =,且C 为锐角,则ABC ∆面积的最大值为________. 16.已知函数()sin ([0,])f x x x π=∈和函数1()tan 2g x x =的图象交于,,A B C 三点,则ABC ∆的面积为__________.17.函数()23s 34f x in x cosx =+-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是__________. 18.在等腰梯形ABCD 中,已知AB DC ,2,1,60,AB BC ABC ==∠=点E 和点F 分别在线段BC 和CD 上,且21,,36BE BC DF DC ==则AE AF ⋅的值为 . 19.如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是_____.20.计算:1726cos()sin 43ππ-+=_____. 三、解答题21.11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束. (1)求P (X =2);(2)求事件“X =4且甲获胜”的概率.22.已知()ln xe f x a x ax x=+-.(1)若0a <,讨论函数()f x 的单调性;(2)当1a =-时,若不等式1()()0xf x bx b e x x+---≥在[1,)+∞上恒成立,求b 的取值范围.23.如图,在四棱锥P−ABCD 中,AB//CD ,且90BAP CDP ∠=∠=.(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠=,求二面角A −PB −C 的余弦值. 24.如图,四面体ABCD 中,O 、E 分别是BD 、BC 的中点,2AB AD ==,2CA CB CD BD ====. (1)求证:AO ⊥平面BCD ;(2)求异面直线AB 与CD 所成角的余弦值; (3)求点E 到平面ACD 的距离.25.“微信运动”是手机APP 推出的多款健康运动软件中的一款,大学生M 的微信好友中有400位好友参与了“微信运动”.他随机抽取了40位参与“微信运动”的微信好友(女20人,男20人)在某天的走路步数,经统计,其中女性好友走路的步数情况可分为五个类别:A 、02000步,(说明:“02000”表示大于或等于0,小于2000,以下同理),B 、20005000步,C 、50008000步,D 、800010000步,E 、1000012000步,且A 、B 、C 三种类别的人数比例为1:4:3,将统计结果绘制如图所示的柱形图;男性好友走路的步数数据绘制如图所示的频率分布直方图.(Ⅰ)若以大学生M 抽取的微信好友在该天行走步数的频率分布,作为参与“微信运动”的所有微信好友每天走路步数的概率分布,试估计大学生M 的参与“微信运动”的400位微信好友中,每天走路步数在20008000的人数;(Ⅱ)若在大学生M 该天抽取的步数在800010000的微信好友中,按男女比例分层抽取6人进行身体状况调查,然后再从这6位微信好友中随机抽取2人进行采访,求其中至少有一位女性微信好友被采访的概率.26.随着“互联网+交通”模式的迅猛发展,“共享自行车”在很多城市相继出现。
高考复习几何概型复习题(含答案)
几何概型试题汇编一、单选题(共27题;共54分)1.在区间上随机取一个数x,则事件“ ”不发生的概率为()A. B. C. D.2.在区间内的所有实数中随机取一个实数,则这个实数满足的概率是()A. B. C. D.3.在由不等式组所确定的三角形区域内随机取一点,则该点到此三角形的三个顶点的距离均不小于1的概率是( )A. B. C. D.4.设不等式组,表示的平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是()A. B. C. D.5.如图,矩形中,点的坐标为.点的坐标为.直线的方程为:且四边形为正方形,若在五边形内随机取一点,则该点取自三角形 (阴影部分)的概率等于()A. B. C. D.6.如图,六边形是一个正六边形,若在正六边形内任取一点,则恰好取在图中阴影部分的概率是()A. B. C. D.7.如图所示,三国时代数学家赵爽在《周髀算经》中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影)。
设直角三角形有一内角为,若向弦图内随机抛掷1000颗米粒(大小忽略不计),则落在小正方形(阴影)内的米粒数大约为()A. 134B. 866C. 300D. 5008.我们可以用计算机产生随机数的方法估计的近似值,如图所示的程序框图表示其基本步骤(中用函数来产生的均匀随机数),若输出的结果为524,则由此可估计的近似值为()A. 3.144B. 3.154C. 3.141D. 3.1429.如图,在矩形区域的两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域和扇形区域(该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无信号的概率是()A. B. C. D.10.在区间[0,1]上随机选取两个数x和y,则y>2x的概率为()A. B. C. D.11.用电脑每次可以从区间(0,1)内自动生成一个实数,且每次生成每个实数都是等可能性的,若用该电脑连续生成3个实数,则这3个实数都大于的概率为()A. B. C. D.12.在区间[﹣1,2]上随机取一个数x,则|x|≤1的概率为()A. B. C. D.13.设复数z=(x﹣1)+yi(x,y∈R),若|z|≤1,则y≥x的概率为()A. +B. +C. ﹣D. ﹣14.如图一铜钱的直径为32毫米,穿径(即铜钱内的正方形小孔边长)为8毫米,现向该铜钱内随机地投入一粒米(米的大小忽略不计),则该粒米未落在铜钱的正方形小孔内的概率为()A. B. C. D.15.节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时候相差不超过2秒的概率是()A. B. C. D.16.圆O内有一内接正三角形,向圆O内随机投一点,则该点落在正三角形内的概率为()A. B. C. D.17.如图所示,墙上挂有边长为a的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,半径为的圆弧,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则它击中阴影部分的概率是()A. 1﹣B.C. 1﹣D. 与a的取值有关18.不等式6﹣5x﹣x2≥0的解集为D,在区间[﹣7,2]上随机取一个数x,则x∈D的概率为()A. B. C. D.19.如图,在边长为2的正方形ABCD的内部随机取一点E,则△ABE的面积大于的概率为()A. B. C. D.20.如图,点A为周长为3的圆周上的一定点,若在该圆周上随机取一点B,则劣弧AB的长度小于1的概率为()A. B. C. D.21.如图,在圆心角为90°的扇形中以圆心O为起点作射线OC,则使得∠AOC与∠BOC都不小于30°的概率是()A. B. C. D.22.在区间(0,3]上随机取一个数x,则事件“0≤log2x≤1”发生的概率为()A. B. C. D.23.某人从甲地去乙地共走了500m,途经一条宽为xm的河流,该人不小心把一件物品丢在途中,若物品掉在河里就找不到,若物品不掉在河里,则能找到,已知该物品能被找到的概率为,则河宽为()A. 80mB. 100mC. 40mD. 50m24.在平面直角坐标系中,记抛物线y=x﹣x2与x轴所围成的平面区域为M,该抛物线与直线y=kx(k>0)所围成的平面区域为N,向区域M内随机抛掷一点P,若点P落在区域N内的概率为,则k的值为()A. B. C. D.25.在半径为1的圆O内任取一点M,过M且垂直OM与直线l与圆O交于圆A,B两点,则AB长度大于的概率为()A. B. C. D.26.在长为16cm的线段MN上任取一点P,以MP,NP为邻边作一矩形,则该矩形的面积大于60cm2的概率为()A. B. C. D.27.如图,圆O内有一个内接三角形ABC,且直径AB=2,∠ABC=45°,在圆O内随机撒一粒黄豆,则它落在三角形ABC内(阴影部分)的概率是()A. B. C. D.二、填空题(共7题;共7分)28.已知Ω1是集合{(x,y)|x2+y2≤1}所表示的区域,Ω2是集合{(x,y)|y≤|x|}所表示的区域,向区域Ω1内随机的投一个点,则该点落在区域Ω2内的概率为________.29.在[0,a](a>0)上随机抽取一个实数x,若x满足<0的概率为,则实数a的值为________.30.某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段任何的时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为________31.上随机地取一个数k,则事件“直线y=kx与圆相交”发生的概率为________32.在棱长为2的正方体内随机取一点,取到的点到正方体中心的距离大于1的概率________.33.如图所示,为了求出一个边长为10的正方形内的不规则图形的面积,小明设计模拟实验:向这个正方形内均匀的抛洒20粒芝麻,结果有8粒落在了不规则图形内,则不规则图形的面积为________.34.矩形区域ABCD 中,AB 长为2 千米,BC 长为1 千米,在A 点和C 点处各有一个通信基站,其覆盖范围均为方圆1 千米,若在该矩形区域内随意选取一地点,则该地点无信号的概率为________.三、解答题(共8题;共65分)35.遂宁市观音湖港口船舶停靠的方案是先到先停.(1)若甲乙两艘船同时到达港口,双方约定各派一名代表从1,2,3,4,5中各随机选一个数(甲、乙选取的数互不影响),若两数之和为偶数,则甲先停靠;若两数之和为奇数,则乙先停靠,这种规则是否公平?请说明理由.(2)根据以往经验,甲船将于早上7:00~8:00到达,乙船将于早上7:30~8:30到达,请求出甲船先停靠的概率36.如图,为圆柱的母线,是底面圆的直径,是的中点.(Ⅰ)问:上是否存在点使得平面?请说明理由;(Ⅱ)在(Ⅰ)的条件下,若平面,假设这个圆柱是一个大容器,有条体积可以忽略不计的小鱼能在容器的任意地方游弋,如果小鱼游到四棱锥外会有被捕的危险,求小鱼被捕的概率.37.某同学在上学路上要经过A、B、C三个带有红绿灯的路口.已知他在A、B、C三个路口遇到红灯的概率依次是、、,遇到红灯时停留的时间依次是40秒、20秒、80秒,且在各路口是否遇到红灯是相互独立的.(1)求这名同学在上学路上在第三个路口首次遇到红灯的概率;,(2)求这名同学在上学路上因遇到红灯停留的总时间.38.设关于x的一元二次方程x2+ax﹣+1=0.(1)若a是从1,2,3这三个数中任取的一个数,b是从0,1,2这三个数中任取的一个数,求上述方程中有实根的概率;(2)若a是从区间[0,3]中任取的一个数,b是从区间[0,2]中任取的一个数,求上述方程有实根的概率.39.设事件A表示“关于x的一元二次方程x2+ax+b2=0有实根”,其中a,b为实常数.(Ⅰ)若a为区间[0,5]上的整数值随机数,b为区间[0,2]上的整数值随机数,求事件A发生的概率;(Ⅱ)若a为区间[0,5]上的均匀随机数,b为区间[0,2]上的均匀随机数,求事件A发生的概率.40.已知关于x的二次函数f(x)=ax2﹣4bx+1.