《同底数幂的乘法》ppt课件
合集下载
同底数幂的乘法0000-PPT课件
成什么形式?
10×10×10×10×10 105
=
.
(乘方的意义)
嫦娥二号从地球飞向月球的速度为1.1×10 4米 /秒,途中用时大约为3.39×10 4秒,请同学们算
一下嫦娥二号的奔月之旅要走多远?
1 .12 10 4 3 .39 10 4
3.79 6 (18 4 0 14 0 )
104104 ?
104 104
(10101010)(10101010)
4个Βιβλιοθήκη 4个1010101010101010
8个
108
活动3 合作探究
请同学们根据乘方的意义理解,完成下列填空.
(1) 25×22 = ( 2 × 2 ×2×2× 2 ) ×( 2 × 2 )
24 (2) 8× 16= 2x,则 x = 7 ;
23× 24 = 27 (3) 3×27×9 = 3x,则 x = 6 .
3×33 × 32 = 36
我学到了 什么?
知识 方法
同底数幂相乘, 底数不变,指数 相加. am ·an = am+n (m、n正整
数)
“特殊→一般→特殊”
例子 公式 应用
(4) y2n ·yn+1 = y2n+n+1 = y3n+1
活动5 应用提高、拓展创新
猜想
(当m、n、p都是正整数时) am·an·ap =?
am·an·ap = am+n+p (m、n、p都是正整数)
方法1
方法2
am·an·ap
=(am·an ) ·ap
=am+n·ap =am+n+p
am·an·ap =(a·a·… ·a)(a·a·… ·a)(a·a·… ·a)
人教版《同底数幂的乘法》PPT教学模板
人பைடு நூலகம்版《同底数幂的乘法》完美实用 课件(P PT优秀 课件)
人教版《同底数幂的乘法》完美实用 课件(P PT优秀 课件)
3.(3分)(2016·呼伦贝尔)化简(-x)3(-x)2,结果正确的是( D) A.-x6 B.x6 C.x5 D.-x5 4.(3分)(2016·福州)下列算式中,结果等于a6的是( D) A.a4+a2 B.a2+a2+a2 C.a2·a3 D.a2 ·a2·a2
人教版《同底数幂的乘法》完美实用 课件(P PT优秀 课件)
人教版《同底数幂的乘法》完美实用 课件(P PT优秀 课件)
11.(6分)(1)已知am=2,an=3,求am+n+2的值. 解:am+n+2=am·an·a2=2×3×a2=6a2 (2)已知4x=8,4y=32,求x+y的值. 解:4x·4y=8×32=256=44,∴x+y=4
人教版《同底数幂的乘法》完美实用 课件(P PT优秀 课件)
人教版《同底数幂的乘法》完美实用 课件(P PT优秀 课件)
【综合运用】 12.(6分)已知(a+b)a·(b+a)b=(a+b)5,且(a-b)a+4·(a-b)4-b=(a- b)7,求aabb的值.
解:∵(a+b)a·(b+a)b=(a+b)5, ∴aa++4b+=45-,b=7,解得ba==23,. ∴aabb=22×33=108
人教版《同底数幂的乘法》完美实用 课件(P PT优秀 课件)
人教版《同底数幂的乘法》完美实用 课件(P PT优秀 课件)
1.(3分)下列各项中,两个幂是同底数幂的是( D ) A.x2与a2 B.(-a)5与a3 C.(x-y)2与(y-x)2 D.-x2与x 2.(3分)(2016·重庆)计算a3·a2正确的是( B) A.a B.a5 C.a6 D.a6
人教版《同底数幂的乘法》完美实用 课件(P PT优秀 课件)
3.(3分)(2016·呼伦贝尔)化简(-x)3(-x)2,结果正确的是( D) A.-x6 B.x6 C.x5 D.-x5 4.(3分)(2016·福州)下列算式中,结果等于a6的是( D) A.a4+a2 B.a2+a2+a2 C.a2·a3 D.a2 ·a2·a2
人教版《同底数幂的乘法》完美实用 课件(P PT优秀 课件)
人教版《同底数幂的乘法》完美实用 课件(P PT优秀 课件)
11.(6分)(1)已知am=2,an=3,求am+n+2的值. 解:am+n+2=am·an·a2=2×3×a2=6a2 (2)已知4x=8,4y=32,求x+y的值. 解:4x·4y=8×32=256=44,∴x+y=4
人教版《同底数幂的乘法》完美实用 课件(P PT优秀 课件)
人教版《同底数幂的乘法》完美实用 课件(P PT优秀 课件)
【综合运用】 12.(6分)已知(a+b)a·(b+a)b=(a+b)5,且(a-b)a+4·(a-b)4-b=(a- b)7,求aabb的值.
