4.7土坡稳定性分析课件
土坡稳定分析
(1) 假设圆弧滑裂面
(2) 大多数情况下是精确的
A
O
R
C
i
bB 67
-2 -1 0 1 2 3 4 5
Pi+1
Pi hi
Wi
i
hi+1
Ti
Ni
几种方法总结
方法
整体圆弧法 简单条分法 毕肖普法
滑裂面形状
圆弧
圆弧
圆弧
假设
刚性滑动体 忽略全部条 忽略条间切向
滑动面上极 间力
力
限平衡
适用性
饱和软粘土, 一般均质土 一般均质土
Ti
Ni
Hi+1 Pi+1
Pi hi Hi
Wi
i
Ti
hi+1
Ni
未知数:条块简力+作用点位置=2(n-1)+(n-1) = 3n-3
滑动面上的力+作用点位置=3n
安全系数 F =1
方程数:静力平衡+力矩平衡=3n
滑动面上极限平衡条件=n
4n
6n-2
未知数-方程数=2n-2
未知数: 6n-2 方程数: 4n
1 整体圆弧滑动法(瑞典Petterson) 2 瑞典条分法(瑞典Fellenius)圆弧滑动面 3 毕肖普法( Bishop)圆弧滑动面 4 Janbu法 非圆弧滑动面 5 不平衡推力传递法 非圆弧滑动面
1 整体圆弧滑动法(瑞典圆弧法)
假设条件
O R
• 均质土 • 二维 • 圆弧滑动面 • 滑动土体呈刚性转动 • 在滑动面上处于极限平衡条件
• 地基的破坏形式
1.整体剪切破坏
a. p-s曲线上有两个明显的转折点,可区分地基变形的三个阶段 b. 地基内产生塑性变形区,随着荷载增加塑性变形区发展成连 续的滑动面 c. 荷载达到极限荷载后,基础急剧下沉,并可能向一侧倾斜, 基础两侧地面明显隆起
土坡稳定分析ppt课件
T+ΔT
Δ S=τ Δ l
Δ N=σ Δ l
α
Δ li
Janbu 法 土条的受力分析
简布(Janbu)普遍条分法
τ
= f
F
ce
(q
W x
t
u)
tan e
1 tane tan
土 条 基
本
-
方
)
Δ
E=Δ
Q+(q+ W x
t)Δ
xtan
.τ
Δ x(1+tan2
M
孔隙压力分布曲线
等势线
简化Bishop计算公式
不考虑渗流
Fs
1 m i
(cili
cosi
Wi
tani )
Wi sini
O Ti
xi
Ei hi
bi
uili
R
Wi
N'i
Wi Ei+1
Xi-Xi+1 Wi
Ei-Xi+1
Ni
•
li
简化Bishop计算公式
考虑渗流容重替代法
Fs
陈祖煜(通用)条分法
静力平衡微分方程 对土条建立x和y方向的静力平衡方程:
N sin T cos Q G cos 0
N cos T sin (W qx) G sin 0
应用莫尔-库伦条件
Δ T=c′eΔ xsec +(Δ N—uΔ xsec )tanφ ′ tan =dy/dx
dW φd′cex-os( )
陈祖煜(通用)条分法
将作用在土条上的力对土条底中点取矩, 建立力矩平衡方程 :
《土压力与土坡稳定》课件
课程目标
掌握土压力的基本理论及其应用。
理解土坡稳定性的评价方法和加固措施。
提高解决实际工程中土压力与土坡稳定问题的能 力。
CHAPTER
02
土压力的基本概念
土压力的定义
土压力
被动土压力
指土体作用在建筑物或构筑物上的压 力,是建筑物或构筑物与土体之间相 互作用力的合力。
当建筑物或构筑物在外力作用下产生 位移,被动地受土体挤压,此时土体 对建筑物或构筑物的作用力为被动土 压力。
