(新)计算机组成原理课程设计——微程序设计报告书
计算机组成原理课程设计报告
《计算机组成原理》课程设计报告目录1.任务书 (1)2.设备清单 (1)3.设计原理及方法 (1)3.1数据格式 (1)3.2指令设计 (1)3.3指令格式 (2)3.4指令系统 (3)3.5设计依据 (3)3.6按微指令的格式参照程序流图 (5)3.7微程序代码清单 (6)3.8实验接线图 (7)3.9机器指令代码清单 (8)3.10化简后的机器指令 (8)4.设计运行结果分析 (12)4.1实验过程 (12)4.2结果分析 (14)5.设计小结 (14)6.设计日志 (15)1.任务描述复杂指令计算机系统设计设计不少于10条指令的指令系统。
其中,包含算术逻辑指令,访问内存指令,程序控制指令,输入输出指令,停机指令。
重点是要包括直接、间接、变址和相对寻址等多种寻址方式。
基于TD-CMA计算机组成原理教学实验系统,设计一个复杂计算机整机系统模型机,分析其工作原理。
根据模型机的数据通路以及微程序控制器的工作原理,设计完成以下几条机器指令和相应的微程序,输入程序并运行。
IN R1,00H; 从端口00(IN单元)读入数据送R1LDI R2,0FH;将立即数OFH装入R2AND R1,R2;R1*R2->R1STA [10H],R1;R1->[[10H]],间接寻址OUT 40H,10H;10H单元的内容在OUT单元显示,直接寻址DEC 12H;12H单元内容减1,直接寻址LOP:BZC EXIT;JMP LOP;EXIT:HLT10H、12H单元内容分别为12H、03H2.设备清单PC机一台,TD-CMA实验系统一套,排线若干。
3.设计原理及方法3.1数据格式模式机规定采用的定点补码表示法表述数据,字长为8位,8位全用来表示数据(最高位不表示符合),数值表示的范围:0≤X≤28-1。
3.2指令设计模型机设计三大类指令共十五条,其中包括运算类指令、控制转移类指令,数据传送类指令。
运算类指令包括三类:算数运算、逻辑运算、移位运算,设计有6类运算指令,分别为:AND、ADD、INC、SUB、OR、RR,所有运算全是单指令,寻址方式采用寄存器直接寻址。
计算机组成原理课程设计报告-微程序设计
窊大的计算机学院的学弟学妹们,你们师哥呕心沥血的一个月,终于把计算机最棘手的一门实验搞定了---微程序设计以下是我汗水的结晶,现传在网上,供你们借鉴,用到此文档的童靴,赶紧的膜拜感激吧!真羡慕你们可以有这么慷慨的学长,处处为你们着想。
你说我的学长学姐们怎么就没有人传一份呢?O(∩_∩)O哈哈~姓名: [请输入姓名]联系电话: [请输入联系电话]目录1 课程设计的目的和要求 (1)1.1课程设计目的 (1)1.2 课程设计的要求 (1)2 实验设备 (1)3 实验分析 (1)3.1 指令译码电路分析 (1)3.2 微地址形成分析 (2)3.3 时序电路分析 (4)3.4 运算器单元分析 (6)3.5 寄存器单元分析 (7)3.6 微控器电路分析 (8)3.7 设计内容分析 (10)4 实验设计 (11)4.1 微程序控制电路 (11)4.2 微指令格式 (13)4.3 指令功能类别 (13)4.4 微程序流程总框架 (14)5 微程序详细设计 (16)5.1 微程序流程框架 (16)5.2 控制台流程 (17)5.3 每条指令的详细设计 (19)6 机器指令程序 (25)6.1 程序流程图 (25)6.2 程序助记符形式 (26)6.3 机器指令程序 (26)6.4 程序的CPI (27)7 实验步骤 (28)7.1线路连接图 (28)7.2 程序微代码表 (29)心得体会 (31)参考文献 (32)1 课程设计的目的和要求1.1课程设计目的在掌握部件单元电路实验的基础上,进一步将其组成系统构造一台基本模型计算机。
通过一个完整的8位指令系统结构(ISA)的设计和实现,加深对计算机组成原理课程内容的理解,建立起整机系统的概念,掌握计算机设计的基本方法,培养学生科学的工作作风和分析、解决实际问题的工作能力。
1.2 课程设计的要求要求综合运用计算机组成原理、数字逻辑和汇编语言等相关课程的知识,理解和熟悉计算机系统的组成原理,掌握计算机主要功能部件的工作原理和设计方法,掌握指令系统结构设计的一般方法,掌握并运用微程序设计(Microprogramming)思想,在设计过程中能够发现、分析和解决各种问题,自行设计自己的指令系统结构(ISA),并编写相应的微程序,具体上机调试掌握整机概念。
计算机组成原理课程设计报告
计算机组成原理课程设计报告课程设计题目:计算机组成原理专业名称:计算机科学与技术班级: 2013240202关童:201324020217张一轮:201324020218孙吉阳:201324020219张旭:201324020220老师姓名:单博炜2015年12月31日第一章课程设计概述1.1 课程设计的教学目的本课程设计的教学目的是在掌握计算机系统组成及内部工作机制、理解计算机各功能部件工作原理的基础上,深入掌握数据信息流和控制信息流的流动过程,进一步加深计算机系统各模块间相互关系的认识无条件转移),其指令格式如表1(前4位是操作码):表1:IN为单字长(8位),含义是将数据开关8位数据输入到R0寄存器;ADD为双字长指令,第一字为操作码,第二字为操作数地址,其含义是将R0寄存器的内容与内存中以A为地址单元的数相加,结果放在R0;STA为双字长指令,含义是将R0中的内容存储到以第二字A为地址内存单元中;OUT为双字长指令,含义是将内存中以第二字为地址的数据读到数据总线上,由数码管进行显示;JMP是双字长指令,执行该指令时,程序无条件转移到第二字所指定的内存单元地址。
为了向RAM中装入程序和数据,检查写入是否正确,并能启动程序执行,还设计了三个控制台操作微程序:存储器读操作”(KRD):拨动总清开关CLR后,当控制台开关SWB、SWA置为“00”时,按START 微动开关,可对RAM进行连续手动读操作;存储器写操作(KWE):拨动总清开关CLR后,当控制台开关SWB、SWA置为“01”时,按START微动开关,可对RAM进行连续手动写入;启动程序:拨动总清开关CLR后,当控制台开关SWB、SWA置为“11”时,按START微动开关,即可转入第01号“取指”微指令,启动程序运行。
这三条控制台指令用两个开关SWB、SWA的状态来设置,其定义如表2:表2:C字段:按照数据通路可画出机器指令的微程序流程图如图2所示,当拟定“取值”微指令时,该微指令的判别测试字段为P(1)测试,由于取值指令是所有微程序都是用的公用微程序,因此P(1)测试结果出现多路分支,本机使用指令寄存器的前四位(IR7-IR4)作为测试条件,出现5路分支,占用5个固定的微地址单元。
《计算机组成原理》微程序设计实验报告
《计算机组成原理》实验报告学院:计算机学院专业:交通工程班级学号:AP0804114学生姓名:黄佳佳实验日期:2010.12.14指导老师:李鹤喜成绩评定:五邑大学信息学院计算机组成原理实验室实验五微程序设计实验一、实验目的:深入掌握微程序控制器的工作原理,学会设计简单的微程序。
