第三章 分子的对称性与点群
合集下载
分子的对称性与群论基础群与分子点群
群与分子点群
3、分子点群
立方群
3)、 Ih 点群
对称元素: 6个 C5 轴(相对顶点)、 10个 C3 轴(相对面心)、 15个 C2 轴(相对棱心)、 对称中心.
120个对称操作,分为10个共轭类:
Eˆ , 6 Cˆ5 ,Cˆ54 , 6 Cˆ52,Cˆ53 , 10 Cˆ3 , Cˆ32 , iˆ , 6 Sˆ10 , Sˆ190 , 6 Sˆ130 , Sˆ170 , 10 Sˆ6 , Sˆ65 ,
24
群与分子点群
4、子群与类
如果群的某个元素与其他元素的乘积都可交换,则该元素
自成一类(不与其他元素共轭)。
若:
PA = AP ,
PB =
BP , … ...
必有:
A-1PA = P , B-1PB =
P , …… 即:对元于素分子P 点不群与:其他元素共轭。 恒等操作自成一类; 反演操作自成一类。
O2 , CO2 , C2 H 2
13
群与分子点群
3、分子点群
立方群
具有多于一个高次轴(Cn,n>2)的群,对应于凸正 多面体
4个 C3 轴 3个 C2 轴
T
Th (i)
Td (6d)
正四面体
3个 C4 轴 4个 C3 轴 6个 C2 轴
O Oh (i)
正八面体 正六面体
6个 C5 轴 10个 C3 轴
27
群与分子点群
5、同构与同态
2)、同态 定义:考虑群G与群H,若G的一组元素对应与H的一个元 素,且群G的元素的乘积对应于群H的相应元素的乘积, 则称群H 是群G的一个同态映像。
群G: …., {Aik} , …, {Aj l }, …., {AikAjl} , ….
第三章:分子对称性和点群
σv2 σv2 σd1 σv1 σd2 C42 E
C41 C43
σd1 σd1 σv1 σd2 σv2 C41 C43 E
C42
σd2 σd2 σv2 σd1 σv1 C43 C41 C42 E
第三章:分子对称性和点群
1
群元素 群
乘法
对称操作 点群
操作动作的连续
2
本章目录
3.1对称元素和对称操作 3.2 对称操作的乘积 3.3分子点群
3.3.1 构成群 3.3.2 点群乘法表 3.3.3 类和子群 3.3.4 分子点群的类型 ****
3
3.1对称元素和对称操作
• 对称元素的定义(Symmetry Elements) 几何实体,如一个点,一条直线,一个平面;
(x,y,z) -C-2-(-x-)-> (x,-y,-z)-C--2(-y-)> (-x,-y,z) (x,y,z) -C--2(-z-)-> (-x,-y,z)
so, C2(y)C2(x)= C2(z)
34
例3:C4(z)和σ (xz)的存在,自动地要求σ d的存在 普通点[x1,y1,z1]通过xz平面的反映效果可以表为
分子点群满足数学群四准则。
点群中点的含义:(1)这些对称操作都是点操作,操作时 分子中至少有一点不动;(2) 分子的全部对称元素至少通 过一个公共点。
37
满足群的四点要求:
• (1)群中任意两个元素的乘积必为群中的 一个元素。
以NH3为例,逐一求出所有的对称操作的二元乘 积,发现两个操作的乘积仍为集合中的一个操作。
Snm = hmCnm (1)若独立地存在一个Cn轴和一个垂直于它 的平面h,那么就存在Sn。 (2)当分别地既不存在Cn也不存在垂直的h 时,Sn也可以存在。
群论第3章
NH3
CO,NO,HCN
C3v
C∞v
③ Cnh 群 属于Cnh点群的分子中具有一个Cn轴和一个垂直于Cn轴的σh 对称元素:Cn和σh 因σhCn=Sn,故(n-1)个旋转必产生(n-1)个象转 实际上 Cnh群是Cn群和Cs群的直积,阶次为2n 。
Cnh Cn Cs E, Cn1 , Cn 2 ,..., Cn n1 E, h = E, Cn1 , Cn 2 ,..., Cn n1 , h , hCn1 Sn , hCn 2 ,..., hCn n1
第三章. 分子对称性与分子点群
3.1 分子对称性
利用对称性原理和概念探讨分子的结构和性质,是人们认 识分子的重要途径,是了解分子结构和性质的重要方法。 ① 能简明地表达分子的构型 Ni(CN)42-离子具有D4h点群的对称性,用D4h这个符号就可以 准确地表达 9 个原子在同一平面上, Ni 原子在中心位置, 周围4个-CN完全等同,Ni-C-N都是直线型,互为90°角。 ② 简化分子构型的测定工作
3.分子的对称操作和对称元素:
分子是有限物体,在进行对称操作时,分子中至少有一 点不动------点操作 只有四种类型的对称操作和对称元素 a. 旋转操作------旋转轴(Cn)
b. 反映操作------镜面( σ )
c. 反演操作------ 对称心(i) d. 象轴(旋转反映)操作------象转轴(反轴)Sn 右手坐标系:讨论对称操作时,常将分子定位在右手坐 标轴系上,分子的重心处在坐标原点,主轴与Z轴重合。 主轴:分子中轴次最高的轴。
Cnh 待 定 分 子 是 否 直 线 型 N Y i Td
例:有两个分子群 D2 { E,C2(x),C2(y),C2(z) }
点对称操作群(点群)
6. Dnh点群 σv
C4
σv
C2
σh
C2
C2
C2
C4,4C2,,4σv,σh,S4,i,E
XeF4为平面四边形,属于D4h点群; CO32-离子为平面正三角形,含有对称元素
C3,3C2,3σv,σh, S3, E,属于D3h点群;
C6H6为平面正六边形,属于D6h点群; 平面乙烯属于D2h群; 环戊二烯是平面正五边形分子,为D5h点群; 以上统属于Dnh点群。此点群的特点是具有一 个Cn轴和n个垂直于主轴的C2轴,同时有h面。
所有直线分子和A2型双原子分子都具有C∞旋转 轴。
3.1.3 反演与反映
1. 对称中心(i)与反演操作
从分子中任一原子至分子中心连一直线,如果 在其延长线的相等距离处有一个相同原子,并且对 分子中所有的原子都成立,则称此分子具有对称中 心i,通过对称中心使分子复原的操作叫反演。如:
(i)
(i)
“具有对称中心的分子,其原子必定两两成对出现”
2. 对称面(镜面)与反映操作
如果分子被一平面等分为两半,任一半中的每 个原子通过此平面的反映后,能在另一半(映象)中 与其相同的原子重合,则称此对称分子具有一对称
面,用表示。据此进行的操作叫对称面反映操作,
或简称反映。
➢含有竖直轴(主轴)的平面叫竖直对称面, v; ➢垂直主轴的平面叫水平对称面, h;
-1
1
-1
Tx
Γ3
1
1
1
1
Tz
上述数字的集合(矩阵)代表群,就是 群的表示。
其中Γ用以表示Tx、Ty、Tz的不同对称行为。
3.3.2. 可约表示与不可约表示
对称群是用群元对应的矩阵的集合表示的。 有的矩阵太大,例如苯分子为36×36,要进行 “约化”。约化到不可再约的程度,这种表示为不 可约表示。 约化前的表示称为可约表示。
第三章 分子的对成性与点群
一个对称面只能产生两个反映操作:
ˆ n
ˆ (n为奇数) Eˆ(n为偶数 — 垂直主轴的对称面
d — 包含主轴且平分垂直主轴的两个二重轴之间的夹角
PtCl4:其对称面如上图所示。
5.象转轴(映轴)Sn和旋转反映操作 Sˆn
如果分子图形绕轴旋转一定角度后,再作垂直此轴的镜 面反映,可以产生分子的等价图形。则将该轴和垂直该轴 的镜面组合所得的元素称为象转轴或映轴。
分子的偶极矩是一个矢量,是分子的静态性质,分子的任何对称操 作对其大小和方向都不起作用。
只有分子的电荷中心不重合,才有偶极矩,重合,则无。 极性分子——永久偶极短0 一般分子——诱导偶极矩I
分子的对称性反映出分子中原子核和电子云空间分布 的对称性,因此可以判断偶极矩是否存在。
判据:若分子中有对称中心或有两个对称元素相交于 一点, 则分子不存在偶极矩。
象转轴和旋转—反映连续操作相对应,但和连续操作的
次序无关。即 :
Sˆn cˆnˆ h ˆ hcˆn
转900
Cˆ 4
ˆ h
(A)
例如CH4,其分子构型可用图(A)表示: CH4没有C4,但存在S4
注意:①当分子中存在一个Cn轴和一个垂直Cn的对称 面,则分子必存在Sn轴。
PtCl4有C4 且有 ,有h S4
D4h群:XeF4
D6h群:苯
Dh群: I3-
3) Dnd: 在Dn基础上, 增加了n个包含主轴且平分二次副轴夹
角的镜面σd.