解:∵(a+b)a·(b+a)b=(a+b)5, ∴aa++4b+=45-,b=7,解得ba==23,. ∴aabb=22×33=108
人教版《同底数幂的乘法》完美实用 课件(P PT优秀 课件)
人教版《同底数幂的乘法》完美实用 课件(P PT优秀 课件)
1.(3分)下列各项中,两个幂是同底数幂的是( D ) A.x2与a2 B.(-a)5与a3 C.(x-y)2与(y-x)2 D.-x2与x 2.(3分)(2016·重庆)计算a3·a2正确的是( B) A.a B.a5 C.a6 D.a6
14.1.1同底数幂的乘法 课件(共20张PPT)
14.1.1同底数幂的乘法
人教版 八年级数学上
学习目标
1.理解并掌握同底数幂的乘法法则.(重点) 2.能够运用同底数幂的乘法法则进行相关计算.(难点) 3.通过对同底数幂的乘法运算法则的推导与总结,提升自
身的推理能力和计算能力.
温故旧知
指数
幂
an = a·a·a…(表示n个a相乘)
底数 n个相同因数的积的运算叫做乘方,乘方的结果叫幂.
(2) (a-b)3·(a-b)3=(__a_-_b_)_6_;
(3) -a6·(-a)2=___-_a_8__; (4) y4·y3·y2·y =__y_1_0___.
7.填空: (1)x·x2·x( 6 )=x9;
(2)xm·( x4m )=x5m; (3)16×4=2x,则x=( 6 ).
实战演练
典例精析
例1 计算: (1)x2 · x5 ; (3)(-2) × (-2)4 × (-2)3;
(2)a · a6; (4) xm · x3m+1.
解:(1) x2 · x5= x2+5 =x7
(2)a · a6= a1+6 = a7;
(3)(-2) × (-2)4 × (-2)3= (-2) 1+4+3 = (-2)8 = 256;
8.计算下列各题: (1)(2a+b)2n+1·(2a+b)4; (3) (-3)×(-3)3 ×(-3)3;
(2)(a-b)5·(b-a)4; (4)-a3·(-a)2·(-a)3.
解:(1)(2a+b)2n+1·(2a+b)4=(2a+b)2n+5; (2)(a-b)5·(b-a)4=(a-b)9; (3) (-3)×(-3)3 ×(-3)3=-37; (4)-a3·(-a)4·(-a)3=a10.
人教版 八年级数学上
学习目标
1.理解并掌握同底数幂的乘法法则.(重点) 2.能够运用同底数幂的乘法法则进行相关计算.(难点) 3.通过对同底数幂的乘法运算法则的推导与总结,提升自
身的推理能力和计算能力.
温故旧知
指数
幂
an = a·a·a…(表示n个a相乘)
底数 n个相同因数的积的运算叫做乘方,乘方的结果叫幂.
(2) (a-b)3·(a-b)3=(__a_-_b_)_6_;
(3) -a6·(-a)2=___-_a_8__; (4) y4·y3·y2·y =__y_1_0___.
7.填空: (1)x·x2·x( 6 )=x9;
(2)xm·( x4m )=x5m; (3)16×4=2x,则x=( 6 ).
实战演练
典例精析
例1 计算: (1)x2 · x5 ; (3)(-2) × (-2)4 × (-2)3;
(2)a · a6; (4) xm · x3m+1.
解:(1) x2 · x5= x2+5 =x7
(2)a · a6= a1+6 = a7;
(3)(-2) × (-2)4 × (-2)3= (-2) 1+4+3 = (-2)8 = 256;
8.计算下列各题: (1)(2a+b)2n+1·(2a+b)4; (3) (-3)×(-3)3 ×(-3)3;
(2)(a-b)5·(b-a)4; (4)-a3·(-a)2·(-a)3.
解:(1)(2a+b)2n+1·(2a+b)4=(2a+b)2n+5; (2)(a-b)5·(b-a)4=(a-b)9; (3) (-3)×(-3)3 ×(-3)3=-37; (4)-a3·(-a)4·(-a)3=a10.
1.1同底数幂的乘法PPT课件(华师大版)
2.同底数幂的乘法法则对三个或三个以上的同底数幂的 乘法同样适用,底数可以是单项式,也可以是多项式.
3.同底数幂的乘法法则可以正用,也可以逆用,am+n = am·an (m,n都是正整数).
解:(1)103×104 =103+4 =107.
(2)a ·a3 = a1+3 = a4.
(3)a • a3 • a5 = a1+3+5 = a9 .
例2 计算:(1)(x-y)3·(y-x)5;(2)(x-y)3·(x-y)2·(y-x); (3)(a-b)3·(b-a)4.
导引:先将不是同底数的幂转化为同底数的幂,再运用法则计算. 解:(1)(x-y)3·(y-x)5=(x-y)3·[-(x-y)5] =-(x-y)3+5=-(x-y)8; (2)(x-y)3·(x-y)2·(y-x)=(x-y)3·(x-y)2·[-(x-y)] =-(x-y)3+2+1=-(x-y)6; (3)(a-b)3·(b-a)4=(a-b)3·(a-b)4 =(a-b)3+4=(a-b)7.