(Ⅰ)设集合A={﹣1,1,2,3,4,5}和B={﹣2,﹣1,1,2,3,4},分别从集合A,B中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率.(Ⅱ)设点(a,b)是区域内的随机点,求函数f(x)在区间[1,+∞)上是增函数的概率.41.已知正方形ABCD的边长为1,弧BD是以点A为圆心的圆弧.(1)在正方形内任取一点M,求事件“|AM|≤1”的概率;(2)用大豆将正方形均匀铺满,经清点,发现大豆一共28粒,其中有22粒落在圆中阴影部分内,请据此估计圆周率π的近似值(精确到0.01).42.某旅游公司为甲,乙两个旅游团提供四条不同的旅游线路,每个旅游团可任选其中一条旅游线路.(1)求甲、乙两个旅游团所选旅游线路不同的概率;(2)某天上午9时至10时,甲,乙两个旅游团都到同一个著名景点游览,20分钟后游览结束即离去.求两个旅游团在该著名景点相遇的概率.答案解析部分一、单选题1.【答案】D【考点】几何概型【解析】【解答】解:区间上随机取一个数x,对应区间长度为,满足事件“ ”的x范围为x+1≤3,即≤x≤2,对应区间长度为2+ ,所以事件不发生的概率为1﹣= ;故选D.【分析】由题意,本题是几何概型,首先求出事件对应的区间长度,利用长度比求概率.2.【答案】C【考点】几何概型【解析】【解答】由题意可得,该问题为长度型几何概型,则所求问题的概率值为:.故答案为:C.【分析】根据题目中所给的条件的特点,分别计算出区间(15,25]的长度,区间(17,20)的长度,代入几何概型概率计算公式,即可得到答案.考查几何概型的概率计算.其中根据已知条件计算出基本事件总数对应的几何量的大小,和满足条件的几何量的大小是解答本题的关键.3.【答案】D【考点】几何概型【解析】【解答】画出关于的不等式组所构成的三角形区域,如图所示.的面积为离三个顶点距离都不大于1的地方的面积为∴其恰在离三个顶点距离都不小于1的地方的概率为故答案为:D.【分析】画出关于x,y的不等式组所构成的三角形区域,求出三角形的面积;再求出距三角形的三顶点距离小于等于1的区域为三个扇形,三个扇形的和是半圆,求出半圆的面积;利用对立事件的概率公式及几何概型概率公式求出恰在离三个顶点距离都不小于1的地方的概率.几何概率:设几何概型的基本事件空间可表示成可度量的区域Ω,事件A所对应的区域用A表示(A⊆Ω),则P(A)=称为事件A的几何概率.4.【答案】D【考点】二元一次不等式(组)与平面区域,几何概型【解析】【解答】解:其构成的区域D如图所示的边长为2的正方形,面积为S1=4,满足到原点的距离大于2所表示的平面区域是以原点为圆心,以2为半径的圆外部,面积为=4﹣π,∴在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率P=故选:D.【分析】本题属于几何概型,利用“测度”求概率,本例的测度即为区域的面积,故只要求出题中两个区域:由不等式组表示的区域和到原点的距离大于2的点构成的区域的面积后再求它们的比值即可.5.【答案】D【考点】几何概型【解析】【解答】在中,令,得,即,则,所以,,由几何概型的概率公式,得在五边形内随机取一点,该点取自三角形 (阴影部分)的概率.故答案为:D.【分析】根据题意求出点D的坐标,再由两点间的距离公式代入数值求出结果,结合四边形的面积代入数值求出结果把数值代入到几何概型的概率公式求出结果即可。
精选最新版2019年高中数学单元测试试题《解析几何及综合问题》专题完整版考核题库(含答案)
2019年高中数学单元测试试题 解析几何及综合问题专题(含答案)学校:__________ 考号:__________一、填空题1.已知椭圆()222210x y a b a b+=>>和圆O :222x y b +=,过椭圆上一点P 引圆O 的两条切线,切点分别为,A B .若90APB ∠=,则椭圆离心率e 的取值范围是 ▲ .2.已知121(0,0),m n m n+=>>当mn 取得最小值时,直线2y =+与曲线x x m+1y yn =的交点个数为 ▲3.已知圆22670x y x +--=与抛物线22(0)y p x p =>的准线相切,则p 的值为 .4.已知椭圆221:12x C y +=和圆222:1C x y +=,椭圆1C 的左顶点和下顶点分别为A ,B ,且F 是椭圆1C 的右焦点.(1) 若点P 是曲线2C 上位于第二象限的一点,且△APF 的面积为124+求证:;AP OP ⊥(2) 点M 和N 分别是椭圆1C 和圆2C 上位于y 轴右侧的动点,且直线BN 的斜率是直线BM 斜率的2倍,求证:直线MN 恒过定点.5.已知圆C 的圆心与抛物线y 2=4x 的焦点关于直线y =x 对称.直线4x -3y -2=0与圆C 相交于A 、B 两点,且|AB |=6,则圆C 的方程为________.解析:抛物线y 2=4x ,焦点为F (1,0).∴圆心C (0,1),C 到直线4x -3y -2=0的距离d =55=1,且圆的半径r 满足r 2=12+32=10.∴圆的方程为x 2+(y -1)2=10.6.以椭圆 22221x y a b+=(a>b>0)的右焦点为圆心的圆经过原点O ,且与该椭圆的右准线交与A ,B 两点,已知△OAB 是正三角形,则该椭圆的离心率是 ▲ .7. 已知直线l 的方程为2x =-,圆22:1O x y +=,则以l 为准线,中心在原点,且与圆O 恰好有两个公共点的椭圆方程为 .8.已知121(0,0),m n m n+=>>当mn 取得最小值时,直线2y =+与曲线x x m+1y yn =的交点个数为9.已知圆x 2+y 2-6x -7=0与抛物线y 2=2px (p >0)的准线相切,则p =_____.(1996全国理,16)二、解答题10.平面直角坐标系xOy 中,已知⊙M 经过点F 1(0,-c ),F 2(0,c ),A ,0)三点,其中c >0.(1)求⊙M 的标准方程(用含c 的式子表示);(2)已知椭圆22221(0)y x a b a b+=>>(其中222a b c -=)的左、右顶点分别为D 、B ,⊙M 与x 轴的两个交点分别为A 、C ,且A 点在B 点右侧,C 点在D 点右侧. ①求椭圆离心率的取值范围;②若A 、B 、M 、O 、C 、D (O 为坐标原点)依次均匀分布在x 轴上,问直线MF 1与直线DF 2的交点是否在一条定直线上?若是,请求出这条定直线的方程;若不是,请说明理由.11.已知圆O :222x y +=交x 轴于A ,B 两点,曲线C 是以AB 为长轴,离心率为2的椭圆,其左焦点为F .若P 是圆O 上一点,连结PF ,过原点O 作直线PF 的垂线交椭圆C 的左准线于点Q .(Ⅰ)求椭圆C 的标准方程;(5分)(Ⅱ)若点P 的坐标为(1,1),求证:直线PQ 与圆O 相切;(5分)(Ⅲ)试探究:当点P 在圆O 上运动时(不与A 、B 重合),直线PQ 与圆O 是否保持相切的位置关系?若是,请证明;若不是,请说明理由. (5分)12.在平面直角坐标系xOy 中,矩形OABC 的边OA 、OC 分别在x 轴和y 轴上(如图),且OC =1,OA =a +1(a >1),点D 在边OA 上,满足OD =a . 分别以OD 、OC 为长、短半轴的 椭圆在矩形及其内部的部分为椭圆弧CD . 直线l :y =-x +b 与椭圆弧相切,与AB 交于 点E .(1)求证:221b a -=;(2)设直线l 将矩形OABC 分成面积相等的两部分, 求直线l 的方程;(3)在(2)的条件下,设圆M 在矩形及其内部, 且与l 和线段EA 都相切,求面积最大的圆M 的方程.13.设椭圆2222:1(0)x y C a b a b+=>>的上顶点为A ,椭圆C 上两点,P Q 在x 轴上的射影分别为左焦点1F 和右焦点2F ,直线PQ 的斜率为32,过点A 且与1AF 垂直的直线与x 轴交于点B ,1AF B ∆的外接圆为圆M . (1)求椭圆的离心率; (2)直线213404x y a ++=与圆M 相交于,E F 两点,且212ME MF a ⋅=-,求椭圆方程;(3)设点(0,3)N 在椭圆C 内部,若椭圆C 上的点到点N的最远距离不大于,求椭圆C 的短轴长的取值范围.14.已知直线l 的方程为2x =-,且直线l 与x 轴交于点M ,圆22:1O x y +=与x 轴交于,A B 两点(如图).(I )过M 点的直线1l 交圆于P Q 、两点,且圆孤PQ 恰为圆周的14,求直线1l 的方程; (II )求以l 为准线,中心在原点,且与圆O 恰有两个公共点的椭圆方程;(III )过M 点的圆的切线2l 交(II )中的一个椭圆于C D 、两点,其中C D 、两点在x 轴上方,求线段CD 的长.15. 已知椭圆x 2+22b y =1(0<b<1)的左焦点为F ,左、右顶点分别为A 、C ,上顶点为B.过F 、B 、C 三点作圆P ,其中圆心P 的坐标为(m ,n). (1)当m+n>0时,求椭圆离心率的取值范围; (2)直线AB 与圆P 能否相切?证明你的结论.16.如图,已知A 、B 、C 是长轴长为4的椭圆上的三点,点A 是长轴的右顶点,BC 过椭圆中心O ,且AC ·BC =0,||2||BC AC =, (1)求椭圆的方程;(2)若过C 关于y 轴对称的点D 作椭圆的切线DE ,则AB 与DE 有什么位置关系?证明你的结论.17.椭圆2222:1(0)x y C a b a b+=>>上顶点为A ,椭圆C 上两点,P Q 在x 轴上的射影分别为左焦点1F 和右焦点2F ,直线PQ 斜率为32,过点A 且与1AF 垂直的直线与x 轴交于点B ,1AF B ∆的外接圆为圆M .(1)求椭圆的离心率;x(2)直线213404x y a ++=与圆M 相交于,E F 两点,且212ME MF a ⋅=-,求椭圆方程;(3)设点(0,3)N 在椭圆C 内部,若椭圆C 上的点到点N的最远距离不大于,求椭圆C 的短轴长的取值范围. 4.18. 如图,已知椭圆C :22221(0)x y a b a b+=>>的长轴AB 长为4,离心率e =,O 为坐标原点,过B 的直线l 与x 轴垂直.P 是椭圆上异于A 、B 的任意一点,PH x ⊥轴,H为垂足,延长HP 到点Q 使得HP PQ =,连结AQ 延长交直线l 于点M ,N 为MB 的中点.(1)求椭圆C 的方程;(2)证明:Q 点在以AB 为直径的圆O 上;(3)试判断直线QN 与圆O 的位置关系.19.设椭圆的方程为2222n y m x +=1(m ,n >0),过原点且倾角为θ和π-θ(0<θ<2π=的两条直线分别交椭圆于A 、C 和B 、D 两点, (Ⅰ)用θ、m 、n 表示四边形ABCD 的面积S ; (Ⅱ)若m 、n 为定值,当θ在(0,4π]上变化时,求S 的最小值u ;(Ⅲ)如果μ>mn ,求nm的取值范围. (1995上海,24) 93.(Ⅰ)设经过原点且倾角为θ的直线方程为y =x tan θ,可得方程组⎪⎩⎪⎨⎧=+=1tan 2222n y m x x y θ又由对称性,得四边形ABCD 为矩形,同时0<θ<2π,所以四边形ABCD 的面积S =4|xy |=θθ22222tan tan 4m n n m +.(Ⅱ)S =θθtan tan 42222m n n m +.(1)当m >n ,即mn<1时,因为θtan 2n +m 2tan θ≥2nm ,当且仅当tan 2θ=22m n 时等号成立,所以mn mnn m m n n m S 224tan tan 4222222=≤+=θθ.由于0<θ≤4π,0<tan θ≤1,故tan θ=mn得u =2mn . (2)当m <n ,即m n>1时,对于任意0<θ1<θ2≤4π, 由于)tan tan ()tan tan (12122222θθθθn m n m +-+21221212tan tan tan tan )tan (tan θθθθθθn m --=.