材料力学第三章剪切和扭转

合集下载

材料力学第三章 扭转

材料力学第三章 扭转

n
250
横截面上的最大切应力为
max
T Wt
T (D4 d 4)
16D
16 0.55573000 Pa 19.2MPa [ ] 50MPa (0.554 0.34 )
满足强度要求。
跟踪训练 7.机车变速箱第II轴如图所示,轴所传递的功率为
p 5.5KW,转速n 200r / min,材料为45钢,
(3)主动轮放在两从动轮之间可使最大扭矩取最小值
B
A
C
Me2
Nm
M e1
Me3
4220
2810
本章小结
1.外力偶矩的计算 内力的计算——扭矩图
P M e 9549 n (N m)
2.圆轴扭转切应力公式的建立
τρ
Tρ Ip
强度条件的应用
max
Tmax Wt
[ ]
刚度条件的应用
' max
T
180 [']
(3)主动轮和从动轮应如何安排才比较合理。
再根据平衡条件,可得 Me1 Me2 Me3 (2810 4220)N m 7030N m
所作扭矩图如右图
(1)试确定AB段的直径d1和BC段的直径d2。
根据强度条件确定AB直径d1
AB
TAB Wt
16TAB
d12
[ ]
根据刚度条件确定AB直径d1
mB
(a)
1
350 2
C
1
2
T1
11463
446
A
D
3
mB
(b)
(c) mB
mC
T2
mC
mA T3
mD
T1 350N m 350 1 350 2

材料力学课件第3-4章

材料力学课件第3-4章

L M x( x) d x
0 GIP (x)
28
3.5 圆轴扭转时的变形与刚度条件
二. 刚度条件
对等直轴:
d
dx
Mx GIP
单位长度的扭转角
等直圆轴扭转
max
M x max GIP
180
[ ](o /m)
对阶梯轴: 需分段校核。
max
M x max GIP
180
[ ](ο /m)
2. 给出功率, 转速
(kw)
Me = 9549
P n
(N. m)
(r/min)
5
3.2 外力偶矩的计算 扭矩和扭矩图 二.横截面上的内力
截面法求内力: 截,取,代,平
Mx 称为截面上的扭矩
Mx 0 Mx Me 0 即 Mx Me
按右手螺旋法:
指离截面为正,
M x 指向截面为负。
6
3.2 外力偶矩的计算 扭矩和扭矩图
10
3.3 薄壁圆筒的扭转 纯剪切
一. 薄壁筒扭转实验
nm
t
实验观察 分析变形
x
r
nm l
mn没变 x = 0
x = 0
Me
nm
γ
Me
φ
x
r没变 = 0
= 0
nm
Me
nm
Mx
x
n m Mx
11
3.3 薄壁圆筒的扭转 纯剪切
Me Mx
nm
Mx
n m Mx
由于轴为薄壁,所以认
为 沿t 均布.即 =C
max
M x max Wp
31.5 103 m
M x max d 3
16

材料力学(机械工业出版社)知识小结:第三章 扭转

材料力学(机械工业出版社)知识小结:第三章 扭转

第三章扭转3–1概述轴:工程中以扭转为主要变形的构件。

如:机器中的传动轴、石油钻机中的钻杆等。

扭转:外力的合力为一力偶,且力偶的作用面与直杆的轴线垂直,杆发生的变形为扭转变形。

扭转角(ϕ):任意两截面绕轴线转动而发生的角位移。

剪应变(γ):直角的改变量。

3–2传动轴的外力偶矩 · 扭矩及扭矩图一、传动轴的外力偶矩传递轴的传递功率、转数与外力偶矩的关系:m)(N 9550⋅=nP m 其中:P —功率,千瓦(kW )n —转速,转/分(rpm ) m)(N 7024⋅=n P m 其中:P —功率,马力(PS )n —转速,转/分(rpm ) m)(N 7121⋅=nP m 其中:P —功率,马力(HP )n —转速,转/分(rpm ) 二、扭矩及扭矩图1、扭矩:构件受扭时,横截面上的内力偶矩,记作“T ”。

2、截面法求扭矩mT m T m x ==-=∑003、扭矩的符号规定:“T ”的转向与截面外法线方向满足右手螺旋规则为正,反之为负。

4、扭矩图:表示沿杆件轴线各横截面上扭矩变化规律的图线。

目的:①扭矩变化规律;②|T |max 值及其截面位置->强度计算(危险截面)。

3–3薄壁圆筒的扭转一、实验:1.实验前:①绘纵向线,圆周线;②施加一对外力偶m 。

2.实验后:①圆周线不变;②纵向线变成斜直线。

3.结论:①圆筒表面的各圆周线的形状、大小和间距均未改变,只是绕轴线作了相对转动。

②各纵向线均倾斜了同一微小角度γ 。

③所有矩形网格均歪斜成同样大小的平行四边形。

4.ϕ与γ的关系:L R ⋅=ϕγ二、薄壁圆筒剪应力τ大小:tr T 220πτ=三、剪应力互等定理:ττ'=在单元体相互垂直的两个平面上,剪应力必然成对出现,且数值相等,两者都垂直于两平面的交线,其方向则共同指向或共同背离该交线。

单元体的四个侧面上只有剪应力而无正应力作用,这种应力状态称为纯剪切应力状态。

四、剪切虎克定律:剪切虎克定律:当剪应力不超过材料的剪切比例极限时(τ≤τp ),剪应力与剪应变成正比关系。

材料力学第三章剪切和扭转

材料力学第三章剪切和扭转

T

T
d1
(a)
l
T (b)
D2

T
l
36
3.3 等直圆杆扭转时的应力
解:
Wp1

πd13 16
Wp2
πD23 14
16
1,maxW Mpt11
T Wp1
16T πd13
2,ma xW M pt2 2W Tp2πD 2 311T 6 4
D 2 31 4 d 1 3
螺栓连接[图(a)]中,螺栓主要受剪切及挤压(局部压
缩)。
F
3
3.1 剪切
键连接[图(b)]中,键主要受剪切及挤压。
4
3.1 剪切
剪切变形的受力和变形特点: 作用在构件两侧面上的外力的合力大小相等、方向相 反,作用线相隔很近,并使各自推动的部分沿着与合 力作用线平行的受剪面发生错动。
受剪面上的内力称为剪力; 受剪面上的应力称为切应力;
3.3 等直圆杆扭转时的应力
传动轴的外力偶矩:
已知:
T2
T1
从动轮
n 主动轮
T3 从动轮
传动轴的转速 n ;某一轮上 所传递的功率
NK (kW)
作用在该轮上的外力偶矩T 。
一分钟内该轮所传递的功率等于其上外力偶矩所 作的功:
NK60 13 0(J)T2πn(Nm)
33
3.3 等直圆杆扭转时的应力
26
3.3 等直圆杆扭转时的应力
dj M t
d x GI pBiblioteka G djdx
GGMItp

Mt
Ip
等直圆杆扭转时横截面上切应力计算公式
Mt

O

材料力学笔记(第三章)

