高等代数答案-第三章
高等代数(北大版第三版)习题答案I
高等代数(北大版第三版)习题答案I篇一:高等代数(北大版)第3章习题参考第三章线性方程组1.用消元法解以下线性方程组:?x1?x?1?1)?x1x1x13x25x34x413x22x32x42x2x3x4x54x2x3x4x52x2x3x4x5 x12x23x42x51x5??1?x1x23x3x43x523 2)2x?3x?4x?5x?2x?72345?139x9x6x16x2x252345?11x3?x7?0?3x1?4x2?5?x1?2x2?3x3?4x4?44x3?x2?0?x2?x3?x4??3?2x1?3x2?343)?4)?4x?11x?13x?16x?0x?3x??x?123424?1?17x?3x?x3?7x?2x?x?3x0234234??1?x1?2x2?3x3?x4?1?2x1?x2?x3?x4?1?3x1?2x2?x3?x4?13x1?2x2?2x3?3x4?25)? 6)?2x1?3x2?x3?x4?12x2x2xx15x1x2x32x4123412xxx3x4234?15x1?5x2?2x3?2解1)对方程组得增广矩阵作行初等变换,有111111000033?2?420000?1521112?3?20?1?4?2?11?1?1200101?1?11010001??110??30??3??01?011?200?0000030?5?7?10000?15?3?4?4?400?200423581200001?1?11010001?2?2? ?221?2?0? ?0?0由于rank(A)?rank(B)?4?5,因此方程组有无穷多解,其同解方程组为x1x412x1x52,?2x03x?x?0?24解得x1x2x3x4x51kk0k22k其中k为任意常数。
2)对方程组德增广矩阵作行初等变换,有112910 ??002?1?3?920?3463151632?3221??120?0725022?3?7?27120?346341110?2?5?2?1631?1 5161334512529?8?011??333033?2529??72?10??334?512529? 8001?1?3330000??01?由于rank(A)?4?rank(A)?3,因此原方程无解。
高等代数答案-第三章
第三章 线性方程组1. 用消元法解下列线性方程组:123412345123451234512345354132211)234321x x x x x x x x x x x x x x x x x x x x x x x x ++-=ìï++-+=-ïï-+--=íï-++-=ïï++-+=-î 124512345123451234523213322)23452799616225x x x x x x x x x x x x x x x x x x x +-+=ìï--+-=ïí-+-+=ïï-+-+=î 1234234124234234433)31733x x x x x x x x x x x x x -+-=ìï-+=-ïí+++=ïï-++=-î 123412341234123434570233204)411131607230x x x x x x x x x x x x x x x x +-+=ìï-+-=ïí+-+=ïï-++=-î 123412341234123421322325)521234x x x x x x x x x x x x x x x x +-+=ìï-+-=ïí+-+=-ïï-+-=î 12341234123412341232313216)23122215522x x x x x x x x x x x x x x x x x x x ++-=ìï++-=ïï+++=íï++-=ïï++=î解 1)对方程组得增广矩阵作行初等变换,有135401135401132211003212121113054312141113074512121111014812--éùéùêúêú----êúêúêúêú®------êúêú-----êúêúêúêú-----ëûëû102101100101003212000212002000002000000000000000011100010000--éùéùêúêú---êúêúêúêú®®--êúêúêúêúêúêú---ëûëû因为()()45rank A rank B ==<所以方程组有无穷多解,其同解方程组为1415324122200x x x x x x x -=ìï+=-ïí-=ïï-+=î 解得123451022x k x k x x k x k=+ìï=ïï=íï=ïï=--î 其中k 为任意常数.2)对方程组德增广矩阵作行初等变换,有120321120321113132033451234527074125996162250276111616--éùéùêúêú------êúêú®êúêú----êúêú---ëûëû 120321120321033451033451252982529800110011333333003325297000001--éùéùêúêú------êúêú®®êúêú--êúêúêúêú--êúêúëûëû因为()4()3rank A rank A =>=所以原方程无解.3)对方程组德增广矩阵作行初等变换,有1234412344011130111313011053530731307313----éùéùêúêú----êúêú®êúêú--êúêú----ëûëû1012210008011130100300201200201200482400080---éùéùêúêú--êúêú®®êúêúêúêú--ëûëû因为(()4rank A rank A ==所以方程组有惟一解,且其解为12348360x x x x =-ìï=ïí=ïï=î 4)对方程组的增广矩阵作行初等变换,有34571789233223324111316411131672137213--éùéùêúêú----êúêú®êúêú--êúêú--ëûëû 17891789017192001719200171920000003438400000--éùéùêúêú----êúêú®®êúêú-êúêú--ëûëû即原方程组德同解方程组为123423478901719200x x x x x x x +-+=ìí-+-=î由此可解得1122123142313171719201717x k k x k k x k x k ì=-ïïï=-íï=ïï=î 其中12,k k 是任意常数g5)对方程组的增广矩阵作行初等变换,有2111121111322327001451121300122113440025--éùéùêúêú---êúêú®êúêú---êúêú---ëûëû 21111211117001470014100002100002100300001--éùéùêúêú--êúêú®®êúêúêúêú---ëûëû 因为()4()3rank A rank A =¹=所以原方程组无解.6)对方程组的增广矩阵作行初等变换,有12311354023211125202231112311122211453025520255202éùéùêúêú-êúêúêúêú®êúêú-êúêúêúêúëûëû2020000000552020570211611010015555101001010000000-éùéùêúêúêúêúêúêú®®-----êúêúêúêú--êúêúêúêúëûëû即原方程组的同解方程组为23341357261550x x x x x x +=ìïï-+=-íï-+=ïî 解之得123427551655x k x k x k x k =ìïï=-ïí=ïï=-+ïî其中k 是任意常数.2.把向量b 表成1234,,,a a a a 的线性组合.12341)(1,2,1,1)(1,1,1,1),(1,1,1,1)(1,1,1,1),(1,1,1,1)b a a a a ===--=--=--12342)(0,0,0,1)(1,1,0,1),(2,1,3,1)(1,1,0,0),(0,1,1,1)b a a a a =====--解 1)设有线性关系11223344k k k k b a a a a =+++代入所给向量,可得线性方程组12341234123412341211k k k k k k k k k k k k k k k k +++=ìï+--=ïí-+-=ïï--+=î 解之,得15,4k = 21,4k = 31,4k =- 414k =-因此123451114444b a a a a =+--2)同理可得13b a a =-3.证明:如果向量组12,,,r a a a L 线性无关,而12,,,,r a a a b L 线性相关,则向量可由12,,,r a a a L 线性表出.证 由题设,可以找到不全为零的数121,,,r k k k +L 使112210r r r k k k k a a a b +++++=L显然10r k +¹.事实上,若10r k +=,而12,,,r k k k L 不全为零,使11220r r k k k a a a +++=L成立,这与12,,,r a a a L 线性无关的假设矛盾,即证10r k +¹.故11rii i r k k b a =+=-å即向量b 可由12,,,r a a a L 线性表出.4.12(,,,)(1,2,,)i i i in i n a a a a ==L L ,证明:如果0ij a ¹,那么12,,,n a a a L 线性无关.证 设有线性关系11220n n k k k a a a +++=L代入分量,可得方程组111212112122221122000n n n nn n nn n k k k k k k k k k a a a a a a a a a +++=ìï+++=ïíïï+++=îL L L L L L L L L L L L L L 由于0ij a ¹,故齐次线性方程组只有零解,从而12,,,n a a a L 线性无关.5.设12,,,r t t t L 是互不相同的数,r n £.证明:1(1,,,)(1,2,,)n i i i t t i r a -==L L是线性无关的.证 设有线性关系11220r r k k k a a a +++=L则1211221111122000r r rn n n r rk k k t k t k t k t k t k t k ---+++=ìï+++=ïíïï+++=îL L L L L L L L L L L L L 1)当r n =时,方程组中的未知量个数与方程个数相同,且系数行列式为一个范德蒙行列式,即122221211112111()0nn j i i jn n n nt t t t t t t t t t t <---=-¹ÕL LL M M O M L所以方程组有惟一的零解,这就是说12,,,r a a a L 线性无关.2)当r n <时,令21111121222221(1,,,,)(1,,,,)(1,,,,)r r r r r r rt t t t t t t t t b b b ---ì=ï=ïíïï=îL L L L L L L L L L L 则由上面1)的证明可知12,,,r b b b L 是线性无关的.而12,,,r a a a L 是12,,,r b b b L 延长的向量,所以12,,,r a a a L 也线性无关.6.设123,,a a a 线性无关,证明122331,,a a a a a a +++也线性无关. 证 设由线性关系112223331()()()0k k k a a a a a a +++++=则131122233()()()0k k k k k k a a a +++++=再由题设知123,,a a a 线性无关,所以13122300k k k k k k +=ìï+=íï+=î 解得1230k k k ===所以122331,,a a a a a a +++线性无关.7.已知12,,,s a a a L 的秩为r ,证明:12,,,s a a a L 中任意r 个线性无关的向量都构成它的一个极大线性无关组.