因为0<tan θ1<tan θ2≤1,m2tan θ1tan θ2-n 2<m 2-n 2<0,所以(m 2tan θ2+22tan θn )-(m 2tan θ1+12tan θn )<0,于是在(0,4π]上,S =θθtan tan 42222m n nm +是θ的增函数,故取θ=4π,即tan θ=1得u =22224nm n m +. 所以u =⎪⎩⎪⎨⎧<<+<<)0(4)0( 22222n m n m n m m n mn(Ⅲ)(1)当nm>1时,u =2mn >mn 恒成立. (2)当n m <1时,224n m mn mn u += >1,即有(n m )2-4(n m)+1<0, 所以3232+<<-n m ,又由nm<1, 得132<<-nm . 综上,当u >mn 时,nm的取值范围为(2-3,1)∪(1,+∞). 评述:本题主要考查椭圆的对称性及不等式的应用,通过求最小值来考查逻辑思维能力和应用能力,同时体现分类讨论思想.20.已知点P (4,4),圆C :22()5(3)x m y m -+=<与椭圆E :22221(0)x y a b a b+=>>有一个公共点A (3,1),F 1、F 2分别是椭圆的左、右焦点,直线PF 1与圆C 相切. (Ⅰ)求m 的值与椭圆E 的方程; (Ⅱ)设Q 为椭圆E 上的一个动点,求AP AQ ⋅的取值范围.21.(2013年高考福建卷(文))如图,在抛物线2:4E y x =的焦点为F ,准线l 与x 轴的交点为A .点C 在抛物线E 上,以C 为圆心OC 为半径作圆,设圆C 与准线l 的交于不同的两点,M N .(第17(1)若点C 的纵坐标为2,求MN ; (2)若2AFAM AN =⋅,求圆C 的半径.22.定义变换T :cos sin ,sin cos ,x y x x y y θθθθ'⋅+⋅=⎧⎨'⋅-⋅=⎩可把平面直角坐标系上的点(,)P x y 变换到这一平面上的点(,)P x y '''.特别地,若曲线M 上一点P 经变换公式T 变换后得到的点P '与点P 重合,则称点P 是曲线M 在变换T 下的不动点.(1)若椭圆C 的中心为坐标原点,焦点在x轴上,且焦距为,长轴顶点和短轴顶点间的距离为2. 求该椭圆C 的标准方程. 并求出当3arctan 4θ=时,其两个焦点1F 、2F 经变换公式T 变换后得到的点1F '和2F '的坐标; (2)当3arctan4θ=时,求(1)中的椭圆C 在变换T 下的所有不动点的坐标; (3)试探究:中心为坐标原点、对称轴为坐标轴的双曲线在变换T :cos sin ,sin cos ,x y x x y y θθθθ'⋅+⋅=⎧⎨'⋅-⋅=⎩(2k πθ≠,k Z ∈)下的不动点的存在情况和个数.23.在平面直角坐标系xOy 中,如图,已知椭圆E :22221(0)y x a b a b+=>>的左、右顶点分别为1A 、2A ,上、下顶点分别为1B 、2B .设直线11A B 13,圆C 与以线段2OA 为直径的圆关于直线11A B 对称.(1)求椭圆E 的离心率;(2)判断直线11A B 与圆C 的位置关系,并说明理由; (3)若圆C 的面积为π,求圆C 的方程.24.在平面直角坐标系xOy 中,已知点A(0,-1),B 点在直线y = -3上,M 点满足MB//OA , MA •AB = MB •BA ,M 点的轨迹为曲线C 。
高中数学解析几何基础复习 题集附答案
高中数学解析几何基础复习题集附答案高中数学解析几何基础复习题集附答案在高中数学中,解析几何是一个非常重要的内容。
解析几何是指在直角坐标系中,通过代数的方法来研究几何问题。
掌握解析几何的基础知识对于学习高中数学以及应用数学都非常有帮助。
为了帮助大家进行复习,下面将提供一些高中数学解析几何基础题目,并附上详细的答案解析。
1. 已知直线L1:2x + 3y = 5和L2: y = 4x - 1,求两直线的交点坐标。
解析:首先将直线L1和L2的方程组合,得到2x + 3(4x - 1) = 5,化简得到14x - 3 = 5,继续化简得到14x = 8,x = 8/14 = 4/7。
代入L2的方程求y的值,得到y = 4(4/7) - 1 = 16/7 - 7/7 = 9/7。
所以两直线的交点坐标为(4/7, 9/7)。
2. 已知直线L:x + y = 4和曲线C:x^2 + y^2 = 5,求直线与曲线的交点坐标。
解析:将直线L的方程代入曲线C的方程中,得到(x + y)^2 + y^2 = 5,展开得到x^2 + y^2 + 2xy + y^2 = 5,化简得到x^2 + 2xy + 2y^2 = 5。
由于直线L与曲线C有交点,所以存在某个x和y满足这个方程。
观察方程的左边,可以发现它可以写成(x + y)^2 + y^2 = 5,也就是(x +y)^2 = 5 - y^2。
由于(x + y)^2必须大于等于0,所以5 - y^2必须大于等于0,解这个不等式得到-√5 ≤ y ≤ √5。
将y的取值范围代入方程(x +y)^2 = 5 - y^2,解得x = 4 - y。
因此,两直线的交点坐标为(x, y) = (4 - y, y),其中-√5 ≤ y ≤ √5。
3. 已知平面内三点A(1, 2),B(3, -4),C(-2, 3),判断是否共线。
解析:判断三点是否共线可以利用向量的共线条件。
设有两个向量AB和AC,若这两个向量共线,则存在一个实数k,使得AB = kAC。
历年(2019-2023)全国高考数学真题分项(立体几何)汇编(附答案)
历年(2019-2023)全国高考数学真题分项(立体几何)汇编考点一 空间几何体的侧面积和表面积1.(2021( )A .2B .C .4D .2.(2022•上海)已知圆柱的高为4,底面积为9π,则圆柱的侧面积为 .3.(2021•上海)已知圆柱的底面圆半径为1,高为2,AB 为上底面圆的一条直径,C 是下底面圆周上的一个动点,则ABC ∆的面积的取值范围为 .4.(2021•上海)已知圆柱的底面半径为1,高为2,则圆柱的侧面积为 .5.(2019•上海)一个直角三角形的两条直角边长分别为1和2,将该三角形分别绕其两个直角边旋转得到的两个圆锥的体积之比为( ) A .1B .2C .4D .86.(2020•浙江)已知圆锥的侧面积(单位:2)cm 为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:)cm 是 .7.(2022•新高考Ⅱ)已知正三棱台的高为1,上、下底面边长分别为,其顶点都在同一球面上,则该球的表面积为( ) A .100πB .128πC .144πD .192π8.(2021•新高考Ⅱ)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步轨道卫星的轨道位于地球赤道所在平面,轨道高度为36000km (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O ,半径r 为6400km 的球,其上点A 的纬度是指OA 与赤道平面所成角的度数.地球表面上能直接观测到的一颗地球静止同步轨道卫星点的纬度最大值为α,该卫星信号覆盖地球表面的表面积22(1cos )S r πα=-(单位:2)km ,则S 占地球表面积的百分比约为( ) A .26%B .34%C .42%D .50%考点二 空间几何体的体积9.(2022•新高考Ⅰ)已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3l 剟,则该正四棱锥体积的取值范围是( )A .[18,81]4B .27[4,814C .27[4,643D .[18,27]10.(2022•新高考Ⅰ)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5m 时,相应水面的面积为2140.0km ;水位为海拔157.5m 时,相应水面的面积为2180.0km .将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148.5m 上升到157.5m 时,增加的水量约为 2.65)(≈ ) A .931.010m ⨯B .931.210m ⨯C .931.410m ⨯D .931.610m ⨯11.(2021•新高考Ⅱ)正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为( )A .20+B .C .563D .312.【多选】(2023•新高考Ⅰ)下列物体中,能够被整体放入棱长为1(单位:)m 的正方体容器(容器壁厚度忽略不计)内的有( ) A .直径为0.99m 的球体 B .所有棱长均为1.4m 的四面体C .底面直径为0.01m ,高为1.8m 的圆柱体D .底面直径为1.2m ,高为0.01m 的圆柱体13.【多选】(2022•新高考Ⅱ)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,//FB ED ,2AB ED FB ==.记三棱锥E ACD -,F ABC -,F ACE -的体积分别为1V ,2V ,3V ,则( )A .322V V =B .31V V =C .312V V V =+D .3123V V =14.【多选】(2021•新高考Ⅰ)在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+ ,其中[0λ∈,1],[0μ∈,1],则( ) A .当1λ=时,△1AB P 的周长为定值 B .当1μ=时,三棱锥1P A BC -的体积为定值C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 15.(2023•新高考Ⅱ)底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为 .16.(2023•新高考Ⅰ)在正四棱台1111ABCD A B C D -中,2AB =,111A B =,1AA =,则该棱台的体积为 . 17.(2020•海南)已知正方体1111ABCD A B C D -的棱长为2,M 、N 分别为1BB 、AB 的中点,则三棱锥1A NMD -的体积为 .18.(2022•上海)如图所示三棱锥,底面为等边ABC ∆,O 为AC 边中点,且PO ⊥底面ABC ,2AP AC ==. (1)求三棱锥体积P ABC V -;(2)若M 为BC 中点,求PM 与面PAC 所成角大小.19.(2020•上海)已知四棱锥P ABCD -,底面ABCD 为正方形,边长为3,PD ⊥平面ABCD . (1)若5PC =,求四棱锥P ABCD -的体积; (2)若直线AD 与BP 的夹角为60︒,求PD 的长.考点三 空间中直线与直线之间的位置关系20.(2022•上海)如图正方体1111ABCD A B C D -中,P 、Q 、R 、S 分别为棱AB 、BC 、1BB 、CD 的中点,联结1A S ,1B D .空间任意两点M 、N ,若线段MN 上不存在点在线段1A S 、1B D 上,则称MN 两点可视,则下列选项中与点1D 可视的为( )A .点PB .点BC .点RD .点Q21.(2021•浙江)如图,已知正方体1111ABCD A B C D -,M ,N 分别是1A D ,1D B 的中点,则( )A .