《土压力与土坡稳定》 PPT课件
CONTENTS
目录
• 引言 • 土压力的基本概念 • 土压力的计算方法 • 土坡稳定分析 • 实际工程中的土压力与土坡稳定问题 • 结论
CHAPTER
01
引言
主题介绍
土压力
主要介绍土压力的基本概念、形成原 理以及分类。
土坡稳定
探讨土坡稳定性的影响因素以及土坡 失稳的机制。
对未来学习的建议
深入研究土力学基础
关注工程实践进展
建议进一步学习土力学基础理论,深入理 解土的物理性质、力学行为和本构关系。
关注国内外相关工程实践,了解最新的技 术发展与应用情况,积累实际工程经验。
加强数值模拟与计算机辅助技术
注重跨学科知识整合
学习并掌握数值模拟软件,如有限元、离 散元等,提高解决复杂问题的能力。
如地震、降雨等外部力量 可能引起土坡失稳。
内部因素
土坡内部应力分布不均、 土质不均等可能导致失稳 。
人为因素
不合理的土地利用、工程 活动等也可能导致土坡失 稳。
土坡稳定的评价标准
稳定性系数
通过计算稳定性系数来评估土坡的稳定性,系数越高稳定性 越好。
土的稳定分析—土坡稳定性分析(土工技术课件)
2. 简单无粘性土坡稳定性分析
干坡或完全浸水情况
T
顺坡出流情况 T
T N
W
tan tan 0.481
Fs
25.7
JT N
W
tan tan 0.241 sat Fs
13.5
渗流作用的土坡稳定比无渗流作用的土坡稳定,坡角要小得多
无粘性土坡稳定性分析
目录
1
土坡概念与滑坡机理
2
简单无粘性土坡稳定性分析
3
顺坡渗流无粘性土坡稳定分析
4
例题
1. 土坡概念与滑坡机理
由于地质作用而 自然形成的土坡 在天然土体中开挖 或填筑而成的土坡
坡底
坡脚
天然土坡 人工土坡
坡顶
山坡、江河岸坡 路基、堤坝
坡角
坡高
2. 土坡概念与滑坡机理
滑坡的机理
(l)外界力的作用破坏了土内原来的应力平衡状态。如基坑的开挖、路堤的填 筑、土坡顶面上作用外荷载、土体内水的渗流、地震力等。
砂土的内摩擦角 (自然休止角)
抗滑力与滑动力 的比值
安全系数
1.1~1.5
Fs
T T
W
cos tan W sin
tan tan
Fs 1
3. 顺t;T+J 顺坡出流情况:
N
T Fs T J
J w sin
/ sat≈1/2,坡面有 顺坡渗流作用时,无 粘性土土坡稳定安全 系数将近降低一半
第七章土坡稳定分析
第七章土坡稳定分析土坡的稳定性是指土坡在自身重力和外部荷载作用下,能够保持不发生倾覆、滑动或坍塌的能力。
土坡的稳定性分析是土坡工程设计的关键步骤之一,它的目的是确定土体的最大稳定角,以及土坡所能承受的最大荷载。
土坡稳定性分析主要包括以下几个方面:1.荷载计算:首先需要确定土坡所受到的各种荷载,包括自重荷载、地震荷载、水压力荷载等。
这些荷载将直接影响土坡的稳定性。
2.土体力学参数:土坡的稳定性分析需要确定土体的力学参数,包括土体的内摩擦角、剪胀角、孔隙比等。
这些参数可以通过室内试验或现场试验来确定。
3.土体抗剪强度:土坡的稳定性分析需要确定土体的抗剪强度,包括黏聚力和内摩擦角。
一般可通过室内试验或相关经验公式来确定。
4.平衡条件:土坡的稳定性分析需要确定土坡的平衡条件,即坡面上的剪切力与抗剪强度之间的平衡关系。
通过平衡条件,可以计算出土坡的最大稳定角。
5.稳定性判据:土坡的稳定性分析需要选择适当的稳定性判据,以判断土坡是否稳定。