证 设12,,,i i ir a a a L 是12,,,s a a a L 中任意r 个线性无关向量组,如果能够证明任意一个向量(1,2,,)j j s a =L 都可由12,,,i i ir a a a L 线性表出就可以了.事实上,向量组12,,,,i i ir j a a a a L 是线性相关的,否则原向量组的秩大于r ,矛盾.这说明j a 可由12,,,i i ir a a a L 线性表出,再由j a 的任意性,即证.8.设12,,,s a a a L 的秩为r ,12,,,r i i i a a a L 是12,,,s a a a L 中的r 个向量,使得12,,,s a a a L 中每个向量都可被它们线性表出,证明:12,,,r i i i a a a L 是12,,,s a a a L 的一个极大线性无关组.证 由题设知12,,,r i i i a a a L 与12,,,s a a a L 等价,所以12,,,r i i i a a a L 的秩与12,,,s a a a L 的秩相等,且等于r .又因为12,,,r i i i a a a L 线性无关,故而12,,,r i i i a a a L 是12,,,s a a a L 的一个极大线性无关组.9.证明:一个向量组的任何一个线性无关组都可以扩充成一线性无关组.证 将所给向量组用(Ⅰ)表示,它的一个线性无关向量组用(Ⅱ)表示.若向量组(Ⅰ)中每一个向量都可由向量组(Ⅱ)线性表出,那么向量组(Ⅱ)就是向量组(Ⅰ)的极大线性无关组.否则,向量组(Ⅰ)至少有一个向量a 不能由向量组(Ⅱ)线性表出,此时将a 添加到向量组(Ⅱ)中去,得到向量组(Ⅲ),且向量组(Ⅲ)是线性无关的.进而,再检查向量组(Ⅰ)中向量是否皆可由向量组(Ⅲ)线性表出.若还不能,再把不能由向量组(Ⅲ)线性表出的向量添加到向量组(Ⅲ)中去,得到向量组(Ⅳ).继续这样下去,因为向量组(Ⅰ)的秩有限,所以只需经过有限步后,即可得到向量组(Ⅰ)的一个极大线性无关组.10.设向量组为1(1,1,2,4)a =-,2(0,3,1,2)a =,3(3,0,7,14)a =4(1,1,2,0)a =-,5(2,1,5,6)a =1) 证明:12,a a 线性无关.2) 把12,a a 扩充成一极大线性无关组.证 1)由于12,a a 的对应分量不成比例,因而12,a a 线性无关. 2)因为3123a a a =+,且由1122440k k k a a a ++=可解得1240k k k ===所以124,,a a a 线性无关.再令112244550k k k k a a a a +++=代入已知向量后,由于相应的齐次线性方程组的系数行列式为0,因而该齐次线性方程组存在非零解,即1245,,,a a a a 线性相关,所以5a 可由124,,a a a 线性表出.这意味着124,,a a a 就是原向量组的一个极大线性无关组.注 此题也可将1245,,,a a a a 排成54´的矩阵,再通过列初等变换化为行阶梯形或行最简形,然后得到相应结论.11.用消元法求下列向量组的极大线性无关组与秩:12341)(6,4,1,2),(1,0,2,3,4)(1,4,9,16,22),(7,1,0,1,3)a a a a =-=-=--=-,123452)(1,1,2,4),(0,3,1,2)(3,0,7,14),(1,1,2,0)(2,1,5,6)a a a a a =-===-=解 1)设12346411210234149162271013A a a a a -éùéùêúêú-êúêú==êúêú--êúêú-êúëûëû 对矩阵A 作行初等变换,可得0411192600102341023404111926004569980114223101142231A --éùéùêúêú-êúêú®®êúêú---êúêú----ëûëû 所以1234,,,a a a a 的秩为3,且234,,a a a 即为所求极大线性无关组.3) 同理可得124,,a a a 为所求极大线性无关组,且向量组的秩为3. 12.证明:如果向量组(Ⅰ)可以由向量组(Ⅱ)线性表出,那么(Ⅰ) 的秩不超过(Ⅱ)的秩.证 由题设,向量组(Ⅰ)的极大线性无关组也可由向量组(Ⅱ)的极大线性无关组线性表出,即证向量组(Ⅰ)的秩不超过向量组(Ⅱ)的秩.13.设12,,,n a a a L 是一组维向量,已知单位向量12,,,n e e e L 可被它们线性表出,证明:12,,,n a a a L 线性无关.证 设12,,,n a a a L 的秩为r n £,而12,,,n e e e L 的秩为n . 由题设及上题结果知n r £从而r n =.故12,,,n a a a L 线性无关.14.设12,,,n a a a L 是一组n 维向量,证明:12,,,n a a a L 线性无关的充分必要条件是任一n 维向量都可被它们线性表出.证 必要性.设12,,,n a a a L 线性无关,但是1n +个n 维向量12,,,,n a a a b L 必线性相关,于是对任意n 维向量b ,它必可由12,,,n a a a L 线性表出.充分性.任意n 维向量可由12,,,n a a a L 线性表出,特别单位向量12,,,n e e e L 可由12,,,n a a a L 线性表出,于是由上题结果,即证12,,,n a a a L 线性无关.15.证明:方程组11112211211222221122n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=ìï+++=ïíïï+++=îL L L L L L L L L L L L L 对任何12,,,n b b b L 都有解的充分必要条件是系数行列式0ij a ¹.证 充分性.由克拉默来姆法则即证.下证必要性.记1212(,,,)(1,2,,)(,,,)i i i ni n i n b b b a a a a b ===L L L则原方程组可表示为1122n n x x x b a a a =+++L由题设知,任意向量b 都可由线性12,,,n a a a L 表出,因此由上题结果可知12,,,n a a a L 线性无关.进而,下述线性关系12220n n k k k a a a +++=L仅有惟一零解,故必须有0ij A a =¹,即证.16.已知12,,,r a a a L 与121,,,,,,r r s a a a a a +L L 有相同的秩,证明: 与121,,,,,,r r s a a a a a +L L 等价.证 由于12,,,r a a a L 与121,,,,,,r r s a a a a a +L L 有相同的秩,因此它们的极大线性无关组所含向量个数必定相等.这样12,,,r a a a L 的极大线性无关组也必为121,,,,,,r r s a a a a a +L L 的极大线性无关组,从而它们有相同的极大线性无关组.另一方面,因为它们分别与极大线性无关组等价,所以它们一定等价. 17.设123213,,,r r b a a a b a a a =+++=+++L L L 121r r b a a a -=+++L证明:12,,,r b b b L 与12,,,r a a a L 具有相同的秩.证 只要证明两向量组等价即可.由题设,知12,,,r b b b L 可由12,,,r a a a L 线性表出.现在把这些等式统统加起来,可得12121()1r r r b b b a a a +++=+++-L L 于是121111(1)1111i i r r r r r a b b b b =+++-++----L L (1,2,,)i r =L即证12,,,r a a a L 也可由12,,,r b b b L 线性表出,从而向量组12,,,r b b b L 与12,,,r a a a L 等价.18.计算下列矩阵的秩:1)01112022200111111011-éùêú--êúêú--êú-ëû 2)11210224203061103001-éùêú--êúêú-êúëû3)141268261042191776341353015205éùêúêúêúêúëû 4)10014010250013612314324563277éùêúêúêúêúêúêúëû5)1010011000011000011001011éùêúêúêúêúêúêúëû解 1)秩为4.2)秩为3. 3)秩为2. 4)秩为3. 5)秩为5.19.讨论,,a b l 取什么值时,下列方程有解,并求解.1)12212321231x x x x x x x x x l l l l lì++=ï++=íï++=î 2)122123123(3)(1)23(1)(3)3x x x x x x x x x l l l l l l l l +++=ìï+-+=íï++++=î3)1221231234324ax x x x bx x x bx x ++=ìï++=íï++=î解 1)因为方程组的系数行列式21111(1)(2)11D l l l l l==-+所以当1l =时,原方程组与方程1221x x x ++=同解,故原方程组有无穷多解,且其解为11221321x k k x k x k=--ìï=íï=î 其中12,k k 为任意常数.当2l =-时,原方程组无解.当1l ¹且2l ¹-时,原方程组有惟一解.且12231212(1)2x x x l l l l l +ì=-ï+ïï=í+ïï+=ï=î2)因为方程组的系数行列式231211(1)333D l l l l l l l l +=-=-++所以当0l =时,原方程组的系数矩阵A 与增广矩阵A 的秩分别为2与3,所以无解.当1l =时,A 的秩为2,A 的秩为3,故原方程组也无解. 当0l ¹,且1l ¹时,方程组有唯一解321232232323159(1)129(1)43129(1)x x x l l l l l l l l l l l l l l ì+-+=ï-ïï-+ï=í-ïï--+=ï-ïî3) 因为方程组的系数行列式1111(1)121a Db b a b ==--所以当0D ¹时,即1a ¹且0b ¹时,方程组有惟一解,且为12321(1)1124(1)b x b a x b ab b x b a -ì=ï-ïï=íï+-ï=ï-î当0D =时1o若0b =,这时系数矩阵A 的秩为2,而它的增广矩阵A 的秩为3,故原方程组无解。
(完整版)高等代数(北大版第三版)习题答案II
证 1)作变换 ,即
,
则
。
因为 是正定矩阵,所以 是负定二次型。
2) 为正定矩阵,故 对应的 阶矩阵也是正定矩阵,由1)知
或 ,
从而
,
令
,
则
。
由于 是正定的,因此它的 级顺序主子式 ,从而 的秩为 。
即证 。
3.设
。
其中 是 的一次齐次式,证明: 的正惯性指数 ,负惯性指数 。
证 设 ,
的正惯性指数为 ,秩为 ,则存在非退化线性替换
,
使得
。
下面证明 。采用反证法。设 ,考虑线性方程组
,
该方程组含 个方程,小于未知量的个数 ,故它必有非零解 ,于是
,
上式要成立,必有
, ,
这就是说,对于 这组非零数,有
, ,
这与线性替换 的系数矩阵非退化的条件矛盾。所以
。
同理可证负惯性指数 ,即证。
4.设
是一对称矩阵,且 ,证明:存在 使 ,其中 表示一个级数与 相同的矩阵。
证 只要令 ,则 ,
注意到
, ,
则有
。
即证。
5.设 是反对称矩阵,证明: 合同于矩阵
。
设 的秩为 ,作非退化线性替换 将原二次型化为标准型
,
其中 为1或-1。由已知,必存在两个向量 使
和 ,
故标准型中的系数 不可能全为1,也不可能全为-1。不妨设有 个1, 个-1,
且 ,即
,
这时 与 存在三种可能:
, ,
下面仅讨论 的情形,其他类似可证。
令 , , ,
则由 可求得非零向量 使
,
即证。
证 采用归纳法。当 时, 合同于 ,结论成立。下面设 为非零反对称矩阵。
高等代数答案3
阶可逆矩阵 Q,使得 ⎜ ⎜
⎛ Ir ⎝0
0⎞ ⎟ = PAQ .因此, 0⎟ ⎠
⎛ I r 0 ⎞ −1 −1 −1 A = P −1 ⎜ ⎜ 0 0⎟ ⎟Q = P ( E11 + E22 + L + Err )Q ⎝ ⎠ −1 −1 = P E11Q + P −1E22Q −1 + L + P −1Err Q −1
=(
∑ aibi ) A = (∑ aii ) A .