二、预习要求:1.复习微程序控制器工作原理;2.复习计算机微程序的有关知识。
三、实验设备:EL-JY-II型计算机组成原理实验系统一台,连接线若干。
四、微程序的设计:1.微指令格式设计微指令编码格式的主要原则是使微指令字短、能表示可并行操作的微命令多、微程序编写方便。
微指令的最基本成份是控制场,其次是下地址场。
控制场反映了可以同时执行的微操作,下地址场指明下一条要执行的微指令在控存的地址。
微指令的编码格式通常指控制场的编码格式,以下几种编码格式较普遍。
1)最短编码格式这是最简单的垂直编码格式,其特点是每条微指令只定义一个微操作命令。
采用此格式的微指令字短、容易编写、规整直观,但微程序长度长,访问控存取微指令次数增多从而使指令执行速度慢。
2)全水平编码格式这种格式又称直接编码法,其特点是控制场每一位直接表示一种微操作命令。
若控制场长n位,则至多可表示n个不同的微操作命令。
采用此格式的微指令字长,但可实现多个允许的微操作并行执行,微程序长度短,指令执行速度快。
3)分段编码格式是将控制场分成几段。
若某段长i位,则经译码,该段可表示2i个互斥的即不能同时有效的微操作命令。
采用这种格式的微指令长度较短,而可表示的微操作命令较多,但需译码器。
2.微程序顺序控制方式的设计微程序顺序控制方式指在一条指令对应的微程序执行过程中,下一条微指令地址的确定方法,又叫后继地址生成方式。
下面是常见的两种。
1)计数增量方式这种方式的特点是微程序控制部件中的微地址中的微地址产生线路主要是微地址计数器MPC。
MPC 的初值由微程序首址形成线路根据指令操作码编码形成。
计组课设-微指令的设计实验
计算机组成原理课程设计报告班级:计算机/物联网 ________ 班姓名:_______ 学号:___________完成时间:2016.1.14 _____________________一、课程设计目的1 •在实验机上设计实现机器指令及对应的微指令(微程序)并验证,从而进一步掌握微程序设计控制器的基本方法并了解指令系统与硬件结构的对应关系;2 •通过控制器的微程序设计,综合理解计算机组成原理课程的核心知识并进一步建立整机系统的概念;3 •培养综合实践及独立分析、解决问题的能力。
二、课程设计的任务针对COP2000实验仪,从详细了解该模型机的指令/微指令系统入手,以实现乘法和除法运算功能为应用目标,在COP2000 的集成开发环境下,设计全新的指令系统并编写对应的微程序;之后编写实现乘法和除法的程序进行设计的验证。
三、课程设计使用的设备(环境)1 .硬件COP2000实验仪PC机2 .软件COP2000仿真软件四、课程设计的具体内容(步骤)1•详细了解并掌握COP 2000模型机的微程序控制器原理,通过综合实验来实现该模型机指令系统的特点:从指令字长来看该模型机指令系统包含单字长和双字长两种格式的指令,字长为8位,对于需要访问内存的指令都是双字长的,指令系统中大多数指令是单字长;从指令操作码是定长和变长来看,这里认为,虽然ADD A, R?和ADD A, @R?都是执行加法操作,但他们是不同的指令,将指令格式中寻址寄存器的两位也认为是操作码的一部分,这两条指令的操作码不同。
因此,指令系统的指令格式是定长操作码的,操作码为6位。
1)双字长的指令格式如下:举例2)单字长的指令格式如下:举例:助记符 机器码1机器码2ADD A, R? 000100xxORA, R? 011000xxMOV R?, A100000xx该模型机微指令系统的特点(包括其微指令格式的说明等) :该模型机微指令系统的微指令格式是水平型微指令, 微指令的字长为24位,是机器字长的3倍,每条微指令仅包含微操作控制字段,无顺序控制字段。
计算机组成原理课程设计
课程设计报告课程设计名称:计算机组成原理系:学生姓名:班级:学号:成绩:指导教师:开课时间:2011-2012学年2 学期一、设计题目计算机组成原理课程设计——简单模型机的微程序设计二、主要内容通过课程设计更清楚地理解下列基本概念:1.计算机的硬件基本组成;2.计算机中机器指令的设计;3.计算机中机器指令的执行过程;4.微程序控制器的工作原理。
5.微指令的格式设计原则;在此基础上设计可以运行一些基本机器指令的微程序的设计三.具体要求1.通过使用作者开发的微程序分析和设计仿真软件,熟悉介绍的为基本模型机而设计的微程序的执行过程。
必须充分理解并正确解释下些问题:(1)微程序中的微指令的各个字段的作用。
哪些字段是不译码的,哪些字段是直接译码的,哪些字段又可以看成是字段间接编码的。
(2)微程序中的微指令是否是顺序执行的,如果不是,那么次地址是如何产生的。
什么情况下,次地址字段才是将要执行的微指令的地址。
(3)在微程序中如何根据机器指令中的相关位实现分支,据此,在设计机器指令时应如何避免和解决与其它指令的微指令的微地址冲突。
(4)哪些微指令是执行所有指令都要用到的。
(5)解释一条机器指令的微程序的各条微指令的微地址是否连续?这些微指令的微地址的安排的严重原则是什么?(6)为什么读写一次内存总要用两条微指令完成?(7)机器程序中用到的寄存器是R0,是由机器指令中哪些位决定的?如果要用R1或R2,是否要改写微程序或改写机器指令?如果要,应如何改写?2.在原有5条机器指令的基础上增加实现下述各功能的机器指令,试设计相应的机器指令的格式并改写原来的微程序使其可以运行所有的机器指令。
新增加的机器指令的功能是:求反指令NOT RS,RD :/(RS) →(RD)与指令AND RD,(addr):(RD)与(addr)→(RD)异或指令XOR RD,(addr):(addr)异或(RD)→(RD)或指令OR RD,(addr):(RD)或(addr)→(RD)减法指令SUB RD,RS :(RS)减(RD)→(RD)其中的RS、RD可以是R0、R1、R2中的任何一个。
计算机组成原理课程设计报告_基本模型机的设计与实现
本次课程设计的任务是完成一个基本模型机的设计与实现。
设计经过综合运用了以前所学计算机原理的知识,依照设计要求和指导,实现了一个基本的模型计算机。
本模型机实现的功能有:IN(输入),OUT(输出),ADD(加法),SUB(减法),STA(存数),JMP(跳转)。
设计进行开始,在了解微程序的基本格式, 及各个字段值的作用后, 按微指令格式参照指令流程图,设计出程序以及微程序,将每条微指令代码化,译成二进制代码表,并将二进制代码转换为联机操作时的十六进制格式文件。
根据机器指令系统要求,设计微程序流程图及确定微地址。
设计的加法和减法中, 被加数和被减数都由调试人员输入, 而加数和减数都从存储器中读取. 最后上机调试,各个功能运行结果正确。