总结
底数互为相反数的幂相乘时,可以利用幂确定符号 的方法先转化为同底数幂,再按法则计算,统一底 数时尽可能地改变偶次幂的底数,这样可以减少符 号的变化.
1 下列各式能用同底数幂的乘法法则进行计算的是( ) A.(x+y)2·(x-y)3 B.(-x-y)(x+y)2 C.(x+y)2+(x+y)3 D.-(x-y)2·(-x-y)3
知识点 1 同底数幂的乘法法则
试一试
根据幂的意义填空: (1)23×24 =(2×2×2)×(2×2×2×2)
=2( ) ; (2)53×54 =_____________________
=5( ) ; (3) a3 • a4 =____________________
3.同底数幂的乘法法则可以正用,也可以逆用,am+n = am·an (m,n都是正整数).
解:(1)103×104 =103+4 =107.
(2)a ·a3 = a1+3 = a4.
(3)a • a3 • a5 = a1+3+5 = a9 .
例2 计算:(1)(x-y)3·(y-x)5;(2)(x-y)3·(x-y)2·(y-x); (3)(a-b)3·(b-a)4.
导引:先将不是同底数的幂转化为同底数的幂,再运用法则计算. 解:(1)(x-y)3·(y-x)5=(x-y)3·[-(x-y)5] =-(x-y)3+5=-(x-y)8; (2)(x-y)3·(x-y)2·(y-x)=(x-y)3·(x-y)2·[-(x-y)] =-(x-y)3+2+1=-(x-y)6; (3)(a-b)3·(b-a)4=(a-b)3·(a-b)4 =(a-b)3+4=(a-b)7.
总结
底数互为相反数的幂相乘时,可以利用幂确定符号 的方法先转化为同底数幂,再按法则计算,统一底 数时尽可能地改变偶次幂的底数,这样可以减少符 号的变化.
1 下列各式能用同底数幂的乘法法则进行计算的是( ) A.(x+y)2·(x-y)3 B.(-x-y)(x+y)2 C.(x+y)2+(x+y)3 D.-(x-y)2·(-x-y)3
知识点 1 同底数幂的乘法法则
试一试
根据幂的意义填空: (1)23×24 =(2×2×2)×(2×2×2×2)
=2( ) ; (2)53×54 =_____________________
=5( ) ; (3) a3 • a4 =____________________
1.1同底数幂的乘法课件 (共20张PPT)
-x2
· (-x)3 =x5
m + m3 = m + m3
例2、计算:
(1)a a
m
2m
3 · 2 (2) (a-b) (a-b) a
am ·an = am+n (当m、n都是正整数) 底数可以是一个数、也可是一个字母或是一个多项式。
3 (b-a) 3 (a-b)
2 ·(a-b) = 2 ·(b-a) =
(4) b5 · b ( b6 )
练习二:下面的计算结果对不对?如果不对,怎 样改正? ×) 1、b5 ·b5= 2b5 (× ) 2、b5 + b5 = b10 ( b5 ·b5= b10 b5 + b5 = 2b5 3、(-7)6 · 73 = -79 (× ) 4、y5 +2 y5 =3y10 (× ) (-7)6 · 73 = 79 y5 + 2 y5 =3y5 5、-x2 · (-x)3 =-x5 (× ) 6、m + m3 = m4 (× )
(1) a ·a7- a4 ·a4 = 0
;ห้องสมุดไป่ตู้
(2)(1/10)5 ×(1/10)3 = (1/10)8
(3)(-2 x2 y3)2
4y6 4x =
;
; ;
(4)(-2 x2 )3 = -8x6
小结:
• 今天,我们学到了什么?
同底数幂的乘法: am · an = am+n
(m、n为正整数)
同底数幂相乘,底数不变,指数相加。
23 ×24
=
23+
4
= 27
a3× a5 = a3+5
= a8
猜想:
m a
3.1《同底数幂的乘法》课件(共24张ppt)
解 2.566千万亿次=2.566×107×108次,24小时= 24×3.6×103秒. 由乘法的交换律和结合律,得 (2.566×107×108) × (24×3.6×103) =(2.566×24×3.6) ×(107×108×103) =221.7024×1018≈2.2×1020(次). 答:它一天约能运算2.2×1020次.
(3)64 6 641 65. (4)x3 x5 x35 x8 . (5)32 (- 3)5 32 (- 35) -32 35 -37. (6)(a b)2( a b)3 (a b)23 (a b)5 .
例2 我国“天河-1A”超级计算机的实测运算速度达到每 秒2.566千万亿次.如果按这个速度工作一整天,那么它 能运算多少次?