对称元素 1个Cn轴,n个垂直Cn的二重轴,n个σd面 4n阶。
D2d : 丙二烯
C C C
D3d : 乙烷交错型
D4d :单质硫
俯视图
D5d : 交错型二茂铁
结构化学 第三章 分子的对称性chap3
[Co(NH2CH2CH2NH2)3]3+是一实例.
何其相似!
C2
唯一的C3旋转轴从xyz轴连成的 正三角形中心穿过, 通向Co; 三条C2旋转轴分别从每个N–N 键中心穿过通向Co. z C2 x y
C2
Dnh : 在Dn 基础上,还有垂直于主轴的镜面σh .
元素 操作 阶
E,nC2Cn ˆ ,C ˆ 2 ,,C ˆ n1, nC ˆ ˆ,C E
试观察以下分子模型并比较:
(1) 重叠型二茂铁具有
(2) 甲烷具有S4,所以, 只有C2与S4共轴,但C4和与 之垂直的σ并不独立存在.
S5, 所以, C5和与之垂直
的σ也都独立存在;
CH4中的映轴S4与旋转反映操作
•
注意: C4和与之垂直的σ都不独立存在
交叉式C2H6
S6=C3 + i
对称操作与对称元素
的镜面σd.
D2d : 丙二烯
元素 E,nC2Cn 操作 阶
n
ˆ ,C ˆ ,,C ˆ ˆ,C E
2 n
n1 n
ˆ , nC 2
2n
丙二烯(CH2=C=CH2)
对称元素 3C2 , 2 d
D2d群
D2d : B2Cl4
D3d : 乙烷交错型
D4d :单质硫
俯视图
D5d : 交错型二茂铁
Z
对称操作,共有9个对称操作. 但每条S4必然也是C2,
S42与C2对称操作等价,所以将3个S42划归C2,
穿过正四面体每条 棱并将四面体分为 两半的是一个σd ,
Y X
共有6个σd 。
从正四面体的每个顶点到 对面的正三角形中点有一 条C3穿过, 所以共有4条C3, 可作出8个C3对称操作。
何其相似!
C2
唯一的C3旋转轴从xyz轴连成的 正三角形中心穿过, 通向Co; 三条C2旋转轴分别从每个N–N 键中心穿过通向Co. z C2 x y
C2
Dnh : 在Dn 基础上,还有垂直于主轴的镜面σh .
元素 操作 阶
E,nC2Cn ˆ ,C ˆ 2 ,,C ˆ n1, nC ˆ ˆ,C E
试观察以下分子模型并比较:
(1) 重叠型二茂铁具有
(2) 甲烷具有S4,所以, 只有C2与S4共轴,但C4和与 之垂直的σ并不独立存在.
S5, 所以, C5和与之垂直
的σ也都独立存在;
CH4中的映轴S4与旋转反映操作
•
注意: C4和与之垂直的σ都不独立存在
交叉式C2H6
S6=C3 + i
对称操作与对称元素
的镜面σd.