关键词:基本模型机;机器指令;微指令目录1、课程设计题目-----------------------------------------------12、实验设备---------------------------------------------------13、课程设计步骤-----------------------------------------------13.1、所设计计算机的功能和用途------------------------------13.2、指令系统----------------------------------------------23.3、总体结构与数据通路------------------------------------23.4、设计指令执行流程--------------------------------------33.5、微指令代码化------------------------------------------43.6、组装和调试----------------------------------------------54、课程设计总结-----------------------------------------------75、附录-----------------------------------------------------------------------------------8附录1:数据通路图----------------------------------------------------------8 附录2:微程序流程图--------------------------------------------------------9 附录3:实验接线图------------------------------------------------------------10 附录4:实验程序及微程序---------------------------------------------------11 附录5:参考文献(资料)-----------------------------------121、课程设计题目基本模型机的设计与实现2、实验设备TDN—CM++计算机组成原理教学实验系统一台,微机,虚拟软件,排线若干。
计算机组成原理课程设计(微程序)报告
微程序控制器的设计与实现第 1 页共22 页目录5 调试过程 (11)6 心得体会 (12)第 2 页共22 页微程序控制器的设计与实现一、设计目的1)巩固和深刻理解“计算机组成原理”课程所讲解的原理,加深对计算机各模块协同工作的认识2)掌握微程序设计的思想和具体流程、操作方法。
3)培养学生独立工作和创新思维的能力,取得设计与调试的实践经验。
4)尝试利用编程实现微程序指令的识别和解释的工作流程二、设计内容按照要求设计一指令系统,该指令系统能够实现数据传送,进行加、减运算和无条件转移,具有累加器寻址、寄存器寻址、寄存器间接寻址、存储器直接寻址、立即数寻址等五种寻址方式。
第 3 页共22 页三、设计要求1)仔细复习所学过的理论知识,掌握微程序设计的思想,并根据掌握的理论写出要设计的指令系统的微程序流程。
指令系统至少要包括六条指令,具有上述功能和寻址方式。
2)根据微操作流程及给定的微指令格式写出相应的微程序3)将所设计的微程序在虚拟环境中运行调试程序,并给出测试思路和具体程序段4)尝试用C或者Java语言实现所设计的指令系统的加载、识别和解释功能。
5)撰写课程设计报告。
四、设计方案1)设计思路按照要求设计指令系统,该指令系统能够实现数据传送,进行加、减运算和无条件转移,具有累加器寻址、寄存器寻址、寄存器间接寻址、存储器直接第 4 页共22 页寻址、立即数寻址等五种寻址方式。
从而可以想到如下指令:24位控制位分别介绍如下:XRD :外部设备读信号,当给出了外设的地址后,输出此信号,从指定外设读数据。
EMWR:程序存储器EM写信号。
EMRD:程序存储器EM读信号。
PCOE:将程序计数器PC的值送到地址总线ABUS上。
EMEN:将程序存储器EM与数据总线DBUS接通,由EMWR和EMRD决定是将DBUS数据写到EM中,还是从EM读出数据送到DBUS。
IREN:将程序存储器EM读出的数据打入指令寄存器IR和微指令计数器uPC。
计算机组成原理课程设计报告
计算机组成原理课程设计实验报告目录一、程序设计 (1)1、程序设计目的 (1)2、程序设计基本原理 (1)二、课程设计任务及分析 (6)三、设计原理 (7)1、机器指令 (7)2、微程序流程图 (9)3、微指令代码 (10)4、课程设计实现步骤 (11)四、实验设计结果与分析 (15)五、实验设计小结 (15)六、参考文献 (15)一、程序设计1、程序设计目的(1)在掌握部件单元电路实验的基础上,进一步将其组成系统构造一台基本模型计算机。
(2使用简单模型机和复杂模型机的部分机器指令,并编写相应的微程序,具体上机调试掌握整机概念。
(3)掌握微程序控制器的组成原理。
(4)掌握微程序的编写、写入,观察微程序的运行。
(5)通过课程设计,使学生将掌握的计算机组成基本理论应用于实践中,在实际操作中加深对计算机各部件的组成和工作原理的理解,掌握微程序计算机中指令和微指令的编码方法,深入理解机器指令在计算机中的运行过程。
2、程序设计基本原理(1)实验模型机结构[1] 运算器单元(ALU UINT)运算器单元由以下部分构成:两片74LS181构成了并-串型8位ALU;两个8位寄存器DR1和DR2为暂存工作寄存器,保存参数或中间运算结果。
ALU的S0~S3为运算控制端,Cn为最低进位输入,M为状态控制端。
ALU的输出通过三态门74LS245连到数据总线上,由ALU-B控制该三态门。
[2] 寄存器堆单元(REG UNIT)该部分由3片8位寄存器R0、R1、R2组成,它们用来保存操作数用中间运算结构等。
三个寄存器的输入输出均以连入数据总线,由LDRi和RS-B根据机器指令进行选通。
[3] 指令寄存器单元(INS UNIT)指令寄存器单元中指令寄存器(IR)构成模型机时用它作为指令译码电路的输入,实现程序的跳转,由LDIR控制其选通。
[4] 时序电路单元(STATE UNIT)用于输出连续或单个方波信号,来控制机器的运行。
计算机组成原理课程设计的实验报告范文