常用的稳定性判据包括平衡法、极限平衡法、有限元法等。
在进行土坡稳定性分析时,需要注意以下几个问题:1.考虑边界条件:土坡的稳定性分析需要考虑土坡周围的边界条件,包括土坡顶部的固结载荷、土坡脚部的支撑条件等。
2.考虑不同荷载组合:土坡的稳定性分析需要考虑不同荷载组合的影响,包括常规和临界荷载组合。
常规荷载组合是指常规工况下土坡所承受的荷载组合,临界荷载组合是指在其中一特定条件下土坡的最不利工况下所承受的荷载组合。
3.安全系数:土坡的稳定性分析需要根据土坡的设计要求和实际情况,确定相应的安全系数。
安全系数是指土坡的稳定强度与设计要求强度之间的比值,一般要求安全系数大于14.考虑时间因素:土坡的稳定性分析需要考虑土体的变形和固结过程。
在长期静荷载作用下,土体可能发生蠕变和沉降等变形。
因此,在进行土坡稳定性分析时,需要考虑时间因素的影响。
综上所述,土坡的稳定性分析是土坡工程设计中一个非常重要的环节。
土坡稳定性分析
第七章土坡稳定性分析第一节概述土坡就是由土体构成、具有倾斜坡面的土体,它的简单外形如图7-1所示。
一般而言,土坡有两种类型。
由自然地质作用所形成的土坡称为天然土坡,如山坡、江河岸坡等;由人工开挖或回填而形成的土坡称为人工土(边)坡,如基坑、土坝、路堤等的边坡。
土坡在各种内力和外力的共同作用下,有可能产生剪图7-1 土坡各部位名称切破坏和土体的移动。
如果靠坡面处剪切破坏的面积很大,则将产生一部分土体相对于另一部分土体滑动的现象,称为滑坡。
土体的滑动一般系指土坡在一定范围内整体地沿某一滑动面向下和向外移动而丧失其稳定性。
除设计或施工不当可能导致土坡的失稳外,外界的不利因素影响也触发和加剧了土坡的失稳,一般有以下几种原因:1.土坡所受的作用力发生变化:例如,由于在土坡顶部堆放材料或建造建筑物而使坡顶受荷。
或由于打桩振动,车辆行驶、爆破、地震等引起的振动而改变了土坡原来的平衡状态;2.土体抗剪强度的降低:例如,土体中含水量或超静水压力的增加;3.静水压力的作用:例如,雨水或地面水流入土坡中的竖向裂缝,对土坡产生侧向压力,从而促进土坡产生滑动。
因此,粘性土坡发生裂缝常常是土坡稳定性的不利因素,也是滑坡的预兆之一。
在土木工程建筑中,如果土坡失去稳定造成塌方,不仅影响工程进度,有时还会危及人的生命安全,造成工程失事和巨大的经济损失。
因此,土坡稳定问题在工程设计和施工中应引起足够的重视。
天然的斜坡、填筑的堤坝以及基坑放坡开挖等问题,都要演算斜坡的稳定性,亦既比较可能滑动面上的剪应力与抗剪强度。
这种工作称为稳定性分析。
土坡稳定性分析是土力学中重要的稳定分析问题。
土坡失稳的类型比较复杂,大多是土体的塑性破坏。
而土体塑性破坏的分析方法有极限平衡法、极限分析法和有限元法等。
在边坡稳定性分析中,极限分析法和有限元法都还不够成熟。
因此,目前工程实践中基本上都是采用极限平衡法。
极限平衡方法分析的一般步骤是:假定斜坡破坏是沿着土体内某一确定的滑裂面滑动,根据滑裂土体的静力平衡条件和莫尔—库伦强度理论,可以计算出沿该滑裂面滑动的可能性,即土坡稳定安全系数的大小或破坏概率的高低,然后,再系统地选取许多个可能的滑动面,用同样的方法计算其稳定安全系数或破坏概率。
精品课件- 土坡稳定性分析
四、影响土坡稳定性的主要因素