直线1A D 与直线1DB 垂直,直线//MN 平面ABCD B .直线1A D 与直线1D B 平行,直线MN ⊥平面11BDD BC .直线1AD 与直线1D B 相交,直线//MN 平面ABCDD .直线1A D 与直线1D B 异面,直线MN ⊥平面11BDD B22.(2020•上海)在棱长为10的正方体1111ABCD A B C D -中,P 为左侧面11ADD A 上一点,已知点P 到11A D 的距离为3,P 到1AA 的距离为2,则过点P 且与1A C 平行的直线交正方体于P 、Q 两点,则Q 点所在的平面是( )A .11AAB BB .11BBC CC .11CCD DD .ABCD23.(2023•上海)如图所示,在正方体1111ABCD A B C D -中,点P 为边11A C 上的动点,则下列直线中,始终与直线BP 异面的是( )A .1DDB .ACC .1ADD .1B C考点四 异面直线及其所成的角24.【多选】(2022•新高考Ⅰ)已知正方体1111ABCD A B C D -,则( ) A .直线1BC 与1DA 所成的角为90︒ B .直线1BC 与1CA 所成的角为90︒ C .直线1BC 与平面11BB D D 所成的角为45︒D .直线1BC 与平面ABCD 所成的角为45︒考点五 空间中直线与平面之间的位置关系25.(2019•上海)已知平面α、β、γ两两垂直,直线a 、b 、c 满足:a α⊆,b β⊆,c γ⊆,则直线a 、b 、c 不可能满足以下哪种关系( )A .两两垂直B .两两平行C .两两相交D .两两异面26.【多选】(2021•新高考Ⅱ)如图,下列正方体中,O 为底面的中心,P 为所在棱的中点,M ,N 为正方体的顶点,则满足MN OP ⊥的是( )A .B .C .D .考点六 直线与平面所成的角27.(2020•山东)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为)O ,地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40︒,则晷针与点A 处的水平面所成角为( )A .20︒B .40︒C .50︒D .90︒28.(2021•上海)如图,在长方体1111ABCD A B C D -中,已知2AB BC ==,13AA =. (1)若P 是棱11A D 上的动点,求三棱锥C PAD -的体积; (2)求直线1AB 与平面11ACC A 的夹角大小.29.(2021•浙江)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,120ABC ∠=︒,1AB =,4BC =,PA =M ,N 分别为BC ,PC 的中点,PD DC ⊥,PM MD ⊥.(Ⅰ)证明:AB PM ⊥;(Ⅱ)求直线AN 与平面PDM 所成角的正弦值.30.(2020•海南)如图,四棱锥P ABCD -的底面为正方形,PD ⊥底面ABCD .设平面PAD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知1PD AD ==,Q 为l 上的点,QB =,求PB 与平面QCD 所成角的正弦值.31.(2020•上海)已知ABCD 是边长为1的正方形,正方形ABCD 绕AB 旋转形成一个圆柱. (1)求该圆柱的表面积;(2)正方形ABCD 绕AB 逆时针旋转2π至11ABC D ,求线段1CD 与平面ABCD 所成的角.32.(2020•山东)如图,四棱锥P ABCD -的底面为正方形,PD ⊥底面ABCD .设平面PAD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知1PD AD ==,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值.33.(2020•浙江)如图,在三棱台ABC DEF -中,平面ACFD ⊥平面ABC ,45ACB ACD ∠=∠=︒,2DC BC =. (Ⅰ)证明:EF DB ⊥;(Ⅱ)求直线DF 与平面DBC 所成角的正弦值.34.(2019•上海)如图,在长方体1111ABCD A B C D -中,M 为1BB 上一点,已知2BM =,3CD =,4AD =,15AA =.(1)求直线1A C 和平面ABCD 的夹角; (2)求点A 到平面1A MC 的距离.35.(2019•浙江)如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,30BAC ∠=︒,11A A A C AC ==,E ,F 分别是AC ,11A B 的中点.(Ⅰ)证明:EF BC ⊥;(Ⅱ)求直线EF 与平面1A BC 所成角的余弦值.考点七 二面角的平面角及求法36.(2022•浙江)如图,已知正三棱柱111ABC A B C -,1AC AA =,E ,F 分别是棱BC ,11A C 上的点.记EF 与1AA 所成的角为α,EF 与平面ABC 所成的角为β,二面角F BC A --的平面角为γ,则( )A .αβγ剟B .βαγ剟C .βγα剟D .αγβ剟37.(2019•浙江)设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则( )A .βγ<,αγ<B .βα<,βγ<C .βα<,γα<D .αβ<,γβ<38.【多选】(2023•新高考Ⅱ)已知圆锥的顶点为P ,底面圆心为O ,AB 为底面直径,120APB ∠=︒,2PA =,点C 在底面圆周上,且二面角P AC O --为45︒,则( )A .该圆锥的体积为πB .该圆锥的侧面积为C .AC =D .PAC ∆39.(2023•上海)已知直四棱柱1111ABCD A B C D -,AB AD ⊥,//AB CD ,2AB =,3AD =,4CD =. (1)证明:直线1//A B 平面11DCC D ;(2)若该四棱柱的体积为36,求二面角1A BD A --的大小.40.(2023•新高考Ⅱ)如图,三棱锥A BCD -中,DA DB DC ==,BD CD ⊥,60ADB ADC ∠=∠=︒,E 为BC 中点.(1)证明BC DA ⊥;(2)点F 满足EF DA =,求二面角D AB F --的正弦值.41.(2023•新高考Ⅰ)如图,在正四棱柱111ABCD A B C D -中,2AB =,14AA =.点2A ,2B ,2C ,2D 分别在棱1AA ,1BB ,1CC ,1DD 上,21AA =,222BB DD ==,23CC =. (1)证明:2222//B C A D ;(2)点P 在棱1BB 上,当二面角222P A C D --为150︒时,求2B P .42.(2022•浙江)如图,已知ABCD 和CDEF 都是直角梯形,//AB DC ,//DC EF ,5AB =,3DC =,1EF =,60BAD CDE ∠=∠=︒,二面角F DC B --的平面角为60︒.设M ,N 分别为AE ,BC 的中点.(Ⅰ)证明:FN AD ⊥;(Ⅱ)求直线BM 与平面ADE 所成角的正弦值.43.(2022•新高考Ⅱ)如图,PO 是三棱锥P ABC -的高,PA PB =,AB AC ⊥,E 为PB 的中点. (1)证明://OE 平面PAC ;(2)若30ABO CBO ∠=∠=︒,3PO =,5PA =,求二面角C AE B --的正弦值.44.(2022•新高考Ⅰ)如图,直三棱柱111ABC A B C -的体积为4,△1A BC 的面积为 (1)求A 到平面1A BC 的距离;(2)设D 为1A C 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.45.(2021•新高考Ⅱ)在四棱锥Q ABCD -中,底面ABCD 是正方形,若2AD =,QD QA ==3QC =.(Ⅰ)求证:平面QAD ⊥平面ABCD ; (Ⅱ)求二面角B QD A --的平面角的余弦值.46.(2021•新高考Ⅰ)如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点. (1)证明:OA CD ⊥;(2)若OCD ∆是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.考点八 立体几何的交线问题47.(2020•山东)已知直四棱柱1111ABCD A B C D -的棱长均为2,60BAD ∠=︒.以1D 为半径的球面与侧面11BCC B 的交线长为 .参考答案考点一 空间几何体的侧面积和表面积1.(2021,其侧面展开图为一个半圆,则该圆锥的母线长为( )A .2B .C .4D .【详细解析】由题意,设母线长为l ,因为圆锥底面周长即为侧面展开图半圆的弧长,圆锥的母线长即为侧面展开图半圆的半径,则有2l ππ=⋅,解得l =所以该圆锥的母线长为 故选:B .2.(2022•上海)已知圆柱的高为4,底面积为9π,则圆柱的侧面积为 . 【详细解析】因为圆柱的底面积为9π,即29R ππ=, 所以3R =,所以224S Rh ππ==侧.故答案为:24π.3.(2021•上海)已知圆柱的底面圆半径为1,高为2,AB 为上底面圆的一条直径,C 是下底面圆周上的一个动点,则ABC ∆的面积的取值范围为 .【详细解析】如图1,上底面圆心记为O ,下底面圆心记为O ',连接OC ,过点C 作CM AB ⊥,垂足为点M , 则12ABC S AB CM ∆=⨯⨯, 根据题意,AB 为定值2,所以ABC S ∆的大小随着CM 的长短变化而变化,如图2所示,当点M 与点O 重合时,CM OC ==,此时ABC S ∆取得最大值为122⨯=;如图3所示,当点M 与点B 重合,CM 取最小值2, 此时ABC S ∆取得最小值为12222⨯⨯=.综上所述,ABC S ∆的取值范围为.故答案为:.4.(2021•上海)已知圆柱的底面半径为1,高为2,则圆柱的侧面积为 . 【详细解析】圆柱的底面半径为1r =,高为2h =, 所以圆柱的侧面积为22124S rh πππ==⨯⨯=侧. 故答案为:4π.5.(2019•上海)一个直角三角形的两条直角边长分别为1和2,将该三角形分别绕其两个直角边旋转得到的两个圆锥的体积之比为( ) A .1B .2C .4D .8【详细解析】如图,则21142133V ππ=⨯⨯=,22121233V ππ=⨯⨯=,∴两个圆锥的体积之比为43223ππ=. 故选:B .6.(2020•浙江)已知圆锥的侧面积(单位:2)cm 为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:)cm 是 .【详细解析】 圆锥侧面展开图是半圆,面积为22cm π,设圆锥的母线长为acm ,则2122a ππ⨯=,2a cm ∴=,∴侧面展开扇形的弧长为2cm π,设圆锥的底面半径OC rcm =,则22r ππ=,解得1r cm =. 故答案为:1cm .7.(2022•新高考Ⅱ)已知正三棱台的高为1,上、下底面边长分别为,其顶点都在同一球面上,则该球的表面积为( ) A .100πB .128πC .144πD .192π3=4=,如图,设球的半径为R 1=,解得5R =, ∴该球的表面积为24425100R πππ=⨯=.当球心在台体内时,如图,1=,无解. 综上,该球的表面积为100π. 故选:A .8.