材料力学笔记(第三章)

材料力学(土)笔记第三章 扭 转1.概 述等直杆承受作用在垂直于杆轴线的平面内的力偶时,杆将发生扭转变形 若构件的变形时以扭转为主,其他变形为次而可忽略不计的,则可按扭转变形对其进行强度和刚度计算等直杆发生扭转变形的受力特征是杆受其作用面垂直于杆件轴线的外力偶系作用其变形特征是杆的相邻横截面将绕杆轴线发生相对转动,杆表面的纵向线将变成螺旋线 当发生扭转的杆是等直圆杆时,由于杆的物性和横截面几何形状的极对称性,就可用材料力学的方法求解对于非圆截面杆,由于横截面不存在极对称性,其变形和横截面上的应力都比较复杂,就不能用材料力学的方法来求解2.薄壁圆筒的扭转设一薄壁圆筒的壁厚δ远小于其平均半径0r (10r ≤δ),其两端承受产生扭转变形的外力偶矩e M ,由截面法可知,圆筒任一横截面n-n 上的内力将是作用在该截面上的力偶 该内力偶矩称为扭矩,并用T 表示由横截面上的应力与微面积dA 之乘积的合成等于截面上的扭矩可知,横截面上的应力只能是切应力考察沿横截面圆周上各点处切应力的变化规律,预先在圆筒表面上画上等间距的圆周线和纵向线,从而形成一系列的正方格子在圆筒两端施加外力偶矩e M 后,发现圆周线保持不变,纵向线发生倾斜,在小变形时仍保持直线薄壁圆筒扭转变形后,横截面保持为形状、大小均无改变的平面,知识相互间绕圆筒轴线发生相对转动,因此横截面上各点处切应力的方向必与圆周相切。