(1)边坡坡角β。坡角β越小愈安全,但是采用较小的坡角β,在工程中会增加挖填方 量,不经济。
(2)坡高H 。H越大越不安全。 (3)土的性质。γ、φ和c大的土坡比、和小的土坡更安全。 (4)地下水的渗透力。当边坡中有地下水渗透时,渗透力与滑动方向相反时,土坡则
更安全;如两者方向相同时,土坡稳定性就会下降。 (5)震动作用的影响。如地震、工程爆破、车辆震动等。 (6)人类活动和生态环境的影响。
2.造成土抗剪强度降低的原因有: (1)冻胀再融化; (2)振动液化; (3)浸水后土的结构崩解; (4)土中含水量增加等。 • 土坡失稳一般多发生在雨天,因为水渗入土中一方面使土中剪应力增加了;另一方
面又使土的抗剪强度降低了,特别是坡顶出现竖向大裂缝时,水进入竖向裂缝对土 坡产生侧向压力,从而导致土坡失稳。因此,土坡产生竖向裂缝常常是土坡失稳的 预兆之一。
• 若假定滑动面是通过坡角A的平面AC,AC的倾角为α,并沿土坡长度方向截取单位长 度进行分析,则其滑动土楔体ABC的重力为:
•
W=பைடு நூலகம்×(△ABC)
• 则沿滑动面向下的滑动力为:
•
T=Wsin α
• 抗滑力为摩擦力,即:
•
T`=Ntanφ=Wcosαtanφ
• 土坡滑动稳定安全系数为:
• 当α=β时,滑动稳定安全系数最小,即
•
§3 粘性土坡稳定分析
• 一、粘性土坡滑动面的形式
• 根据一些实测的资料,粘性土坡的滑动面常常为曲面。土坡滑动前一般在坡顶先产 生张力裂缝,继而沿某一曲面产生整体滑动。为便于理论分析,可以近似地假设滑 动面为一圆弧面。
• 圆弧滑动面的形式一般有下述三种:
土坡稳定性分析
坚硬 1:0.75~1:1.00 1:1.00~1:1.25 硬塑 1:1.00~1:1.25 1:1.25~1:1.50
注:1.表中碎石土的充填物为坚硬或硬塑状态的粘性土。
2.对于砂土或充填物为砂土的碎石土, 其边坡坡度允许值均按自然休止角确定。
土坡稳定性分析
(四)黏性土土坡稳定性分析
圆弧滑动分析法——条分法。
土坡稳定性分析
土的 类别
碎石 土
粘性 土
土质边坡坡度允许值
密实度
坡度允许值(高宽比)
或状态 坡高在5m以内 坡高为5~10m
密实 中密 稍密
1:0.35~1:0.50 1:0.50~1:0.75 1:0.50~1:0.75 1:0.75~1:1.00 1:0.75~1:1.00 1:1.00~1:1.25
N W cos T W sin
无粘性土土坡稳定性分析
T N tan W cos tan
K
抗滑力 滑动力 T TWcos tan W sin
t an t an
从上式看出,只要 土坡就是稳定的。
工程中一般要求K≥1.25~1.30
土坡稳定性分析
(三)土质边坡开挖规定
《规范》规定,在山坡整体稳定的条件下,土质边坡的开挖 应符合下列规定: (1)边坡的坡度允许值,应根据当地经验,参照同类土层的 稳定坡度确定。当土质良好且均匀、无不良地质现象、地下 水不丰富时,可按表7.2确定。 (2)土质边坡开挖时,应采取排水措施,边坡的顶部应设置 截水沟。在任何情况下不允许在坡脚及坡面上积水。 (3)边坡开挖时,应由上往下开挖,依次进行。弃土应分散 处理,不得将弃土堆置在坡顶及坡面上。当必须在坡顶或坡 面上设置弃土转运站时,应进行坡体稳定性验算,严格控制 堆栈的土方量。 (4)边坡开挖后,应立即对边坡进行防护处理。