解 V 4 (7 104)3
3 4 73 1012
3 1.4101(5 km3).
答:木星的体积大约是1.4×1015km3.
1、 把下列各式表示成幂的形式:
(1)26 • 23 ;
2 解:原式= 63
29
(3)xm • xm1 ;
x 解:原式= m(m1)
例3 计算下列各式,结果用幂的形式表示.
(1)(107)3. (2)(a4)8. (3)(- 3)6 3.(4)(x3)4( x2)5.
解
(1) (107)3 1073 1021. (2) (a4)8 a48 a32 .
(3)(- 3)6 3 (- 3)63 (- 3)18 318.
(mn) 个a
am • an amn. (m,n都是正整数)
同底数幂相乘,底数不变,指数相加.
整理反思 z`````xx```k 知识
(3)64 6 641 65. (4)x3 x5 x35 x8 . (5)32 (- 3)5 32 (- 35) -32 35 -37. (6)(a b)2( a b)3 (a b)23 (a b)5 .
例2 我国“天河-1A”超级计算机的实测运算速度达到每 秒2.566千万亿次.如果按这个速度工作一整天,那么它 能运算多少次?
解 V 4 (7 104)3
3 4 73 1012
3 1.4101(5 km3).
答:木星的体积大约是1.4×1015km3.
1、 把下列各式表示成幂的形式:
(1)26 • 23 ;
2 解:原式= 63
29
(3)xm • xm1 ;
x 解:原式= m(m1)
例3 计算下列各式,结果用幂的形式表示.
(1)(107)3. (2)(a4)8. (3)(- 3)6 3.(4)(x3)4( x2)5.
解
(1) (107)3 1073 1021. (2) (a4)8 a48 a32 .
(3)(- 3)6 3 (- 3)63 (- 3)18 318.
(mn) 个a
am • an amn. (m,n都是正整数)
同底数幂相乘,底数不变,指数相加.
整理反思 z`````xx```k 知识
同底数幂相乘PPT课件
= 106
= 1023
(1)(34)2= 34×34 = 34+4= 34×2 = 38
(2)(a3)5= a3·a3·a3·=a3 a3+3+3+3+3 = ·aa3×3 5=a15
n个
( 3 ) ( am ) n = am·am·am……am ( 幂 的 意
义)
n个
=a m+m+…+m(同底数幂相乘的法则) =amn(乘法的意义)
(am)n =amn ( m , n 都是正整数)
不变 幂2020年的10月乘2日 方,底数_____ 指数_相__乘___. 4
(am)n =amn ( m , n 都是正整数)
幂的乘方,底数不变,指数相乘。
例1:计算
1、(102 )3 2、 (b5 )5 3、 (an )3 4、—(x2 )m 5、 (y2 )3 .y 6、 2(a2 )6_ (a3 )4
同底数幂相乘法则:
am·an=am+n(m,n都是正整数) 底数不变,指数
2020年10月2日
1
如果甲球的半径是乙球的n倍,那么甲球体积是乙球体积的n3 倍。
103
地球、木星、太阳可以 近似地看作是球体,木
星、太阳的半径分别约
是地球的10倍和102倍,
它们的体积分别约是地
(102)3 =?102 1021球0的2多少倍?
随堂练习:
1、 (103 )3 2、 —(a2 )5 3、 (x3 )4 .x2
2020年10月2日
5
同底数幂相乘法则:
am·an=am+n(m,n都是正整数) 底数不变,指数相加
幂的乘方法则 (am)n =amn ( m , n 都是正整数)
幂的乘方,底数不变,指数相乘22这四个幂中,
同底数幂的乘法(ppt)
D
• 底数为负数时,先用同底数幂的乘法法A则计算,
最后确定结果的正负;
a
• 不能忽视指数为1的情况;
• 公式中的a可为一个有理数、单项式或多项式
(整体思想)
精品
新知讲解
思考:当三个或三个以上的同底数幂相乘时,
怎样用公式表示运算的结果呢?
D
A
猜想
a
(当m、n、p都是正整数时) am· an· ap =?
(2)a3×a2 = (a×a×a ) ×(a×a )
=__a_×__a_×__a_×__a_×__a___= a( 5 ) ; a
(3) 5m · 5n =(5×···×5) ×(5×···×5) = 5(m+n ).
m个5
n个5
思考:观察上面各题左右两边,底数、指数有什么关系?
精品
新知讲解
做一做:
A (3)x · x3(x3)=x7 (4)xm ·(ax2m)=x3m
逆用
am·an=am+n
am+n = am·an
解:(1)105×103=105+3=108;A a
(2)x3·x4=x3+4=x7.
精品
新知讲解
【例2】计算:(1)-a·a3;
(2)yn·yn+1(n是正整数).
D
A
解:(1)-a·a3= -a1+3= -a4;
a
(2)yn·yn+1=yn+n+1=y2n+1.