相对扭转角:圆筒两端截面之间相对转动的角位移,用ϕ来表示圆筒表面上每个格子的指教都改变了相同的角度γ,这种直角的该变量γ称为切应变 这个切应变和横截面上沿沿圆周切线方向的切应力是相对应的 由于圆筒的极对称性,因此沿圆周各点处切应力的数值相等由于壁厚δ远小于其平均半径0r ,故可近似地认为沿壁厚方向各点处切应力的数值无变化 薄壁圆筒扭转时,横截面上任意一点处的切应力τ值均相等,其方向与圆周相切 由横截面上内力与应力间的静力学关系,从而得⎰=⨯AT r dA τ由于τ为常量,且对于薄壁圆筒,r 可以用其平均半径0r 代替,积分⎰==Ar A dA δπ02为圆筒横截面面积,引进π200r A =,从而得到δτ02A T=由几何关系,可得薄壁圆筒表面上的切应变γ和相距为l 的两端面间相对扭转角ϕ之间的关系式,式子中r 为薄壁圆筒的外半径γϕγsin /==l r 当外力偶矩在某一范围内时,相对扭转角ϕ与外力偶矩e M (在数值上等于T )之间成正比可得τ和r 间的线性关系为γτG =上式称为材料的剪切胡克定律,式子中的比例常数G 称为材料的切变模量,其量纲和单位与弹性模量相同,钢材的切边模量的约值为GPa G 80=剪切胡克定律只有在切应力不超过某材料的某极限值时才适用该极限称为材料的剪切比例极限p τ,适用于切应力不超过材料剪切比例极限的线弹性范围3.传动轴的外力偶矩·扭矩及扭矩图 3.1 传动轴的外力偶矩设一传动轴,其转速为n (r/min ),轴传递的功率由主动轮输入,然后通过从动轮分配出去 设通过某一轮所传递的功率为P ,常用单位为kW 1 kW=1000 W ;1 W=1 J/s ; 1 J=1 N ·m当轴在稳定转动时,外力偶在t 秒内所做的功等于其矩e M 与轮在t 秒内的转角α之乘积 因此,外力偶每秒钟所作的功即功率P 为310}{}{}{}{-⋅⨯=sradmN e kW t M P α 3/10}{}{-⋅⨯=s rad m N e M ω3min/1060}{2}{-⋅⨯⨯⨯=r m N e n M π 即得到作用在该轮上的外力偶矩为min/3min /3}{}{1055.9}{26010}{}{r kWr kW mN e n P n P M ⨯=⨯⨯=⋅π 外力偶的转向,主动轮上的外力偶的转向与轴的转动方向相同,从动轮上的外力偶的转向则与轴的转动方向相反3.2 扭矩及扭矩图可用截面法计算轴横截面上的扭矩为使从两段杆所求得的同一横截面上扭矩的正负号一致按杆的变化情况,规定杆因扭转而使其纵向线在某段内有变成右手螺旋线的趋势时 则该段杆横截面上的扭矩为正,反之为负 若将扭矩按右手螺旋法则用力偶矢表示,则当力偶矢的指向离开截面时扭矩为正,反之为负 为了表明沿杆轴线各横截面上扭矩的变化情况,从而确定最大扭矩及其所在横截面的位置 可仿照轴力图的作法绘制扭矩图4.等直圆杆扭转时的应力·强度条件 4.1 横截面上的应力与薄壁圆筒相仿,在小变形下,等直圆杆在扭转时横截面上也只有切应力 ①几何方面为研究横截面上任意一点处切应变随点的位置而变化的规律 在等直圆杆的表面上作出任意两个相邻的圆周线和纵向线 当杆的两端施加一对其矩为e M 的外力偶后,可以发现:两圆周线绕杆轴线相对旋转了一个角度,圆周线的大小和形状均为改变在变形微小的情况下,圆周线的间距也未变化 纵向线则倾斜了一个角度γ假设横截面如同刚性平面般绕杆的轴线转动,即平面假设 上述假设只适用于圆杆为确定横截面上任一点处的切应变随点的位置而变化的规律 假想地截取长为dx 的杆段进行分析由平面假设可知,截面b-b 相对于截面a-a 绕杆轴转动了一个微小的角度ϕd 因此其上的任意半径也转动了同一角度ϕd由于截面转动,杆表面上的纵向线倾斜了一个角度γ纵向线的倾斜角γ就是横截面周边上任一点A 处的切应变同时经过半径上任意一点的纵向线在杆变形后也倾斜了一个角度ργρ为圆心到半径上点的距离即为横截面半径上任意一点处的且应变 由几何关系可得dxd ϕργγρρ=≈tan即dxd ϕργρ=上式表示等直接圆杆横截面上任一点处的切应变随该点在横截面上的位置而变化的规律②物理方面由剪切胡可定律可知,在线弹性范围内,切应力与切应变成正比 令相应点处的切应力为ρτ,即得横截面上切应力变化规律表达式dxd G G ϕργτρρ== 由上式可知,在同一半径ρ的圆周上各点处的切应力ρτ 值均相等,其值与ρ成正比因ργ为垂直于半径平面内的切应变,故ρτ的方向垂直于半径③静力学方面由于在横截面任一直径上距圆心等远的两点处的内力元素dA ρτ等值且反向则整个截面上的内力元素dA ρτ的合力必等于零,并组成一个力偶,即为横截面上的扭矩T 因为ρτ的方向垂直于半径,故内力元素dA ρτ对圆心的力矩为dA ρρτ 由静力学中的合力矩原理可得⎰=AT dA ρρτ经整理后得⎰=A T dA dxd G2ρϕ上式中的积分⎰AdA 2ρ仅与横截面的几何量有关,称为极惯性矩,用p I 表示⎰=Ap dA I 2ρ其单位为4m ,整理得pGI Tdx d =ϕ 可得pI T ρτρ=上式即等直圆杆在扭转时横截面上任一点处切应力的计算公式当ρ等于横截面的半径r 时,即在横截面周边上的各点处,切应力将达到其最大值p I Tr =max τ 在上式中若用p W 代表r I p /,则有pW T =m ax τ 式中,p W 称为扭转截面系数,单位为3m推导切应力计算公式的主要依据为平面假设,且材料符合胡克定律 因此公式仅适用于在线弹性范围内的等直圆杆 为计算极惯性矩和扭转截面系数在圆截面上距圆心为ρ处取厚度为ρd 的环形面积作为面积因素 可得圆截面的极惯性矩为⎰⎰===Ad p d d dA I 32242032πρπρρ圆截面的扭转截面系数为162/3d d I rI W p p p π===由于平面假设同样适用于空心截面杆件,上述切应力公式也适用于空心圆截面杆 设空心圆截面杆的内、外直径分别为d 和D ,其比值Dd =α 则可得空心圆截面的极惯性矩为⎰⎰-===AD d p d D d dA I )(322442232πρπρρ所以)1(3244απ-=D I p扭转截面系数为)1(1616)(2/4344αππ-=-==D Dd D D I W p p4.2 斜截面上的应力在圆杆的表面处用横截面、径向截面及与表面相切的面截取一单元体在其左右两侧(即杆的横截面)上只有切应力τ,其方向与y 轴平行 在其前后两平面(即与杆表面相切的面)上无任何应力 由于单元体处于平衡状态,故由平衡方程0=∑yF可知单元体在左右两侧面上的内力元素dydz τ应是大小相等,指向相反的一对力并组成一个力偶,其矩为dx dydz )(τ 为满足令两个平衡方程,0=∑xF和0=∑z M在单元体上、下两个平面上将有大小相等、指向相反的一对内力元素dxdz 'τ 并组成其矩为dy dxdz )('τ的力偶该力偶与前一力偶矩数值相等而转向相反,从而可得ττ='上式表明,两相互垂直平面上的切应力τ和'τ数值相等,且均指向(或背离)该两平面的交线,称为切应力互等定理 该定理具有普遍意义纯剪切应力状态:单元体在其两对互相垂直的平面上只有切应力而无正应力的状态 等直圆杆和薄壁圆筒在发生扭转时,其中的单元体均处于纯剪切应力状态现分析在单元体内垂直于前、后量平面的任意斜截面上的应力 斜截面外法线n 与x 轴的夹角为α规定从x 轴至截面外法向逆时针转动时α为正,反之为负 应用截面法,研究其左边部分的平衡设斜截面ef 的面积为dA ,则eb 面和bf 面的面积分别为αcos dA 和αsin dA 选择参考轴ξ和η分别于斜截面ef 平行和垂直 由平衡方程∑=0ηF 和∑=0ξF即0cos )sin (sin )cos ('=++ααταατσαdA dA dA0sin )sin (cos )cos ('=+-ααταατταdA dA dA利用切应力互等定理公式,整理后即得任意一斜截面ef 上的正应力和切应力的计算公式ατσα2sin -= αττα2cos =单元体的四个侧面(ο0=α和ο90=α)上的切应力绝对值最大,均等于το45-=α和ο45=α两截面上正应力分别为τσσ+==max 45οτσσ-==min 45ο即该两截面上的正应力分别为ασ中的最大值和最小值,即一为拉应力,另一为压应力 其绝对值均等于τ,且最大、最小正应力的作用面与最大切应力的作用面之间互成45° 这些结论是纯剪切应力状态的特点,不限于等直圆杆在圆杆的扭转试验中,对于剪切强度低于拉伸强度的材料(如低碳钢),破坏是由横截面上的最大切应力引起,并从杆的最外层沿与杆轴线约成45°倾角的螺旋形曲面发生拉断而产生的在最大切应力相等的情况下,空心圆轴的自重较实心圆轴为轻,比较节省材料4.3 强度条件强度条件是最大工作切应力不超过材料的许用切应力,即][max ττ≤等直圆杆的最大工作应力存在于最大扭矩所在横截面即危险截面的周边上任一点,即危险点 上述强度条件可写为][maxτ≤pW T5.等直圆杆扭转时的变形·刚度条件 5.1 扭转时的变形 等直杆的扭转变形是用两横截面绕杆轴相对转动的相对角位移,即相对扭转角ϕ来度量的ϕd 为相距dx 的两横截面间的相对扭转角 因此,长为l 的一段杆两端面间的相对扭转角 长为l 的一段杆两端间的相对扭转角ϕ为⎰⎰==lpldx GI Td 0ϕϕ 当等直圆杆仅在两端受一对外力偶作用时,则所有横截面上的扭矩T 均相同 且等于杆端的外力偶矩e M对于由同一材料制成的等直圆杆,G 及p I 亦为常量,则可得pe GI l M =ϕ或p GI Tl =ϕϕ的单位为rad ,其正负号随扭矩T 而定由上式可见,相对扭转角ϕ与p GI 成反比,p GI 称为等直圆杆的扭转刚度由于杆在扭转时各横截面上的扭矩可能并不相同,且杆的长度也各不相同因此在工程中,对于扭转杆的刚度通常用相对扭转角沿杆长度的变化率dx d /ϕ来度量,称为单位长度扭转角,并用'ϕ表示pGI T dx d ==ϕϕ' 公式只适用于材料在线弹性范围内的等直圆杆例题3-5截面C 相对于截面B 的扭转角,应等于截面A 相对于B 的扭转角与截面C 相对于A 的扭转角之和AC BA BC ϕϕϕ+=5.2 刚度条件等直杆扭转时,除需满足强度条件外,有时还需满足刚度条件刚度要求通常是限制器单位长度扭转角'ϕ中最大值不超过某一规定的允许值]['ϕ,即][''max ϕϕ≤上式即为等直圆杆在扭转时的刚度条件式中,]['ϕ称为许可单位长度扭转角,其常用单位是m /)(ο需要将单位换算,于是可得][180'max ϕπ≤⨯p GI T 许可单位长度扭转角是根据作用在轴上的荷载性质以及轴的工作条件等因素决定的6.等直圆杆扭转时的应变能当圆杆扭转变形时,杆内将积蓄应变能计算杆内应变能,需先计算杆内任一点处的应变能密度,再计算全杆内所积蓄的应变能 受扭圆杆的任一点处于纯剪切应力状态设其左侧面固定,则单元体在变形后右侧面将向下移动dx ⋅γ当材料处于线弹性范围内,切应力与切应变成正比,且切应变值很小 因此在变形过程中,上、下两面上的外力将不作功只有右侧面上的外力dydz ⋅τ对相应的位移dx ⋅γ做功,其值为)(21))((21dxdydz dx dydz dW τγγτ=⋅⋅=单元体内所积蓄的应变能εdV 数值上等于dW 于是可得单位体积内的应变能即应变能密度εv 为τγεε21===dxdydz dW dV dV v 根据剪切胡克定律,上式可改写为Gv 22τε=或22γεG v =求得受扭圆杆任一点处的应变能密度εv 后,全杆的应变能εV 可由积分计算dAdx v dV v V Vl A⎰⎰⎰==εεεV 为杆的体积,A 为杆的横截面积,l 为杆长若等直杆仅在两端受外力偶矩e M 作用,则任一横截面的扭矩T 和极惯性矩p I 均相同可得杆内得应变能为222222222)(22ϕρτεlGI GI l M GI l T dA I T G l dAdx G V p p e A p p l A =====⎰⎰⎰以上应变能表达式也可利用外力功与应变能数值上相等的关系,直接从作用在杆端的外力偶矩e M 在杆发生扭转过程中所做的功W 算得7.等直非圆杆自由扭转时的应力和变形对于非等直圆杆,在杆扭转后横截面不在保持为平面取一矩形截面杆,事先在其表面绘出横截面的周线,则在杆扭转后,这些周线变成了曲线 从而可以推知,其横截面在杆变形后将发生翘曲而不再保持平面 对于此类问题,只能用弹性的理论方法求解 等直非圆杆在扭转时横截面发生翘曲,但当等直杆在两端受外力偶作用,且端面可以自由翘曲时,称为纯扭转或自由扭转这时,杆相邻两横截面的翘曲程度完全相同,横截面上仍然是只有切应力没有正应力若杆的两端受到约束而不能自由翘曲,称为约束扭转,则其相邻两横截面的翘曲程度不同,将在横截面上引起附加的正应力8.开口和闭口薄壁截面杆自由扭转时的应力和变形 8.1 开口薄壁截面杆薄壁截面的壁厚中线是一条不封闭的折线或曲线,责成开口薄壁截面如各种轧制型钢(工字钢、槽钢、角钢等)或工字形、槽形、T 字型截面等8.2 闭口薄壁截面杆薄壁截面的壁厚中线是一条封闭的折线或曲线,这类截面称为闭口薄壁截面 讨论这类杆件在自由扭转时的应力和变形计算设一横截面为任意形状、变厚度的闭口薄壁截面等直杆 在两自由端承受一对扭转外力偶作用杆横截面上的内力为扭矩,因此其横街满上将只有切应力 假设切应力沿壁厚无变化,且其方向与壁厚的中线相切在杆的壁厚远小于其横截面尺寸时,又假设引起的误差在工程计算中是允许的 取dx 的杆段,用两个与壁厚中线正交的纵截面从杆壁中取出小块ABCD 设横截面上C 和D 两点处的切应力分别为1τ和2τ,而壁厚分别为1δ和2δ 根据切应力互等定理,在上、下两纵截面上应分别有切应力2τ和1τ 由平衡方程0=∑xF,dx dx 2211δτδτ=可得2211δτδτ=由于所取的两纵截面是任意的,上式表明横截面沿其周边任一点处的切应力τ与该点处的壁厚δ乘积为一常数常数=τδ沿壁厚中线取出长为ds 的一段,在该段上的内力元素为ds ⋅τδ 其方向与壁厚中线相切,其对横截面内任意一点O 的矩为r ds dT )(⋅=τδr 是从矩心O 到内力元素ds ⋅τδ作用线的垂直距离由力矩合成原理可知,截面上扭矩应为dT 沿壁厚中线全长s 的积分,即得⎰⎰⎰===sssrds rds dT T τδτδrds 为图中阴影三角形面积2倍故其沿壁厚中线全长s 的积分应是该中线所围面积0A 的2倍,于是可得02A T ⨯=τδ或者δτ02A T=上式即为闭口薄壁截面等直杆在自由扭转时横截面上任一点处切应力的计算公式 可得杆截面上最大切应力为min0max 2δτA T =式子中,min δ为薄壁截面的最小壁厚闭口薄壁截面等直杆的单位长度扭转角可按功能原理来求得22022028)2(212δδτεGA T A T G G v === 根据应变能密度计算扭转时杆内应变能的表达式,得单位长度杆内得应变能为⎰⎰==V V dVGA T dV v V 22028δεε 式子中,V 为单位长度杆壁的体积,ds ds dV ⨯=⨯⨯=δδ1,代入上式⎰=s dsGA T V δε2028 计算单位长度杆两端截面上的扭矩对杆段的相对扭转角'ϕ所做的功,杆在线弹性范围内2'ϕT W =因为W V =ε,则可解得⎰=sdsGA T δϕ20'4即所要求得单位长度扭转角式子中的积分取决于杆的壁厚δ沿壁厚中线s 的变化规律,当壁厚δ为常数时,得到δϕ20'4GA Ts=式子中,s 为壁厚中线的全长如有侵权请联系告知删除,感谢你们的配合!。