D2d : 丙二烯
元素 E,nC2Cn 操作 阶
n
ˆ ,C ˆ ,,C ˆ ˆ,C E
2 n
n1 n
ˆ , nC 2
2n
丙二烯(CH2=C=CH2)
对称元素 3C2 , 2 d
D2d群
D2d : B2Cl4
D3d : 乙烷交错型
D4d :单质硫
俯视图
D5d : 交错型二茂铁
Z
对称操作,共有9个对称操作. 但每条S4必然也是C2,
S42与C2对称操作等价,所以将3个S42划归C2,
穿过正四面体每条 棱并将四面体分为 两半的是一个σd ,
Y X
共有6个σd 。
从正四面体的每个顶点到 对面的正三角形中点有一 条C3穿过, 所以共有4条C3, 可作出8个C3对称操作。
(完整版)第三章-分子对称性和群论初步
操作A和B是可交换的。
两个或多个对称操作 的结果,等效于某个 对称操作。
例如,先作二重旋转,再对垂直 于该轴的镜面作反映,等于对 轴与镜面的交点作反演。
对称操作的乘积示意图
2.分子点群的确定
分子可以按 “点群”或“对称群”加以分 类。在一个分子上所进行的对称操作的完全组 合构成一个“点群”或“对称群”。
Third
确定分子是否具有象转轴Sn(n为偶数),如果只 存在Sn轴而别无其它对称元素,这时分子属于假轴 向群类的Sn群。
3. 分子点群的确定
Forth
假如分子均不属于上述各群,而且具有Cn旋转轴时 可进行第四步。当分子不具有垂直于Cn轴的C2轴时,
则属于轴向群类。有以下三种可能:
没有对称面 若有n个sv对称面 若有1个sh对称面
Z s2
Y
x
独立:可以通过其它对称元素或组合来产生。
CH4中的象转轴S4与旋转反映操作
4
3
43
旋转90◦
12
2
1
2
1 反映
43
3 4
2
1
注意: C4和与之垂直的σ都不独立存在
补充:反轴(In)和旋转反演操作(In )
反轴
如果分子图形绕轴旋转一定角度(θ=2π/n)后, 再按轴上的中心点进行反演,可以产生分子的 等价图形,则将该轴和反演组合所得到的对称 元素称为反轴。
对称中心的反演操作,能使分子中各相互对应的原子 彼此交换位置。即分子图形中任意一个原子的位置 A(x,y,z)将反射到点A’(-x,-y,-z),同时A’点将反射到A点, 从而产生分子的等价图形。示意图.exe
对分子图形若连续反演n次,可以满足:
iˆ
nLeabharlann =E(n为偶数) ˆi(n为奇数)
两个或多个对称操作 的结果,等效于某个 对称操作。
例如,先作二重旋转,再对垂直 于该轴的镜面作反映,等于对 轴与镜面的交点作反演。
对称操作的乘积示意图
2.分子点群的确定
分子可以按 “点群”或“对称群”加以分 类。在一个分子上所进行的对称操作的完全组 合构成一个“点群”或“对称群”。
Third
确定分子是否具有象转轴Sn(n为偶数),如果只 存在Sn轴而别无其它对称元素,这时分子属于假轴 向群类的Sn群。
3. 分子点群的确定
Forth
假如分子均不属于上述各群,而且具有Cn旋转轴时 可进行第四步。当分子不具有垂直于Cn轴的C2轴时,
则属于轴向群类。有以下三种可能:
没有对称面 若有n个sv对称面 若有1个sh对称面
Z s2
Y
x
独立:可以通过其它对称元素或组合来产生。
CH4中的象转轴S4与旋转反映操作
4
3
43
旋转90◦
12
2
1
2
1 反映
43
3 4
2
1
注意: C4和与之垂直的σ都不独立存在
补充:反轴(In)和旋转反演操作(In )
反轴
如果分子图形绕轴旋转一定角度(θ=2π/n)后, 再按轴上的中心点进行反演,可以产生分子的 等价图形,则将该轴和反演组合所得到的对称 元素称为反轴。
对称中心的反演操作,能使分子中各相互对应的原子 彼此交换位置。即分子图形中任意一个原子的位置 A(x,y,z)将反射到点A’(-x,-y,-z),同时A’点将反射到A点, 从而产生分子的等价图形。示意图.exe
对分子图形若连续反演n次,可以满足:
iˆ
nLeabharlann =E(n为偶数) ˆi(n为奇数)
分子的对称性和群论初步
属4阶群
H3BO3分
子
C3h C31, C32 , C33 E, h , S31, S35
属6阶群 S31 hC31,S32 C32,S33 h S34 C31,S35 hC32,S36 E
Cnh Cnk (k 1,n 1), E, h , hCnl (l 1,l 1)
非全同:不能通过平移或转动等第一类对称操 作使两个图形叠合。
2.旋光异构体:一对等同而非全同的分子构成 的一对对映体。
3.手性分子:没有第二类对称元素的分子。
R(右,顺时针方向转)和 S(左,逆时针旋转) 外消旋体:等量的R和S异构体混合物一定无旋光
性方向相反
4.对称性和旋光性的关系
✓ 若分子具有反轴Ι(先旋转360°/n,再反演)的对 称性,一定无旋光性;若分子不具有反轴的对称性, 则可能出现旋光性。
元的数目有限的群称为有限群,数目无限的群 称为无限群。
点群:一个有限分子的对称操作群 ☞“点”的含义 ✔这些对称操作都是点操作,操作时分子中至少
有一个点不动。 ✔分子的对称元素至少通过一个公共点。
2.2 群的乘法表
※顺序
乘法表由行和列组成,在行坐标x和列坐标y的 交点上找到的元是yx,即先操作x,后操作y。每一 行和每一列都是元的重新排列。
C6轴: C6轴包括C2 和C3 的全部对称操作。
1.3 反演操作和对称中心 i
反演操作: 将分子的各点移到对称中心连线的延长线上,
且两边的距离相等。若分子能恢复原状,即反演操 作。
✔对称因素:对称中心 i ✔特点:延长线,等距
除位于对称中心的原子外,其余均成对出现
若对称中心位置在原点 (0,0,0)处,反演操作i的表 示矩阵为:
✓ 一重反轴=对称中心,二重反轴=镜面,独立的反 轴只有I4 。则具有这三种对称操作的无旋光性, 不具有这3种对称元素的分子都可能有旋光性。
H3BO3分
子
C3h C31, C32 , C33 E, h , S31, S35
属6阶群 S31 hC31,S32 C32,S33 h S34 C31,S35 hC32,S36 E
Cnh Cnk (k 1,n 1), E, h , hCnl (l 1,l 1)
非全同:不能通过平移或转动等第一类对称操 作使两个图形叠合。
2.旋光异构体:一对等同而非全同的分子构成 的一对对映体。
3.手性分子:没有第二类对称元素的分子。
R(右,顺时针方向转)和 S(左,逆时针旋转) 外消旋体:等量的R和S异构体混合物一定无旋光
性方向相反
4.对称性和旋光性的关系
✓ 若分子具有反轴Ι(先旋转360°/n,再反演)的对 称性,一定无旋光性;若分子不具有反轴的对称性, 则可能出现旋光性。
元的数目有限的群称为有限群,数目无限的群 称为无限群。
点群:一个有限分子的对称操作群 ☞“点”的含义 ✔这些对称操作都是点操作,操作时分子中至少
有一个点不动。 ✔分子的对称元素至少通过一个公共点。
2.2 群的乘法表
※顺序
乘法表由行和列组成,在行坐标x和列坐标y的 交点上找到的元是yx,即先操作x,后操作y。每一 行和每一列都是元的重新排列。
C6轴: C6轴包括C2 和C3 的全部对称操作。
1.3 反演操作和对称中心 i
反演操作: 将分子的各点移到对称中心连线的延长线上,
且两边的距离相等。若分子能恢复原状,即反演操 作。
✔对称因素:对称中心 i ✔特点:延长线,等距
除位于对称中心的原子外,其余均成对出现
若对称中心位置在原点 (0,0,0)处,反演操作i的表 示矩阵为:
✓ 一重反轴=对称中心,二重反轴=镜面,独立的反 轴只有I4 。则具有这三种对称操作的无旋光性, 不具有这3种对称元素的分子都可能有旋光性。
chap3b第三章 分子的对称性和点群
C1 , Ci , Cs
有多条高阶轴分子(正四面体、正八面体 有多条高阶轴分子(正四面体、正八面体…) 只有镜面或对称中心, 或无对称性的分子: 只有镜面或对称中心 或无对称性的分子 只有S 为正整数) 只有 2n(n为正整数)分子 为正整数 分子:
S 4 , S 6 , S8 ,...