(完整版)土坡稳定性分析
第七章土坡稳定性分析第一节概述土坡就是由土体构成、具有倾斜坡面的土体,它的简单外形如图7-1所示。
一般而言,土坡有两种类型。
由自然地质作用所形成的土坡称为天然土坡,如山坡、江河岸坡等;由人工开挖或回填而形成的土坡称为人工土(边)坡,如基坑、土坝、路堤等的边坡。
土坡在各种内力和外力的共同作用下,有可能产生剪图7-1 土坡各部位名称切破坏和土体的移动。
如果靠坡面处剪切破坏的面积很大,则将产生一部分土体相对于另一部分土体滑动的现象,称为滑坡。
土体的滑动一般系指土坡在一定范围内整体地沿某一滑动面向下和向外移动而丧失其稳定性。
除设计或施工不当可能导致土坡的失稳外,外界的不利因素影响也触发和加剧了土坡的失稳,一般有以下几种原因:1.土坡所受的作用力发生变化:例如,由于在土坡顶部堆放材料或建造建筑物而使坡顶受荷。
或由于打桩振动,车辆行驶、爆破、地震等引起的振动而改变了土坡原来的平衡状态;2.土体抗剪强度的降低:例如,土体中含水量或超静水压力的增加;3.静水压力的作用:例如,雨水或地面水流入土坡中的竖向裂缝,对土坡产生侧向压力,从而促进土坡产生滑动。
因此,粘性土坡发生裂缝常常是土坡稳定性的不利因素,也是滑坡的预兆之一。
在土木工程建筑中,如果土坡失去稳定造成塌方,不仅影响工程进度,有时还会危及人的生命安全,造成工程失事和巨大的经济损失。
因此,土坡稳定问题在工程设计和施工中应引起足够的重视。
天然的斜坡、填筑的堤坝以及基坑放坡开挖等问题,都要演算斜坡的稳定性,亦既比较可能滑动面上的剪应力与抗剪强度。
这种工作称为稳定性分析。
土坡稳定性分析是土力学中重要的稳定分析问题。
土坡失稳的类型比较复杂,大多是土体的塑性破坏。
而土体塑性破坏的分析方法有极限平衡法、极限分析法和有限元法等。
在边坡稳定性分析中,极限分析法和有限元法都还不够成熟。
因此,目前工程实践中基本上都是采用极限平衡法。
极限平衡方法分析的一般步骤是:假定斜坡破坏是沿着土体内某一确定的滑裂面滑动,根据滑裂土体的静力平衡条件和莫尔—库伦强度理论,可以计算出沿该滑裂面滑动的可能性,即土坡稳定安全系数的大小或破坏概率的高低,然后,再系统地选取许多个可能的滑动面,用同样的方法计算其稳定安全系数或破坏概率。
土坡稳定性分析培训讲义PPT(32页)
条形基础 a 3.5b d
tan
矩形基础 a 2.5b d
tan
边坡有危岩、孤石、崩塌体等 不稳定的迹象时要先做妥善 处理。对软土土坡和极易风 化的软质岩石边坡,开挖后 应对坡脚、坡面采取喷浆、 抹面、嵌补、砌石等保护措 施,并作好坡顶、坡脚排水。
必要时尚应采取防渗措施。
▪ 2. 支挡:根据滑坡推力的大小、方向及作用点,可选
用重力式抗滑挡墙、阻滑桩及其他抗滑结构。
▪ 3. 卸载:在保证卸载区上方及两侧岩土稳定的情况下,
可在滑体主动区卸载,但不得在滑体被动区卸载;
4. 反压:在滑体的阻滑区段增加竖向荷载以提高滑体
的阻滑安全系数。
三、土坡坡顶建(构)筑物地基稳定性 位于稳定土坡坡顶上的建筑,《建筑地基规
2、人工土坡:由人工开挖或回填形成的土坡。
¤ 挖方:沟、渠、坑、池
露 天 矿
¤填方:堤、坝、路基、堆料 小浪底土石坝
土坡稳定性是土木工程建设中十分重要的问题,如何 进行土坡稳定性分析?在工程中该如何合理设计边坡 才达到经济及安全的要求?