长治学院课程设计报告课程名称:计算机组成原理课程设计设计题目:设计一台性能简单的计算机系别:计算机系专业:计科1101班组别:第三组学生姓名: 学号:起止日期: 2013年7月4日~ 2013年7月10日****:***目录一、课程设计的目的 ----------------------------------1二、设计要求 ----------------------------------------1三、设计的方法及过程---------------------------------23.1整机设计 --------------------------------------23.1.1 根据设计要求正确设置正确设置多路开关-------23.1.2操作控制信号及其实现方式-------------------23.1.3根据接线表画出整机的线路图-----------------2 3.2.设计指令系统----------------------------------3 3.3.设计微指令及指令的微程序----------------------43.3.1设计微地址 --------------------------------4 3.3.2写出指令的执行流程-------------------------3 3.3.3编写指令的微程序---------------------------53.4.编写并执行应用程序----------------------------8四、心得体会-----------------------------------------7 一课程设计的目的通过课程设计更清楚地理解下列基本概念:(1)计算机的硬件基本组成;(2)计算机中机器指令的设计;(3)计算机中机器指令的执行过程;(4)微程序控制器的工作原理;(5)微指令的格式设计原理;二设计要求题一研制以台性能如下的实验计算机。
组成原理微程序设计报告
计算机组成原理课程设计报告题目:微程序设计专业:计算机科学与技术班级:()班组员:学号:指导老师:目录一、摘要二、微程序控制器原理三、总体设计(系统构成)四、详细设计五、测试六、设计中出现的问题和解决方法七、结论八、参考文献九、个人总结课程设计指导教师评定成绩表姓名学号:项目分值优秀(100>x≥90)良好(90>x≥80)中等(80>x≥70)及格(70>x≥60)不及格(x<60)评分参考标准参考标准参考标准参考标准参考标准学习态度15学习态度认真,科学作风严谨,严格保证设计时间并按任务书中规定的进度开展各项工作学习态度比较认真,科学作风良好,能按期圆满完成任务书规定的任务学习态度尚好,遵守组织纪律,基本保证设计时间,按期完成各项工作学习态度尚可,能遵守组织纪律,能按期完成任务学习马虎,纪律涣散,工作作风不严谨,不能保证设计时间和进度技术水平与实际能力25设计合理、理论分析与计算正确,实验数据准确,有很强的实际动手能力、经济分析能力和计算机应用能力,文献查阅能力强、引用合理、调查调研非常合理、可信设计合理、理论分析与计算正确,实验数据比较准确,有较强的实际动手能力、经济分析能力和计算机应用能力,文献引用、调查调研比较合理、可信设计合理,理论分析与计算基本正确,实验数据比较准确,有一定的实际动手能力,主要文献引用、调查调研比较可信设计基本合理,理论分析与计算无大错,实验数据无大错设计不合理,理论分析与计算有原则错误,实验数据不可靠,实际动手能力差,文献引用、调查调研有较大的问题创新10 有重大改进或独特见解,有一定实用价值有较大改进或新颖的见解,实用性尚可有一定改进或新的见解有一定见解观念陈旧论文(计算书、图纸)撰写质量50结构严谨,逻辑性强,层次清晰,语言准确,文字流畅,完全符合规范化要求,书写工整或用计算机打印成文;图纸非常工整、清晰结构合理,符合逻辑,文章层次分明,语言准确,文字流畅,符合规范化要求,书写工整或用计算机打印成文;图纸工整、清晰结构合理,层次较为分明,文理通顺,基本达到规范化要求,书写比较工整;图纸比较工整、清晰结构基本合理,逻辑基本清楚,文字尚通顺,勉强达到规范化要求;图纸比较工整内容空泛,结构混乱,文字表达不清,错别字较多,达不到规范化要求;图纸不工整或不清晰指导教师评定成绩:指导教师签名:年月日课程设计指导教师评定成绩表姓名学号:项目分值优秀(100>x≥90)良好(90>x≥80)中等(80>x≥70)及格(70>x≥60)不及格(x<60)评分参考标准参考标准参考标准参考标准参考标准学习态度15学习态度认真,科学作风严谨,严格保证设计时间并按任务书中规定的进度开展各项工作学习态度比较认真,科学作风良好,能按期圆满完成任务书规定的任务学习态度尚好,遵守组织纪律,基本保证设计时间,按期完成各项工作学习态度尚可,能遵守组织纪律,能按期完成任务学习马虎,纪律涣散,工作作风不严谨,不能保证设计时间和进度技术水平与实际能力25设计合理、理论分析与计算正确,实验数据准确,有很强的实际动手能力、经济分析能力和计算机应用能力,文献查阅能力强、引用合理、调查调研非常合理、可信设计合理、理论分析与计算正确,实验数据比较准确,有较强的实际动手能力、经济分析能力和计算机应用能力,文献引用、调查调研比较合理、可信设计合理,理论分析与计算基本正确,实验数据比较准确,有一定的实际动手能力,主要文献引用、调查调研比较可信设计基本合理,理论分析与计算无大错,实验数据无大错设计不合理,理论分析与计算有原则错误,实验数据不可靠,实际动手能力差,文献引用、调查调研有较大的问题创新10 有重大改进或独特见解,有一定实用价值有较大改进或新颖的见解,实用性尚可有一定改进或新的见解有一定见解观念陈旧论文(计算书、图纸)撰写质量50结构严谨,逻辑性强,层次清晰,语言准确,文字流畅,完全符合规范化要求,书写工整或用计算机打印成文;图纸非常工整、清晰结构合理,符合逻辑,文章层次分明,语言准确,文字流畅,符合规范化要求,书写工整或用计算机打印成文;图纸工整、清晰结构合理,层次较为分明,文理通顺,基本达到规范化要求,书写比较工整;图纸比较工整、清晰结构基本合理,逻辑基本清楚,文字尚通顺,勉强达到规范化要求;图纸比较工整内容空泛,结构混乱,文字表达不清,错别字较多,达不到规范化要求;图纸不工整或不清晰指导教师评定成绩:指导教师签名:年月日一、摘要利用CPU与简单模型机设计实验中所学到的实验原理以及编程思想,硬件设备,自拟编写指令的应用程序,用微程序控制器实现了一系列的指令功能。
计算机组成原理微程序控制器组成实验课程实验报告书
学生课程实验报告书13 级计算机与信息科学系软件工程专业 1303 班学号 3138907308 姓名王明渊2014 --2015 学年第 2 学期实验项目:微程序控制器组成实验实验时间:实验原理:(任务)一、实验目的1. 掌握时序产生器的组成原理。
2. 掌握微程序控制器的组成原理。
二、实验电路1. 时序发生器本实验所用的时序电路见图3.4。
电路由一个500KHz晶振、2片GAL22V10、一片74LS390组成,可产生两级等间隔时序信号T1-T4、W1-W3,其中一个W由一轮T1-T4组成,相当于一个微指令周期或硬连线控制器的一拍,而一轮W1-W3可以执行硬连线控制器的一条机器指令。
另外,供数字逻辑实验使用的时钟由MF经一片74LS390分频后产生。
图3.4 时序信号发生器本次实验不涉及硬连线控制器,因此时序发生器中产生W1-W3的部分也可根据需要放到硬连线控制器实验中介绍。
产生时序信号T1-T4的功能集成再图中左边的一片GAL22V10中,另外它还产生节拍信号W1-W3的控制时钟CLK1。
该芯片的逻辑功能用ABEL语言实现。