C n , C nh , C nv
Z
对称操作,共有 个对称操作 但每条S 必然也是C 个对称操作. 对称操作,共有9个对称操作 但每条 4必然也是 2, S42与C2对称操作等价,所以将 个S42划归 2, 对称操作等价,所以将3个 划归C ,
穿过正四面体每条棱 并将四面体分为两半 的是一个σd , 共有 个 共有6个 的是一个 σd 。
旋转反映
(具有 n的)分子 具有S 分子 具有 镜象 反映 旋转
分子
橙色虚线框表明,分子与其镜象能够通过实操作旋转完 橙色虚线框表明, 全迭合,而前提是“分子具有 全迭合,而前提是“分子具有Sn”. 根据n的不同可以写出 根据 的不同可以写出: S1=σ,S2=i,S4=S4。 的不同可以写出 结论: 的分子, 结论 : 具有 σ、 或 i、 或 S4 的分子 , 可通过实际操作与其 镜象完全迭合,称为非手性分子。 镜象完全迭合,称为非手性分子。
夹角的镜面σ 夹角的镜面 d.
D2d : 丙二烯
D2d : B2Cl4
立方群:包括T 立方群:包括 d 、Th 、Oh 、Ih 等.
这类点群的共同特点是有多条高次(大于二次 旋转轴相交 这类点群的共同特点是有多条高次 大于二次)旋转轴相交 大于二次 旋转轴相交.
Td 群:属于该群的分子,对称性与正四面体完全相同。 属于该群的分子,对称性与正四面体完全相同。 正四面体完全相同
有多条高阶轴分子(正四面体、正八面体 有多条高阶轴分子(正四面体、正八面体…) 只有镜面或对称中心, 或无对称性的分子: 只有镜面或对称中心 或无对称性的分子 只有S 为正整数) 只有 2n(n为正整数)分子 为正整数 分子:
S 4 , S 6 , S8 ,...
C n , C nh , C nv
Z
对称操作,共有 个对称操作 但每条S 必然也是C 个对称操作. 对称操作,共有9个对称操作 但每条 4必然也是 2, S42与C2对称操作等价,所以将 个S42划归 2, 对称操作等价,所以将3个 划归C ,
穿过正四面体每条棱 并将四面体分为两半 的是一个σd , 共有 个 共有6个 的是一个 σd 。
旋转反映
(具有 n的)分子 具有S 分子 具有 镜象 反映 旋转
分子
橙色虚线框表明,分子与其镜象能够通过实操作旋转完 橙色虚线框表明, 全迭合,而前提是“分子具有 全迭合,而前提是“分子具有Sn”. 根据n的不同可以写出 根据 的不同可以写出: S1=σ,S2=i,S4=S4。 的不同可以写出 结论: 的分子, 结论 : 具有 σ、 或 i、 或 S4 的分子 , 可通过实际操作与其 镜象完全迭合,称为非手性分子。 镜象完全迭合,称为非手性分子。
夹角的镜面σ 夹角的镜面 d.
D2d : 丙二烯
D2d : B2Cl4
立方群:包括T 立方群:包括 d 、Th 、Oh 、Ih 等.
这类点群的共同特点是有多条高次(大于二次 旋转轴相交 这类点群的共同特点是有多条高次 大于二次)旋转轴相交 大于二次 旋转轴相交.
Td 群:属于该群的分子,对称性与正四面体完全相同。 属于该群的分子,对称性与正四面体完全相同。 正四面体完全相同
第三章 分子的对称性
逆元素
I--- I C3+---C3– v1--- v1 v2---v2 v3 ---v3
封闭性
结合律 v1(v2 v3) = v1 C3+ = v2
(v1v2)v3 = C3+ v3 = v2
3.5 群的表示
矩阵乘法 矩阵 方阵 对角元素
分子的所有对称操作----点群
如果每一种对称操作可以用一个矩阵(方阵)表示, 矩 阵集合满足群的要求,矩阵乘法表与对称操作乘法表
相似, 矩阵集合---群的一个表示
恒等操作I
矩阵
C2v: I C2 v v
特征标: 对角元素和 9
特征标3
特征标 1
特征标 -1
单位矩阵
I 矩阵, C2 矩阵, v 矩阵, v 矩阵 满足群的要求, 是C2v 点群的一个表示
集合G 构成群
1 –1, 乘法
1X1=1, 1X(-1)= -1 (-1)X1= -1, (-1)X(-1)=1 封闭性 恒等元素1 逆元素 1---1, -1--- -1,
群的乘法表 I A I A
I
I
IA
AA
I
I
A
?
A AI
A A
交叉线上元素 = 行元素 X 列元素
已知,I,A,B构成群, I 为恒等元素, 写出群的乘法表
3) 如果对称中心上无任何原子, 则同类原子是成双出现的.
例如: 苯中C, H
NH3 有无对称中心, 为什么? C2H3Cl有无对称中心, 为什么?
(b) 旋转轴Cp
绕轴旋转3600/p, 等价构型 水分子----绕轴旋转1800, 等价构型 C2轴 C3轴 360/2=180
BF3, 旋转1200, 等价构型 360/3=120
第三章-分子的对称性
对称操作只能产生等价构型分子,不能改变其 物理性质(偶极矩)。因此,分子的偶极矩必定在 分子的每一个对称元素上。
(1) 若分子有一个Cn轴,则DM必在轴上; (2) 若分子有一个σ面,则DM必在面上; (3) 若分子有n个σ面,则DM必在面的交线上; (4) 若分子有n个Cn轴,则DM必在轴的交点上,DM=0; (5) 分子有对称中心 i ( Sn ),则DM=0。
群的乘法表
把群元素的乘积列为表,则得到乘法表。乘 积为列×行,行元素先作用,列元素后作用。群 的元素数目 n为群的阶数。 例:H2O,对称元素,C2, σv, σv’ ,对称操作
ˆ ˆ ˆ ˆ C2,σv ,σv ', E , 属4阶群。
C2v
ˆ E ˆ C2 ˆ σv ˆ σv'
ˆ E ˆ ˆ σv σv' ˆ ˆ σv' σv
判据:若分子中有对称中心或有两个对称元素相交 于一点, 则分子不存在偶极矩。 推论:只有属于Cn 和Cnv(n=1,2,3,…,∞)这两类点群 的分子才具有偶极矩,而其他点群的分子偶极矩为 0。因C1v≡C1h≡Cs,Cs点群也包括在Cnv之中。
H C Cl
H C Cl
1,2 -二氯乙烯(顺式) , C2v,有
C60
闭合式[B12H12]2-
非真旋轴群: 包括Cs 、Ci 、S4 只有虚轴(不计包含在Sn中的Cn/2. 此外, i= S2 , σ = S1, 只有n为4的倍数时Sn是独立的).