滑坡:指土坡在土体自重及
外荷载作用下,一定范围内的土 体整体地沿某一滑动面向下 和向外滑动而丧失其稳定性
粘性土
坚硬
1:0.75~1:1.00 1:1.00~1:25
硬塑
1:100~1:1.25 1:1.25~1:1.5
▪
二、滑坡防治:
▪ 必须根据工程地质、水文地质条件以及施工影响等因素, 认真分析滑坡可能发生或发展的主原因,可采取下列防治 滑坡的处理措施:
4.7土坡稳定性分析课件
MR MT
土坡稳定 安全系数
各土条对滑弧 圆心的抗滑力 矩和滑动力矩
2) 受力分析图
O R
bB
C
7
6 5 4 3 2 O1 -1 A -2
a Wi
Pi
hi Hi c Ti
b Hi+1
Pi+1 hi+1
d
Ni
R
3) 土条i平衡方程
bB
C
7
6
力 的 平 衡 方 程:
Fxi
0
-1
简化比肖普法---只考虑水平 力P不考虑侧面力H
简化Bishop方法的特点
(1) 假设条块间作用力只有法向力没有切向力; (2) 满足滑动土体整体力矩平衡条件; (3) 满足各条块力的多边形闭合条件,但不满足条
块的力矩平衡条件; (4) 满足极限平衡条件; (5) 得到的安全系数比瑞典条分法略高一点。
天然地层的土质与构造比较复杂,这些土坡与人工填筑土坡相 比,性质上所不同。对于正常固结及超固结粘土土坡,按上述 的稳定分析方法,得到安全系数,比较符合实测结果。但对于 超固结裂隙粘土土坡,采用与上述相同的分析方法,会得出不 正确的结果。
2、关于圆弧滑动条分法
计算中引入的计算假定: 滑动面为圆弧。 不考虑条间力作用。 安全系数用滑裂面上全部抗滑力矩与滑动力矩之比来定义。
④.滑动面的总滑动力矩
C
βi
B
R
d
c
MT R Ti R Wi sini ⑤.滑动面的总抗滑力矩
i
H
MR R fili R i tani ci li
A
R (Wi cos i tani cili )
ab d
⑥.确定安全系数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X i
假定条块间水平作用力的位置。
2).方法的特点:
i Pi hi hi H i
Hi+1
Pi+1 hi+1
(1) 考虑条间力的作用
(2) 满足所有静力平衡条件
Oi
Wi i
(3) 满足极限平衡条件
Ti Ni
8)、最危险滑裂面的确定方法(费伦纽斯)
O 2 R 1 B
1). 均匀粘性土坡 =0时:
1、整体圆弧滑动法(瑞典圆弧法)
d A O
滑动力矩: MT W d
Tf
W C
抗滑力矩: M R c AC R N tg R 当 0时,M R c AC R
整体圆弧滑动受力示意图
抗 滑 力 矩 M R c AC R 稳定安全系数: FS 滑 动 力 矩 MT W d 适用于 0的 情 况 。
和瑞典条分法; (2)假定条间力的作用方向的不平衡推力 传递法; (3)假定条间力的作用点位置的简布法。
5)、瑞典条分法
O
βi
步骤:①.按比例绘出土坡剖面
C
B
c d
R
②.任选一圆心O,确定滑 动面,将滑动面以上土体 分成几个等宽或不等宽土 条
③.每个土条的受力分析
Ni 1 Wi cos i li li Ti 1 i Wi sin i li li
A
H
各种坡角的 和 值 坡角 坡度 1:m 60° 1:0.58 29° 45° 1:1.0 28° 1:1.5 26° 33° 41′ 1:2.0 25° 26° 34′ 1:3.0 26° 18° 26′ 1:4.0 25° 14° 02′ 1:5.0 25° 11° 19′
1 2 1
H
A
i d c Wi Xi
a
Pi b
i
Pi+1
Xi+1
假设两组合力 (Pi,Xi)= (Pi+1,Xi+1)
求解前提
aT
i
b Ni
li
Ni Wi cosi
静力平衡
Ti Wi sin i
O
βi
④.滑动面的总滑动力矩 B c d H
C