i =1 i =1
nቤተ መጻሕፍቲ ባይዱ
n
9. 设 A 是 F 上的 m×n 矩阵,其秩小于 m. 证明,存在 m 阶非 零矩阵 G,使得 GA=0. 证明 得 PAQ= ⎜ ⎜ 设秩 A=r,则存在 m 阶可逆矩阵 P 和 n 阶可逆矩阵 Q, 使
⎛ a1 ⎞ ⎛ a1 ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ a2 ⎟ ⎜a ⎟ ⇐) 设 A = ⎜ ⎟(b1 b2 L bn ) , 所以秩 A≤min( 秩 ⎜ 2 ⎟ , 秩 L L ⎜ ⎟ ⎜ ⎟ ⎜a ⎟ ⎜a ⎟ ⎝ n⎠ ⎝ n⎠
下方全是 0 的矩阵). 证明 (1)因为矩阵 A 有 n 个特征根(重根按重数算),设λ1 为 A 的一个特征根, α1 是 A 的属于特征根λ1 的特征向量,则 Aα1=λ1α1. 其中α1 ≠ 0 .由习题二的第 15 题知, 存在以α1 为第一列的可逆矩阵 P ∈ M n (C ) . 设 P = (α1 , α1 , L , α n ) , 因 为
令 S= ⎜ ⎜
⎛1 0 ⎞ ⎟ ⎟ ,则 0 Q ⎝ ⎠
39
40
⎛ 1 0 ⎞ ⎛ λ1 S −1 ( P −1 AP) S = ⎜ ⎜ 0 Q −1 ⎟ ⎟⎜ ⎜ ⎝ ⎠⎝0
高等代数(王萼芳石生明著)课后答案高等教育出版社
高等代数习题答案(一至四章)第一章 多项式 习题解答1、(1)由带余除法,得17(),39q x x =-262()99r x =--(2)2()1q x x x =+-,()57r x x =-+2、(1)2100p m q m ⎧++=⎨-=⎩ , (2)由22(2)010m p m q p m ⎧--=⎪⎨+--=⎪⎩得01m p q =⎧⎨=+⎩或212q p m =⎧⎨+=⎩。
3、(1)432()261339109,q x x x x x =-+-+()327r x =- (2)q (x )=22(52)x ix i --+,()98r x i =--4、(1)有综合除法:2345()15(1)10(1)10(1)5(1)(1)f x x x x x x =+-+-+-+-+- (2)234()1124(2)22(2)8(2)(2)f x x x x x =-+++-+++ (3)234()24(75)5()(1)()2()()f x i x i i x i i x i x i =+-++--+-+++5、(1)x+1 (2)1 (3)21x --6、(1)u (x )=-x-1 ,v (x )=x+2 (2)11()33u x x =-+,222()133v x x x =-- (3)u (x )=-x-1, 32()32v x x x x =+-- 7、02u t =⎧⎨=⎩或23u t =-⎧⎨=⎩ 8、思路:根具定义证明证:易见d (x )是f (x )与g (x )的公因式。
另设()x ϕ是f (x )与g (x )的任意公因式,下证()()x d x ϕ。
由于d (x )是f (x )与g (x )的一个组合,这就是说存在多项式s (x )与t (x ),使 d (x )=s (x )f (x )+t (x )g (x )。
从而()()x f x ϕ,()()x g x ϕ,可得()()x d x ϕ。
《高等代数课后答案》(邱著)
《高等代数课后答案》(邱著)高等代数之后的答案(秋微写的)《高等代数》的内容由浅入深,循序渐进,符合当前两位学生的教学实践。
可作为高校数学与应用数学、信息与计算科学专业的教材,也可作为相关专业的教师、学生和自学者的参考。
以下是阳光网编著的《高等代数》答案(邱著)阅读地址。
希望你喜欢!点击进入:高等代数课后答案地址(邱执笔)高等代数(秋微著)目录前言(一)第一章决定因素(1)1.1一些预备知识(1)1.2二阶和三阶行列式(3)1.3n n阶行列式(7)1.4行列式的计算(18)1.5克莱姆法则(28)1.6行列式的一些应用(31)练习1(A)(35)练习1(B)(38)第二章矩阵(41)2.1矩阵的概念(41)2.2矩阵运算(44)2.3初等变换和初等矩阵(54)2.4可逆矩阵(67)2.5矩阵的秩(76)2.6分块矩阵及其应用(79)练习2(A)(90)练习2(B)(93)第三章线性空间(95)3.1矢量(96)3.2向量的线性相关性(98)3.3向量组的秩(103)3.4矩阵的行秩和列秩(106)3.5线性空间(111)3.6基础、尺寸和坐标(114)3.7基变换和转移矩阵(118)3.8子空间(122)3.9同构(131)3.10线性方程(135)练习3(A)(147)练习3(B)(150)第四章线性变换(152)4.1线性变换及其运算(152)4.2线性变换矩阵(156)4.3线性变换的范围和核心(165)4.4不变子空间(169)练习4(A)(173)练习4(B)(175)第五章多项式(176)5.1一元多项式(176)5.2多项式可整除(178)5.3倍大公因数(181)5.4因式分解定理(186)5.5重因子(189)5.6多项式函数(191)5.7复系数和实系数多项式的因式分解(195) 5.8有理系数多项式(198)5.9多元多项式(202)5.10对称多项式(206)练习5(A)(211)练习5(B)(213)第六章特征值(216)6.1特征值和特征向量(216)6.2特征多项式(221)6.3对角化(225)练习6(A)(231)练习6(B)(232)第七章-矩阵(234)7.1-矩阵及其初等变换(234)7.2-矩阵的标准型(238)7.3不变因子(242)7.4矩阵相似性的确定(245)7.5基本因素(247)7.6乔丹范式(251)7.7x小多项式(256)练习7(A)(259)第八章二次型(261)8.1二次型及其矩阵表示(261)8.2将二次型转化为标准型(264)8.3惯性定理(271)8.4正定二次型(274)练习8(A)(279)练习8(B)(280)第九章欧几里得空间(282)9.1欧氏空间的定义和基本性质(282) 9.2标准正交基(285)9.3正交子空间(291)9.4正交变换和对称变换(293)9.5实对称方阵的正交相似性(297)练习9(A)(303)练习9(B)(306)练习答案(308)参考文献312。
高等代数第三章线性方程组知识点复习与相关练习
第三章线性方程组3.1主要方法3.1.1线性相关性的判别线性关系:α1,α2,···,αs线性无关⇐⇒α1,α2,···,αs不线性相关⇐⇒不存在不全为零的数k1,k2,···,k s使成立k1α1+k2α2+···+k sαs=0⇐⇒若k1,k2,···,k s不全为零,则k1α1+k2α2+···+k sαs=0⇐⇒若k1α1+k2α2+···+k sαs=0,则k1=k2=···=k s=0.因此,判断向量组α1,α2,···,αs是否线性相关的方法:令k1α1+k2α2+···+k sαs=0,若k1,k2,···,k s有非零解,则α1,α2,···,αs线性相关;若k1,k2,···,k s只有零解,则α1,α2,···,αs无关。
3.1.2求矩阵与向量组的秩的方法求矩阵秩的方法:A初等行变换−−−−−−→B(阶梯形矩阵)则r(A)=r(B)=B的非零行的行数.求向量组的秩的方法:以α1,α2,···,αs为列做成矩阵A,A=(αT1,αT2,···,αTs)初等行变换−−−−−−→B(阶梯形矩阵)则•r(α1,α2,···,αs)=r(A)=r(B)=B的非零行的行数.•若B的非零行的第一个非零元分别位于i1,i2,···,i r,则αi1,αi2,···,αir就是α1,α2,···,αs的一个极大线性无关组。
高等代数第三章答案
第三章 线性方程组习题解答1.用消元法解下列方程组:⑴⎪⎪⎪⎩⎪⎪⎪⎨⎧-=+-++=-++-=--+--=+-++=-++12343212231453543215432154321543214321x x x x x x x x x x x x x x x x x x x x x x x x ⑵⎪⎪⎩⎪⎪⎨⎧=+-+-=+-+-=-+--=+-+2521669972543223312325432154321543215421x x x x x x x x x x x x x x x x x x x⑶⎪⎪⎩⎪⎪⎨⎧-=++-=++-=+-=-+-33713344324324214324321x x x x x x x x x x x x x ⑷⎪⎪⎩⎪⎪⎨⎧=++-=+-+=-+-=+-+03270161311402332075434321432143214321x x x x x x x x x x x x x x x x ⑸⎪⎪⎩⎪⎪⎨⎧=-+--=+-+=-+-=+++43212523223124321432143214321x x x x x x x x x x x x x x x x ⑹⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=-++=+++=-++=-++225512221321231323214321432143214321x x x x x x x x x x x x x x x x x x x 解:⑴对它的增广矩阵作初等行变换:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---------→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------------→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----------00101000000000020*********1001001110000000000200212300101201001110007770005750212300104531213410215470213450212300104531111121311141311121112231104531即⎪⎪⎩⎪⎪⎨⎧=+-=--=+=-0022214235441x x x x x x x ,得⎪⎪⎩⎪⎪⎨⎧--====+=k x x k x x k x 220153421 k 为任意常数 ⑵无解⑶0,6,3,84321===-=x x x x⑷任意43432431,,17201719,1713173x x x x x x x x -=-=⑸无解 ⑹651,671,651434241x x x x x x +=-=+=2.把向量β表成4321αααα,,,的线性组合:⑴()()()()()1,1-1-11-1,1-11-1-,1,11,1,1,111,2,14321,,,,,,,,,,=====ααααβ ⑵()()()()()1-1-1,00,0,1,11,3,1,21,0,1,11,0,0,04321,,,,,,=====ααααβ 解:⑴令44332211ααααβk k k k +++=得方程组⎪⎪⎩⎪⎪⎨⎧=+--=-+-=--+=+++,1,1,2,14321432143214321k k k k k k k k k k k k k k k k 解得,41,41,41,454321-=-===k k k k 所以432141414145ααααβ--+=⑵仿上,可得31-ααβ=3.证明:如果向量组r ααα,,, 21线性无关,而βααα,21r ,,, 线性相关,则向量β可由r ααα,,, 21线性表出。
高等数学 线性代数 习题答案第三章
第三章习题3-11. 设s =12gt 2,求2d d t s t=.解:22221214()(2)2lim lim 22t t t g g ds s t s dt t t t →→=-⨯-==-- 21lim (2)22t g t g →=+= 2. 设f (x )=1x,求f '(x 0) (x 0≠0). 解:1211()()()f x x x x--'''===00201()(0)f x x x '=-≠ 3.试求过点(3,8)且与曲线2y x =相切的直线方程。
解:设切点为00(,)x y ,则切线的斜率为002x x y x ='=,切线方程为0002()y y x xx -=-。
由已知直线过点(3,8),得 00082(3)y x x -=- (1)又点00(,)x y 在曲线2y x =上,故200y x = (2)由(1),(2)式可解得002,4x y ==或004,16x y ==,故所求直线方程为44(2)y x -=-或168(4)y x -=-。
也即440x y --=或8160x y --=。
4. 下列各题中均假定f ′(x 0)存在,按照导数定义观察下列极限,指出A 表示什么:(1) 0limx ∆→00()()f x x f x x-∆-∆=A ;(2) f (x 0)=0, 0limx x →0()f x x x-=A ; (3) 0limh →00()()f x h f x h h+--=A .解:(1)0000000()()[()]()limlim ()x x f x x f x f x x f x f x x x→-→--+--'=-=--0()A f x '∴=- (2)00000()()()limlim ()x x x x f x f x f x f x x x x x →→-'=-=---0()A f x '∴=-(3)000()()limh f x h f x h h→+--00000[()()][()()]lim h f x h f x f x h f x h→+----=000000()()[()]()lim lim h h f x h f x f x h f x h h→-→+-+--=+-000()()2()f x f x f x '''=+= 02()A f x '∴=5. 求下列函数的导数: (1) y (2) y ;(3) y 322x .解:(1)12y x x ==11221()2y x x -''∴=== (2)23y x -=225133322()33y x x x ----''∴==-=-=(3)2152362y xx xx -==15661()6y x x-''∴===6. 讨论函数y x =0点处的连续性和可导性. 解:30lim 0(0)x x f →==000()(0)0lim lim 0x x x f x f x x →→→-===∞-∴函数y =0x =点处连续但不可导。