Cs 群 : 只有镜面 Ci 群: 只有对称中心 S4 群: 只有四次旋映轴
亚硝酸酐 N2O3
分子点群的确定
起点 线性分子
2
ˆ E ˆ E ˆ C
ˆ C2 ˆ C
第三章 分子的对称性与点群
III. 1,3,5-三甲基苯
1,3,5-三甲基苯 (图III)是C3点 群的例子,若不考 虑甲基上H原子, 分子的对称性可以 很高,但整体考虑, C6H3(CH3)3只有C3 对称元素。C3轴位 于苯环中心,垂直 于苯环平面,分子 绕C3轴转动120°, 240°都能复原。
旋转一定角度的 三氯乙烷(图IV) 也是C3对称性分 子。
一、对称性、对称操作与对称元素
对称操作是指不改变物体内部任何两点间的 距离而使物体复原的操作。对称操作所依据的几 何元素称为对称元素。对于分子等有限物体,在 进行操作时,物体中至少有一点是不动的,这种 对称操作叫点操作。
二、 旋转轴和转动
旋转操作是将分子绕通过其中心的轴旋转一定的 角度使分子复原的操作,旋转所依据的对称元素为旋 转轴。n次旋转轴的记号为Cn .使物体复原的最小旋转 角( 0 度除外)称为基转角α,对 C n 轴的基转角α= 3600/n。旋转角度按逆时针方向计算。 和 C n 轴相应的基本旋转操作为 C n 1 ,它为绕轴转 3600 /n的操作。分子中若有多个旋转轴,轴次最高的 轴一般叫主轴。
Cnh群中有1个C n轴,垂直于此轴有1个σh 。阶 次为2n。C1h点群用Cs 记号。 若分子有一个n重旋转轴和一个垂直于轴的水平 对称面就得到Cnh群,它有2n个对称操作,{E,Cn1,
Cn2……Cnn-1,σh, Sn1 , Sn2……Snn-1}包括(n-1)
个旋转、一个反映面,及旋转与反映结合的(n-1) 个映转操作。当n为偶次轴时,S2nn即为对称中心。
O
H
C2轴
H
与水分子类似的V型分子,如SO2、NO2、ClO2、 H2S, 船式环已烷(图IV)、N2H4(图V)等均属C2v点群。 属C2v点群的其它构型的分子有稠环化合物菲 (C14H10)(图VI),茚,杂环化合物呋喃(C4H4O)、 吡啶(C5H5N)等。
第三节分子的对称性与点群
1
6
5
6
2 Revolve 5
1 Revolve 4
6
5
3
60º
4
4
2
3
60º 3
1
2
图形不变
图形不变
空间旋转对称操作是分子对称性讨论中的重要操作之 一。任何一种分子至少可找出一种空间旋转操作。
Revolve
2π
图形不变(复原)
……
Revolve 240º
1
6
2
5
3
4
图形复原
精品资料
⑵镜像反映
当一个体系对空间平面进行反映操作时,若其图形不变,该操作称为镜 像反映对称操作。
例如: CO2 分子(直线型)
1
OC
2
i
2
O 中心反演 O C
图形不变
又如:苯分子(正六边形)
1i
O 中心反演
1
2
OC O
图形复原
1
4
CH
CH
6 CH
CH 2
i
3 CH
CH 5
中心反演
图形不变
5 CH
CH 3
2 CH
CH 6
CH
CH
4
1
精品资料
⑷像转轴 — Sn
所谓“像转”对称操作,实际上是旋转与镜面反映的复合操作。像转
轴可表示为对称轴与对称面的组合。即:
Sn = Cn +σh =σh + Cn
例如:甲烷分子中的四次像转轴 S4 = Ch +σh
C4
2
1
1
C41操作
2 反映操作
图形不变
3 4
3
结构化学-分子的对称性
H2O中的C2和两个σv
C2v 群
船式环己烷
N2H4
C2v群:臭氧 C2v 群:菲
与水分子类似的V型分子,如SO2、NO2、ClO2、H2S等均 属于C2v点群,此外,顺式-1,2-二氯乙烯、船式环己烷,
呋喃,吡啶等也属于C2v点群
C3v :NH3 C3v :CHCl3
NH3 分子是C3v 点群的一个典型例子。其它三角锥形分 子,如PCl3、PF3、CH3Cl等也属于C3v点群
单轴群: 包括Cn 、Cnh 、Cnv 点群. 这类点群的共同特点是只有一条旋转轴. Cn 群:只有一条n次旋转轴Cn 。群的阶为n。
C2
C2 群
C2
H2O2
C2 群
C2群
二氯丙二烯
C3通过分子中心且垂直于荧光屏
C3 群
Cnv 群: 有一条n次旋转轴Cn 和n个包含该轴的对称
面σv。群的阶为2n。
对称中心i 对称中心i
确定分子点群的几点其他思路
(b) 有对称中心,且主轴为偶数时,则分子属于Cnh或Dnh点群。进一 步去找镜面或垂直于主轴的C2 轴,如果只有一个镜面或没有垂直于 主轴的C2轴,则属于Cnh点群;如果有二个以上的镜面或有垂直于主 轴的C2轴,则属于Dnh点群。如图2所示分子属于这种情况。
C2
D2 群
主轴C2垂直于荧光屏
C2
D3群:这种分子比较少见,其对称元素也不易看出. [Co(NH2CH2CH2NH2)3 ]3+是一实例.
C2
C2 唯一的C3旋转轴从正三角形中 心穿过, 通向中心Co;
三条C2旋转轴分别从每个N–N 键中心穿过通向Co.
C2
Dnh 群:在Dn 基础上,还有一个垂直于主轴的对称面σh 。
第三章分子对称性和点群
Cnn-1 C-n1
Sn hCn , S2n hCn hCn h2Cn2 Cn2
例: S4 h C4
S24 h2 C42 C2 , S34 h3C34 h C34 S-41 S44 h4 C44 I
S3 h C3 S32 h2 C32 C32 , S33 h3C33 h I h S34 h4 C34 C34 C3 ,S35 h5C35 h C32 , S36 h6 C36 I
A' (g) X 1A(g) X A'1 (g) 0 0 A'2 (g)
(对所有的群元素)
如 D3 群在直角坐标系下的表示就是可约表示. 群论的任务之一就是要找出点群的所有不等价不可约的表示的特征标.
规则一. 点群中不可约表示的数目等于共轭类的数目. 如 D3中有 3个共轭类 {e}, {d,f}, {a,b,c}, 故有 3个不可约表示.
证明:
TrA Aii
S ji Ajk Ski
Ajk S ji Ski
i
i jk
jk
i
Ajk jk Ajj TrA
jk
j
(这个性质在群表示中很有用)
3.4.2 群的表示
• 选定一组基向量,把群元素用一个矩阵表示,且
(1) 一一对应. 任一群元素 g 都有对应的矩阵 A(g).
A2 B1 : 1 -1 -1 1
故 A2 B1 B2
B1 B2 : 1 1 -1 -1
B1 B2 A2
A2 E : 2 -1 0 A2 E E
EE: 4 1 0 EE ?
利用可约表示 的分解公式:
ar
1 n
j
h
j
(R j )* r
(R j )
Sn hCn , S2n hCn hCn h2Cn2 Cn2
例: S4 h C4
S24 h2 C42 C2 , S34 h3C34 h C34 S-41 S44 h4 C44 I
S3 h C3 S32 h2 C32 C32 , S33 h3C33 h I h S34 h4 C34 C34 C3 ,S35 h5C35 h C32 , S36 h6 C36 I
A' (g) X 1A(g) X A'1 (g) 0 0 A'2 (g)
(对所有的群元素)
如 D3 群在直角坐标系下的表示就是可约表示. 群论的任务之一就是要找出点群的所有不等价不可约的表示的特征标.