其源程序如下:MODULE TIMER1TITLE ‘CLOCK GENERATOR T1-T4’CLK = C;“INPUTMF, CLR, QD, DP, TJ, DB PIN 1..6;W3 PIN 7;“OUTPUTT1, T2, T3, T4 PIN 15..18 ISTYPE ‘REG’;CLK1 PIN 14 ISTYPE ‘COM’;QD1, QD2, QDR PIN ISTYPE ‘PEG’;ACT PIN ISTYPE ‘COM’;S = [T1, T2, T3, T4, QD1, QD2, QDR];EQUATIONSQD1 := QD;QD2 := QD1;ACT = QD1 & !QD2;QDR := CLR & QD # CLE & QDR;T1 := CLR & T4 & ACT # CLR & T4 & !(DP # TJ # DB & W3) & QDR;T2 := CLR & T1;T3 := CLR & T2;T4 := !CLR # T3 # T4 & !ACT & (DP # TJ # DB & W3) # !QDR;CLK1 = T1 # !CLR & MF;S.CLK = MF;END节拍电位信号W1-W3只在硬连线控制器中使用,产生W信号的功能集成在右边一片GAL22V10中,用ABEL语言实现。
计算机组成原理课程设计报告书
计算机组成原理课程设计报告书计算机组成原理课程设计报告书目录一.实验计算机设计11.整机逻辑框图设计12.指令系统的设计23.微操作控制部件的设计54.设计组装实验计算机接线表135.编写调试程序14二.实验计算机的组装14三.实验计算机的调试151.调试前准备152.程序调试过程163.程序调试结果164.出错和故障分析16四.心得体会17五.参考文献17题目研制一台多累加器的计算机一实验计算机设计1.整机逻辑框图设计此模型机是由运算器,控制器,存储器,输入设备,输出设备五大部分组成。
1.运算器又是有299,74LS181完成控制信号功能的算逻部件,暂存器LDR1,LDR2,及三个通用寄存器R0,R1,R2等组成。
2.控制器由程序计数器PC、指令寄存器、地址寄存器、时序电路、控制存储器及相应的译码电路组成。
3.存储器RAM是通过CE和W/R两个微命令来完成数据和程序的的存放功能的。
4输入设备是由置数开关SW控制完成的。
5.输出设备有两位LED数码管和W/R控制完成的LR0LR1LR2寄存器AxBxCxR0-GR1-GR2-G数据总线(D_BUS)ALU-GALUMCNS3S2S1S0暂存器LT1暂存器LT2LDR1LDR2移位寄存器MS1S0G-299输入设备DIJ-G微控器脉冲源及时序指令寄存器LDIR图中所有控制信号LPCPC-G程序计数器LOADLAR地址寄存器存储器6116CEWE输出设备D-GW/RCPU图1整机的逻辑框图图1-1中运算器ALU由U7--U10四片74LS181构成,暂存器1由U3、U4两片74LS273构成,暂存器2由U5、U6两片74LS273构成。
微控器部分控存由U13--U15三片2816构成。
除此之外,CPU的其他部分都由EP1K10集成。
存储器部分由两片6116构成16位存储器,地址总线只有低八位有效,因而其存储空间为00H--FFH。
输出设备由底板上的四个LED数码管及其译码、驱动构成,当D-G和W/R均为低电平时将数据总线的数据送入数码管显示。
计算机组成原理课程设计实验报告
计算机组成原理实验报告班级:1403011学号:140301124姓名:于梦鸽地点:EII-312时间:第3批计算机组成原理与体系结构课程设计基本模型机设计与实现一.实验目的1.深入理解基本模型计算机的功能、组成知识; 2.深入学习计算机各类典型指令的执行流程;3.学习微程序控制器的设计过程和相关技术,掌握LPM_ROM 的配置方法。
4.在掌握部件单元电路实验的基础上,进一步将单元电路组成系统,构造一台基本模型计算机。
5.定义五条机器指令,并编写相应的微程序,上机调试,掌握计算机整机概念。
掌握微程序的设计方法,学会编写二进制微指令代码表。
6.通过熟悉较完整的计算机的设计,全面了解并掌握微程序控制方式计算机的设计方法。
二.实验原理1.在部件实验过程中,各部件单元的控制信号是人为模拟产生的,而本实验将能在微过程控制下自动产生各部件单元控制信号,实现特定的功能。
实验中,计算机数据通路的控制将由微过程控制器来完成,CPU 从内存中取出一条机器指令到指令执行结束的一个指令周期,全部由微指令组成的序列来完成,即一条机器指令对应一个微程序。
2.指令格式(1)指令格式采用寄存器直接寻址方式,其格式如下:其中IN 为单字长(8位二进制),其余为双字长指令,XX H 为addr 对应的十六进制地址码。
为了向RAM 中装入程序和数据,检查写入是否正确,并能启动程序执行,还必须设计三个控制台操作微程序。
1,存储器读操作(KRD ):下载实验程序后按总清除按键(CLR )后,控制台SWA 、SWB 为“0 0”时,可对RAM 连续手动读入操作。
2,存储器写操作(KWE ):下载实验程序后按总清除按键(CLR )后,控制台SWA 、SWB 为“0 1”时,可对RAM 连续手动写操作。
3、启动程序(RP ):下载实验程序后按总清除按键(CLR )后,控制台SWA 、SWB 为“1 1”时,即可转入到微地址“01”号“取指令”微指令,启动程序运行。
计算机组成原理课程设计微程序设计
计算机组成原理课程设计微程序设计文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)《计算机组成原理》课程设计报告——微程序设计指导老师:丁伟学院:计算机学院班级:软件 1501姓名:学号:一、项目任务本项目的任务是针对第2章所述的OpenJUC-II教学机模型机,设计控制器的微程序,实现该模型机的指令系统。
通过课程设计理解指令的执行过程,指令系统与硬件的关系,进而加深对计算机的结构和工作原理的理解。
二、项目设计本项目预期分为6个上机设计步骤:Day1:熟悉微程序的设计和调试方法Day2:双操作数指令的设计与调试Day3:条件转移指令的设计与调试Day4:移位指令的设计与调试Day5:堆栈相关指令的设计与调试Day6:中断系统的设计与调试通过上述实践步骤,初步达成微程序设计要求,针对不同产品提出的不同要求,通过编写相应符合的微程序汇编指令,达到预期效果和收益。
三、项目需求OpenJUC-II模型机、Quartus II软件、虚拟实验板软件、Windows 计算机、预先编写完成的.sof和.scc文件。
取指令字段取目的操作数入口取源操作数寄存器寻址入寄存器间接寄存器自增间立即寻址直接寻址间接寻址变址寻址相对寻址进入取目阶段取目的操作数阶段从微地址028至02F依次为寄存器寻址,寄存器间接寻址,寄存器自增间接寻址,02B为空,直接寻址,间接寻址,变址寻址,相对寻址进入执行阶段从41开始为MOV,ADD,ADDC,SUB,SUBB,AND,OR,XOR,CMP,TEST的入口地址保存结果的控存SAR,SHL,SHR,ROL,ROR,RCL,RCR控存JC,JNC,JO,JNO,JZ,JNZ,JS,JNS控存转移的控存JMP,INC,DEC,NOT的控存PUSH,POP,CALL的控存HALT,NOP,RET,RETI,EI,DIINC与JMP设计与调试。