高等代数 第三章 线性空间
第三章 线性空间习题精解1. 把向量β表成1234,,,αααα的线性组合.12341)(1,2,1,1)(1,1,1,1),(1,1,1,1)(1,1,1,1),(1,1,1,1)βαααα===--=--=--12342)(0,0,0,1)(1,1,0,1),(2,1,3,1)(1,1,0,0),(0,1,1,1)βαααα=====--解 1)设有线性关系11223344k k k k βαααα=+++代入所给向量,可得线性方程组12341234123412341211k k k k k k k k k k k k k k k k +++=⎧⎪+--=⎪⎨-+-=⎪⎪--+=⎩ 解之,得15,4k =21,4k = 31,4k =- 414k =- 因此123451114444βαααα=+--2)同理可得13βαα=-2.证明:如果向量组12,,,r ααα 线性无关,而12,,,,r αααβ 线性相关,则向量可由12,,,r ααα 线性表出.证 由题设,可以找到不全为零的数121,,,r k k k + 使112210r r r k k k k αααβ+++++=显然10r k +≠.事实上,若10r k +=,而12,,,r k k k 不全为零,使11220r r k k k ααα+++=成立,这与12,,,r ααα 线性无关的假设矛盾,即证10r k +≠.故11rii i r k k βα=+=-∑即向量β可由12,,,r ααα 线性表出.3.12(,,,)(1,2,,)i i i in i n αααα== ,证明:如果0ij α≠,那么12,,,n ααα 线性无关.证 设有线性关系11220n n k k k ααα+++=代入分量,可得方程组111212112122221122000n n n nn n nn n k k k k k k k k k ααααααααα+++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 由于0ij α≠,故齐次线性方程组只有零解,从而12,,,n ααα 线性无关.4.设12,,,r t t t 是互不相同的数,r n ≤.证明:1(1,,,)(1,2,,)n i i i t t i r α-==是线性无关的.证 设有线性关系11220r r k k k ααα+++=则1211221111122000r r rn n n r rk k k t k t k t k t k t k t k ---+++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 1)当r n =时,方程组中的未知量个数与方程个数相同,且系数行列式为一个范德蒙行列式,即122221211112111()0nn j i i jn n n nt t t t t t t t t t t <---=-≠∏所以方程组有惟一的零解,这就是说12,,,r ααα 线性无关.2)当r n <时,令21111121222221(1,,,,)(1,,,,)(1,,,,)r r r r r r rt t t t t t t t t βββ---⎧=⎪=⎪⎨⎪⎪=⎩ 则由上面1)的证明可知12,,,r βββ 是线性无关的.而12,,,r ααα 是12,,,r βββ 延长的向量,所以12,,,r ααα 也线性无关.5.设123,,ααα线性无关,证明122331,,αααααα+++也线性无关. 证 设由线性关系112223331()()()0k k k αααααα+++++=则131122233()()()0k k k k k k ααα+++++=再由题设知123,,ααα线性无关,所以13122300k k k k k k +=⎧⎪+=⎨⎪+=⎩ 解得1230k k k ===所以122331,,αααααα+++线性无关.6.已知12,,,s ααα 的秩为r ,证明:12,,,s ααα 中任意r 个线性无关的向量都构成它的一个极大线性无关组.证 设12,,,i i ir ααα 是12,,,s ααα 中任意r 个线性无关向量组,如果能够证明任意一个向量(1,2,,)j j s α= 都可由12,,,i i ir ααα 线性表出就可以了.事实上,向量组12,,,,i i ir j αααα 是线性相关的,否则原向量组的秩大于r ,矛盾.这说明j α可由12,,,i i ir ααα 线性表出,再由j α的任意性,即证.7.设12,,,s ααα 的秩为r ,12,,,r i i i ααα 是12,,,s ααα 中的r 个向量,使得12,,,s ααα 中每个向量都可被它们线性表出,证明:12,,,ri i i ααα 是12,,,s ααα 的一个极大线性无关组.证 由题设知12,,,r i i i ααα 与12,,,s ααα 等价,所以12,,,r i i i ααα 的秩与12,,,s ααα 的秩相等,且等于r .又因为12,,,ri i i ααα 线性无关,故而12,,,ri i i ααα 是12,,,s ααα 的一个极大线性无关组.8.证明:一个向量组的任何一个线性无关组都可以扩充成一线性无关组. 证 将所给向量组用(Ⅰ)表示,它的一个线性无关向量组用(Ⅱ)表示.若向量组(Ⅰ)中每一个向量都可由向量组(Ⅱ)线性表出,那么向量组(Ⅱ)就是向量组(Ⅰ)的极大线性无关组.否则,向量组(Ⅰ)至少有一个向量α不能由向量组(Ⅱ)线性表出,此时将α添加到向量组(Ⅱ)中去,得到向量组(Ⅲ),且向量组(Ⅲ)是线性无关的.进而,再检查向量组(Ⅰ)中向量是否皆可由向量组(Ⅲ)线性表出.若还不能,再把不能由向量组(Ⅲ)线性表出的向量添加到向量组(Ⅲ)中去,得到向量组(Ⅳ).继续这样下去,因为向量组(Ⅰ)的秩有限,所以只需经过有限步后,即可得到向量组(Ⅰ)的一个极大线性无关组.9.设向量组为1(1,1,2,4)α=-,2(0,3,1,2)α=,3(3,0,7,14)α=4(1,1,2,0)α=-,5(2,1,5,6)α=1) 证明:12,αα线性无关.2) 把12,αα扩充成一极大线性无关组.证 1)由于12,αα的对应分量不成比例,因而12,αα线性无关. 2)因为3123ααα=+,且由1122440k k k ααα++=可解得1240k k k ===所以124,,ααα线性无关.再令112244550k k k k αααα+++=代入已知向量后,由于相应的齐次线性方程组的系数行列式为0,因而该齐次线性方程组存在非零解,即1245,,,αααα线性相关,所以5α可由124,,ααα线性表出.这意味着124,,ααα就是原向量组的一个极大线性无关组.注 此题也可将1245,,,αααα排成54⨯的矩阵,再通过列初等变换化为行阶梯形或行最简形,然后得到相应结论.10.用消元法求下列向量组的极大线性无关组与秩:12341)(6,4,1,2),(1,0,2,3,4)(1,4,9,16,22),(7,1,0,1,3)αααα=-=-=--=-,123452)(1,1,2,4),(0,3,1,2)(3,0,7,14),(1,1,2,0)(2,1,5,6)ααααα=-===-=解 1)设12346411210234149162271013A αααα-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥==⎢⎥⎢⎥--⎢⎥⎢⎥-⎢⎥⎣⎦⎣⎦ 对矩阵A 作行初等变换,可得0411192600000102341023404111926004569980114223101142231A --⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥→→⎢⎥⎢⎥---⎢⎥⎢⎥----⎣⎦⎣⎦所以1234,,,αααα的秩为3,且234,,ααα即为所求极大线性无关组.3) 同理可得124,,ααα为所求极大线性无关组,且向量组的秩为3.11.证明:如果向量组(Ⅰ)可以由向量组(Ⅱ)线性表出,那么(Ⅰ) 的秩不超过(Ⅱ)的秩.证 由题设,向量组(Ⅰ)的极大线性无关组也可由向量组(Ⅱ)的极大线性无关组线性表出,即证向量组(Ⅰ)的秩不超过向量组(Ⅱ)的秩.12.设12,,,n ααα 是一组维向量,已知单位向量12,,,n εεε 可被它们线性表出,证明:12,,,n ααα 线性无关.证 设12,,,n ααα 的秩为r n ≤,而12,,,n εεε 的秩为n . 由题设及上题结果知n r ≤从而r n =.故12,,,n ααα 线性无关.13.设12,,,n ααα 是一组n 维向量,证明:12,,,n ααα 线性无关的充分必要条件是任一n 维向量都可被它们线性表出.证 必要性.设12,,,n ααα 线性无关,但是1n +个n 维向量12,,,,n αααβ 必线性相关,于是对任意n 维向量β,它必可由12,,,n ααα 线性表出.充分性.任意n 维向量可由12,,,n ααα 线性表出,特别单位向量12,,,n εεε 可由12,,,n ααα 线性表出,于是由上题结果,即证12,,,n ααα 线性无关.14.证明:方程组11112211211222221122n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 对任何12,,,n b b b 都有解的充分必要条件是系数行列式0ij a ≠.证 充分性.由克拉默来姆法则即证.下证必要性.记1212(,,,)(1,2,,)(,,,)i i i ni n i n b b b ααααβ===则原方程组可表示为1122n n x x x βααα=+++由题设知,任意向量β都可由线性12,,,n ααα 表出,因此由上题结果可知12,,,n ααα 线性无关.进而,下述线性关系12220n n k k k ααα+++=仅有惟一零解,故必须有0ij A a =≠,即证.15.已知12,,,r ααα 与121,,,,,,r r s ααααα+ 有相同的秩,证明: 与121,,,,,,r r s ααααα+ 等价.证 由于12,,,r ααα 与121,,,,,,r r s ααααα+ 有相同的秩,因此它们的极大线性无关组所含向量个数必定相等.这样12,,,r ααα 的极大线性无关组也必为121,,,,,,r r s ααααα+ 的极大线性无关组,从而它们有相同的极大线性无关组.另一方面,因为它们分别与极大线性无关组等价,所以它们一定等价. 16.设123213,,,r r βαααβααα=+++=+++121r r βααα-=+++证明:12,,,r βββ 与12,,,r ααα 具有相同的秩.证 只要证明两向量组等价即可.由题设,知12,,,r βββ 可由12,,,r ααα 线性表出. 现在把这些等式统统加起来,可得12121()1r r r βββααα+++=+++- 于是121111(1)1111i i r r r r r αββββ=+++-++---- (1,2,,)i r =即证12,,,r ααα 也可由12,,,r βββ 线性表出,从而向量组12,,,r βββ 与12,,,r ααα 等价.17.计算下列矩阵的秩:1)01112022200111111011-⎡⎤⎢⎥--⎢⎥⎢⎥--⎢⎥-⎣⎦ 2)11210224203061103001-⎡⎤⎢⎥--⎢⎥⎢⎥-⎢⎥⎣⎦3)141268261042191776341353015205⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ 4)10014010250013612314324563277⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦5)1010011000011000011001011⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦解 1)秩为4.2)秩为3. 3)秩为2. 4)秩为3. 5)秩为5.18.讨论,,a b λ取什么值时,下列方程有解,并求解.1)12212321231x x x x x x x x x λλλλλ⎧++=⎪++=⎨⎪++=⎩ 2)122123123(3)(1)23(1)(3)3x x x x x x x x x λλλλλλλλ+++=⎧⎪+-+=⎨⎪++++=⎩3)1221231234324ax x x x bx x x bx x ++=⎧⎪++=⎨⎪++=⎩解 1)因为方程组的系数行列式21111(1)(2)11D λλλλλ==-+所以当1λ=时,原方程组与方程1221x x x ++=同解,故原方程组有无穷多解,且其解为11221321x k k x k x k=--⎧⎪=⎨⎪=⎩ 其中12,k k 为任意常数.当2λ=-时,原方程组无解.当1λ≠且2λ≠-时,原方程组有惟一解.且12231212(1)2x x x λλλλλ+⎧=-⎪+⎪⎪=⎨+⎪⎪+=⎪=⎩2)因为方程组的系数行列式231211(1)333D λλλλλλλλ+=-=-++所以当0λ=时,原方程组的系数矩阵A 与增广矩阵A 的秩分别为2与3,所以无解.当1λ=时,A 的秩为2,A 的秩为3,故原方程组也无解. 当0λ≠,且1λ≠时,方程组有唯一解321232232323159(1)129(1)43129(1)x x x λλλλλλλλλλλλλλ⎧+-+=⎪-⎪⎪-+⎪=⎨-⎪⎪--+=⎪-⎪⎩3) 因为方程组的系数行列式1111(1)121a Db b a b ==-- 所以当0D ≠时,即1a ≠且0b ≠时,方程组有惟一解,且为12321(1)1124(1)b x b a x b ab b x b a -⎧=⎪-⎪⎪=⎨⎪+-⎪=⎪-⎩当0D =时1o若0b =,这时系数矩阵A 的秩为2,而它的增广矩阵A 的秩为3,故原方程组无解。