规则一. 点群中不可约表示的数目等于共轭类的数目. 如 D3中有 3个共轭类 {e}, {d,f}, {a,b,c}, 故有 3个不可约表示.
证明:
TrA Aii
S ji Ajk Ski
Ajk S ji Ski
i
i jk
jk
i
Ajk jk Ajj TrA
jk
j
(这个性质在群表示中很有用)
3.4.2 群的表示
• 选定一组基向量,把群元素用一个矩阵表示,且
(1) 一一对应. 任一群元素 g 都有对应的矩阵 A(g).
A2 B1 : 1 -1 -1 1
故 A2 B1 B2
B1 B2 : 1 1 -1 -1
B1 B2 A2
A2 E : 2 -1 0 A2 E E
EE: 4 1 0 EE ?
利用可约表示 的分解公式:
ar
1 n
j
h
j
(R j )* r
(R j )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Cnh群中有1个C n轴,垂直于此轴有1个σh 。阶 次为2n。C1h点群用Cs 记号。 若分子有一个n重旋转轴和一个垂直于轴的水平 对称面就得到Cnh群,它有2n个对称操作,{E,Cn1,
Cn2……Cnn-1 ,σh , Sn1 , Sn2……Snn-1}包括(n-1)
个旋转、一个反映面,及旋转与反映结合的(n-1) 个映转操作。当n为偶次轴时,S2nn即为对称中心。
平面正方形的PtCl42- 四面体SiF4不 具有对称中心 具对称中心
五、映转轴和旋转反映
映转轴也称为非真轴,与它联系的对称操作是旋 转n次轴再平面反映,两个动作组合成一个操作。
S1n=σC1n
如甲烷分子,一个 经过C原子的四次映转 轴S4,作用在分子上,H 1旋转到1’的位置后,经 平面反映到H4的位置, 同时H2旋转到2’的位置再 反映到H3的位置……整 个分子图形不变,
4)结合律
若A, B, C G, 则A( BC ) ( AB )C
2. 群的乘法表
根据群的定义,可以得到群的乘法表
C3v点群的乘法表
3.群的一些相关概念 (1)群的构成:群元素可以是各种数学对象或物理 动作,可以进行某种数学运算或物理动作。 (2)群的分类:群有各种类型,如旋转群,置换群, 点群,空间群,李群…… (3)群阶:群所含的元素个数称为群阶, (4)类:群中某些对称元素在相似变换中互为共轭 元素的可分为一类。如C3v 点群中的元素可分为三类, E元素成一类,C31与 C32旋转成一类。三个σv 平面而成一类。 (5)子群:在一些较大的群中可以找到一些较小的 群,称为子群。例如:C3v 群中有子群 C3 。子群也 要满足群的四个要求。
C1的操作是个恒等操作,又称为主操作E,因为 任何物体在任何一方向上绕轴转3600均可复原,它和 乘法中的1相似。 C2轴的基转角是1800,连续绕C2轴进行两次1800 旋转相当于恒等操作,即:
C2 C2 C2 E
1 1 2
C3轴的基转角是1200,C4轴的基转角是900,C6轴 的基转角是600。
1 x 2 3 x 2 z
3 y 2 1 y 2
三、对称面与反映
存在对称面的分子,除位于对称面上的原子外, 其他原子成对地排在对称面两侧,它们通过反映操作 可以复原。 反映操作是使分子中的每一点都反映到该点到镜 面垂线的延长线上,在镜面另一侧等距离处。 连续进行反映操作可得 : σn ={ E ,n为偶数,σ , n 为奇数} 和主轴垂直的镜面以σh 表示;通过主轴的镜面 以σv表示;通过主轴,平分副轴夹角的镜面以σd 表 示。
对称面σx
y
的反映操作的表示矩阵为:
xy
1 0 0 0 1 0 0 0 1
x 1 0 0 x x y 0 1 0 y y xy z 0 0 1 z z
一、对称点群分类
点群 Cn群 Cnv群 Cnh群 Dn群 Dnh群 Dnd群 Sn群 Td群 O h群 典型类型 C1 C2v C Cs1h D3 D2h D2d S Ci2 Td Oh D3h D3d D4h D6h D
∞h
C2 C3v C2h
C3 C∞v C3h
S4
1. Cn 点群
Cn群只有1个Cn 旋转轴。独立对称操作有n个。阶 次为n。 若分子只有n重旋转轴,它就属于Cn群,群元素为 {E,Cn1,Cn2…Cnn-1}。这是n阶循环群。
IV.
CH3CCl3
CO2H
H
HO
H CH3 C1 Cl
C3
H
C2 H C C C Cl
2. Cnv 点群
Cnv群中有1个Cn轴,通过此轴有n个σv 。阶次为2n。 若分子有n重旋转轴和通过Cn轴的对称面σ,就生成 一个Cnv群。由于Cn轴的存在,有一个对称面,必然产 生(n-1)个对称面。两个平面交角为π/n。它也是2n 阶群。 水分子属C2v点群。C2轴经过 O原子、平分∠HOH,分子所在 平面是一个σv平面,另一个σv平 面经过O原子且与分子平面相互 垂直。
III. 1,3,5-三甲基苯
1,3,5-三甲基苯 (图III)是C3点 群的例子,若不考 虑甲基上H原子, 分子的对称性可以 很高,但整体考虑, C6H3(CH3)3只有C3 对称元素。C3轴位 于苯环中心,垂直 于苯环平面,分子 绕C3轴转动120°, 240°都能复原。
旋转一定角度的 三氯乙烷(图IV) 也是C3对称性分 子。
0 x x x 1 0 y 0 1 0 y y i z 0 0 1 z z
如果每一个原子都沿直线通过分子中心移动,达 到这个中心的另一边的相等距离时能遇到一个相同的 原子,那么这个分子就具有对称中心 i。显然,正 方形的PtCl42-离子有对称中心,但四面体的SiF4分 子就没有对称中心。
六、对称点群
1. 群的定义 一组元素若满足以下四个条件,构成一个群 1)封闭性
若A G , B G , 则必有AB C , C G
2)恒等元素E 若A G , E G , 则EA AE A 3)逆元素
若A G , 则必存在B G , 且AB BA E B为A的逆元素,记作A1 B
对称操作 C 1 使空间某点p(x,y,z)变换到另一个 3 点p’(x’,y’,z’)
2 cos 3 x' x y' C 1 y sin 2 3 3 z' z 0 2 sin 3 2 cos 3 0 0 x 0 y 1 z 1 2 3 2 0 3 2 1 2 0 0 x 0 y 1 z
H2O2
H2O2是C2点群,C2轴穿过O-O键的中心和 两个H连线的中心。
二氯丙二烯(图I) I. C3H2Cl2
现以二氯丙二烯(图I) 为例说明。 该分子两个H\C/Cl碎 片分别位于两个相互 垂直的平面上,C2轴 穿过中心C原子,与两 个平面形成45°夹角。 C2轴旋转180°,两个 Cl,两个H和头、尾 两个C各自交换,整个 分子图形复原。我们 说它属于C2点群,群 元素为{E,C2}。
ቤተ መጻሕፍቲ ባይዱ
O
H
C2轴
H
与水分子类似的V型分子,如SO2、NO2、ClO2、 H2S, 船式环已烷(图IV)、N2H4(图V)等均属C2v点群。 属C2v点群的其它构型的分子有稠环化合物菲 (C14H10)(图VI),茚,杂环化合物呋喃(C4H4O)、 吡啶(C5H5N)等。
图IV.