ORG 0030HINC 0040HJMP 0030HMOV,SUB调试CMP及JC测试软件延时0030: 0460 INC FF02H 0031: FF020032: 1600 MOV #000F, R0 0033: 000F0034: 0440 INC R00035: 9600 CMP #FFFFH, R0 0036: FFFF0037: 0220 JC 0030H 0038: 00300039: 0260 JNC 0034H003A: 0034003B: HALT右移0030: 1601 MOV #0001H, R0 0031: 00010032: 00C0 SHR R00033: 0238 JC FFFDH(PC) 0034: FFFD0035: 0000 HALT左移0030: 1601 MOV #0505H, R0 0031: 00010032: 00C0 TEXT #0001H,R1 0033: 02380034: FFFD JZ 3(PC) 0035: 00000036:0101 ROL R10037:0420 JMP 0032流水灯设计0030: 1620 MOV #0080H, FF01H 0031: 00800032: FF010033: 1600 MOV #0000H, R0 0034: 00000035: 0440 INC R00036: 9600 CMP #FFFFH, R0 0037: FFFF0038: 0220 JC 003CH0039: 003C003A: 0260 JNC 0035H003B: 0035003C: 0160 ROR FF01H003D: FF01003E: A620 TEST #FFFFH, FF01H 003F: FFFF0040: FF010041: 0320 JZ 0030H0042: 00300043: 0360 JNZ 0033H0044: 00330045: 0000 HALTPUSH,POP0030: 1600 MOV #0041H,R0 0031: 00410032: 0060 PUSH R00033: 0620 PUSH 0040H 0034: 00400035: 0648 POP (R0)0036: 0641 POP R1程序中断0030: 1600 MOV #0100H, 0000H 0031: 00400032: 00000033: 0004 EI0034: 0460 INC 0040H0035: 00400036: 1601 MOV #2333H, R1 0037: 23330038: 0000 HALT0100: 1820 MOV #FF08H, FF02H 0101: FF08结课任务将R2的内容左右颠倒存入R7(A1A2A3A4------A4A3A2A1)总体设计及总结成功完成了对JUC2的整体设计。
计算机组成原理课程设计报告
计算机组成原理课程设计报告集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)南通大学计算机科学与技术学院计算机组成原理课程设计报告书课题名模型计算机的设计与实现班级计123班姓名流星雪雨学号指导教师顾辉日期目录1 设计目的1.融会贯通教材各章的内容,通过知识的综合运用,加深对计算机系统各模块的工作原理及相互联系的认识,加深计算机工作中“时间-空间”概念的理解,从而清晰地建立计算机的整机概念。
2.学习设计和调试计算机的基本步骤和方法,培养科学研究的独立工作能力,取得工程设计和调试的实践和经验。
2 设计内容1.根据给定的数据格式和指令系统,设计一台微程序控制的模型计算机。
2.根据设计图,在QUARTUS II环境下仿真调试成功。
3.在调试成功的基础上,整理出设计图纸和相关文件,包括:(1)总框图(数据通路图);(2)微程序控制器逻辑图;(3)微程序流程图;(4)微程序代码表;(5)设计说明书及工作小结。
3 设计要求(1)对指令系统中的各条指令进行分析,得出所需要的占领周期与操作序列,以便确定各器件的类型和数量;(2)设计总框图草图,进行各逻辑部件之间的互相连接,即初步确定数据通路,使得由指令系统所要求的数据通路都能实现,并满足技术指标的要求;(3)检查全部指令周期的操作序列,确定所需要的控制点和控制信号;(4)检查所设计的数据通路,尽可能降低成本,简化线路,优化性能。
以上过程可以反复进行,以便得到一个较好的方案。
4 数据格式与指令系统4.1 数据格式数据字规定采用定点整数补码表示法,字长8位,其中最高位为符号位,其格式如下:7 6 5 4 3 214.2 指令系统本实验设计使用5条机器指令,其格式与功能说明如下:7 6543210INADDSTAOUTJMPIN指令为单字长(字长为8bits)指令,其功能是将数据开关的8位数据输入到R0寄存器。
ADD指令为双字长指令,第一个字为操作码,第二个字为操作数地址,其功能是将R0寄存器的内容与内存中地址为A的数相加,结果存放在R0寄存器中。
计算机组成原理实验报告_2
计算机组成原理实验报告——微程序控制器实验1.一. 实验目的:2.能看懂教学计算机(TH-union)已经设计好并正常运行的数条基本指令的功能、格式及执行流程。
并可以自己设计几条指令, 并理解其功能, 格式及执行流程, 在教学计算机上实现。
3.深入理解计算机微程序控制器的功能与组成原理4.深入学习计算机各类典型指令的执行流程5.对指令格式、寻址方式、指令系统、指令分类等建立具体的总体概念6.学习微程序控制器的设计过程和相关技术二. 实验原理:微程序控制器主要由控制存储器、微指令寄存器和地址转移逻辑三大部分组成。
其工作原理分为:1.将程序和数据通过输入设备送入存储器;2.启动运行后从存储器中取出程序指令送到控制器去识别, 分析该指令要求什么事;3.控制器根据指令的含义发出相应的命令(如加法、减法), 将存储单元中存放的操作数据取出送往运算器进行运算, 再把运算结果送回存储器指定的单元中;4、运算任务完成后, 就可以根据指令将结果通过输出设备输出三. 微指令格式:1)微地址形成逻辑TH—UNION 教学机利用器件形成下一条微指令在控制器存储器的地址.下地址的形成由下地址字段及控制字段中的CI3—SCC控制.当为顺序执行时,下地址字段不起作用.下地址为当前微指令地址加1;当为转移指令(CI3—0=0011)时,由控制信号SCC提供转移条件,由下地址字段提供转移地址.2)控制字段控制字段用以向各部件发送控制信号,使各部件能协调工作。
控制字段中各控制信号有如下几类:①对运算器部件为了完成数据运算和传送功能, 微指令向其提供了24位的控制信号, 包括:4位的A、B口地址, 用于选择读写的通用积存器3组3位的控制码I8-I6、I5-I3、I2-I6, 用于选择结果处置方案、运算功能、数据来源。