2019-高等代数第三版答案-优秀word范文 (28页)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==高等代数第三版答案篇一:高等代数(北大版)第3章习题参考答案第三章线性方程组1.用消元法解下列线性方程组: ?x1?x?1?1)?x1?x?1??x1?3x2?5x3?4x4?1?3x2?2x3?2x4??2x2?x3?x4?x5?4x2?x3?x4?x5?2x2?x3?x4?x5 ?x1?2x2?3x4?2x5?1x5??1??x1?x2?3x3?x4?3x5?2?3 2)?2x?3x?4x?5x?2x?72345?1?3?9x?9x?6x?16x?2x?252345?1??1x3?x7?0?3x1?4x2?5?x1?2x2?3x3?4x4?44??x3?x2?0?x2?x3?x4??3?2x1?3x2?343)?4)?4x?11x?13x?16x?0x?3x??x?123424?1?1??7x?3x?x??3?7x?2x?x?3x??0234234??1?x1?2x2?3x3?x4?1?2x1?x2?x3?x4?1? 3x1?2x2?x3?x4?1????3x1?2x2?2x3?3x4?2 5)? 6)?2x1?3x2?x3?x4?1?2x?2x?2x?x?1?5x1?x2?x3?2x4??1234?1?2x?x?x?3x?4234?1??5x1?5x2?2x3?2解 1)对方程组得增广矩阵作行初等变换,有?1?1??1??1??1?1?0???0??0??033?2?4201X0?1521112?3?20?1?4?2?11?1?1201X01?1?1101000 1??1???10??3???0??3??0??1???01??1???20??0???0??0??0?0???030?5?7?10000?15?3?4?4?400?200?42358?1201X01?1?11010001???2?2? ?2??2??1???2?0? ?0?0??因为rank(A)?rank(B)?4?5,所以方程组有无穷多解,其同解方程组为?x1?x4?1??2x1?x5??2, ??2x?03???x?x?0?24解得?x1?x?2??x3?x?4??x5?1?k?k?0?k??2?2k其中k为任意常数。
高等代数__课后答案__高等教育出版社
高等代数习题答案(一至四章)第一章 多项式 习题解答1、(1)由带余除法,得17(),39q x x =-262()99r x =--(2)2()1q x x x =+-,()57r x x =-+2、(1)2100p m q m ⎧++=⎨-=⎩ , (2)由22(2)010m p m q p m ⎧--=⎪⎨+--=⎪⎩得01m p q =⎧⎨=+⎩或212q p m =⎧⎨+=⎩。
3、(1)432()261339109,q x x x x x =-+-+()327r x =- (2)q (x )=22(52)x ix i --+,()98r x i =--4、(1)有综合除法:2345()15(1)10(1)10(1)5(1)(1)f x x x x x x =+-+-+-+-+- (2)234()1124(2)22(2)8(2)(2)f x x x x x =-+++-+++(3)234()24(75)5()(1)()2()()f x i x i i x i i x i x i =+-++--+-+++5、(1)x+1 (2)1 (3)21x -- 6、(1)u (x )=-x-1 ,v (x )=x+2 (2)11()33u x x =-+,222()133v x x x =-- (3)u (x )=-x-1, 32()32v x x x x =+--7、02u t =⎧⎨=⎩或23u t =-⎧⎨=⎩8、思路:根具定义证明证:易见d (x )是f (x )与g (x )的公因式。
另设()x ϕ是f (x )与g (x )的任意公因式,下证()()x d x ϕ。
由于d (x )是f (x )与g (x )的一个组合,这就是说存在多项式s (x )与t (x ),使 d (x )=s (x )f (x )+t (x )g (x )。
从而()()x f x ϕ,()()x g x ϕ,可得()()x d x ϕ。
《高等代数》第三章习题及答案
习题3.1计算下列行列式:①5312--+a a ②212313121+----a a a解 ①5312--+a a =(a+2)(a-5)+3=a 2-3a-7②212313121+----a a a =(a-1)(a-1)(a+2)-3-12+2(a-1)-3(a-1)+6(a+2)= a 3+2a习题3.2求从大到小的n 阶排列(n n-1 … 2 1)的逆序数. 解 τ(n n-1 … 2 1)=(n-1)+(n-2)+…+1+0=2)1(-n n 习题3.31.在6阶行列式中,项a 23a 31a 42a 56a 14a 65和项a 32a 43a 14a 51a 66a 25应各带有什么符号?解 因为a 23a 31a 42a 56a 14a 65=a 14a 23a 31a 42a 56a 65,而τ(4 3 1 2 6 5)=3+2+0+0+1+0=6,所以项a 23a 31a 42a 56a 14a 65带有正号.又因为项a 32a 43a 14a 51a 66a 25=a 14a 25a 32a 43a 51a 66,而τ(4 5 2 3 1 6)=3+3+1+1+0+0=8,所以项a 32a 43a 14a 51a 66a 25带有正号. 2.计算:000400010002000300050000 解 因为a 15a 24a 33a 42a 51的逆序数为τ(5 4 3 2 1)=5×4/2=10,带有正号,所以000400010002000300050000=5×3×2×1×4=120 习题3.4计算:6217213424435431014327427246-解 6217213424435431014327427246-=6211003424431001014327100246-=100×621134244*********1246-=-294×105习题3.51.计算下列行列式:①1723621431524021----- ②6234352724135342------解 ①1723621431524021-----=1374310294111120001------=137410291111-----=-726②6234352724135342------=1035732130010313410------=0105731331310---- =05723133710----=-5×72337--=-1002. 计算下列n 阶行列式(n ≥2):①ab ba b a b a 000000000000 ②1210010010011110-n a a a③n n n n x x x x x x a a a a x a 1322113211000000000-----+④111)()1()()1()()1(111n a a a n a a a n a a a n n n n n n --------- 解 ① n n a b b a b a b a ⨯000000000000=)1()1(00000000000-⨯-⨯n n a b a b a b a a+)1()1(1000000000000)1(-⨯-+⨯-n n n b a b b ab b=a n+(-1)n+1b n② D n =1210010*********-n a a a=a n-1×D n-1+(-1)n+1×)1)(1(2100000000001111---n n n a a= a n-1D n-1+(-1)n+1×(-1)1+(n-1)×)2)(2(232100000000----n n n n a a a a=a n-1D n-1-a 1a 2…a n-2=a n-1(a n-2D n-2-a 1a 2…a n-3)-a 1a 2…a n-2 =a n-1a n-2D n-2-a n-1a 1a 2…a n-3-a 1a 2…a n-2 …= a n-1a n-2…a 2D 2-a n-1a n-2…a 3a 1-…-a n-1a n-2a 1a 2…a n-4-a n-1a 1a 2…a n-3-a 1a 2…a n-2= a n-1a n-2…a 21110a -a n-1a n-2…a 3a 1-…-a n-1a n-2a 1a 2…a n-4-a n-1a 1a 2…a n-3-a 1a 2…a n-2=-a n-1a n-2…a 2-a n-1a n-2…a 3a 1-…-a n-1a n-2a 1a 2…a n-4-a n-1a 1a 2…a n-3-a 1a 2…a n-2 =-∑---11211)...(n i in a a a a ③ D n =nn n n x x x x x x a a a a x a 1322113211000000000-----+=112111...)1()1(---++-⨯-n n n n n n D x x x x a =a n x 1x 2…x n-1+x n D n-1=a n x 1x 2…x n-1+x n (a n-1x 1x 2…x n-2+x n-1D n-2) =a n x 1x 2…x n-1+x n a n-1x 1x 2…x n-2+x n x n-1D n-2 …=a n x 1x 2…x n-1+x n a n-1x 1x 2…x n-2+…+x n x n-1…x 4a 3x 1x 2+x n x n-1…x 4x 3D 2=a n x 1x 2...x n-1+x n a n-1x 1x 2...x n-2+...+x n x n-1...x 4a 3x 1x 2+x n x n-1...x 4x 3[(a 1+x 1)x 2+a 2x 1] =)( (1)1121121∑=+--+ni n i i i n n x x a xx x x x x x④D n+1=111)()1()()1()()1(111n a a a n a a a n a a a n n n nn n ---------=nn n n n n n n a a a n a a a n a a a )1()1()()1()()1(111)1(1112)1(----------+=)1()]}1([)2)(1)]{(()2)(1[()1(2)1(---------+ n n n n=2!3!...n!3.计算下列n 阶行列式(n ≥1):①n a a a a ++++1111111111111111321②ax x x x x a x x x x a x a x x x x x a x n n nn ----- 321321321321解 ① D n =na a a a ++++1111111111111111321=na a a a +++++++11110111*********11321=1111111111111111321a a a ++++na a a a111011101110111321+++ =110010010321a a a +1-n n D a =a n D n-1-a 1a 2…a n-1=a n (a n-1D n-2-a 1a 2…a n-2)-a 1a 2…a n-1 =a n a n-1D n-2-a n a 1a 2…a n-2-a 1a 2…a n-1 =n ni n i i a a a a a aa 211111)(+∑=+-=⎪⎪⎭⎫ ⎝⎛+∑=ni i n a a a a 12111 (a i ≠0) ②D n =a x x x x x a x x x x a x a x x x x x a x n n n n -----321321321321=ax x x x x a x x x x a x a x x x x x a x n n n n -+-+--+- 321321321321000=n n n n x x x x x a x x x x a x a x x x x x a x 321321321321----+ax x x a x x x a x a x x x x a x -----321321321321000 =x n (-a)n-1(x 1+x 2+…+x n )+(-a)n4.证明:n 阶行列式yz z x y y x z xzz zz y y x z z yy y x z yy y y x nn ----=)()( 其中z ≠y .解 D n =xzz zzy y x z z yy y x z x y zx00--=(x-z)D n-1-(y-x))1()1(-⨯-n n x zz zy y x zy y y z=(x-z)D n-1-(y-x)z)1()1(111-⨯-n n x z z y y x y yy=(x-z)D n-1-(y-x)z)1()1(10010001-⨯-----n n y x yz y z y x=(x-z)D n-1-(y-x)z(x-y)n-2=(x-z)D n-1+z(x-y)n-1即有D n =(x-z)D n-1+z(x-y)n-1(1)又D n =xzz zy y x z yy y x x z yy y y y x--=(x-y)D n-1-(z-x))1()1(-⨯-n n x zz zy y x zy y y y=(x-y)D n-1-(z-x)y)1()1(1111-⨯-n n x z z z yy x z=(x-y)D n-1-(z-x)y)1()1(001111-⨯-----n n z x z y z y z x=(x-y)D n-1-(z-x)y(x-z)n-2即有D n =(x-y)D n-1+y(x-z)n-1(2) 联立式(1)和式(2)得yz z x y y x z xzz zzy y x z z yy y x z yy y y x nn ----=)()( 习题3.61.