船式环已烷
图V.
N2H4
NH3分子(图VII)是C3v点群的典型例子。C3轴 穿过N原子和三角锥的底心,三个垂面各包括一个 N-H键。其它三角锥型分子PCl3、PF3、PSCl3、 CH3Cl、CHCl3等,均属C3v点群。P4S3(图Ⅷ)亦属 C3v点群。
教学目标: 通过分子对称性学习,使学生对分子点群有一 系统了解,能判断常见分子所属的对称点群及包含 的对称元素。
学习要点: ⑴ 群的定义--满足4要素:具有恒等元素、逆元素、封 闭性和满足乘法分配律的集合称为群。 ⑵ 分子点群具有对称元素:旋转轴、对称面、对称中心 和反轴、映轴等。 ⑶ 分子对称点群可分为Cn、Cnv、Cnh、Dn、Dnh、Dnd、Sn及 高阶群T、Td、Th、O、Oh、I、Ih等 。 ⑷ 分子对称性与偶极矩、旋光性的关系
四、对称中心和反演
从分子中任一原子至对称中心连一直线,将此 线延长,必可在和对称中心等距离的另一侧找到另 一相同原子。 依据对称中心进行的对称操作为反演, 连续进行反演操作可得
in ={E (n为偶数),i (n 为奇数)}
坐标原点的对称中心的反演操作i的表示矩阵为:
0 1 0 0 1 0 i 0 0 1
1’
S1 h ; S 2 i ; S 3 C 3 h ; S 4 独立,包含C 2 ; S5 C 5 h ; S6 C 3 i
即只有S4是独立的点群, 其余Sn 可化为 i , h 或 C n i , C n h
对称元素与对称操作
对称元 素符号 E Cn σ i Sn 对称元素 -旋转 镜面 对称中心 映轴 基本对称操作 基本对称操 作 符号 E 恒等操作 C1n 绕C n轴按逆时针方向转 3600/n 通过镜面反映 σ i S1n=σC1n 按对称中心反演 绕S n轴转3600/n,接着按 垂直于轴的平面反映
现以二氯乙烯分子为例,说明C2h点群。 C2 H Cl
Cl
·H
i
σh
C2h
I7- 离子(图Ⅳ)亦属于C2h 点群,I7- 离子为“Z”型的 平面离子,C2轴与对称心位于第四个I原子上。萘的 二氯化物亦属于C2h点群。(图Ⅴ)
IV. I7-离子 C2h
V.萘的二氯化物
C2h
H3BO3 分子是C3h 群的例子。由于B与O原子都 以Sp2 杂化与其它原子成键,所以整个分子在一个 平面上。C3轴位于B原子上且垂直分子平面。(图VI)
一、对称性、对称操作与对称元素
对称操作是指不改变物体内部任何两点间的 距离而使物体复原的操作。对称操作所依据的几 何元素称为对称元素。对于分子等有限物体,在 进行操作时,物体中至少有一点是不动的,这种 对称操作叫点操作。
二、 旋转轴和转动
旋转操作是将分子绕通过其中心的轴旋转一定的 角度使分子复原的操作,旋转所依据的对称元素为旋 转轴。n次旋转轴的记号为Cn .使物体复原的最小旋转 角(0度除外)称为基转角α,对C n 轴的基转角α= 3600/n。旋转角度按逆时针方向计算。 和C n 轴相应的基本旋转操作为Cn1 ,它为绕轴转 3600/n的操作。分子中若有多个旋转轴,轴次最高的 轴一般叫主轴。
Cn2……Cnn-1 ,σh , Sn1 , Sn2……Snn-1}包括(n-1)
个旋转、一个反映面,及旋转与反映结合的(n-1) 个映转操作。当n为偶次轴时,S2nn即为对称中心。
平面正方形的PtCl42- 四面体SiF4不 具有对称中心 具对称中心
五、映转轴和旋转反映
映转轴也称为非真轴,与它联系的对称操作是旋 转n次轴再平面反映,两个动作组合成一个操作。
S1n=σC1n
如甲烷分子,一个 经过C原子的四次映转 轴S4,作用在分子上,H 1旋转到1’的位置后,经 平面反映到H4的位置, 同时H2旋转到2’的位置再 反映到H3的位置……整 个分子图形不变,
4)结合律
若A, B, C G, 则A( BC ) ( AB )C
2. 群的乘法表
根据群的定义,可以得到群的乘法表
C3v点群的乘法表
3.群的一些相关概念 (1)群的构成:群元素可以是各种数学对象或物理 动作,可以进行某种数学运算或物理动作。 (2)群的分类:群有各种类型,如旋转群,置换群, 点群,空间群,李群…… (3)群阶:群所含的元素个数称为群阶, (4)类:群中某些对称元素在相似变换中互为共轭 元素的可分为一类。如C3v 点群中的元素可分为三类, E元素成一类,C31与 C32旋转成一类。三个σv 平面而成一类。 (5)子群:在一些较大的群中可以找到一些较小的 群,称为子群。例如:C3v 群中有子群 C3 。子群也 要满足群的四个要求。
C1的操作是个恒等操作,又称为主操作E,因为 任何物体在任何一方向上绕轴转3600均可复原,它和 乘法中的1相似。 C2轴的基转角是1800,连续绕C2轴进行两次1800 旋转相当于恒等操作,即:
C2 C2 C2 E
1 1 2
C3轴的基转角是1200,C4轴的基转角是900,C6轴 的基转角是600。
1 x 2 3 x 2 z
3 y 2 1 y 2
三、对称面与反映
存在对称面的分子,除位于对称面上的原子外, 其他原子成对地排在对称面两侧,它们通过反映操作 可以复原。 反映操作是使分子中的每一点都反映到该点到镜 面垂线的延长线上,在镜面另一侧等距离处。 连续进行反映操作可得 : σn ={ E ,n为偶数,σ , n 为奇数} 和主轴垂直的镜面以σh 表示;通过主轴的镜面 以σv表示;通过主轴,平分副轴夹角的镜面以σd 表 示。
对称面σx
y
的反映操作的表示矩阵为:
xy
1 0 0 0 1 0 0 0 1
x 1 0 0 x x y 0 1 0 y y xy z 0 0 1 z z
一、对称点群分类
点群 Cn群 Cnv群 Cnh群 Dn群 Dnh群 Dnd群 Sn群 Td群 O h群 典型类型 C1 C2v C Cs1h D3 D2h D2d S Ci2 Td Oh D3h D3d D4h D6h D
∞h
C2 C3v C2h
C3 C∞v C3h
S4
1. Cn 点群
Cn群只有1个Cn 旋转轴。独立对称操作有n个。阶 次为n。 若分子只有n重旋转轴,它就属于Cn群,群元素为 {E,Cn1,Cn2…Cnn-1}。这是n阶循环群。
IV.