3组共7位控制信号控制配合的两片GAL20V83位SST, 用于控制记忆的状态标志位2位SCI, 用于控制产生运算器低位的进位输入信号2位SSH, 用于控制产生运算器最高, 最地位(和积存器)移位输入信号②对内存储器I/O和接口部件, 控制器主要向它们提供读写操作用到的全部控制信号, 共3位, 即MRW③对CPU内部总线数据来源的控制, 主要通过3位编码标记为DCD, 来选择把哪一组数据发送到内部总线(IB)上。
计算机组成原理实验报告4-微程序计数器uPC实验
千里之行,始于足下。
计算机组成原理实验报告4-微程序计数器uPC实验计算机组成原理实验报告4-微程序计数器uPC实验一、实验目的本次实验的目的是通过设计和实现微程序计数器uPC,加深对计算机组成原理中微程序控制的理解和掌握。
二、实验原理微程序控制是一种使用微操作指令来实现指令解码和控制的方法。
其基本原理是将指令的每个微操作独立编码,并存放在存储器中,再通过微程序计数器uPC逐步读取并执行这些微操作指令,从而实现对硬件的控制。
本次实验中,我们设计的微程序计数器uPC采用基于有限状态机的方式。
其工作流程如下:1. 在上升沿时,根据当前状态和输入,更新下一个状态。
2. 在状态更新完成后,判断是否需要进行微指令计数器的更新,如果需要,则计数器自增。
3. 根据计数器的值,从微指令存储器中读取相应的微指令。
4. 执行微指令。
三、实验步骤本次实验的主要步骤如下:第1页/共3页锲而不舍,金石可镂。
1. 设计微指令的编码对应的控制信号,并将其存储在微指令存储器中。
2. 设计并实现基于有限状态机的微程序计数器uPC。
3. 将uPC与微指令存储器、数据通路、输入设备等连接起来,以实现对硬件的控制。
四、实验结果在实验过程中,我们完成了微指令的编码,并将其存储在微指令存储器中,设计并实现了基于有限状态机的微程序计数器uPC,并将uPC与其他模块连接起来。
经过测试,我们发现uPC能够正确地执行微指令,并能够对硬件进行正确的控制。
五、实验总结通过本次实验,我们深入了解了微程序控制的原理和工作方式,加深了对计算机组成原理中微程序控制的理解和掌握。
在实验过程中,我们通过设计和实现微程序计数器uPC,对于掌握微程序控制有了更深入的认识,并且锻炼了自己的设计和调试能力。
虽然在实验过程中遇到了一些困难和问题,但通过思考和团队合作,我们最终成功地完成了实验并取得了满意的结果。
通过本次实验,我们不仅提高了对计算机组成原理的理论理解,也增强了自己的动手实践能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计指导教师评定成绩表指导教师评定成绩:指导教师签名: 年月日重庆大学本科学生课程设计任务书说明:1、学院、专业、年级均填全称,如:光电工程学院、测控技术、2003。
2、本表除签名外均可采用计算机打印。
本表不够,可另附页,但应在页脚添加页码。
计算机组成原理课程设计报告书一、设计目的:综合运用所学过的计算机原理知识,设计并实现较为完整的计算机。
掌握运用计算机原理知识解决问题和设计指令程序的能力。
通过课程设计的综合训练,培养实际分析问题,编写程序指令和动手能力、团队协作精神,帮助学生系统掌握计算机组成原理课程的主要内容。
二、设计要求:设计要求:用微程序控制器实现以下指令功能调用:CALL addr ;指令功能与80X86相同,addr是8位二进制地址返回:RET ;存储器到存储器传送:MOV memi , memj ; memi ←(memj), i<>j,memi内存单元地址带右移的加法运算:ADD Ri , Rj , N ; Ri ←(Ri)+(Rj)>>N ,Rj中内容不变N=0-7根据模型计算机的数据路径以及微程序控制器的工作原理,设计各指令格式以及编码,并实现各机器指令微代码,根据定义的机器指令,自拟编写包含以下指令的应用程序。
三、微程序控制器的原理:A.微程序控制的基本思想:1. 若干微命令编制成一条微指令,控制实现一步操作;2. 若干微指令组成一段微程序,解释执行一条机器指令;3. 微程序事先存放在控制存储器中,执行机器指令时再取出。
B.基本组成:控制存储器,微指令寄存器,微地址寄存器,地址转移逻辑框图:图1 微程序控制器组成原理框图控制存储器(CM):用来存放实现全部指令系统的微程序,位于CPU中。
它是一种只读型存储器,要求速度快,读出周期短微指令寄存器:存放当前由控制存储器读出的一条微指令信息,分为微地址寄存器和微命令寄存器两个部分。
其中微地址寄存器决定将要访问的下一条微指令的地址,微命令寄存器则保存一条微指令的操作控制字段和判别测试字段(P)的信息地址转移逻辑:自动完成修改微地址的任务。
微程序控制器:微程序控制器的基本任务是完成当前指令的翻译和执行,即将当前指令的功能转换成可以控制的硬件逻辑部件工作的微命令序列,完成数据传送和各种处理操作。
它的执行方法就是将控制各部件动作的微命令的集合进行编码,即将微命令的集合仿照机器指令一样,用数字代码的形式表示,这种表示称为微指令。
这样就可以用一个微指令序列表示一条机器指令,这种微指令序列称为微程序。
微程序存储在一种专用的存储器中,称为控制存储器,微程序控制器原理框图如图2所示图2 微程序控制器原理框图C.微程序控制计算机的工作过程:下面通过计算机启动、执行程序直到停机的过程,来说明微程序是如何控制计算机工作的:计算机加电以后,首先由复位信号(Reset)将开机后执行的第一条指令的地址送入PC内,同时将一条"取指"微指令送入微指令寄存器中,并将其他一些有关的状态位或寄存器置于初始状态。
当电压达到稳定值后,自动启动计算机,产生节拍电位和工作脉冲。
为保证计算机正常工作,电路必须保证开机后第一个机器周期信号的完整性,在该CPU周期末,产生开机后第一个工作脉冲。
然后计算机开始执行程序,不断地取出指令、执行指令。
程序可以存放在固定存储器中,也可以利用固化在只读存储器(ROM)中的一小段引导程序,将要执行的程序和数据从外部设备调入主存。
实现各条指令的微程序是存放在微程序控制器中的。
当前正在执行的微指令从微程序控制器中取出后放在微指令寄存器中,由微指令的控制字段中的各位直接控制信息和数据的传送,并进行相应的处理。
当遇到停机指令或外来停机命令后,应该待当前这条指令执行完毕后再停机或至少在本机器周期结束时停机。
要保证停机后,重新启动计算机能继续工作而且不出现任何错误。
四、总体设计(系统构成):实现一个简单的 CPU,并且在此CPU 的基础上,继续构建一个简单的模型计算机。
CPU 由运算器(ALU)、微程序控制器(MC)、通用寄存器(R0),指令寄存器(IR)、程序计数器(PC)和地址寄存器(AR)组成,如图3所示。
这个CPU 在写入相应的微指令后,就具备了执行机器指令的功能,但是机器指令一般存放在主存当中,CPU 必须和主存挂接后,才有实际的意义,所以还需要在该CPU 的基础上增加一个主存和基本的输入输出部件,以构成一个简单的模型计算机。