设A,B,P ∈Mat n ×n (F),并且P 是可逆的,证明:如果B=P -1AP ,则|B|=|A|.证 因为|P -1||P|=1,所以|B|=|P -1AP|=|P -1||A||P|=|A|. 2*.仿照例3.6.1,试用分块初等变换,证明定理3.6.1. 证 设A ,B 都是n ×n 矩阵,则nE BA -0=B A B A A E B n n n n=-=--+)1(0)1(另一方面,对nE BA -0的第2行小块矩阵乘以A 加到第一行上去,有nE BA -0=AB E BAB n=0所以B A AB =.习题3.71.求下列矩阵的伴随矩阵和逆矩阵①⎪⎪⎭⎫⎝⎛--1112 ②⎪⎪⎪⎭⎫ ⎝⎛--325436752解 ①设原矩阵为A ,则A 11=-1,A 21=-1,A 12=1,A 22=2,伴随矩阵A *=⎪⎪⎭⎫⎝⎛--2111,|A|=-2+1=-1,所以,A -1=⎪⎪⎭⎫ ⎝⎛---211111=⎪⎪⎭⎫ ⎝⎛--2111②设原矩阵为A ,则A 11=3243--=-9+8=-1,A 21=3275---=-(-15+14)=1,A 31=4375=20-21=-1,A 12=3546--=38,A 22=3572-=-41,A 32=4672-=34, A 13=2536-=-27,A 23=2552--=29,A 33=3652=-24伴随矩阵A *=⎪⎪⎪⎭⎫ ⎝⎛-----242927344138111,|A|=-18-84+100-105+16+90=-1,所以,A -1=⎪⎪⎪⎭⎫ ⎝⎛------24292734413811111=⎪⎪⎪⎭⎫ ⎝⎛----2429273441381112.证明:上三角形矩阵是可逆矩阵的充分必要条件是:它的主对角线元全不为零.证 因为矩阵可逆的充分必要条件是它的行列式不为零,而上三角形矩阵的行列式等于它的主对角线上所有元的乘积,所以上三角形矩阵的行列式不为零的充分必要条件是:它的主对角线元全不为零,故上三角形矩阵可逆矩阵的充分必要条件是:它的主对角线元全不为零.3.设A 是n ×n 矩阵.证明:A 是可逆的,当且仅当A *也是可逆的.证 因为 AA *=|A|E ,两边取行列式得|A||A *|=|A|n.若A 可逆,则A 的行列式|A|≠0,从而有|A *|=|A|n-1≠0,所以A *可逆.反之,若A *可逆,设A *的逆阵为(A *)-1.用反证法,假设A 不可逆,则A 的行列式|A|=0,所以AA *=|A|E=0,对AA *=0两边同时右乘(A *)-1,得A=0,从而A 的任一n-1阶子式必为零,故A *=0,这与A *可逆相矛盾,因此A 可逆. 4.证明定理3.7.2的推论1.推论1的描述:设A 是分块对角矩阵,A=diag(A 1,A 2,…,A s ),证明:A 可逆当且仅当A 1,A 2,…,A s 均可逆,并且A -1=diag(A 1-1,A 2-1,…,A s -1).证 A 可逆,当且仅当A 的行列式|A|≠0,而|A|=|A 1||A 2|…|A s |,所以|A|≠0当且仅当|A 1|,|A 2|,…,|A s |都不为零,即A 1,A 2,…,A s 均可逆.令B=diag(A 1-1,A 2-1,…,A s -1),则有AB=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛S A A A21⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---11211s A A A =⎪⎪⎪⎪⎪⎭⎫⎝⎛S E E E21=E 故A -1=diag(A 1-1,A 2-1,…,A s -1).4.设A=⎪⎪⎪⎭⎫⎝⎛333231232221131211a a aa a a a a a 是实矩阵(实数域上的矩阵),且a 33=-1.证明:如果A 的每一个元都等于它的代数余子式,则|A|=1.证 如果A 的每一个元都等于它的代数余子式,则A 的伴随矩阵A *=⎪⎪⎪⎭⎫ ⎝⎛332313322212312111a a a a a a a a a =A T .所以|A *|=|A|,又AA *=|A|E ,两边取行列式得|A|2=|A|3. 由a 33=-1,得AA *=⎪⎪⎪⎭⎫ ⎝⎛333231232221131211a a aa a a a a a ⎪⎪⎪⎭⎫ ⎝⎛332313322212312111a a a a a a a a a =⎪⎪⎪⎭⎫ ⎝⎛-12313322212312111a a a a a a a a ⎪⎪⎪⎭⎫⎝⎛-12313322212312111a a a a a a a a =⎪⎪⎪⎭⎫ ⎝⎛++1232231a a =⎪⎪⎪⎭⎫ ⎝⎛||000||000||A A A比较最后一个等式两端第3行3列的元素知|A|=a 312+a 322+1≠0,对|A|2=|A|3两边同时除以|A|2得|A|=1.6.设A=(a ij )是n ×n 可逆矩阵,有两个线性方程组(Ⅰ)⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++=+++=+++=+++u x c x c x c bx a x a x a b x a x a x a b x a x a x a n n nn nn n n n n n n (221122112222212111212111)(Ⅱ)⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++=+++=+++=+++vx b x b x b cx a x a x a c x a x a x a c x a x a x a n n nn nn n n n n n n (221122112222211211221111)如果(Ⅰ)有解.证明:当且仅当u =v 时,(Ⅱ)有解.证 设方程组(Ⅰ)的解为x 1*, x 2*,…, x n *,代入方程组(Ⅰ)得(Ⅲ)⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++=+++=+++=+++ux c x c x c bx a x a x a b x a x a x a b x a x a x a n n n n n nnn n n n n **2*1**2*12*2*22*211*1*12*11................................................ (212)12121 当u =v 时,因为 A=(a ij )是n ×n 可逆矩阵,A 的行列式不等于零,根据克莱姆法则,方程组(Ⅱ)的前n 个方程作为一个线性方程组,它有唯一解,记该解为x 1**, x 2**,…, x n **,代入方程组(Ⅱ)的前n 个方程中得(Ⅳ)⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++=+++=+++=+++----nnn n n n nn n n n n c x a x a x a cx a x a x a c x a x a x a c x a x a x a n n nn ****2**11**1**12**112**2**22**121**1**21**11......................................................21212121 对等式组(Ⅳ)中第1个等式的两端同时乘以x 1*,第2个等式的两端同时乘以 x 2*,…, 第n个等式的两端同时乘以 x n *,然后将n 各等式的左边全部相加,也将右边全部相加,并利用(Ⅲ)式,可得b 1x 1**+b 2x 2**+…+b n x n **=c 1x 1*+ c 2x 2*+…+ c n x n *=u由u =v ,得b 1x 1**+b 2x 2**+…+b n x n **=u即x 1**, x 2**,…, x n **也满足(Ⅱ)中最后一个方程.所以方程组(Ⅱ)有解.反之,若方程组(Ⅱ)有解,设其解为x 1**, x 2**,…, x n **,代入(Ⅱ)得到(Ⅴ)⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++=+++=+++=+++-vx b x b x b cx a x a x a c x a x a x a c x a x a x a n n n n n n nn n n n n ****2**11****2**12**2**22**121**1**21**11......................................................21212121 对等式组(Ⅲ)中第1个等式的两端同时乘以x 1**,第2个等式的两端同时乘以 x 2**,…,第n 个等式的两端同时乘以 x n **,然后将n 各等式的左边全部相加,也将右边全部相加,并利用(Ⅴ)式,可得c 1x 1*+c 2x 2*+…+c n x n *=b 1x 1**+ b 2x 2**+…+ b n x n **将上式左端与(Ⅴ)式中最后一个等式比较,将上式右端与(Ⅲ)式中最后一个等式比较,得 u =v .7.设A 是n ×n 矩阵.证明:|A *|=|A|n-1证 因为AA *=|A|E ,两边取行列式得 |A||A *|=|A|n .如果|A|≠0,两边除以|A|,得|A *|=|A|n-1如果|A|=0,也可写成|A *|=|A|n-1,总之,有|A *|=|A|n-1成立.。
《高等代数1》复习练习题(三)——第三章 线性方程组(参考解答)
《高等代数1》复习练习题(三)——第三章线性方程组(解答)(供2017级数学与应用数学专业使用)一、填空题1、设23(,2,1),(2,3,0),(1,1,1)T T T k ααα1==-=-,则当1k =-时,向量组321,,ααα线性相关. 2、设矩阵⎪⎪⎪⎭⎫⎝⎛-=403212221A ,向量(,1,1)Ta α=,已知向量组,A αα线性相关,则1a =-.3、设向量组123(,0,),(,,0),(0,,)T T T a c b c a b ααα===线性相关,则,,a b c 必满足关系式 abc=0 .4、线性方程组121232343414,,,x x a x x a x x a x x a -=-=-=-=有解的充分必要条件是_____________.5、设33⨯矩阵A 的秩()1r A =,23(1,1,2),(2,0,1),(1,2,3)T T T ααα1===是线性方程组AX β=的三个特解,则对应导出组0AX =的基础解系是121323,αααααα---中任意两个向量.6、设33⨯矩阵A 的秩()2r A =,A 的各行元素之和均为零,则齐次线性方程组0AX =的通解是(1,1,1)T k .7、若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ有非零解,则=λ1.8、设齐次线性方程组12312312300x x x x kx x kx x x ++=⎧⎪++=⎨⎪++=⎩只有零解,则k 应满足的条件是1k ≠.9、.齐次线性方程组1231231232302340x x x x ax bx x x x ++=⎧⎪++=⎨⎪++=⎩有非零解,当且仅当,a b 满足关系式1(1)2a b =+.10、若线性方程组b AX =有解,且秩()A r =,则秩()A =r .二、选择题 1、设12,,,s ααα均为n 维向量,下列结论不正确的是 ( B ).(A)若对任意一组不全为零的数12,,,s k k k ,都有1122+++≠s s k k k ααα0,则12,,,s ααα线性无关.(B)若12,,,s ααα线性相关,则对任意一组不全为零的数12,,,s k k k ,都有1122+++=s s k k k ααα0.(C)向量组12,,,s ααα线性无关的充分必要条件是此向量组的秩为s . (D)向量组12,,,s ααα线性无关的必要条件是其中任意两个向量线性无关.2、设向量组123(,2,1),(2,,0),(1,1,1)TTTt t ααα===-线性无关,则( D ).(A )3t ≠-且2t ≠. (B )3t =或2t =-. (C )3t =-或2t =. (D )3t ≠且2t ≠-.3、设向量T T T T )4,0,1,1(,)1,3,0,2(,)5,1,2,0(,)2,2,1,1(4321=-===αααα,则向量组4321,,,αααα的秩等于( C ).(A)1. (B) 2. (C)3. (D)4. 4、设12,,,m ααα是一n 维向量组,它的秩12(,,,)=<m r r m ααα,则下面说法不正确的是( A ).(A)向量组12,,,m ααα中任意一个向量都能由其余向量线性表出.(B)向量组12,,,m ααα线性相关.(C)向量组12,,,m ααα与其任一极大无关组等价.(D)向量组12,,,m ααα中任意r 个线性无关的向量都构成其极大无关组.5、设0=AX 是非齐次方程组AX β=所对应的导出组,则下列结论正确的是 ( D ).(A)若0=AX 仅有零解,则AX β=有唯一解.(B)若0=AX 有非零解,则AX β=有无穷多解. (C)若AX β=有无穷多解,则0=AX 仅有零解. (D)若AX β=有无穷多解,则0=AX 有非零解.6、若A 是n 阶方阵,β是n 维非零向量,且齐次线性方程组0=AX 有非零解,则下列结论中不会发生的是( B ).(A)AX β=无解. (B)AX β=有唯一解. (C)AX β=有无穷多解. (D)()r A n <.7、非齐次线性方程组AX β=中未知量个数为n ,方程个数为m ,()r A r =,则 ( A )(A)r m =时,AX β=有解. (B)r n =时,AX β=有唯一解. (C)m n =时,AX β=有唯一解. (D)r n <时,AX β=有无穷多解. 8、设A 为m n ⨯矩阵,且()1r A n =-,12,αα是非齐次线性方程组AX β=的两个不同的解向量,k 为任意常数,则0AX =的通解为( A ).