精品
新知讲解
练习: 计算下列各式,结果用幂的形式表示.
A a
D
2.1.1同底数幂的乘法
数学湘教版 七年级下
同底数幂的乘法PPT课件
也就是 am·an·ap =am+n+p
相加
不变 指数______.
同理可知,若三个以上的同底数幂相乘,底数______,
典例精析
【例3】计算:(1)32×33×34;
(2)y·y2·y4.
解法一:(1)32×33×34=(32×33)×34=35×34=39;
(2)y·y2·y4=(y·y2)·y4=y3·y4=y7.
(-x)4 ·(-x)4 = (-x)8
巩固练习
2. 填空:
(1) x · x2 · x( 4
)
= x7 ;
(2) xm ·( x2m )= x3m ;
(3) 8 × 4 = 2x,则 x = (
23×22 = 25
5
).
巩固练习
3.计算:(1)2×23×25;
(3)-a5·a5;
(2)x2·x3·x4;
猜想
论证
要点归纳
同底数幂的乘法法则:
am · an =
am+n
(m,n 都是正整数).
同底数幂相乘, 底数不变 ,指数相加.
注意
条件:①乘法
②底数相同
结果:①底数不变
②指数相加
典例精析
例1
计算
(1)105×103;
解: 105×103
= 105+3
= 108.
(2)x3 ·x4;
解:x3 ·x4
(3) x4 + x4 = x8
(
(4) x2 · x2 = 2x4 ( × )
× )
(5) (-x)2 · (-x)3 = (-x)5
( √
(6) a2 · a3- a3 · a2 = 0
相加
不变 指数______.
同理可知,若三个以上的同底数幂相乘,底数______,
典例精析
【例3】计算:(1)32×33×34;
(2)y·y2·y4.
解法一:(1)32×33×34=(32×33)×34=35×34=39;
(2)y·y2·y4=(y·y2)·y4=y3·y4=y7.
(-x)4 ·(-x)4 = (-x)8
巩固练习
2. 填空:
(1) x · x2 · x( 4
)
= x7 ;
(2) xm ·( x2m )= x3m ;
(3) 8 × 4 = 2x,则 x = (
23×22 = 25
5
).
巩固练习
3.计算:(1)2×23×25;
(3)-a5·a5;
(2)x2·x3·x4;
猜想
论证
要点归纳
同底数幂的乘法法则:
am · an =
am+n
(m,n 都是正整数).
同底数幂相乘, 底数不变 ,指数相加.
注意
条件:①乘法
②底数相同
结果:①底数不变
②指数相加
典例精析
例1
计算
(1)105×103;
解: 105×103
= 105+3
= 108.
(2)x3 ·x4;
解:x3 ·x4
(3) x4 + x4 = x8
(
(4) x2 · x2 = 2x4 ( × )
× )
(5) (-x)2 · (-x)3 = (-x)5
( √
(6) a2 · a3- a3 · a2 = 0
同底数幂的乘法课件ppt
(10)am-2 ·a7 =a10 , 则 m = 5
1、下列各式的结果等于26的是( B )
A 2+25
B 2 x25
C 23x25
D 0.22x0.24
2、下列计算结果正确的是( D )
A a3 ·a3=a9
B m2 ·n2=mn4
C xm ·x3=x3m
D y ·yn=yn+1
3、x2m+2可写成( D )
克煤? 108 ×105 =1013 (千克)
练习4:
(1)x5 ·( x3 )= x 8 (2)a ·( a5 )= a6 (3)x ·x3( x3 )= x7 (4)xm ·( x2m )=x3m
例2:已知3a=9,3b=27,求
3a+b的值.
练习6:2m 5,2n 16 ,求
2mn 的值.
小结: • 今天,我们学到了什么?
同底数幂的乘法:am · an = am+n (m、n为正整数) 同底数幂相乘,底数不变,指数相加。
我学到了 什么?
知识 方法
同底数幂相乘, 底数不变, 指数 相加. am ·an = am+n (m、n正整数)
“特殊→一般→特殊”
例子 公式 应用
(1)b3+b3 = 2b3 (2) (a-b)2×(a-b) = (a-b)2+1 = (a-b)3
⑤(x+y)3·(x+y) ·(x+y)2 =(x+y)6
例2:计算
① -a3·(-a)4·(-a)5
②xn·(-x)2n-1·x
想一想
下列各式的计算结果等于45的是_D_
A -42·43 B 42·(-4)3 C (-4)2·(-4)3 D (-4)2·43-3×a2n+1=a10,则n=__4__ (2)如果a m =2,an=8,求a m+n=_1__6_
1、下列各式的结果等于26的是( B )
A 2+25
B 2 x25
C 23x25
D 0.22x0.24
2、下列计算结果正确的是( D )
A a3 ·a3=a9
B m2 ·n2=mn4
C xm ·x3=x3m
D y ·yn=yn+1
3、x2m+2可写成( D )
克煤? 108 ×105 =1013 (千克)
练习4:
(1)x5 ·( x3 )= x 8 (2)a ·( a5 )= a6 (3)x ·x3( x3 )= x7 (4)xm ·( x2m )=x3m
例2:已知3a=9,3b=27,求
3a+b的值.