材料力学-第三章

材料力学-第三章

21
第三章 扭转
3.5 圆轴扭转强度计算
22
扭转失效与扭转极限应力
扭转屈服应力:s 扭转强度极限:b 扭转强度极限:b 扭转屈服应力(s )和扭转强度极限(b ),统 称为材料的扭转极限应力u。
23
圆轴扭转强度条件
材料的扭转许用应力为:


u
n
n为安全系数。
强度条件为:
max
(2) 若将轮1与轮2的位置对调,试求轴内的最大扭矩。
(3) 若将轮1与轮3的位置对调,试求轴内的最大扭矩。
33
提高圆轴扭转时强度和刚度的措施
• 提高轴的转速 • 合理布局主动轮和被动轮的位置 • 采用空心轴 • 选用优质材料,提高剪切模量
34
例3-8:图示圆柱形密圈螺旋弹簧,承受轴向载荷F作用。 所谓密圈螺旋弹簧,是指螺旋升角α很小(例如小于5º )的 弹簧。设弹簧的平均直径D,弹簧丝的直径d,试分析弹簧 丝横截面上的应力并建立相应的强度条件。
第三章 扭转
3.1 扭转的概念
1
扭转的概念
以横截面绕轴 线作相对旋转为 主要特征的变形 形式,称为扭转。
2
受力特点: 变形特点:
受到垂直于构件轴线的外力偶 矩的作用。
构件的轴线保持不变,各横截面绕 轴线相对转动 截面间绕轴线的相对角位移,称为扭转角
使杆发生扭转变形的外力偶,称为扭力偶,其矩 称为扭力偶矩。 凡是以扭转为主要变形的直杆,称为轴。
公式的适用条件:以平面假设为基础;适用胡克定律。
18
圆轴截面的极惯性矩和抗扭截面模量
IP
d4
32
WP
d3
16
19
空心圆截面的极惯性矩和抗扭截面模量