(2021•新高考Ⅱ)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步轨道卫星的轨道位于地球赤道所在平面,轨道高度为36000km (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O ,半径r 为6400km 的球,其上点A 的纬度是指OA 与赤道平面所成角的度数.地球表面上能直接观测到的一颗地球静止同步轨道卫星点的纬度最大值为α,该卫星信号覆盖地球表面的表面积22(1cos )S r πα=-(单位:2)km ,则S 占地球表面积的百分比约为( ) A .26%B .34%C .42%D .50%【详细解析】由题意,作出地球静止同步卫星轨道的左右两端的竖直截面图,则36000640042400OP =+=,那么64008cos 4240053α==; 卫星信号覆盖的地球表面面积22(1cos )S r πα=-,那么,S 占地球表面积的百分比为222(1cos )4542%4106r r παπ-=≈.故选:C .考点二 空间几何体的体积9.(2022•新高考Ⅰ)已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3l 剟,则该正四棱锥体积的取值范围是( )A .[18,814B .27[4,814C .27[4,643D .[18,27]【详细解析】如图所示,正四棱锥P ABCD -各顶点都在同一球面上,连接AC 与BD 交于点E ,连接PE ,则球心O 在直线PE 上,连接OA , 设正四棱锥的底面边长为a ,高为h ,在Rt PAE ∆中,222PA AE PE =+,即222221(22l h a h =+=+, 球O 的体积为36π,∴球O 的半径3R =,在Rt OAE ∆中,222OA OE AE =+,即222(3)(2R h =-+, ∴221602a h h +-=,∴22162a h h +=,26l h ∴=,又3l 剟∴3922h剟, ∴该正四棱锥体积2232112()(122)4333V h a h h h h h h ==-=-+,2()282(4)V h h h h h '=-+=- ,∴当342h <…时,()0V h '>,()V h 单调递增;当942h <…时,()0V h '<,()V h 单调递减,()max V h V ∴=(4)643=, 又327(24V = ,981()24V =,且278144<,∴2764()43V h 剟, 即该正四棱锥体积的取值范围是27[4,643, 故选:C .10.(2022•新高考Ⅰ)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5m 时,相应水面的面积为2140.0km ;水位为海拔157.5m 时,相应水面的面积为2180.0km .将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148.5m 上升到157.5m 时,增加的水量约为 2.65)(≈ )A .931.010m ⨯B .931.210m ⨯C .931.410m ⨯D .931.610m ⨯【详细解析】26214014010km m =⨯,26218018010km m =⨯,根据题意,增加的水量约为661401018010(157.5148.5)3⨯+⨯⨯-9=6693(32060 2.65)103143710 1.410m ≈+⨯⨯⨯=⨯≈⨯.故选:C .11.(2021•新高考Ⅱ)正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为( )A .20+B .C .563D 【详细解析】解法一:如图1111ABCD A B C D -为正四棱台,2AB =,114A B =,12AA =. 在等腰梯形11A B BA 中,过A 作11AE A B ⊥,可得14212A E -==,AE ==. 连接AC ,11A C ,AC ==,11A C ==,过A 作11AG A C ⊥,12A G -==AG ==, ∴正四棱台的体积为:V h =22243+== 解法二:作出图形,连接该正四棱台上下底面的中心,如图,该四棱台上下底面边长分别为2,4,侧棱长为2,∴该棱台的记h ==下底面面积116S =,上底面面积24S =, 则该棱台的体积为:1211((16433V h S S =++=+=故选:D .12.【多选】(2023•新高考Ⅰ)下列物体中,能够被整体放入棱长为1(单位:)m 的正方体容器(容器壁厚度忽略不计)内的有( )A .直径为0.99m 的球体B .所有棱长均为1.4m 的四面体C .底面直径为0.01m ,高为1.8m 的圆柱体D .底面直径为1.2m ,高为0.01m 的圆柱体【详细解析】对于A ,棱长为1的正方体内切球的直径为10.99>,选项A 正确; 对于B ,如图,正方体内部最大的正四面体11D A BC - 1.4=>,选项B 正确;对于C ,棱长为1 1.8<,选项C 错误;对于D ,如图,六边形EFGHIJ 为正六边形,E ,F ,G ,H ,I ,J 为棱的中点,高为0.01米可忽略不计,看作直径为1.2米的平面圆,六边形EFGHIJ 棱长为2米,30GFH GHF ∠=∠=︒,所以FH ===米,故六边形EFGHIJ而223()(1.2) 1.4422=>=,选项D 正确. 故选:ABD .13.【多选】(2022•新高考Ⅱ)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,//FB ED ,2AB ED FB ==.记三棱锥E ACD -,F ABC -,F ACE -的体积分别为1V ,2V ,3V ,则( )A .322V V =B .31V V =C .312V V V =+D .3123V V =【详细解析】设22AB ED FB ===, 114||33ACD V S ED ∆=⨯⨯=,212||33ABC V S FB ∆=⨯⨯=,如图所示,连接BD 交AC 于点M ,连接EM 、FM ,则FM =EM =,3EF =,故12EMF S ∆==,3112332EMF V S AC ∆=⨯=⨯⨯=,故C 、D 正确,A 、B 错误. 故选:CD .14.【多选】(2021•新高考Ⅰ)在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+ ,其中[0λ∈,1],[0μ∈,1],则( )A .当1λ=时,△1AB P 的周长为定值 B .当1μ=时,三棱锥1P A BC -的体积为定值C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 【详细解析】对于A ,当1λ=时,1BP BC BB μ=+ ,即1CP BB μ= ,所以1//CP BB,故点P 在线段1CC 上,此时△1AB P 的周长为11AB B P AP ++,当点P 为1CC 的中点时,△1AB P ,当点P 在点1C 处时,△1AB P 的周长为1, 故周长不为定值,故选项A 错误;对于B ,当1μ=时,1BP BC BB λ=+ ,即1B P BC λ= ,所以1//B P BC, 故点P 在线段11B C 上, 因为11//B C 平面1A BC ,所以直线11B C 上的点到平面1A BC 的距离相等, 又△1A BC 的面积为定值,所以三棱锥1P A BC -的体积为定值,故选项B 正确;对于C ,当12λ=时,取线段BC ,11B C 的中点分别为M ,1M ,连结1M M , 因为112BP BC BB μ=+,即1MP BB μ= ,所以1//MP BB ,则点P 在线段1M M 上,当点P 在1M 处时,1111A M B C ⊥,111A M B B ⊥, 又1111B C B B B = ,所以11A M ⊥平面11BB C C ,又1BM ⊂平面11BB C C ,所以111A M BM ⊥,即1A P BP ⊥, 同理,当点P 在M 处,1A P BP ⊥,故选项C 错误;对于D ,当12μ=时,取1CC 的中点1D ,1BB 的中点D , 因为112BP BC BB λ=+ ,即DP BC λ= ,所以//DP BC ,则点P 在线的1DD 上,当点P 在点1D 处时,取AC 的中点E ,连结1A E ,BE ,因为BE ⊥平面11ACC A ,又1AD ⊂平面11ACC A ,所以1AD BE ⊥, 在正方形11ACC A 中,11AD A E ⊥, 又1BE A E E = ,BE ,1A E ⊂平面1A BE ,故1AD ⊥平面1A BE ,又1A B ⊂平面1A BE ,所以11A B AD ⊥, 在正方体形11ABB A 中,11A B AB ⊥,又11AD AB A = ,1AD ,1AB ⊂平面11AB D ,所以1A B ⊥平面11AB D , 因为过定点A 与定直线1A B 垂直的平面有且只有一个, 故有且仅有一个点P ,使得1A B ⊥平面1AB P ,故选项D 正确.故选:BD .15.(2023•新高考Ⅱ)底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为 .【详细解析】如图所示,根据题意易知△11SO A SOA ∆∽,∴11112SO O A SO OA ===,又13SO =, 6SO ∴=,13OO ∴=,又上下底面正方形边长分别为2,4,∴所得棱台的体积为1(4163283⨯++⨯=.故答案为:28.16.(2023•新高考Ⅰ)在正四棱台1111ABCD A B C D -中,2AB =,111A B =,1AA =,则该棱台的体积为 . 【详细解析】如图,设正四棱台1111ABCD A B C D -的上下底面中心分别为M ,N ,过1A 作1A H AC ⊥,垂足点为H ,由题意易知12A M HN ==,又AN =,2AH AN HN ∴=-=,又1AA =,1A H MN ∴==∴该四棱台的体积为1(143⨯++故答案为:6.17.(2020•海南)已知正方体1111ABCD A B C D -的棱长为2,M 、N 分别为1BB 、AB 的中点,则三棱锥1A NMD -的体积为 .【详细解析】如图,正方体1111ABCD A B C D -的棱长为2,M 、N 分别为1BB 、AB 的中点, ∴111122ANM S ∆=⨯⨯=, ∴111112323A NMD D AMN V V --==⨯⨯=.故答案为:13.18.(2022•上海)如图所示三棱锥,底面为等边ABC ∆,O 为AC 边中点,且PO ⊥底面ABC ,2AP AC ==. (1)求三棱锥体积P ABC V -;(2)若M 为BC 中点,求PM 与面PAC 所成角大小.【详细解析】(1)在三棱锥P ABC -中,因为PO ⊥底面ABC ,所以PO AC ⊥, 又O 为AC 边中点,所以PAC ∆为等腰三角形,又2AP AC ==.所以PAC ∆是边长为2的为等边三角形,PO ∴=,三棱锥体积2112133P ABC ABC V S PO -∆=⋅==, (2)以O 为坐标原点,OB 为x 轴,OC 为y 轴,OP 为z 轴,建立空间直角坐标系,则(0P ,0,B 0,0),(0C ,1,0),M 12,0),(2PM = ,12,, 平面PAC的法向量OB =0,0), 设直线PM 与平面PAC 所成角为θ,则直线PM 与平面PAC所成角的正弦值为3sin ||||||PM OB PM OB θ⋅===⋅所以PM 与面PAC所成角大小为arcsin4. 19.(2020•上海)已知四棱锥P ABCD -,底面ABCD 为正方形,边长为3,PD ⊥平面ABCD . (1)若5PC =,求四棱锥P ABCD -的体积; (2)若直线AD 与BP 的夹角为60︒,求PD 的长.