练习6:2m 5,2n 16 ,求
2mn 的值.
小结: • 今天,我们学到了什么?
同底数幂的乘法:am · an = am+n (m、n为正整数) 同底数幂相乘,底数不变,指数相加。
我学到了 什么?
知识 方法
同底数幂相乘, 底数不变, 指数 相加. am ·an = am+n (m、n正整数)
“特殊→一般→特殊”
例子 公式 应用
(1)b3+b3 = 2b3 (2) (a-b)2×(a-b) = (a-b)2+1 = (a-b)3
⑤(x+y)3·(x+y) ·(x+y)2 =(x+y)6
例2:计算
① -a3·(-a)4·(-a)5
②xn·(-x)2n-1·x
想一想
下列各式的计算结果等于45的是_D_
A -42·43 B 42·(-4)3 C (-4)2·(-4)3 D (-4)2·43-3×a2n+1=a10,则n=__4__ (2)如果a m =2,an=8,求a m+n=_1__6_
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同底数幂的乘法
我们来看下面的问题吧
2009年10月29日,我国国防科技大 学成功研制 的“天河一号”其运算速度
每秒可达1015次运算,那么它工作103秒 可进行多少次运算?
1015×103 = ?
知识回顾
①什么叫乘方?
②乘方的结果叫做什么?
1、2×2 ×2=2( 3 )
2、a·a·a·a·a = a( 5 ) 3、a · a ······a = an( )
公式中的a可代表 一个数、字母、式 子等。
解: (x+y)3 ·(x+y)4 = (x+y)3+4 =(x+y)7
2.填空: (1) 8 = 2x,则 x = 3 ;
23
5
(2) 8× 4 = 2x,则 x =
23× 22= 25
(3) 3×27×9 = 3x,则 x = 3×33 × 32 = 36
(5) (x+y)2·(x+y)5= (x+y) 7 (6) a2·a3-a3·a2 = 0
.
亲: 只有不断的思考,才会有
新的发现;只有量的变化,才会 有质的进步.祝大家学有所得!
.
运算形式 (同底、乘法) 运算方法(底不变、指数相加)
幂的底数必须相同, 相乘时指数才能相加.
如 43×45= 43+5 =48
.
1.1幂的乘法 am ·an = am+n
例1:计算
(1) x2 ·x5
(2) a · a4
解:(1) x2 ·x5 =x2+5 =x7
(2) a · a4 = a 1+4=a5
例1.计算:(1)108 ×103 ; (2)x3 ·x5 .
解:(1)108 ×103 =108 +3= 1011 指数较大时,
(2)x3 ·x5 = x3 + 5 = x8 例2.计算:(1)23×24×25
结果以幂的 形式表示.
(2)y ·y3 ·y5
解:(1)23×24×25=23+4+5=212
b5 ·b5= b10
b5 + b5 = 2b5
× (3)x5 ·x2 = x10 ( )
(4)y5 +2 y5 =3y10
×
()
x5 ·x2 = x7
y5 + 2 y5 =3y5
×
×
(5)c ·c3 = c3 c ·c3 = c4
()
(6)mm ++ mm33 == mm4+ (m3 )
➢变式训练
解:(1)x10 ·x = x10+1= x11
(2)10×102×104 =101+2+4 =107
(3)x5 ·x ·x3 = x5+1+3 = x9
(4)y4 ·y3 ·y2 ·y= y4+3+2+1= y10
➢练习二
下面的计算对不对?如果不对,怎样改正?
(1)b5 ·b5= 2b5 (× ) (2)b5 + b5 = b10 ×( )
.
a ·a3 ·a5 =
am ·an = am+n
a4 ·a 5= a9
想一想: 当三个或三个以上同底数幂相乘时,是 否也 具有这一性质呢? 怎样·用公式表示?
如 am·an·ap = am+n+(m、n、p都是正整数) p
.
➢am ·an = am+n
(当m、n都是正整数)
am·an·ap = am+n+p (m、n、p都是正整数)
(乘方的意义) =10×10×10(×乘10法×结10合律) =105 (乘方的意义)
猜想: am ·an=? (当m、n都是正整数)
分组讨论,并尝试证明你的猜想
是否正确。
动动 脑
不要 像我 一样 懒哟!