材料力学第3章 扭转

材料力学第3章 扭转


ρ2 ⋅ ρdρdθ ∫0
R
π
2
R4 =
π
32
4
D4
4
I 空心圆轴: 空心圆轴: p = (R − r ) =
π
π
32
薄壁杆: 薄壁杆:I p =
π
2
(D + d )(D+ d)(D− d) = D3t 32 4
2 2 3
π
2
(D4 − d4 )
π
W 圆轴: 圆轴: t = R =
π
16
D3
π (D4 − d4 ) = πD3 (1−α4 ) Wt = π (D3 − d3 ) 空心圆轴: 空心圆轴: Wt =16D 16
弹簧丝横截面上的应力(α<5º) 一、 弹簧丝横截面上的应力
F F
内力: 内力: FS=F T=FD/2 = 应力: 应力:
FS
8FD d 8FD τmax = 3 ( +1) ≈ 3 πd 2D πd
FS 4F τ1 = = 2 A πd T 8FD τ 2max = = 3 Wt πd
8FD d 8FD τmax = 3 ( +1) ≈ 3 πd 2D πd
3) 矩形截面杆的扭转
切应力与截面边界相切
b
角点切 角点切应力为零 中点切 中点切应力最大
h
τmax
T τmax = 2 αhb
τ1 =ντmax
τ1
Tl Tl 中: = 其 :t = βhb3 中 I φ= 3 Gβhb GIt
α、β与h/b有关 、 与 有关 当h>>b时, α=β=1/3 时
钻头横截面直径为20mm, , 钻头横截面直径为 在顶部受均匀的阻抗扭矩 (Nm/m)的作用,许用切 的作用, m 的作用 应力[τ]=70MPa,(1)求许可 应力 , 求许可 的m。(2)若G=80GPa,求 。 若 = , 上端对下端的相对扭转角。 上端对下端的相对扭转角。 mmax= [τ]Wt=110Nm

材料力学 剪切和扭转.

材料力学 剪切和扭转.

§3–2 连接接头的强度计算
(合力) P 1、连接处破坏三种形式: ①剪切破坏
n
n
P (合力) 剪切面 n
沿铆钉的剪切面剪断,如
沿n– n面剪断 。 ②挤压破坏 铆钉与钢板在相互接触面 上因挤压而使溃压连接松动,
FS n
P
发生破坏。
③拉伸破坏
钢板在受铆钉孔削弱的截面处,应力增大,易在连接处拉断。
2、剪切的实用计算
此杆安全。
[例6]木榫接头如图所示,宽b=20cm,材料[]=1MPa, [bs]=10MPa。受拉力P=40kN作用,试设计尺寸a 、h 。 F F
a
h
剪切面
Fbs
挤压面
F
解: 剪切面面积:As
ab bh
Abs 挤压面面积:
a
h
剪切面
Fbs
挤压面
F
取接头右边,受力如图。
Fs Fbs F
P=40KN,试求接头的剪应力和挤压应力。 h P a 解::受力分析如图∶ P
FS Fbs P 挤压面和挤压力为:
P :剪应力和挤压应力
剪切面和剪力为∶
P b
c
As
Abs
P P
FS P 40 107 0.952MPa AS bh 12 35
Pbs P 40 bs 107 7.4MPa Abs cb 4.5 12
度条件。
P
t
d
t
P
多铆钉连接件,为计算方便,各铆钉受力可视作相同。
上板受力图
F/4 F/4 F/4
F/4
3F/4
F
F
上板轴力图
铆钉受力图
F/4

材料力学剪切和扭转

材料力学剪切和扭转

F
A
许用剪应力
上式称为剪切强度条件 其中,F 为剪切力——剪切面上内力旳合力
A 为剪切面面积
受剪切螺栓剪切面面积旳计算:
d 2
A 4
受剪切单键剪切面面积计算:
取单键下半部分进行分析
假设单键长宽高分别为 l b h
则受剪切单键剪切面面积:
剪切面
A bl
剪切力
d
l h b
合力 外力
螺栓和单键剪应力及强度计算:
P/2
积单倍
结论:不论用中间段还是左右段分析,成果是一样旳。
例2-1 图示拉杆,用四个直径相同旳铆钉连接,校核铆钉和拉 杆旳剪切强度。假设拉杆与铆钉旳材料相同,已知P=80KN, b=80mm,t=10mm,d=16mm,[τ]=100MPa,[σ]=160MPa。
构件受力和变形分析:
假设下板具有足够
例3-2 已知A轮输入功率为65kW,B、C、D轮输出功率分别为 15、30、20kW,轴旳转速为300r/min,画出该轴扭矩图。
TB
TC
TA
TD
B
C
955N·m
A
477.5N·m
Tn
637N·m
计算外力偶矩
D
TA
9550
NA n
1592N
•m
TB
TC
9550
NB n
477.5N

m
TD
9550
ND n
挤压面为上半个圆周面
键连接
上半部分挤压面
l
h 2
下半部分挤压面
2、挤压应力及强度计算
在挤压面上,单位面积上所具有旳挤压力称为挤
压应力。
bs

工程力学材料力学(3)

工程力学材料力学(3)

§3-1 工程实际中的扭转问题
在工程实际中,尤其是在机械传动中的许多构件,其主要变形是 扭转。例如丝锥攻丝和转动轴的工作情况。
受力特点: 受力特点 : 在垂直于扭转构件轴线的平面内作用有两个大小相等, 转向相反的力偶。 变形特点: 变形特点 : 在上述两力偶的作用下,各横截面绕轴线发生相对转 动。这时任意两横截面间将有相对的角位移,这种角位移称为扭转 扭转 角。图中的φAB就是截面B相对于截面A的转角
∑M
x
= 0, T = M A
取右段为研究对象,可得相同的结果 由此可见,杆扭转时,其横截面上的内力,是一个在截面平面内 的力偶,其力偶矩称为扭矩 扭矩。 扭矩 左右两截面上的扭矩是一对作用和反作用力,它们的大小相等、转 向相反。为了使轴的同一截面上的扭矩的正负号相同,可采用右手螺 右手螺 旋法则规定其正负号。 旋法则
工程力学课件
2、静力学关系 、 圆轴扭转时,平衡外力偶矩的扭矩,是由横截面上无数的微剪力 组成的。如图所示,设距圆心ρ处的切应力为τp,如在此处取一微面 积dA,则此微面积上的微剪力为τρdA 。各微剪力对轴线之矩的总和, 即为该截面上的扭矩,即
T = ∫ ρτ ρ dA
dφ τ ρ = Gρ dx 因此 T = Gρ 2 dφ dA = G dφ ∫A dx dx
(a)
(b)
(c)
工程力学课件
由图可知:当切应力不超过材料的 剪切比例极限 (τp)时,切应力与切应变 之间成正比关系,这个关系称为剪切 剪切 胡克定律,可用下式表示: 胡克定律
τ = G ⋅γ
式中,G为材料的剪切弹性模量 剪切弹性模量,单位与弹性模量E相同,其 剪切弹性模量 数值可通过试验确定,钢材的G值约为80 GPa。 理论与试验表明:剪切弹性模量、弹性模量和泊松比是表明材料 弹性性质的三个常数。对各向同性材料,这三个弹性常数之间存在如 下关系:

材料力学 剪切和扭转

材料力学 剪切和扭转

MA A

MB

MC
B
22
C
解: 1、求内力,作出轴的扭矩图
T图(kN· m)
14
第三章 剪切和扭转
2、计算轴横截面上的最大切应力并校核强度
22
T图(kN· m)
T1 22 10 6 N mm 64.8MPa AB段 1,max π 3 Wp1 120mm 16 T2 14 10 6 N mm 71.3MPa BC段 2,max π 3 Wp 2 100mm [ ] 80MPa 即该轴满足强度条件。 16
π 2 (D d 2 ) 4 39.5% π 2 d 4
第三章 剪切和扭转
空心轴远比 实心轴轻

图示阶梯状圆轴,AB段直径 d1=120mm,BC段直径
d2=100mm 。扭转力偶矩 MA=22 kN•m, MB=36 kN•m, MC=14 kN•m。 材料的许用切应力[τ] = 80MPa ,试校核该轴的强度。
第三章
剪切和扭转
解:
一、计算作用在各轮上的外力偶矩
M2 A B
M3
M1 C D
M4
500 M 1 (9.55 10 ) N m 15.9kN m 300 3 150 M 2 M 3 (9.55 10 ) N m 4.78kN m 100 200 3 M 4 (9.55 10 ) N m 6.37 kN m 300
第三章
剪切和扭转
四、圆截面的极惯性矩 Ip 和抗扭截面系数Wp
实心圆截面:
2 A
I p d A ( 2 π d )
2
d 2 0

材料力学教案 第3章 扭转

材料力学教案 第3章 扭转

第3章扭转教学目的:理解圆轴扭转的受力和变形特点,剪应力互等定理;掌握圆轴受扭时的内力、应力、变形的计算;熟练掌握圆轴受扭时的强度、刚度计算。

教学重点:外力偶矩的计算、扭矩图的画法;纯剪切的切应力;圆杆扭转时应力和变形;扭转的应变能。

教学难点:圆杆扭转时截面上切应力的分布规律;切应力互等定理,横截面上切应力公式的推导,扭转变形与剪切变形的区别;掌握扭转时的强度条件和刚度条件,能熟练运用强度和刚度计算。

教具:多媒体。

通过工程实例建立扭转概念,利用幻灯片演示和实物演示表示扭转时的变形。

教学方法:采用启发式教学,通过提问,引导学生思考,让学生回答问题。

通过例题、练习和作业熟练掌握强度和刚度计算。

本章中给出了具体情形下具体量的计算公式,记住并会使用这些公式,强调单位的统一,要求学生在学习和作业中体会。

教学内容:扭转的概念;扭转杆件的内力(扭矩)计算和画扭矩图;切应力互等定理及其应用,剪切胡克定律与剪切弹性模量;扭转时的切应力和变形,圆杆扭转时截面上切应力的分布规律;扭转杆件横截面上的切应力计算方法和扭转强度计算方法;扭转杆件变形(扭转角)计算方法和扭转刚度计算方法。

教学学时:6学时。

教学提纲:3.1 扭转的概念和实例工程实际中,有很多构件,如车床的光杆、搅拌机轴、汽车传动轴等,都是受扭构件。

还有一些轴类零件,如电动机主轴、水轮机主轴、机床传动轴等,除扭转变形外还有弯曲变形,属于组合变形。

例如,汽车方向盘下的转向轴,攻螺纹用丝锥的锥杆(图3-1)等,其受力特点是:在杆件两端作用大小相等、方向相反、且作用面垂直于杆件轴线的力偶。

在这样一对力偶的作用下,杆件的变形特点是:杆件的任意两个横截面围绕其轴线作相对转动,杆件的这种变形形式称为扭转。

扭转时杆件两个横截面相对转动的角度,称为扭转角,一般用φ表示(图3-2)。

以扭转变形为主的杆件通常称为轴。

截面形状为圆形的轴称为圆轴,圆轴在工程上是常见的一种受扭转的杆件。

材料力学第三章知识点总结

材料力学第三章知识点总结

直升机的旋转轴
电机每秒输入功:外力偶作功完成:
×
=P W
M W
e

=
形状、大小、间距不变,各圆周线只是绕轴线转动了一个角度。

倾斜了同一个角度,小方格变成了平行四边形。

τdα
τ
l
ϕ
做薄壁圆筒的扭转试验可得
l
是材料的一个弹性常数,称为剪切弹性模量,G的量纲各向同性材料,三个弹性常数之间的关系:
ρργγtg ≈x
d d d ′=x d d ϕρ⋅=O 1O 2ABCD 为研究对象
D’
微段扭转变形d dx Rd dx DD tg ϕγγ==≈'d ϕ/ d x -扭转角沿x 轴的变化率
扭转变形计算式
O d A ρTρ⋅
(实心截面)
1、横截面上角点处,切应力为零;
2、横截面边缘各点处,切应力
3、切应力沿横截面周边形成与
4、横截面周边长边中点处,切应力最大。

有关,见教材P93 之表3.2。

材料力学课件第三章 扭转

材料力学课件第三章 扭转

工程上采用空心截面构件:提高强度,节约材料,重量轻, 结构轻便,应用广泛。
3.4 圆轴扭转时横截面上的应力
3.4.2 最大扭转切应力和强度条件
第三章 扭转
1. 最大扭转切应力:

T
Ip
知:当
R , max
max
TR Ip
T Ip R
T Wp
(令 Wp I p R )
max
T Wp
Wp — 扭转截面系数,单位:mm3或m3。
对于实心圆截面: 对于空心圆截面:
Wp
d3
16
Wp
(D4
16
d4)
D3(1 4 )
16
3.4 圆轴扭转时横截面上的应力
2、强度条件
强度条件:
max
Tm a x Wp
[ ]
第三章 扭转
许用切应力 u
n
τ s---- 扭转屈服极限 ——塑性材料 τ b---- 扭转强度极限 ——脆性材料 τ u---- 扭转极限应力 ——τs和τb的统称
MB
MC
MA
MD
B
C
解:计算外力偶矩
A
D
MA
9549 PA n
1592N m
MB
MC
9549 PB n
477.5N m
MD
9549 PD n
637N m
3.2 外力偶矩的计算 扭矩和扭矩图
第三章 扭转
3.2.2 扭矩和扭矩图
1 扭矩:构件受扭时,横截面上的内力偶矩,记作“T”。
2 截面法求扭矩
剪应力在互相垂直的面上同时存在,数值相等,其方向都垂直于这 两个面的交线,且都指向或者都背离该交线。