MT R Ti R Wi sin i
4- 7
土坡稳定分析
主要内容
4.7.1 概述 4.7.2 影响土坡稳定的因素 4.7.3 土坡稳定分析圆弧法 4.7.4 简单土坡稳定计算 4.7.5 土坡稳定分析中有关问题
4.7.1
概述
天然土坡
人工土坡 山坡、江 河岸坡 路基、堤坝
由于地质作用而 自然形成的土坡 在天然土体中开挖 或填筑而成的土坡
c
Pi+1 Xi+1
Pi
aT
i
b Ni
li
瑞典条分法的特点:
(1) 忽略条间力的作用
(2) 满足滑动土体整体力矩平衡条件
(3) 不满足条块的静力平衡条件 (4) 满足极限平衡条件
(5) 得到的安全系数偏低
6)、毕肖普法(Bishop法)
考虑条块侧面力
简化比肖普法---只考虑水平 力P不考虑侧面力H
其重力为G,分力有:
T
M
T
N
G
抗滑力 N tg G cos tg tg K = 滑动力 T G sin tg
(5-25) 可见,当= 时,k=1,此时
简化Bishop方法的特点 (1) 假设条块间作用力只有法向力没有切向力; (2) 满足滑动土体整体力矩平衡条件; (3) 满足各条块力的多边形闭合条件,但不满足条 块的力矩平衡条件; (4) 满足极限平衡条件; (5) 得到的安全系数比瑞典条分法略高一点。
7)、普遍条分法(简布法--Janbu法) 1). 求解前提:
A -2
N i tgi c i l i 极限平衡方程: Ti Fs
n个土条,n-1个分界面,Pi 、Hi、hi共3(n-1)个未 知数;Ni 、Ti共2n个未知数;Fs一个未知数。 若把滑动土体分成n个条块,则共有未知数5n-2 个,可建方程4n个,为超静定问题。
4) 求解方法
(1)假定条间力的大小与方向的 毕肖普法
40° 37° 35° 35° 35° 36° 39°
2
2. 均匀粘性土坡 >0时:
2
1 A
C1C2C3 C4 B
H
H 4.5H D
M
4.7.4
简单土坡稳定计算
定义:当土坡土质均一,坡度不变,无地 下水时,称为简单土坡。
1、无粘性土简单土坡 考察坡面上M土颗粒
T G sin N=G cos
安全系数
2) 受力分析图
O R b B 5 6 Pi hi Hi c Ti Ni d C 7 a Wi b Hi+1 Pi+1 hi+1
2 A -1 -2 O 1
3
4
R
b B 5 6 Pi hi Hi c Ti Ni d C 7 a Wi Hi+1 Pi+1 hi+1
3) 土条i平衡方程
b
Fxi 0 4 力的平衡方程 : Fzi2 30 1 O M i 0 1
2、条分法
O
βi
1) 原理 对于外形复杂、 >0的粘性 土土坡,土体分层情况时, 要确定滑动土体的重量及其 重心位置比较困难,而且抗 剪强度的分布不同,一般采 用条分法分析。 滑动土体 分为若干 垂直土条 各土条对滑弧 圆心的抗滑力 矩和滑动力矩
B c d
C
R
H
A a
i
b
抗滑力矩 M R 土坡稳定 FS 滑动力矩 M T
⑤.滑动面的总抗滑力矩
R
A
i
a d Xi b
M R R fi li R i tan i ci li R (Wi cos i tan i ci li )
⑥.确定安全系数 M R Wi cos i tg i ci l i Fs MT Wi sin i 条分法是一种试算法,应选取 不同圆心位置和不同半径进行 计算,求最小的安全系数
坡顶
坡高
坡底
坡脚
坡角
土坡稳定分析问题
4.7.2
影响土坡稳定的因素 土坡坡度 可用h/l或θ表示
土坡高度
土的性质 气象条件 静(动)水压力的作用 地震 使土体抗剪强度降低
实例:香港宝城大厦
1972.7 滑坡 当场死亡120人。
4.7.3
土坡稳定分析圆弧法 工程设计中常假定粘性土坡的滑动面为圆弧
面,用圆弧滑动法(极限平衡法的一种)分析 粘性土坡的稳定性,即圆弧法。 最初由瑞典科学家提出的。 被太沙基认为是现今岩土工程中的一个里程碑。