? 猜想: am ·an= am+n (m、n都是正整数) am ·an = (aa…a).(aa…a)(乘方的意义)
am ·an = am+n (m、n正整
数)
“特殊→一般→特 殊”
例子 公式 应用
am · an · ap = am+n+p ( m、n、p为正整数)
自我检测:
1、判断正误:
⑴ ⑶
23+24=27 x2·x6=x12
((××))
⑵ 23×24=27 ⑷ x6·x6 =2x6
((×√
) )
2、选择: ⑴x2m+2可写成 ( D )
n个 .
知识回顾
幂
an
指数
Hale Waihona Puke 底数 .知识回顾说出an的乘法意义,并将下列各式写成 乘法形式:
(1) 108 =10×10×10×10×10×10×10×10 (2) (-2)4 =(-2)×(-2)×(-2)×(-2)
(3)an = a × a × a ×… a
n个a .
➢【自主探究】
请同学们先根据自己的理解,解答下题。 103 ×102 =(10×10×10)×(10×10)
A 、2xm+1
B、x2m+x2
C、x2·xm+1
D、x2m·x2
⑵在等式C a2·a4·( )=a11中,括号里面的代数式应 当是( )
A、a7 B、a6 C、a5 D、a4
.
自我检测 ① 32×3m = 3m+2 ② 5m·5n = 5m+n ③ x3 ·xn+1 = Xn+4 ④y ·yn+2 ·yn+4 = y2n+7
我们来看下面的问题吧
2009年10月29日,我国国防科技大学成功研制 的“天河一号”其
运算速度每秒可达1015次运算,那么它工作103秒可进行多少次运算?
分析: 运算次数=运算速度×工作时间 所以运算次数为:
1015×103 = ?
我的收获
我学到 了什么?
知识
方法
同底数幂相乘, 底数不变,指数相加.
填空: (1)x5 ·(x3 )= x 8 (2)a ·( a5 )= a6
(3)x ·x3(x3 )= x7
3m
(4)xm ·(x2m )=x
➢练习提高
1.计算:
(1) x n ·xn+1
解: x n ·xn+1 = xn+(n+1) = x2n+1
(2) (x+y)3 ·(x+y)4
am · an = am+n
;
6 。
拓展延伸
已知:am=2, an=3.
求am+n =?.
解: am+n = am ·an =2 × 3 =6
.
【中考再现】
(1)已知xa =2,xb =3,求xa. +b __6_____
(2)已知:an-3×a2n+1=a10,则n=__4 _____
(3)如果2n=2,2m=8,则3n × 3 m =__8_1_.
m个a
n个a
= aa…a (乘法结合律)
(m+n)个a
=am+n (乘方的意义)
即 am ·an = am+n (当m、n都是正整数)
同底数幂的乘法公式: 请我你们尝可试以用直文接字利概 括用这它个进结行论计。算.
a ·a = a m n
m+n (当m、n都是正整数)
同底数幂相乘,底数不变,指数相加。
(2)y ·y3 ·y5 = y1+3+5=y9
➢ 练习一
1. 计算:(抢答)
(1) 76×74
( 710 )
(2) a7 ·a8 ( a15 )
(3) x5 ·x3 ( x8 )
(4) b5 ·b ( b6 )
2. 计算:
(1)x10 ·x
(2)10×102×104
(3) x5 ·x ·x3
(4)y4·y3·y2·y
我们来看下面的问题吧
2009年10月29日,我国国防科技大 学成功研制 的“天河一号”其运算速度
每秒可达1015次运算,那么它工作103秒 可进行多少次运算?
1015×103 = ?
知识回顾
①什么叫乘方?
②乘方的结果叫做什么?
1、2×2 ×2=2( 3 )
2、a·a·a·a·a = a( 5 ) 3、a · a ······a = an( )
公式中的a可代表 一个数、字母、式 子等。
解: (x+y)3 ·(x+y)4 = (x+y)3+4 =(x+y)7
2.填空: (1) 8 = 2x,则 x = 3 ;
23
5
(2) 8× 4 = 2x,则 x =
23× 22= 25
(3) 3×27×9 = 3x,则 x = 3×33 × 32 = 36
(5) (x+y)2·(x+y)5= (x+y) 7 (6) a2·a3-a3·a2 = 0
.
亲: 只有不断的思考,才会有
新的发现;只有量的变化,才会 有质的进步.祝大家学有所得!
.
运算形式 (同底、乘法) 运算方法(底不变、指数相加)
幂的底数必须相同, 相乘时指数才能相加.
如 43×45= 43+5 =48
.
1.1幂的乘法 am ·an = am+n
例1:计算
(1) x2 ·x5
(2) a · a4
解:(1) x2 ·x5 =x2+5 =x7
(2) a · a4 = a 1+4=a5
例1.计算:(1)108 ×103 ; (2)x3 ·x5 .
解:(1)108 ×103 =108 +3= 1011 指数较大时,
(2)x3 ·x5 = x3 + 5 = x8 例2.计算:(1)23×24×25
结果以幂的 形式表示.