【详细解析】(1)PD ⊥ 平面ABCD ,PD DC ∴⊥. 3CD = ,5PC ∴=,4PD ∴=,2134123P ABCD V -∴=⨯⨯=,所以四棱锥P ABCD -的体积为12.(2)ABCD 是正方形,PD ⊥平面ABCD , BC PD ∴⊥,BC CD ⊥又PD CD D = BC ∴⊥平面PCDBC PC ∴⊥异面直线AD 与PB 所成角为60︒,//BC AD ∴在Rt PBC ∆中,60PBC ∠=︒,3BC =故PC =在Rt PDC ∆中,3CD =PD ∴=考点三 空间中直线与直线之间的位置关系20.(2022•上海)如图正方体1111ABCD A B C D -中,P 、Q 、R 、S 分别为棱AB 、BC 、1BB 、CD 的中点,联结1A S ,1B D .空间任意两点M 、N ,若线段MN 上不存在点在线段1A S 、1B D 上,则称MN 两点可视,则下列选项中与点1D 可视的为( )A .点PB .点BC .点RD .点Q【详细解析】线段MN 上不存在点在线段1A S 、1B D 上,即直线MN 与线段1A S 、1B D 不相交,因此所求与1D 可视的点,即求哪条线段不与线段1A S 、1B D 相交,对A 选项,如图,连接1A P 、PS 、1D S ,因为P 、S 分别为AB 、CD 的中点, ∴易证11//A D PS ,故1A 、1D 、P 、S 四点共面,1D P ∴与1A S 相交,A ∴错误;对B 、C 选项,如图,连接1D B 、DB ,易证1D 、1B 、B 、D 四点共面, 故1D B 、1D R 都与1B D 相交,B ∴、C 错误;对D 选项,连接1D Q ,由A 选项分析知1A 、1D 、P 、S 四点共面记为平面11A D PS , 1D ∈ 平面11A D PS ,Q ∉平面11A D PS ,且1A S ⊂平面11A D PS ,点11D A S ∉, 1D Q ∴与1A S 为异面直线,同理由B ,C 选项的分析知1D 、1B 、B 、D 四点共面记为平面11D B BD , 1D ∈ 平面11D B BD ,Q ∉平面11D B BD ,且1B D ⊂平面11D B BD ,点11D B D ∉,1D Q ∴与1B D 为异面直线,故1D Q 与1A S ,1B D 都没有公共点,D ∴选项正确.故选:D .21.(2021•浙江)如图,已知正方体1111ABCD A B C D -,M ,N 分别是1A D ,1D B 的中点,则( )A .直线1A D 与直线1DB 垂直,直线//MN 平面ABCD B .直线1A D 与直线1D B 平行,直线MN ⊥平面11BDD BC .直线1AD 与直线1D B 相交,直线//MN 平面ABCDD .直线1A D 与直线1D B 异面,直线MN ⊥平面11BDD B【详细解析】连接1AD ,如图:由正方体可知11A D AD ⊥,1A D AB ⊥,1A D ∴⊥平面1ABD , 11A D D B ∴⊥,由题意知MN 为△1D AB 的中位线,//MN AB ∴,又AB ⊂ 平面ABCD ,MN ⊂/平面ABCD ,//MN ∴平面ABCD .A ∴对; 由正方体可知1A D 与平面1BDD 相交于点D ,1D B ⊂平面1BDD ,1D D B ∉, ∴直线1A D 与直线1D B 是异面直线,B ∴、C 错;//MN AB ,AB 不与平面11BDD B 垂直,MN ∴不与平面11BDD B 垂直,D ∴错.故选:A .22.(2020•上海)在棱长为10的正方体1111ABCD A B C D -中,P 为左侧面11ADD A 上一点,已知点P 到11A D 的距离为3,P 到1AA 的距离为2,则过点P 且与1A C 平行的直线交正方体于P 、Q 两点,则Q 点所在的平面是( )A .11AAB B B .11BBC C C .11CCD DD .ABCD【详细解析】如图,由点P 到11A D 的距离为3,P 到1AA 的距离为2,可得P 在△1AA D 内,过P 作1//EF A D ,且1EF AA 于E ,EF AD 于F , 在平面ABCD 中,过F 作//FG CD ,交BC 于G ,则平面//EFG 平面1A DC .连接AC ,交FG 于M ,连接EM ,平面//EFG 平面1A DC ,平面1A AC ⋂平面11A DC A C =,平面1A AC ⋂平面EFM EM =, 1//EM A C ∴.在EFM ∆中,过P 作//PQ EM ,且PQ FM 于Q ,则1//PQ A C .线段FM 在四边形ABCD 内,Q 在线段FM 上,Q ∴在四边形ABCD 内. ∴则Q 点所在的平面是平面ABCD .故选:D .23.(2023•上海)如图所示,在正方体1111ABCD A B C D -中,点P 为边11A C 上的动点,则下列直线中,始终与直线BP 异面的是( )A .1DDB .ACC .1ADD .1B C【详细解析】对于A ,当P 是11A C 的中点时,BP 与1DD 是相交直线; 对于B ,根据异面直线的定义知,BP 与AC 是异面直线; 对于C ,当点P 与1C 重合时,BP 与1AD 是平行直线; 对于D ,当点P 与1C 重合时,BP 与1B C 是相交直线. 故选:B .考点四 异面直线及其所成的角24.【多选】(2022•新高考Ⅰ)已知正方体1111ABCD A B C D -,则( ) A .直线1BC 与1DA 所成的角为90︒ B .直线1BC 与1CA 所成的角为90︒ C .直线1BC 与平面11BB D D 所成的角为45︒D .直线1BC 与平面ABCD 所成的角为45︒ 【详细解析】如图,连接1B C ,由11//A B DC ,11A B DC =,得四边形11DA B C 为平行四边形, 可得11//DA B C ,11BC B C ⊥ ,∴直线1BC 与1DA 所成的角为90︒,故A 正确;111A B BC ⊥ ,11BC B C ⊥,1111A B B C B = ,1BC ∴⊥平面11DA B C ,而1CA ⊂平面11DA B C ,11BC CA ∴⊥,即直线1BC 与1CA 所成的角为90︒,故B 正确;设1111A C B D O = ,连接BO ,可得1C O ⊥平面11BB D D ,即1C BO ∠为直线1BC 与平面11BB D D 所成的角,1111sin 2OC C BO BC ∠== ,∴直线1BC 与平面11BB D D 所成的角为30︒,故C 错误; 1CC ⊥ 底面ABCD ,1C BC ∴∠为直线1BC 与平面ABCD 所成的角为45︒,故D 正确.故选:ABD .考点五 空间中直线与平面之间的位置关系25.(2019•上海)已知平面α、β、γ两两垂直,直线a 、b 、c 满足:a α⊆,b β⊆,c γ⊆,则直线a 、b 、c 不可能满足以下哪种关系( )A .两两垂直B .两两平行C .两两相交D .两两异面【详细解析】如图1,可得a 、b 、c 可能两两垂直; 如图2,可得a 、b 、c 可能两两相交; 如图3,可得a 、b 、c 可能两两异面;故选:B .26.【多选】(2021•新高考Ⅱ)如图,下列正方体中,O 为底面的中心,P 为所在棱的中点,M ,N 为正方体的顶点,则满足MN OP ⊥的是( )A .B .C .D .【详细解析】对于A ,设正方体棱长为2,设MN 与OP 所成角为θ,则1tan 12θ==,∴不满足MN OP ⊥,故A 错误; 对于B ,如图,作出平面直角坐标系,设正方体棱长为2,则(2N ,0,0),(0M ,0,2),(2P ,0,1),(1O ,1,0),(2MN = ,0,2)-,(1OP = ,1-,1),0MN OP ⋅= ,∴满足MN OP ⊥,故B 正确;对于C ,如图,作出平面直角坐标系,设正方体棱长为2,则(2M ,2,2),(0N ,2,0),(1O ,1,0),(0P ,0,1),(2MN =- ,0,2)-,(1OP =- ,1-,1),0MN OP ⋅= ,∴满足MN OP ⊥,故C 正确;对于D ,如图,作出平面直角坐标系,设正方体棱长为2,则(0M ,2,0),(0N ,0,2),(2P ,1,2),(1O ,1,0),(0MN = ,2-,2),(1OP = ,0,2),4MN OP ⋅= ,∴不满足MN OP ⊥,故D 错误.故选:BC .考点六 直线与平面所成的角27.(2020•山东)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为)O ,地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40︒,则晷针与点A 处的水平面所成角为( )A .20︒B .40︒C .50︒D .90︒【详细解析】可设A 所在的纬线圈的圆心为O ',OO '垂直于纬线所在的圆面,由图可得OHA ∠为晷针与点A 处的水平面所成角,又OAO '∠为40︒且OA AH ⊥,在Rt OHA ∆中,O A OH '⊥,40OHA OAO '∴∠=∠=︒,另解:画出截面图,如下图所示,其中CD 是赤道所在平面的截线.l 是点A 处的水平面的截线,由题意可得OA l ⊥,AB 是晷针所在直线.m 是晷面的截线,由题意晷面和赤道面平行,晷针与晷面垂直,根据平面平行的性质定理可得//m CD ,根据线面垂直的定义可得AB m ⊥,由于40AOC ∠=︒,//m CD ,所以40OAG AOC ∠=∠=︒,由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒,所以40BAE OAG ∠=∠=︒,也即晷针与A 处的水平面所成角为40BAE ∠=︒,故选:B .28.(2021•上海)如图,在长方体1111ABCD A B C D -中,已知2AB BC ==,13AA =.(1)若P 是棱11A D 上的动点,求三棱锥C PAD -的体积;(2)求直线1AB 与平面11ACC A 的夹角大小.【详细解析】(1)如图,在长方体1111ABCD A B C D -中,1112322332C PAD PAD C PAD V S h -∆-⎛⎫=⋅=⨯⨯⨯⨯= ⎪⎝⎭平面; (2)连接1111A C B D O = ,AB BC = ,∴四边形1111A B C D 为正方形,则11OB OA ⊥,又11AA OB ⊥,111OA AA A = ,1OB ∴⊥平面11ACC A ,∴直线1AB 与平面11ACC A 所成的角为1OAB ∠,∴111sin OB OAB AB ∠=== ∴直线1AB 与平面11ACC A所成的角为29.(2021•浙江)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,120ABC ∠=︒,1AB =,4BC =,PA =M ,N 分别为BC ,PC 的中点,PD DC ⊥,PM MD ⊥.(Ⅰ)证明:AB PM ⊥;(Ⅱ)求直线AN 与平面PDM 所成角的正弦值.