上海电机学院材料力学第三章扭转

上海电机学院材料力学第三章扭转

D
d
t
M
M
*
解:轴的扭矩等于轴传递的转矩
轴的内,外径之比
由强度条件
由刚度条件
已知:P=7.5kW, n=100r/min,最大切应力不得超过40MPa,空心圆轴的内外直径之比 = 0.5。二轴长度相同。
求: 实心轴的直径d1和空心轴的外直径D2;确定二轴的重量之比。
空心轴
d2=0.5D2=23 mm
§3.4 圆轴扭转时的应力
*
确定实心轴与空心轴的重量之比
空心轴
D2=46 mm
*
δ<<R0 ---薄壁圆筒
规定:矢量方向与横截面外法线方向一致的扭矩为正
m
m
薄壁圆筒的扭转
m
T
1
1
扭矩
切应力
对应
扭转
*
§3.3 纯剪切
一、薄壁圆筒扭转时的切应力
微机控制扭转试验机
*
扭转实验前
平面假设成立
相邻截面绕轴线作相对转动
横截面上各点的剪(切)应力的方向必与圆周线相切。
纵线
圆周线
扭转实验后
ρ

O
D
d
ρ

(2)空心圆截面
其中
*
应力公式
1)横截面上任意点:
2)横截面边缘点:
其中:
d/2
ρ
O
T
抗扭截面模量
D/2
O
T
d/2
空心圆
实心圆
扭转
*
例题2 图示空心圆轴外径D=100mm,内径d=80mm,M1=6kN·m,M2=4kN·m,材料的剪切弹性模量 G=80GPa.

材料力学第3章-扭转

材料力学第3章-扭转

第3章 扭转1、扭转的概念:杆件的两端个作用一个力偶,其力偶矩大小相等、转向相反且作用平面垂直于杆件轴线,致使杆件的任意两个横截面都发生绕轴线的相对转动,即为扭转变形。

2、外力偶矩的计算{}{}{}min /95491000602r KW m N e e n P M P M n=⇒⨯=⨯⨯⋅π 式中,e M 为外力偶矩。

又由截面法:e e M T M T =⇒=-0 T 称为n n -截面上的扭矩。

规定:若按右手螺旋法则把T 表示为矢量,当矢量方向与研究部分中截面的外法线的方向一致时,T 为正;反之为负。

3、纯剪切(1)薄壁圆筒扭转时的切应力 δπττδπ222r M r r M ee =⇒••=(2)切应力互等定理:在单元体相互垂直的两个平面上,切应力必然成对存在,且数值相等;两者都垂直于平面的交线,方向则共同指向或背离这一交线。

(3)切应变 剪切胡克定律:当切应力不超过材料的剪切比例极限时,切应变γ与切应力τ成正比。

γτG = G 为比例常数,称为材料的切变模量。

弹性模量E 、泊松比μ和切变模量G 存在关系:)1(2μ+=EG 4、圆轴扭转时的应力(1)变形几何关系:距圆心为ρ处的切应变为dxd ϕργρ=(2)物理关系:ρτ为横截面上距圆心为ρ处的切应力。

dxd G G ϕρτγτρρρ=⇒= (3)静力关系:内力系对圆心的力矩就是横截面的扭矩:dA d d GdA T AxA⎰⎰==2ρρτϕρ 以p I 表示上式右端的积分式:dA I Ap ⎰=2ρ p I 称为横截面对圆心O 点的极惯性矩(截面二次极矩)横截面上距圆心为ρ的任意点的切应力:pI T ρτρ=ρ最大时为R ,得最大切应力:pI TR =max τ引用记号RI W p t =t W 称为抗扭截面系数。

则tW T =max τp I 和t W 的计算(1)实心轴:3224420032D R d d dA I RAp ππθρρρπ====⎰⎰⎰16233D R RI W p t ππ===(2)空心轴:)1(32)(324444202/2/32αππθρρρπ-=-===⎰⎰⎰D d D d d dA I D d Ap)1(16)(164344αππ-=-==D d D DRI W p t5、圆轴扭转时的变形pGI Tl =ϕ ϕ为扭转角,l 为两横截面间的距离。

材料力学第三章1

材料力学第三章1

MK
1 4 2 3
1 4
2 2 3 3
d
O
dx R
l 1 p 4
O
O


d
m
2 m 2 n

3
3
n
19
d 式中 dx 为扭转角沿杆长的变化率, 以表示,即 d = dx 于是 = 由于在同一截面截面是常值,所 以此式表明与剪切角成正比,即沿 半径按直线规律变化。上式即为圆 轴扭转变形的几何关系。 (2)物理方面: =G· —— 剪切虎克定律 代入几何关系得: =G · 因为G 是常数,所以此式表 明:剪应力的大小与与成正比。
ds

• 图示为圆管内任一横截面,设该 截面上的扭矩为Mn,它以剪应力 的 形式分布在整个横截面上,方向与 dA 圆周的切线平行,即垂直于半径。 • 由于圆管是薄壁的,即壁厚t与圆 管的平均半径相比甚小,所以可假 dA 定沿壁厚是平均分布的,于是有下 列静力平衡条件:
d
t
R
R
AdAR=Mn
O
O
R
l 1 p 4


d
m
2 m 2 n

3
n
3
O O
R
l 1 p 4

m
2 n
3
20
(3)静力方面: 作用在横截面上的扭矩Mn,以剪应 力 的形式分布在整个截面上。横截面 上的剪应力与扭矩之间的关系为
Mn
o
将剪应力 表达式代入上式得 A G 2 dA = Mn Mn Mn o 于是 G = Ip 式中 Ip = A 2 dA dA dA Ip称为圆截面对圆心的极惯性矩,单 位m4,它是截面图形的一种几何性质, 其值与圆截面的大小及(实心或空心)有 关。对直径为D的实心圆截面,其值为 o dA D 4 2 dA = 2 2 2 d = D Ip = A 21 0 32 d
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

max
max
M tr Ip
Mt Ip /r
Mt Wp

Wp
Ip r
称为扭转截 面系数

max
Mt Wp
发生在横截面周边上各点处。
28
3.3 等直圆杆扭转时的应力
同样适用于空心圆截面杆受扭的情形
Mt
max
M t
Ip
d
O
max
D
max
Mt Wp
29
3.3 等直圆杆扭转时的应力
(4)圆截面的极惯性矩Ip和扭转截面系数Wp
D 2 31 4 d 1 3
1, max 2,max
已知 0.8