图3基本CPU构成原理图程序计数器PC:程序计数器PC由两片4位可预置二进制计数器构成8位的计数器。
使用“可预置”是因为转移指令需要直接修改PC的值。
其电路原理如下图。
图3 程序计数器PC地址寄存器AR:地址寄存器保存访问存储器时的地址信息,由74LS273实现。
其电路原理如下图。
图4 地址寄存器AR指令寄存器IR:指令寄存器IR存放的是正在执行的机器指令,它作为指令译码器电路的输入,实现程序跳转控制。
其电路原理如下图。
图5 指令寄存器IR寄存器堆R0:寄存器R0使用的芯片是74LS374,该芯片是8个三态D-FF。
其R0电路原理如下图。
数据通路如图:图8数据通路图五、详细设计微程序功能设计: (1)指令设计助记符 机器指令码 说明ADD 0000 0000 ******** ******** (data1+data2 )<<1 ->R0 OUT 0011 0000 R0->OUTMOV 0100 0000 (addr1)->(addr2) LDI 0110 0000 ******** (data)->R0 CALL 0111 0000 ******** 调用子程序 RET: 1000 0000 子程序返回 ADD 是三字节指令,后面两个******** ********是要进行加法的数据,本指令的功能是数据一加上数据二之后左移一位,结果存在R0里;OUT 是输出;MOV 指令实现的是将内存地址一的数据传输到内存地址二,因为它单字节指令,所以微指令执行期间要靠IN 单元输入要操作的内存地址;LDI 是双字节指令,把后面的********送到R0里;R0-B 88R0(74LS374)T4LDR0 图6 寄存器R0CALL是调用子程序,也还是双字节指令,********是要调用子程序的入口地址;RET指令用在子程序的末尾,帮助子程序正确返回。
(2)微指令设计根据机器指令所实现的功能,画出微程序流程图。
微程序流程图:当全部微程序设计完毕后,将每条微指令代码化,下表即为将微程序流程图按微指令格式转化而成的“二进制微代码表”。
二进制微代码表地址十六进制高五位S3-S0 A字段B字段C字段MA5-MA000 000001 000000 0000 000 000 000 00000101 006D43 00000 0000 110 110 101 000011 03 107070 00010 0000 111 000 001 110000 30 006D49 00000 0000 110 110 101 001001 09 10100A 00010 0000 001 000 000 001010 0A 006D4B 00000 0000 110 110 101 001011 0B 10200C 00010 0000 010 000 000 001100 0C 04920D 00000 1001 001 001 000 001101 0D 039201 00000 0111 001 001 000 000001 34 186006 00011 0000 110 000 000 00011006 103007 00010 0000 011 000 000 00011107 186008 00011 0000 110 000 000 00100008 200401 00100 0000 000 010 000 000001 37 006D53 00000 0000 110 110 101 01001113 101014 00010 0000 001 000 000 01010014 006415 00000 0000 110 010 000 01010115 200C16 00100 0000 000 110 000 010110 16005341000000000101001101 000001 36 006D51 00000 0000 110 110 101 010001 11 103001 00010 0000 011 000 000 000001 38 006412 00000 0000 110 010 000 01001012 105141 00010 0000 101 000 101 000001 33 280401 00101 0000 000 010 000 000001实验准备:按下图连接电路实验接线图:将微程序和机器程序以指定的格式写入到以TXT 为后缀的文件中联机运行。
指令格式:微指令格式:机器指令格式:$M XX XXXXXX $P XX XX十六进制微指令代码十六进制机器指令代码十六进制地址十六进制地址标志符标志符根据流程图及指令格式,安排微指令地址的地址编码及微指令编码: ; //****** Start Of Main Memory Data ****** //$P 00 40 ;MOV$P 01 60 ;LDI$P O2 F1 ;DATA$P 03 70 ;CALL$P 04 06 ;ADDR$P 05 30 ;0UT$P 06 00 ;ADD$P 07 11 ;DATA$P 08 22 ;DA TA$P 09 30 ;OUT$P 0A 60 ;LDI$P 0B F1 ;DATA$P 0C 80 ;RET;; //******* End Of Main Memory Data ******* //; //**** Start Of MicroController Data **** //$M 00 000001 ; NOP$M 01 006D43 ; PC->AR,PC 加1$M 03 107070 ; MEM->IR, P<1>;ADD程序段$M 30 006D49 ;PC->AR PC+1$M 09 10100A ;M->A$M 0A 006D4B ;PC->AR PC+1$M 0B 10200C ;M->B$M 0C 04920D ;A+B->A$M 0D 039201 ;A<<1->R0;MOV程序段$M 34 186006 ;IN->AR$M 06 103007 ;MEM->R0$M 07 186008 ;IN->AR$M 08 200401 ;R0->MEM;CALL程序段$M 37 006D53 ;PC->AR PC+1$M 13 101014 ;MEM->A$M 14 006415 ;R0->AR$M 15 200C16 ;PC->MEM$M 16 005341 ;A->PC;LDI程序段$M 36 006D05 ;PC->AR,PC+1$M 11 103001 ;MEM->R0;RET程序段$M 38 006412 ;R0->AR$M 12 105141 ;MEM->PC;OUT指令$M 33 280401 ;R0->IO; //** End Of MicroController Data **//联机:选择联机软件的“【转储】—【装载】”功能,在打开文件对话框中选择上面所保存的文件,软件自动将机器程序和微程序写入指定单元。