【详细解析】(Ⅰ)证明:在平行四边形ABCD 中,由已知可得,1CD AB ==,122CM BC ==,60DCM ∠=︒, ∴由余弦定理可得,2222cos60DM CD CM CD CM =+-⨯⨯︒11421232=+-⨯⨯⨯=, 则222134CD DM CM +=+==,即CD DM ⊥,又PD DC ⊥,PD DM D = ,CD ∴⊥平面PDM ,而PM ⊂平面PDM ,CD PM ∴⊥,//CD AB ,AB PM ∴⊥;(Ⅱ)解:由(Ⅰ)知,CD ⊥平面PDM ,又CD ⊂平面ABCD ,∴平面ABCD ⊥平面PDM ,且平面ABCD ⋂平面PDM DM =,PM MD ⊥ ,且PM ⊂平面PDM ,PM ∴⊥平面ABCD ,连接AM ,则PM MA ⊥,在ABM ∆中,1AB =,2BM =,120ABM ∠=︒, 可得2114212(72AM =+-⨯⨯⨯-=,又PA =Rt PMA ∆中,求得PM ==,取AD 中点E ,连接ME ,则//ME CD ,可得ME 、MD 、MP 两两互相垂直,以M 为坐标原点,分别以MD 、ME 、MP 为x 、y 、z 轴建立空间直角坐标系,则(A ,2,0),(0P ,0,,1,0)C -,又N 为PC的中点,1(22N ∴-,5(,22AN =- , 平面PDM 的一个法向量为(0,1,0)n = ,设直线AN 与平面PDM 所成角为θ,则5||sin |cos ,|6||||AN n AN n AN n θ⋅=<>===⋅ . 故直线AN 与平面PDM所成角的正弦值为6.30.(2020•海南)如图,四棱锥P ABCD -的底面为正方形,PD ⊥底面ABCD .设平面PAD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知1PD AD ==,Q 为l上的点,QB =,求PB 与平面QCD 所成角的正弦值.【详细解析】(1)证明:过P 在平面PAD 内作直线//l AD ,由//AD BC ,可得//l BC ,即l 为平面PAD 和平面PBC 的交线,PD ⊥ 平面ABCD ,BC ⊂平面ABCD ,PD BC ∴⊥,又BC CD ⊥,CD PD D = ,BC ∴⊥平面PCD ,设m 为平面PCD 中任意一条直线,则BC m ⊥,//l BC ,l m ∴⊥,由线面垂直的定义是l ⊥平面PCD ;(2)解:如图,以D 为坐标原点,直线DA ,DC ,DP 所在的直线为x ,y ,z 轴,建立空间直角坐标系D xyz -,1PD AD == ,Q 为l上的点,QB =,PB ∴=,1QP =,则(0D ,0,0),(1A ,0,0),(0C ,1,0),(0P ,0,1),(1B ,1,0),作//PQ AD ,则PQ 为平面PAD 与平面PBC 的交线为l,因为QB =,QAB ∆是等腰直角三角形,所以(1Q ,0,1),则(1DQ = ,0,1),(1PB = ,1,1)-,(0DC = ,1,0),设平面QCD 的法向量为(n a = ,b ,)c ,则00n DC n DQ ⎧⋅=⎪⎨⋅=⎪⎩ ,∴00b a c =⎧⎨+=⎩,取1c =,可得(1n =- ,0,1),|cos n ∴<,||||||||n PB PB n PB ⋅>=== , PB ∴与平面QCD所成角的正弦值为3. 31.(2020•上海)已知ABCD 是边长为1的正方形,正方形ABCD 绕AB 旋转形成一个圆柱. (1)求该圆柱的表面积;(2)正方形ABCD 绕AB 逆时针旋转2π至11ABC D ,求线段1CD 与平面ABCD 所成的角.【详细解析】(1)该圆柱的表面由上下两个半径为1的圆面和一个长为2π、宽为1的矩形组成, 221214S πππ∴=⨯⨯+⨯=.故该圆柱的表面积为4π.(2) 正方形11ABC D ,1AD AB ∴⊥, 又12DAD π∠=,1AD AD ∴⊥,AD AB A = ,且AD 、AB ⊂平面ADB ,1AD ∴⊥平面ADB ,即1D 在面ADB 上的投影为A ,连接1CD ,则1D CA ∠即为线段1CD 与平面ABCD 所成的角,而11cos 3AC D CA CD ∠==, ∴线段1CD 与平面ABCD所成的角为3. 32.(2020•山东)如图,四棱锥P ABCD -的底面为正方形,PD ⊥底面ABCD .设平面PAD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知1PD AD ==,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值.【详细解析】(1)证明:过P 在平面PAD 内作直线//l AD ,由//AD BC ,可得//l BC ,即l 为平面PAD 和平面PBC 的交线, PD ⊥ 平面ABCD ,BC ⊂平面ABCD ,PD BC ∴⊥,又BC CD ⊥,CD PD D = ,BC ∴⊥平面PCD , 设平面PCD 中有任一直线l ',则BC ⊥直线l ',//l BC ,l ∴⊥直线l ',∴由线面垂直的定义得l ⊥平面PCD ;(2)如图,以D 为坐标原点,直线DA ,DC ,DP 所在的直线为x ,y ,z 轴,建立空间直角坐标系D xyz-则(0D ,0,0),(1A ,0,0),(0C ,1,0),(0P ,0,1),(1B ,1,0),设(Q m ,0,1),(DQ m = ,0,1),(1PB = ,1,1)-,(0DC = ,1,0),设平面QCD 的法向量为(n a = ,b ,)c ,则00n DC n DQ ⎧⋅=⎪⎨⋅=⎪⎩ ,∴00b am c =⎧⎨+=⎩,取1a =-,可得(1n =- ,0,)m , cos n ∴<,||||n PB PB n PB ⋅>==⋅ , PB ∴与平面QCD。
2019年高考数学试题及答案解析
2019年高考数学试题及答案解析2019年高考数学试题及答案解析2019年高考数学试题有许多,同学们着实费了不少功夫来准备,本文将通过列出部分试题及其答案解析,来帮助同学们回顾一下高考考试中出现的题目,也可以更好地加深对理解和熟练运用所学知识的能力。
一、单项选择题1、对于给定的几何体,若两个棱的中点连接,得到的图形是一个()A、四面体B、六面体C、八面体D、十二面体答案:B解析:在三角形ABC中,求得AT角为30°,而AT角和MT共线,故MT角为30°;1特别地,可知AM和BC共线,MT就在伸展图上,由此可以构造一个六面体。
2、已知a、b、s的的单位分别为米、千克和秒,若形如as/b的组合称为物理量,它的单位是( )A、米/千克B、米/秒C、千克/秒D、米·千克/秒答案:B解析:根据力的定义,as/b的组合是速度,即物体每秒钟所移动的距离,因此它的单位应该是米每秒。
二、问答题1、数列{an}和 {bn}满足:a1=1,an=2an-1+1, b2=2, bn=3bn-1-2,设cn=anbn,求cn的表达式是()答案:cn=2cn-2+1解析:由题可知,cn=anbn,利用递推公式可以有:an=2an-1+1,bn=3bn-1-2,故cn=anbn=2an-1bn-1+1×bn-1-2=2cn-2+1,即cn=2cn-2+1。
2、已知a、b、c、d分别是棱锥AP-DC的四边长,其中AD及PC垂直于DC,且d=6,若a+b+c=12,则AP的高h的值为()答案:h=4解析:由等式a+b+c=12可知,APD和APC是直角三角形,AD=d=6,故三边求斜边求得PC=2,AP=√(a²+b²+2ac)=√(12²+2×12×6)=4,即h=4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0 专题二十 几何概型1. 长度类几何概型例 1:已知函数 f ( x ) = x 2 - x - 2 , x ∈[-5, 5] ,在定义域内任取一点 x ,使 f ( x ) ≤ 0 的概率是( )A.110 【答案】CB.2 3C.310D.45【解析】先解出 f ( x 0 ) ≤ 0 时x 0 的取值范围: x 2 - x - 2 ≤ 0 ⇒ -1 ≤ x ≤ 2 ,从而在数轴上[-1, 2] 区间长度占[-5, 5] 区间长度的比例即为事件发生的概率,∴P = 3,故选 C . 102. 面积类几何概型(1) 图形类几何概型例 2-1:如图所示,在矩形 ABCD 中, AB = 2a , AD = a ,图中阴影部分是以 AB 为直径的半圆,现在向矩形 ABCD 内随机撒 4000 粒豆子(豆子的大小忽略不计),根据你所学的概率统计知识,下列四个选项中最有可能落在阴影部分内的豆子数目是 ( )A .1000B .2000C .3000D .4000【答案】C【解析】在矩形 ABCD 中, AB = 2a , AD = a ,面积为2a 2 ,半圆的面积为1 a 2π ,2π故由几何概型可知,半圆所占比例为 4 ,随机撒 4000 粒豆子,⎩⎨⎩落在阴影部分内的豆子数目大约为 3000,故选 C .(2) 线性规划类几何概型例 2-2:甲乙两艘轮船都要在某个泊位停靠 6 小时,假定他们在一昼夜的时间段中随机地到达, 试求这两艘船中至少有一艘在停泊位时必须等待的概率 ( )A.14【答案】DB.1 3C.34D.716【解析】设甲船到达的时间为x ,乙船到达的时间为 y ,Ω⎧0 ≤ x ≤ 24则所有基本事件构成的区域 满足⎨0 ≤ y ≤ 24 ,这两艘船中至少有一艘在停泊位时必须等待包含的基本事件构成的区域 A 满足⎧0 ≤ x ≤ 24 ⎪0 ≤ y ≤ 24 ⎪ x - y ≤ 6,作出对应的平面区域如图所示:这两艘船中至少有一艘在停泊位时必须等待的概率为P ( A ) = S 阴= 1 - 18 ⨯18 = 7 ,故选S Ω24 ⨯ 24 16D .(3) 利用积分求面积例 2-3:如图,圆O : x 2 + y 2 = π2 内的正弦曲线 y = sin x 与x 轴围成的区域记为M (图中阴影部分),随机往圆O 内投一个点A ,则点 A 落在区域M 内的概率是( )D.C . π34A . π24 22π3π2π3【答案】B【解析】构成试验的全部区域为圆内的区域,面积为π3 , 正弦曲线 y = sin x 与x 轴围成的区域记为M ,π⎰根据图形的对称性得:面积为S = 2 sin x dx = -2 cos x π= 4 , 0由几何概率的计算公式可得,随机往圆O 内投一个点 A ,则点 A 落在区域M 内的概率P = 4 ,故选 B .3. 体积类几何概型例 3:一个多面体的直观图和三视图所示, M 是 AB 的中点,一只蝴蝶在几何体ADF - BCE 内自由飞翔,由它飞入几何体F - AMCD 内的概率为()A.34【答案】DB.23C.13D.12B .【解析】所求概率为棱锥F -AMCD 的体积与棱柱ADF -BCE 体积的比值.由三视图可得AD =DF =CD =a ,且AD ,DF ,CD 两两垂直,可得V ADF -BCE =S ADF ⋅DC =1AD ⋅DF ⋅DC =1a3,2 2棱锥体积V F -AMCD =1DF ⋅S3 ADMC,而S ADCM =1AD ⋅(AM +CD)=3 a2,2 4∴V =1 a2 .从而P =V F -AMCD=1.故选 D.F -AMCD 4V ADF -BCE 2一、单选题1.如图,边长为 2 的正方形中有一阴影区域,在正方形中随机撒一粒豆子,它2落在阴影区域内的概率为.则阴影区域的面积约为()3A.23【答案】CB.43C.83D.无法计算【解析】设阴影区域的面积为s ,s =2 ,∴ s =8 .故选 C.4 3 32.某景区在开放时间内,每个整点时会有一趟观光车从景区入口发车,某人上午到达景区入口,准备乘坐观光车,则他等待时间不多于 10 分钟的概率为()A.110【答案】BB.16C.15D.562π 4 3【解析】由题意,此人在 50 分到整点之间的 10 分钟内到达,等待时间不多于 10分钟, ∴概率P=10 = 1.故选 B . 60 63. 一只蚂蚁在边长为 4 的正三角形区域内随机爬行,则它在离三个顶点距离都大于 2 的区域内的概率为()A. 1 -3 πB . 