(A )12()k αα-; (B )12()k αα+; (C )1k α; (D )2k α. 9、设12,,,s ααα均为n 维向量,下列结论正确的是( B ) .(A) 若1122s s k k k ααα+++=0,则12,,,s ααα线性相关.(B) 若对任意一组不全为零的数12,,,s k k k ,都有1122s s k k k ααα+++≠0,则12,,,s ααα线性无关.(C) 若12,,,s ααα线性相关,则对任意一组不全为零的数12,,,s k k k ,都有1122s s k k k ααα+++=0.(D) 若12000s ααα+++=0,则12,,,s ααα线性无关.三、判断题 1、如果当120n k k k ===≠时,11220n n k k k ααα+++=,则向量组12,,,nααα线性相关. ( √ )2、如果12(,,,),1,2,,i i i in a a a i s α==线性相关,则向量组1212(,,,,,,,),1,2,,i i i in i i im a a a b b b i s β==也线性相关.( X )3、若123,,,αααβ线性相关,则β可由向量组123,,ααα线性表出.( X )4、若β不能由向量组123,,ααα线性表出,则123,,,αααβ线性无关.( X )5、若向量12,,,s ααα线性相关,则其中每一个向量皆可由其余向量线性.( X )6、非齐次线性方程组的两个解的和不再是它的解. ( √ )7、方程个数小于未知量个数的线性方程组必有无穷多个解. ( X )8、设12,αα线性相关,12,ββ也线性相关,则1122,αβαβ++线性相关. ( X )9、若线性方程组AX β=有无穷多个解,则0AX =一定有非零解. ( √ ) 10、若线性方程组0AX =有非零解,则AX β=一定有无穷多解.( X ) 四、计算题1、求向量组1234(1,1,2,4),(0,3,1,2),(3,0,7,14),(1,1,2,0),T T T T αααα=-===-5(2,1,5,6)T α=的秩及一个极大线性无关组,并用极大线性无关组线性表示其余向量.解:对以12345,,,,ααααα为列的矩阵作行初等变换化为阶梯形矩阵.1234510312103121301103303(,,,,)21725011014214060224210312131203303011010000000011000440000010301011010001100000ααααα⎛⎫⎛⎫ ⎪ ⎪--⎪ ⎪=→⎪ ⎪⎪⎪--⎝⎭⎝⎭⎛⎫⎛⎫⎪⎪ ⎪ ⎪→→ ⎪ ⎪ ⎪⎪--⎝⎭⎝⎭⎛⎫⎪⎪→ ⎪⎪⎝⎭所以,向量组12345,,,,ααααα的秩是3,124,,ααα是其一个极大线性无关组,且31251243,ααααααα=+=++.2、已知向量组123(0,1,1),(,3,1),(,1,0)T TT a b βββ=-==与向量组123(1,2,3),(2,1,1),(3,0,1)T TT ααα=-=-=具有相同的秩,且3β可由123,,ααα线性表出,求,a b .解:令1231231233(,,),(,,),(,,,)A B A αααβββαααβ===则由条件可知,A 与B ,A 与A 由相同的秩.因为1233123123(,,,)2101036123110051031231231000105103510510300015b b A b b b b b b b b αααβ⎛⎫⎛⎫⎪ ⎪==→--- ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎛⎫⎛⎫⎪ ⎪ ⎪⎪→-→ ⎪⎪⎪⎪- ⎪⎝⎭⎝⎭12300004(,,)131041041110110110110041004a b a b a b B a b βββ⎛⎫-⎪⎛⎫⎛⎫⎪ ⎪ ⎪==→→ ⎪⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭ ⎪⎝⎭⎛⎫⎪- ⎪→ ⎪ ⎪- ⎪⎝⎭所以,2=秩A =秩B =秩A ,于是10,1045a b b -=-=,故20,5a b ==. 3、设四元非齐次线性方程组=AX β的系数矩阵A 的秩为2,已知它的三个解向量为123,,ηηη,其中123(4,3,2,1),(1,3,5,1),(2,6,3,2)===-T T T ηηη,求该方程组的通解.解:因为123,,ηηη是=AX β的解,所以12(3,0,3,0)T ηη-=-,13(6,3,1,1)T ηη-=---是0AX =的解,且1213,ηηηη--线性无关.又因为()2r A =,所以0AX =的基础解系含有两个解向量,于是1213,ηηηη--是0AX =的一个基础解系.故=AX β的通解是1112213()()c c ηηηηη+-+-(12,c c F ∈)4、设向量1234,,,αααα是齐次线性方程组0AX =的一个基础解系,若112223334441,,,t t t t βααβααβααβαα=+=+=+=+,试问:当实数t 满足什么关系时,1234,,,ββββ也是0AX =的一个基础解系?解:因为1234,,,αααα是0AX =的基础解系,所以1234,,,αααα的线性组合1234,,,ββββ也是0AX =的解. 因此,当1234,,,ββββ线性无关时,1234,,,ββββ也是0AX =的一个基础解系.因为12341234100100(,,,)(,,,)010001t t t t ββββαααα⎛⎫⎪⎪= ⎪⎪⎝⎭所以,1234,,,ββββ线性无关⇔1234||0ββββ≠⇔410010010010001ttt tt=-≠⇔1t ≠±.故当1t ≠±时,1234,,,ββββ也是0AX =的一个基础解系.5、设3阶非零矩阵A 的每一个列向量都是方程组1231231232020330x x x x x ax x x x +-=⎧⎪-+=⎨⎪+ -=⎩的解,求常数a 和行列式A .解:设123(,,)A βββ=,其中123,,βββ是A 的列向量,则123,,βββ不全为零,且是已知方程组的解,于是已知方程组由非零解,从而其系数矩阵行列式为零,即11211221034120313023a a a ---=-+=-+=--所以12a =. 设已知方程组的系数矩阵为B ,则B O ≠,且123123(,,)(,,)(0,0,0)BA B B B B O ββββββ====若||0A ≠,则A 可逆,从而111()()B BE B AA BA A OA O ---=====,矛盾,所以||0A =.6、讨论常数a 为何值时,线性方程组123123123112ax x x x ax x x x ax ++=⎧⎪++=⎨⎪+ +=-⎩无解、有唯一解、有无穷多解?在有无穷多解的情况下,求出其全部解.解:对线性方程组的增广矩阵作行初等变换得22111011120024211101130113112112112112011300(2)(1)2(2)a a a a a a a A a a a a aa a a a a a a a a ⎛⎫⎛⎫--+--+⎛⎫⎪ ⎪ ⎪=→--→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭-⎛⎫ ⎪→-- ⎪ ⎪+-+⎝⎭1)当1a =时,秩1A =≠秩2A =,方程组无解. 2)当1,2a ≠-时,秩3A ==秩A ,方程组有唯一解. 3)当2a =-时,秩2A ==秩3A <,方程组有无穷多解:13231,1x x x x =+=+(3x 是自由未知量)7、已知方程组⎪⎩⎪⎨⎧=-=+++=+--330)1(31432321321x ax x a x x x x x ,问a 为何值时,此方程组:(1)有唯一解;(2)无解;(3)有无穷多解?在有无穷多解的情况下,试用其导出组的基础解系表出全部解.解:对线性方程组的增广矩阵作行初等变换得21411141114111310012101210330330233112012100(3)(1)3A a a a a a a a a a a a a a ------⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=+→-+→-+ ⎪ ⎪ ⎪⎪ ⎪ ⎪--+-+⎝⎭⎝⎭⎝⎭-⎛⎫⎪→-+ ⎪ ⎪+-+⎝⎭1)当1,3a ≠-时,秩3A ==秩A ,方程组有唯一解.2)当1a =时,秩2A =≠秩3A =,方程组无解.3)当3a =-时,秩2A ==秩3A <,方程组有无穷多解:132314,1x x x x =-+=--(3x 是自由未知量)8、讨论常数,a b 为何值时,线性方程组1231231234324ax x x x bx x x bx x ++=⎧⎪++=⎨⎪+ +=⎩无解、有唯一解、有无穷多解?在有无穷多解的情况下,求出其全部解.解:对线性方程组的增广矩阵作行初等变换得1140114301142113113101212140010010114210121012011420014200(1)142a ab a a a a A bb b b b a a a a ab b b ab b a b ab -----⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=→→ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭--⎛⎫⎛⎫⎪ ⎪→→-- ⎪ ⎪⎪ ⎪--+--+⎝⎭⎝⎭1)当11,2a b =≠或0b =时,秩2A =≠秩3A =,方程组无解.2)当1,0a b ≠≠时,秩3A ==秩A ,方程组有唯一解. 3)当11,2a b ==时,秩2A ==秩3A <,方程组有无穷多解: 1322,2x x x =-=(3x 是自由未知量)9、对于线性方程组123123123322x x x x x x x x x λλλλ++=-⎧⎪++=-⎨⎪++=-⎩(1)λ取何值时,方程组无解、有唯一解、有无穷多解;(2)在方程组有无穷多解时,试用其对应齐次线性方程组的基础解系表示方程组通解.解:对线性方程组的增广矩阵作行初等变换得2211301133112011011211200233112011001101120(2)(1)3(1)A λλλλλλλλλλλλλλλλλλλλλλ⎛⎫----⎛⎫⎪ ⎪=-→-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎛⎫----⎛⎫ ⎪ ⎪→--→-- ⎪ ⎪ ⎪ ⎪--+--⎝⎭⎝⎭(1)1)当2λ=-时,秩2A =≠秩3A =,方程组无解. 2)当1,2λ≠-时,秩3A ==秩A ,方程组有唯一解. 3)当1λ=时,秩1A ==秩3A <,方程组有无穷多解.(2)在方程组有无穷多解时,与原方程组同解方程组为1232x x x ++=-,令230x x ==,得特解0(2,0,0)γ=-.与原方程组同解方程组对应的齐次线性方程组同解方程组为1230x x x ++=,所以对应的齐次线性方程组的基础解系为12(1,1,0),(1,0,1)ηη=-=-.所以原方程组的通解为:01122k k γγηη=++(12,k k 是任意数). 五、证明题1、设向量组123,,ααα线性无关,证明向量组12αα+,23αα+,31αα+也线性无关.证明:设112223331()()()0k k k αααααα+++++=则131122233()()()0k k k k k k ααα+++++=因为123,,ααα线性无关,所以131223000k k k k k k +=⎧⎪+=⎨⎪+=⎩解得1230k k k ===,故122331,,αααααα+++线性无关.2、证明向量组12233441,,,αααααααα++++线性相关. 证明:设112223334441()()()()0k k k k αααααααα+++++++=则141122233344()()()()0k k k k k k k k αααα+++++++=考虑齐次线性方程组141223340000k k k k k k k k +=⎧⎪+=⎪⎨+=⎪⎪+=⎩其系数行列式1001100110110011001111001100110010011=-=-=所以齐次线性方程组有非零解. 于是存在不全为零的数1234,,,k k k k ,使得112223334441()()()()0k k k k αααααααα+++++++=成立,故12233441,,,αααααααα++++线性相关.3、设向量组123,,ααα线性无关,证明向量组1223312,2,32αααααα---也线性无关.证明:设112223331(2)(2)(32)0k k k αααααα-+-+-=则131122233(22)()(23)0k k k k k k ααα-+-++-+=因为123,,ααα线性无关,所以1312232200230k k k k k k -=⎧⎪-+=⎨⎪-+=⎩解得1230k k k ===,故1223312,2,32αααααα---线性无关.4、设向量组123,,ααα线性无关,证明向量组123123,2322,αααααα++-+123355ααα+-线性相关.证明:设112321233123()(2322)(355)0k k k ααααααααα+++-+++-=则123112321233(23)(35)(225)0k k k k k k k k k ααα+++-+++-=因为123,,ααα线性无关,所以1231231232303502250k k k k k k k k k ++=⎧⎪-+=⎨⎪+-=⎩ 解得1323192,95k k k k =-=,取35k =,得1219,2k k =-=使得 112321233123()(2322)(355)0k k k ααααααααα+++-+++-=故123123123,2322,355ααααααααα++-++-线性相关.5、已知向量组1234,,,αααα线性无关,证明向量组12233441,,,αααααααα+++-也线性无关.