CH3CCl3
CO2H
H
HO
H CH3 C1 Cl
C3
H
C2 H C C C Cl
2. Cnv 点群
Cnv群中有1个Cn轴,通过此轴有n个σv 。阶次为2n。 若分子有n重旋转轴和通过Cn轴的对称面σ,就生成 一个Cnv群。由于Cn轴的存在,有一个对称面,必然产 生(n-1)个对称面。两个平面交角为π/n。它也是2n 阶群。 水分子属C2v点群。C2轴经过 O原子、平分∠HOH,分子所在 平面是一个σv平面,另一个σv平 面经过O原子且与分子平面相互 垂直。
III. 1,3,5-三甲基苯
1,3,5-三甲基苯 (图III)是C3点 群的例子,若不考 虑甲基上H原子, 分子的对称性可以 很高,但整体考虑, C6H3(CH3)3只有C3 对称元素。C3轴位 于苯环中心,垂直 于苯环平面,分子 绕C3轴转动120°, 240°都能复原。
旋转一定角度的 三氯乙烷(图IV) 也是C3对称性分 子。
0 x x x 1 0 y 0 1 0 y y i z 0 0 1 z z
如果每一个原子都沿直线通过分子中心移动,达 到这个中心的另一边的相等距离时能遇到一个相同的 原子,那么这个分子就具有对称中心 i。显然,正 方形的PtCl42-离子有对称中心,但四面体的SiF4分 子就没有对称中心。
六、对称点群
1. 群的定义 一组元素若满足以下四个条件,构成一个群 1)封闭性
若A G , B G , 则必有AB C , C G
2)恒等元素E 若A G , E G , 则EA AE A 3)逆元素
若A G , 则必存在B G , 且AB BA E B为A的逆元素,记作A1 B
对称操作 C 1 使空间某点p(x,y,z)变换到另一个 3 点p’(x’,y’,z’)
2 cos 3 x' x y' C 1 y sin 2 3 3 z' z 0 2 sin 3 2 cos 3 0 0 x 0 y 1 z 1 2 3 2 0 3 2 1 2 0 0 x 0 y 1 z
H2O2
H2O2是C2点群,C2轴穿过O-O键的中心和 两个H连线的中心。
二氯丙二烯(图I) I. C3H2Cl2
现以二氯丙二烯(图I) 为例说明。 该分子两个H\C/Cl碎 片分别位于两个相互 垂直的平面上,C2轴 穿过中心C原子,与两 个平面形成45°夹角。 C2轴旋转180°,两个 Cl,两个H和头、尾 两个C各自交换,整个 分子图形复原。我们 说它属于C2点群,群 元素为{E,C2}。
ቤተ መጻሕፍቲ ባይዱ
O
H
C2轴
H
与水分子类似的V型分子,如SO2、NO2、ClO2、 H2S, 船式环已烷(图IV)、N2H4(图V)等均属C2v点群。 属C2v点群的其它构型的分子有稠环化合物菲 (C14H10)(图VI),茚,杂环化合物呋喃(C4H4O)、 吡啶(C5H5N)等。
图IV.
船式环已烷
图V.
N2H4
NH3分子(图VII)是C3v点群的典型例子。C3轴 穿过N原子和三角锥的底心,三个垂面各包括一个 N-H键。其它三角锥型分子PCl3、PF3、PSCl3、 CH3Cl、CHCl3等,均属C3v点群。P4S3(图Ⅷ)亦属 C3v点群。
教学目标: 通过分子对称性学习,使学生对分子点群有一 系统了解,能判断常见分子所属的对称点群及包含 的对称元素。
学习要点: ⑴ 群的定义--满足4要素:具有恒等元素、逆元素、封 闭性和满足乘法分配律的集合称为群。 ⑵ 分子点群具有对称元素:旋转轴、对称面、对称中心 和反轴、映轴等。 ⑶ 分子对称点群可分为Cn、Cnv、Cnh、Dn、Dnh、Dnd、Sn及 高阶群T、Td、Th、O、Oh、I、Ih等 。 ⑷ 分子对称性与偶极矩、旋光性的关系
四、对称中心和反演
从分子中任一原子至对称中心连一直线,将此 线延长,必可在和对称中心等距离的另一侧找到另 一相同原子。 依据对称中心进行的对称操作为反演, 连续进行反演操作可得
in ={E (n为偶数),i (n 为奇数)}
坐标原点的对称中心的反演操作i的表示矩阵为:
0 1 0 0 1 0 i 0 0 1
1’
S1 h ; S 2 i ; S 3 C 3 h ; S 4 独立,包含C 2 ; S5 C 5 h ; S6 C 3 i
即只有S4是独立的点群, 其余Sn 可化为 i , h 或 C n i , C n h
对称元素与对称操作
对称元 素符号 E Cn σ i Sn 对称元素 -旋转 镜面 对称中心 映轴 基本对称操作 基本对称操 作 符号 E 恒等操作 C1n 绕C n轴按逆时针方向转 3600/n 通过镜面反映 σ i S1n=σC1n 按对称中心反演 绕S n轴转3600/n,接着按 垂直于轴的平面反映
现以二氯乙烯分子为例,说明C2h点群。 C2 H Cl
Cl
·H
i
σh
C2h
I7- 离子(图Ⅳ)亦属于C2h 点群,I7- 离子为“Z”型的 平面离子,C2轴与对称心位于第四个I原子上。萘的 二氯化物亦属于C2h点群。(图Ⅴ)
IV. I7-离子 C2h
V.萘的二氯化物
C2h
H3BO3 分子是C3h 群的例子。由于B与O原子都 以Sp2 杂化与其它原子成键,所以整个分子在一个 平面上。C3轴位于B原子上且垂直分子平面。(图VI)
一、对称性、对称操作与对称元素
对称操作是指不改变物体内部任何两点间的 距离而使物体复原的操作。对称操作所依据的几 何元素称为对称元素。对于分子等有限物体,在 进行操作时,物体中至少有一点是不动的,这种 对称操作叫点操作。
二、 旋转轴和转动
旋转操作是将分子绕通过其中心的轴旋转一定的 角度使分子复原的操作,旋转所依据的对称元素为旋 转轴。n次旋转轴的记号为Cn .使物体复原的最小旋转 角(0度除外)称为基转角α,对C n 轴的基转角α= 3600/n。旋转角度按逆时针方向计算。 和C n 轴相应的基本旋转操作为Cn1 ,它为绕轴转 3600/n的操作。分子中若有多个旋转轴,轴次最高的 轴一般叫主轴。