3C .3π D .1 6464【答案】A【解析】满足条件的正三角形如图所示:其中正三角形 ABC 的面积S 三角形 =3 ⨯16 =4 4满足到正三角形 ABC 的顶点 A , B , C 的距离都小于 2 的平面区域如图中阴影部分所示,则S 阴 = 2π ,则使取到的点到三个顶点 A , B , C 的距离都大于 2 的概率为:P = 1 -= 1 -3 π .故选 A .64. 在区间[0,1] 上随机取两个数 x , y , 记 P 为事件" x + y ≤ 2" 的概率, 则 P =3( )A.23B.12C.49D.29【答案】D3π【解析】如图所示, 0 ≤ x ≤ 1, 0 ≤ y≤ 1 表示的平面区域为 ABCD ,平面区域内满足x + y ≤ 2 的部分为阴影部分的区域 APQ ,其中P ⎛ 2 ,0 ⎫ , Q ⎛ 0, 2 ⎫, 33⎪ 3⎪⎝ ⎭⎝ ⎭1 ⨯2 ⨯ 2 结合几何概型计算公式可得满足题意的概率值为 p =2 3 3 = 2 ,故选 D . 1⨯1 95. 在区间[0,2] 上随机取一个数, sin π x 2 1的值介于 0 到 2之间的概率为( )A.13【答案】A B.2 C.12D.23【解析】由0 ≤ sinπ x ≤ 1 ,得0 ≤ π x ≤ π ,或5π ≤ π x ≤ π ,∴ 0 ≤ x ≤ 1 或5≤ x ≤ 2 , 记A = sin πx2 2 2 6 6 23 312的值介于 0 到 2 之间,则构成事件 A 的区域长度为1 - 0 + 2 - 5 = 2;全部结果的区域[0,2] 长度为 2; 3 3 3 2∴ P ( A ) = 3 = 1 ,故选 A .2 36. 点P 在边长为 1 的正方形 ABCD 内运动,则动点P 到定点 A 的距离 PA < 1 的概率为()A. 14【答案】CB. 12C.π4D.π【解析】满足条件的正方形 ABCD ,如图所示:x 21 - 4x 2 1 - 4其中满足动点P 到定点 A 的距离 PA < 1 的平面区域如图中阴影部分所示, 则正方形的面积S = 1,阴影部分的面积S = 1π .正阴4故动点P 到定点 A 的距离 PA < 1 的概率P = S 阴 = π .故选 C . x 2 +2S 正 47. 如图所示,在椭圆 4 y = 1 内任取一个点P ,则P 恰好取自椭圆的两个端点连 线与椭圆围成阴影部分的概率为()A . 1 - 1B . 1 -1 C . 1D . 1 -1 4 2π【答案】A4 4π18x 2 + 28 8π【解析】先求椭圆面积的 4 ,由 4 y = 1 知 y = ,S21 2∴ 椭 圆 = ⎰dx = ⎰ 4 - x 2 dx , 40 2 021而⎰ 4 - x 2 dx 表示 y = 0与x = 0 , x = 2 围成的面积,即圆x 2+ y 2= 4 面积的 ,42S1 2 π ∴ ⎰4 - x 2 dx = π ,∴ 椭圆 = ⎰ 4 - x 2 dx = ,∴ S 椭圆 = 2π ,π - 14 - x 24 20 2∴概率P =2 =1 -1,故选 A.2π 4 2π2π ππ π8. 如图,若在矩形OABC 中随机撒一粒豆子,则豆子落在图中阴影部分的概率为()A .1 - 2【答案】AB . 22C . π21 -2 π2【解析】S= π⨯1 = π ,又π sin dx = -cos x π = -(cos π - cos 0) = 2 ,∴ S = π - 2 ,矩形⎰0 阴影∴豆子落在图中阴影部分的概率为π - 2 = 1 - 2.故选 A . 9. 把不超过实数x 的最大整数记为[x ] ,则函数 f ( x ) = [x ] 称作取整函数,又叫高斯函数,在[1,4]上任取x ,则[x ] = ⎡ 2x ⎤ 的概率为()A.14【答案】DB.13⎣ ⎦C.12D.23【解析】当x ∈[1,2) 时,则⎡2x ⎤ = 1 ,满足[x ] = ⎡ 2x ⎤ ;当x ∈[2, 3) 时,[x ] = 2 , ⎣ ⎦ ⎣ ⎦ 2x ∈ ⎡2, 6 ) ,则⎡ 2x ⎤ = 2 ,满足[x ] = ⎡ 2x ⎤ ; ⎣⎣⎦⎣⎦当x ∈[3, 4) 时,[x ] = 3 , 2x ∈ ⎡ 6,2 2 ) ,则⎡2x ⎤ = 2 不满足[x ] = ⎡ 2x ⎤ ;当x = 4 时,[x ] = 4 , ⎣= 2,则⎡⎣ ⎦ ⎣ ⎦2x ⎤ = 2 ,不满足[x ] = ⎡ 2x ⎤ .综上,满足[x ] = ⎡ ⎣ ⎦ 2x ⎤ 的x ∈[1, 3) ,则[x ] = ⎡ ⎣ ⎦2x ⎤ 的概率为 3 - 1= 2,⎣ ⎦故选 D .⎣⎦4 - 1 310. 关于圆周率,数学发展史上出现过许多有创意的求法,如著名的普丰实验2xD .32π -2 3⎩ ⎩ 和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π 的值:先请 120 名同学每人随机写下一个x , y 都小于 1 的正实数对( x , y ) ,再统计其中x ,y 能与 1 构成钝角三角形三边的数对( x , y ) 的个数m ,最后根据统计个数m 估计π 的值.如果统计结果是m = 34 ,那么可以估计π 的值为( ) A.22 7【答案】BB.47 15C.51 161( x , y )D.53 17⎧0 < x < 1【解析】 由题意,120 对都小于 的正实数,满足⎨0 < y < 1 ,面积为 1,两个数能与 1 构成钝角三角形的三边的数对( x , y ) ,x 2 + y 2 < 1⎧0 < x < 1 π -1满足且⎨0 < y < 1,面积为 4 2 ,∵统计两数能与 1 构成钝角三角形三边的数对( x , y ) 的个数为m = 34 ,34π 1 47则120 = 4 - 2 ,∴ π = 15 ,故选 B . 11. 为了节省材料,某市下水道井盖的形状如图 1 所示,其外围是由以正三角形的顶点为圆心,正三角形的边长为半径的三段圆弧组成的曲边三角形,这个曲边三角形称作“菜洛三角形”.现有一颗质量均匀的弹珠落在如图 2 所示的莱洛三角形内,则弹珠恰好落在三角形 ABC 内的概率为( )A .B .C .3 2D .1 - 3332π + 2 3△ABC 32 【答案】A【解析】弹珠落在莱洛三角形内的每一个位置是等可能的, 由几何概型的概率计算公式可知所求概率:1⨯ 22 ⨯ sin 60oP = S △ABC = 2 = S u u u u u u u r ⎛ 1 21 2 o ⎫ 1 2 o△ABC 3 ⨯ ⨯ ⨯ 2 - 2 ⨯ ⨯ 2 ⨯ sin 60 ⎪ + ⨯ 2 ⨯ sin 60 ⎝ 2 3 2 ⎭ 2( S u u u u u u u r为莱洛三角形的面积),故选 A .12. 下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形 ABC 的斜边BC ,直角边AB , AC .△ABC 的三边所围成的区域记为 I ,黑色部分记为 II ,其余部分记为 III .在整个图形中随机取一点,此点取自 I ,II ,III 的概率分别记为p 1 , p 2 , p 3 ,则( )A.p 1 = p 2B.p 1 = p 3C.p 2 = p 3D.p 1 = p 2 + p 3【答案】A【解析】设 AC = b , AB = c , BC = a ,则有b 2 + c 2 = a 2 ,从而可以求得△ABC 的面积为S 1 = 1 bc , 2 ⎛ c ⎫2⎛ b ⎫2 ⎡ ⎛ a ⎫2 1 ⎤ ⎛ c 2 b 2 a 2 ⎫ 1 黑色部分的面积为S 2 = π ⋅ 2 ⎪ + π ⋅ 2 ⎪ - ⎢π ⋅ 2 ⎪ - 2 bc ⎥ = π 4 + 4 - 4 ⎪ + 2 bc= π ⋅ c 2 + b 2 - a 2 + 1 bc = 1bc ,4 2 2⎝ ⎭ ⎝ ⎭ ⎣⎢ ⎝ ⎭ ⎦⎥ ⎝ ⎭ ⎛ a ⎫2其余部分的面积为S = π ⋅ ⎪ ⎝⎭ - 1 bc = 2 πa 2 4 - 1 bc ,∴有S = S , 2 1 23 2π - 2 32π 1根据面积型几何概型的概率公式,可以得到 p 1 = p 2 ,故选 A .二、填空题13. 在区间[0,2] 内任取一个实数a ,则使函数f ( x ) = log (2a -1) x 在(0, + ∞) 上为减函数的概率是 .【答案】14【解析】∵函数 f ( x ) = log (2a -1) x 在(0, + ∞) 上为减函数,11 - 1∴ 0 < 2a - 1 < 1 , < a < 1,因此所求概率为 2 = 1 . 2 - 0 414.记集合 A = {( x , y ) x 2 + y 2 ≤ 16},集合B = {( x , y ) x + y - 4 ≤ 0,( x , y ) ∈ A } 表示的平面区域分别为Ω1 , Ω2 . 若在区域Ω1 内任取一点 P ( x , y ) , 则点 P 落在区域Ω2 中的概率为.【答案】3π + 2 4【解析】画出 A = {( x , y ) x 2 + y 2≤ 16}表示的区域Ω ,即图中以原点为圆心,半径为 2的圆;集合B = {( x , y ) x + y - 4 ≤ 0, 由题意可得S Ω = 16π , S( x , y ) ∈ A } 表示的区域Ω2 ,即图中的阴影部分. = 3 ⨯16π + 1⨯ 4 ⨯ 4 = 12π + 8 , 1Ω24 2ΩS ⎣ ⎝2⎡ ⎛ πx ⎫⎤ ⎛ 2 π ⎫根据几何概型概率公式可得所求概率为P = S Ω2 1= 3π + 2 4π 15. 如图, 曲线 y = sinπx + 3 把边长为 4 的正方形 OABC 分成黑色部分和白色部2分.在正方形内随机取一点,则此点取自黑色部分的概率是.【答案】 14【解析】由题意可知,阴影部分的面积S4= ⎰ ⎢4 - sin + 3⎪⎥ dx = x - ⨯ cos x ⎪ 4 = 4 , 1⎭⎦ ⎝π 2 ⎭正方形的面积: S 2 = 4 ⨯ 4 = 16 ,由几何概型计算公式可知此点取自黑色部分的概率: p = S 1=4 = 1 .S 2 16 416. 父亲节小明给爸爸从网上购买了一双运动鞋,就在父亲节的当天,快递公司给小明打电话话说鞋子已经到达快递公司了,马上可以送到小明家,到达时间为晚上 6 点到 7 点之间,小明的爸爸晚上 5 点下班之后需要坐公共汽车回家,到家的时间在晚上 5 点半到 6 点半之间.求小明的爸爸到家之后就能收到鞋子的概率 (快递员把鞋子送到小明家的时候,会把鞋子放在小明家门口的“丰巢”中)为..⎩ ⎩ ⎝⎭ ⎩⎭ 【答案】18【解析】设爸爸到家时间为x ,快递员到达时间为 y ,以横坐标表示爸爸到家时间,以纵坐标表示快递送达时间,建立平面直角坐标系,爸爸到家之后就能收到鞋子的事件构成区域如下图:⎧⎪( x , y ) ⎧5.5 ≤ x ≤ 6.5⎫⎪ S = 1 根据题意,所有基本事件构成的平面区域为⎨ ⎪⎩ ⎨6 ≤ y ≤7 ⎬ ,面积 , ⎪⎭⎧ ⎧5.5 ≤ x ≤ 6.5⎫ ⎪( x , y ) ⎪6 ≤ y ≤ 7 ⎪爸爸到家之后就能收到鞋子的事件,构成的平面区域为⎨ ⎨ ⎬ , ⎪ ⎪x - y ≥ 0 ⎪直线x - y = 0 与直线x = 6.5 和 y = 6 交点坐标分别为(6,6) 和(6.5,6.5) ,1 ⎛ 1 ⎫21S 阴影 = 2 ⨯ 2 ⎪ = 8,由几何概型概率公式可得,爸爸到家之后就能收到鞋子的概率: P = S 阴影 = 1. S 81故答案为8 .“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。