D2 d1
3
1 10.84
1.194
37
3.3 等直圆杆扭转时的应力
两轴的重量比
G 2 A2 G 1 A1
π 4
D22 d22 π4d12
D22
12
d12
1 .12 9 1 0 4 .8 2 0 .512
NK60 13 0(J)T2πn(N m)
33
3.3 等直圆杆扭转时的应力
NK60 13 0(J) T2πn(Nm)
传动轮的转速n 、功率P 及其上的外力偶矩T 之 间的关系:
TNmNK2kπW n1r m03in6 0
9.549103 NnKrmkiW n
34
强度条件:
3.3 等直圆杆扭转时的应力
F 0
d A d A c c o o d A s s s s i 0 i n
43
3.3 等直圆杆扭转时的应力
e s
x
b
f
'
讨论:
解得
s si2 n
co2s
'
1. 0 90
max
smax
2. 45 sma x smin
45 smin
smin smax
此时切应力均为零。
d
实心圆截面: O
d
Ip
2dA
A
22(2πd)
0
2π(
4
)
d
/2
πd
4
4 0 32
dA2πd
Wp
Ip πd3 d/2 16
30
空心圆截面:
3.3 等直圆杆扭转时的应力
D
Ip
2 d
2π3
d
2
d
π D4 d4
D
32
πD414
32
D d
O
dA2πd
W p D I/ p 2 π D 1 4 D d 6 4 π 1 D 31 6 4
'
Fy 0 自动满足
a
d dydz
Fx 0 存在'
b z
O '
dx c
Mz0
x d y d z d x d x d z d y

41
3.3 等直圆杆扭转时的应力
dy
y
切应力互等定理
'
z
a
b
O '
dx
d c
单元体的两个相互垂直的截 面上,与该两个面的交线垂直的 切应力数值相等,且均指向(或 背离) 两截面的交线。
x
'
a
d
单元体在其两对互相垂直
的平面上只有切应力而无正应
力的状态称为纯剪切应力状态。
b '
c
42
3.3 等直圆杆扭转时的应力
斜截面上的应力:
'
a e
f b
dn
x
c
e s
b
f
假定斜截面ef
x 的面积为d A
'
'
s F0
d A d A c s o i d A s s n c i 0 n o
“假定计算法”
5
3.1 剪切
2. 连接件中的剪切和挤压强度计算
图a所示螺栓连接主要有三种 可能的破坏:
Ⅰ. 螺栓被剪断(参见图b和图c); Ⅱ. 螺栓和钢板因在接触面上受压 而发生挤压破坏(螺栓被压扁,钢 板在螺栓孔处被压皱)(图d); Ⅲ. 钢板在螺栓孔削弱的截面处全 面发生塑性变形。
假定计算法中便是针对这些可能的破坏作近似计算的。 6
称为横截面的 极惯性矩
得 dj M t
d x GI p
Mt
dA O dA
26
3.3 等直圆杆扭转时的应力
dj M t
d x GI p
G dj
dx
GGMItp
Mt
Ip
等直圆杆扭转时横截面上切应力计算公式
Mt
O
max
max
M t
Ip
d
27
3.3 等直圆杆扭转时的应力
Mt
O
max
d
最大切应力 r
80MPa ,试校核该轴的强度。
TA
Ⅰ TB

TC
A
C
B
解: (1)求内力,作出轴的扭矩图
22
Mt图(kN·m)
14
39
3.3 等直圆杆扭转时的应力
(2)计算轴横截面上的最大切应力并校核强度 22 Mt图(kN·m)
14
AB段
1,max
M t1 W p1
2π211026N m 0m m3m64.8MPa
螺栓连接[图(a)]中,螺栓主要受剪切及挤压(局部压
缩)。
F
3
3.1 剪切
键连接[图(b)]中,键主要受剪切及挤压。
4
3.1 剪切
剪切变形的受力和变形特点: 作用在构件两侧面上的外力的合力大小相等、方向相 反,作用线相隔很近,并使各自推动的部分沿着与合 力作用线平行的受剪面发生错动。
受剪面上的内力称为剪力; 受剪面上的应力称为切应力;
3.2 薄壁圆筒的扭转 剪切虎克定律
表面变形特点及分析:
T
T
j
AD
BC
圆周线只是绕圆筒轴线转动,其形状、大小、间距不变;
——横截面在变形前后都保持为形状、大小未改变的平 面,没有正应力产生 所有纵向线发生倾斜且倾斜程度相同。
——横截面上有与圆轴相切的切应力且沿圆筒周向均匀分 布
16
3.2 薄壁圆筒的扭转 剪切虎克定律
11
3.1 剪切
当连接中有多个铆钉或螺栓时,最大拉应力smax可能出现
在轴力最大即FN= FN,max所在的横截面上,也可能出现在净面 积最小的横截面上。
12
3.2 薄壁圆筒的扭转 剪切虎克定律
扭转受力特点: 圆截面直杆在与杆的轴线垂直平面内的
外力偶作用下发生扭转。

T
薄壁杆件也可以
由其他外力引起
3 剪切和扭转
1
3 剪切和扭转
3.1 剪切 3.2 薄壁圆筒的扭转 剪切虎克定律 3.3 等直圆杆扭转时的应力 3.4 等直圆杆扭转时的变形 3.5 等直圆杆扭转时的应变能 3.6 非圆截面等直杆的自由扭转
2
1.剪力和切应力
3.1 剪切
连接件(螺栓、铆钉、键等)以及构件在与它们连接处
实际变形情况复杂。
截面上最大切应力相等的情况下,D2/d1之比以及两轴的 重量比。
T

T
d1
(a)
l
T (b)
D2

T
l
36
3.3 等直圆杆扭转时的应力
解:
Wp1
πd13 16
Wp2
πD23 14
16
1,maxW Mpt11
T Wp1
1πd6T13
2,ma xW M pt2 2W Tp2πD 2 311T 6 4
限切应力除以安全因数确定。
7
(2) 挤压强度计算
3.1 剪切
在假定计算中,连接件与被连接件之间的挤压应力是按
某些假定进行计算的。
对于螺栓连接和铆钉连接,挤压面是半个圆柱形面(图
b),挤压面上挤压应力沿半圆周的变化如图c所示,而最大
挤压应力sJy的值大致等于把挤压力Pjy除以实际挤压面(接触
面)在直径面上的投影。
n
T
R0
nl
T
n
内力偶矩——扭矩Mt
Mt
Mt T
n
14
3.2 薄壁圆筒的扭转 剪切虎克定律
薄壁圆筒受扭时变形情况:
T
AD BC
T
j
表面正方格子倾斜的角度—直角
的改变量
圆筒两端截面之间相对转过的圆
心角j
rjl

A1 A
D D'
D1 D1'
B
B1 C
C1 C1'
C'
切应变
相对扭转角 j
jr/l
15
16
BC段
2,maxW Mpt22
14106Nmm
71.3MPa
π10m 0 m 3
16
[]8M 0 P
即该轴满足强度条件。
40
3.3 等直圆杆扭转时的应力
2.斜截面上的应力 切应力互等定理
单元体—— M
此处为以横截面、径截面以及与表面平行的面 从受扭的等直圆杆表面处截取一微小的正六面 体
M
dy
y dxdz
10
3.1 剪切
(3) 连接板拉伸强度计算 螺栓连接和铆钉连接中,被连接件由于钉孔的削弱,其
拉伸强度应以钉孔中心所在横截面为依据;在实用计算中并 且不考虑钉孔引起的应力集中。被连接件的拉伸强度条件为
t
s N [s]
A 式中:N为检验强度的钉孔中心处横截面上的轴力;A为同
相关文档
最新文档