(2)y ·y3 ·y5
解:(1)23×24×25=23+4+5=212
b5 ·b5= b10
b5 + b5 = 2b5
× (3)x5 ·x2 = x10 ( )
(4)y5 +2 y5 =3y10
×
()
x5 ·x2 = x7
y5 + 2 y5 =3y5
×
×
(5)c ·c3 = c3 c ·c3 = c4
()
(6)mm ++ mm33 == mm4+ (m3 )
➢变式训练
解:(1)x10 ·x = x10+1= x11
(2)10×102×104 =101+2+4 =107
(3)x5 ·x ·x3 = x5+1+3 = x9
(4)y4 ·y3 ·y2 ·y= y4+3+2+1= y10
➢练习二
下面的计算对不对?如果不对,怎样改正?
(1)b5 ·b5= 2b5 (× ) (2)b5 + b5 = b10 ×( )
.
a ·a3 ·a5 =
am ·an = am+n
a4 ·a 5= a9
想一想: 当三个或三个以上同底数幂相乘时,是 否也 具有这一性质呢? 怎样·用公式表示?
如 am·an·ap = am+n+(m、n、p都是正整数) p
.
➢am ·an = am+n
(当m、n都是正整数)
am·an·ap = am+n+p (m、n、p都是正整数)
(乘方的意义) =10×10×10(×乘10法×结10合律) =105 (乘方的意义)
猜想: am ·an=? (当m、n都是正整数)
分组讨论,并尝试证明你的猜想
是否正确。
动动 脑
不要 像我 一样 懒哟!
? 猜想: am ·an= am+n (m、n都是正整数) am ·an = (aa…a).(aa…a)(乘方的意义)
am ·an = am+n (m、n正整
数)
“特殊→一般→特 殊”
例子 公式 应用
am · an · ap = am+n+p ( m、n、p为正整数)
自我检测:
1、判断正误:
⑴ ⑶
23+24=27 x2·x6=x12
((××))
⑵ 23×24=27 ⑷ x6·x6 =2x6
((×√
) )
2、选择: ⑴x2m+2可写成 ( D )
n个 .
知识回顾
幂
an
指数
Hale Waihona Puke 底数 .知识回顾说出an的乘法意义,并将下列各式写成 乘法形式:
(1) 108 =10×10×10×10×10×10×10×10 (2) (-2)4 =(-2)×(-2)×(-2)×(-2)
(3)an = a × a × a ×… a
n个a .
➢【自主探究】
请同学们先根据自己的理解,解答下题。 103 ×102 =(10×10×10)×(10×10)
A 、2xm+1
B、x2m+x2
C、x2·xm+1
D、x2m·x2
⑵在等式C a2·a4·( )=a11中,括号里面的代数式应 当是( )
A、a7 B、a6 C、a5 D、a4
.
自我检测 ① 32×3m = 3m+2 ② 5m·5n = 5m+n ③ x3 ·xn+1 = Xn+4 ④y ·yn+2 ·yn+4 = y2n+7
我们来看下面的问题吧
2009年10月29日,我国国防科技大学成功研制 的“天河一号”其
运算速度每秒可达1015次运算,那么它工作103秒可进行多少次运算?
分析: 运算次数=运算速度×工作时间 所以运算次数为:
1015×103 = ?
我的收获
我学到 了什么?
知识
方法
同底数幂相乘, 底数不变,指数相加.
填空: (1)x5 ·(x3 )= x 8 (2)a ·( a5 )= a6
(3)x ·x3(x3 )= x7
3m
(4)xm ·(x2m )=x
➢练习提高
1.计算:
(1) x n ·xn+1
解: x n ·xn+1 = xn+(n+1) = x2n+1
(2) (x+y)3 ·(x+y)4
am · an = am+n
;
6 。
拓展延伸
已知:am=2, an=3.
求am+n =?.
解: am+n = am ·an =2 × 3 =6
.
【中考再现】
(1)已知xa =2,xb =3,求xa. +b __6_____
(2)已知:an-3×a2n+1=a10,则n=__4 _____
(3)如果2n=2,2m=8,则3n × 3 m =__8_1_.
m个a
n个a
= aa…a (乘法结合律)
(m+n)个a
=am+n (乘方的意义)
即 am ·an = am+n (当m、n都是正整数)
同底数幂的乘法公式: 请我你们尝可试以用直文接字利概 括用这它个进结行论计。算.
a ·a = a m n
m+n (当m、n都是正整数)
同底数幂相乘,底数不变,指数相加。
(2)y ·y3 ·y5 = y1+3+5=y9
➢ 练习一
1. 计算:(抢答)
(1) 76×74
( 710 )
(2) a7 ·a8 ( a15 )
(3) x5 ·x3 ( x8 )
(4) b5 ·b ( b6 )
2. 计算:
(1)x10 ·x
(2)10×102×104
(3) x5 ·x ·x3
(4)y4·y3·y2·y