证明:设112223334441()()()()0k k k k αααααααα++++++-=则141122233344()()()()0k k k k k k k k αααα-++++++=因为1234,,,αααα线性无关,所以141223340000k k k k k k k k -=⎧⎪+=⎪⎨+=⎪⎪+=⎩解得12340k k k k ====,故12233441,,,αααααααα+++-线性无关.6、设12,,,s ααα均为n 维列向量,A 是n n ⨯矩阵,试证明: (1)若12,,,s ααα线性相关,则12,,,s A A A ααα也线性相关;(2)若A 可逆,且12,,,s A A A ααα线性相关,则12,,,s ααα也线性相关.证明:(1)因为12,,,s ααα线性相关,所以存在不全为零的数12,,,s k k k ,使得1122440k k k ααα+++=从而有11221122()00s s s s k A k A k A A k k k A αααααα+++=+++==故12,,,s A A A ααα线性相关.(2)因为12,,,s A A A ααα线性相关,所以存在不全为零的数12,,,s k k k ,使得1122440k A k A k A ααα+++=从而有11221122()0s s s s A k k k k A k A k A αααααα+++=+++=由A 可逆,得1122440k k k ααα+++=.故12,,,s ααα线性相关.7、已知向量组123,,ααα与122331,,αααααα+++ (1)证明123,,ααα与122331,,αααααα+++等价;(2)证明123,,ααα线性相关的充分必要条件是122331,,αααααα+++线性相关.证明:(1)首先,122331,,αααααα+++显然可由123,,ααα线性表示. 其次,由1122331212233131223311[()()()]21[()()()]21[()()()]2ααααααααααααααααααααα⎧=+-+++⎪⎪⎪=+++-+⎨⎪⎪=-+++++⎪⎩可知,123,,ααα可由122331,,αααααα+++线性表示. 故123,,ααα与122331,,αααααα+++等价.8、已知非齐次线性方程组123423423412340221(3)21321x x x x x x x x a x x x x x bx + + +=⎧⎪ ++=⎪⎨ - +--=-⎪⎪+ ++=-⎩ 有3个线性无关的解,证明:系数矩阵A 的秩等于2,并求,a b 的值及方程组的通解.证明:设123ξξξ,,是方程组的3个线性无关解,则1213ξξξξ--,是导出组0AX =的两个解.若1213()()0k l ξξξξ-+-=,则有123()0k l k l ξξξ+--=,于是由123ξξξ,,线性无关可得0k l ==,所以1213ξξξξ--,是导出组0AX =的两个线性无关解,因此,0AX =的基础解系所含向量个数不少于2,即有4()2A -≥秩. 所以有()2A ≤秩.因为系数矩阵111101220132321A a b ⎛⎫ ⎪⎪= ⎪--- ⎪⎝⎭,有一个2阶子式111001=≠,所以有()A ≤2秩,故()=2A 秩.对增广矩阵A 做行初等变换,有313242311110111100122101221=013210132132110123111110012210010000010r r r r r r A a a b b a b -++⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪−−−→ ⎪ ⎪-------- ⎪ ⎪-----⎝⎭⎝⎭⎛⎫⎪⎪−−−→ ⎪- ⎪-⎝⎭于是由()=2A 秩,有1010a b -=⎧⎨-=⎩,即11a b =⎧⎨=⎩.因此有31324212311110111100122101221=012210122132111012211111010111012210122100000000000000000000r r r r r r r r A -++-⎛⎫⎛⎫⎪ ⎪⎪ ⎪−−−→⎪⎪--------⎪ ⎪-----⎝⎭⎝⎭---⎛⎫⎛⎫⎪⎪⎪ ⎪−−−→−−−→ ⎪ ⎪⎪⎪⎝⎭⎝⎭故方程组的通解为1342341122x x x x x x =-++⎧⎨=--⎩.9、设12,,,n ααα均为n 维线性无关列向量,A 是n n ⨯矩阵,试证明:12,,,n A A A ααα线性无关⇔A 可逆.证明:(⇒)因为12n ααα,,,线性无关,所以以12n ααα,,,为列的n n ⨯矩阵12()n B ααα=可逆.因为12,,,n A A A ααα线性无关,所以矩阵1212()()n n C A A A A AB αααααα===可逆,从而1A CB -=可逆.(⇐)若有数12n k k k ,,,,使得11220s n k A k A k A ααα+++=则有1122()0n n A k k k ααα+++=由A 可逆可得11220s n k k k ααα+++=因为12,,,n ααα线性无关.所以120n k k k ====,故12,,,nA A A ααα线性无关.。
高等代数第3章习题解
第三章习题解答习题3.11、试说明行列式与矩阵是两个完全不同的概念解:虽然在形式上矩阵与行列式相近,但行列式经过计算最后得到一个数,而矩阵不论经过什么变换或运算,其结果都仍然还是矩阵。
2、举例说明矩阵的相等与行列式的相等有哪些不同?解:两个矩阵相等当且仅当它们的结构相同,并且所含的对应元素也全部相同;而行列式只要计算结果相同,就认为这两个行列式相等。
例如:110122103与232122103的计算结果都是5,所以这两个行列式相等,而作为矩阵 110122103⎛⎫ ⎪ ⎪ ⎪⎝⎭与232122103⎛⎫ ⎪ ⎪ ⎪⎝⎭是两个不同的矩阵 3、试问如下的两个矩阵是否相等,为什么?(1)1000⎛⎫ ⎪⎝⎭与100000⎛⎫ ⎪⎝⎭;(2)1000⎛⎫ ⎪⎝⎭与0100⎛⎫ ⎪⎝⎭解(1)这两个矩阵不相等,因为它们的结构不同,一个是2×2矩阵,另一个是2×3矩阵。
(2)这两个矩阵也不相等,虽然它们的结构相同,但对应元素不完全相同。
4、设2a b c d A a b c d ++⎛⎫=⎪--⎝⎭,3514B ⎛⎫= ⎪⎝⎭,问a ,b ,c ,d 为何实数时有A = B解:欲使A = B ,必须有a +b =3,2c +d =5,a -b = 1,c -d = 4,解之得:a=2,b=1,c=3,d =-15、计算(1)1212(,,,) n n a a b b b a ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭;(2)1212(,,,) n n a a b b b a ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭(3)51401620125347371213-⎛⎫-⎛⎫ ⎪⎪ ⎪- ⎪ ⎪- ⎪-⎪⎝⎭⎝⎭;(4)122122333333212212333333221221333333⎛⎫⎛⎫ ⎪⎪ ⎪⎪ ⎪⎪-- ⎪⎪ ⎪⎪ ⎪⎪-- ⎪⎪⎝⎭⎝⎭(5)111213112321222323132333(,,)a a a x x x x a a a x aa a x ⎛⎫⎛⎫⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭;(6)123124245121241511132110327⎛⎫⎛⎫⎛⎫⎪⎪ ⎪--+- ⎪⎪ ⎪⎪⎪ ⎪---⎝⎭⎝⎭⎝⎭解:(1)原式11222 n a b a b a b =+++(2)原式111213212223313233a b a b a b a b a b a b a b a ba b ⎛⎫⎪= ⎪ ⎪⎝⎭(3)原式204647183075420313591845151442376232++--+⎛⎫⎛⎫ ⎪ ⎪=-+-+++=- ⎪ ⎪ ⎪ ⎪+---+--⎝⎭⎝⎭ (4)原式100010001⎛⎫ ⎪= ⎪ ⎪⎝⎭(5)原式222111122112133113222233223333()()()a x a a x x a a x x a x a a x x a x =++++++++ (6)原式236245411129251178371613274148-⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=--+-=-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭6、计算(1)20110⎛⎫ ⎪⎝⎭;(2)21111-⎛⎫ ⎪-⎝⎭;(3)1101n⎛⎫⎪⎝⎭(n 是正整数)(4)cos sin sin cos nϕϕϕϕ-⎛⎫⎪⎝⎭(n 是正整数); (5)100100nλλλ⎛⎫ ⎪ ⎪ ⎪⎝⎭解(1)原式010*********⎛⎫⎛⎫⎛⎫==⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(2)原式111100111122--⎛⎫⎛⎫⎛⎫==⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭(3)原式223 1111111211131101010101010101n n n---⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫===⎪⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭101n⎛⎫== ⎪⎝⎭(4)原式2 cos sin cos sin cos sinsin cos sin cos sin cosn ϕϕϕϕϕϕϕϕϕϕϕϕ----⎛⎫⎛⎫⎛⎫= ⎪⎪⎪⎝⎭⎝⎭⎝⎭22222cos sin cos sinsin cos sin cosnϕϕϕϕϕϕϕϕ---⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭33333cos sin cos sinsin cos sin cosnϕϕϕϕϕϕϕϕ---⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭cos sinsin cosn nn nϕϕϕϕ-⎛⎫== ⎪⎝⎭(5)原式2101010010101000000n λλλλλλλλλ-⎛⎫⎛⎫⎛⎫⎪⎪⎪= ⎪⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭2222211002010000nλλλλλλλλ-⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪⎪⎪⎝⎭⎝⎭3 222211010 020101000000n λλλλλλλλλλλ-⎛⎫⎛⎫⎛⎫⎪ ⎪⎪= ⎪ ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭332323331003010000nλλλλλλλλλ-⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪⎪⎪⎝⎭⎝⎭4 32323331010 030101000000n λλλλλλλλλλλλ-⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪= ⎪ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭4432434461004010000nλλλλλλλλλ-⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪⎪⎪⎝⎭⎝⎭4112211000 n n n n n n n n n n C C C λλλλλλ----⎛⎫⎪== ⎪⎪⎝⎭7、设301521471306A -⎛⎫ ⎪=- ⎪ ⎪⎝⎭,720114532038B -⎛⎫⎪=-- ⎪ ⎪⎝⎭,求53A B ''+ 解:66528537735261115954A B -⎛⎫ ⎪+= ⎪ ⎪⎝⎭,那么67116715535359282654A B ⎛⎫⎪- ⎪''+= ⎪⎪⎝⎭8、证明:若12,B B 都与A 可交换,则1212,B B B B +与A 都可交换 证明:12121212()()B B A B A B A AB AB A B B +=+=+=+121212121212()()()()()()B B A B AB B AB B A B AB B A B B =====9、若12()A B E =+,证明22A A B E =⇔= 证明:222111122242()()()()()A A B E B E B B E B E ⎛⎫⇒=⇒+=+⇒++=+ ⎪⎝⎭22222B B E B E B E ++=+⇒= 2()B E ⇐=,由于2B A E =-所以 2222244()B A E A A E E A A =-=-+=⇒= 10、设A 是一实对称矩阵,证明:如果20A =,则0A =证明:由于A 是实对称矩阵,所以由20A =得0AA '=,设()ij n n A a ⨯=,()ij AA c '=那么 11220 r k r k r k r n n k c a a a a a a ==+++,但ij ji a a =所以 222122012,,, kk k k k c a a ak n ==+++=,但诸ij a 都是实数,所以必有 222122012,,,, k k k a a a k n =====进一步有122012,,,, k k k a a a k n =====,从而有0A =11、证明:若A 为n 阶方阵,则,,A A AA A A '''+都是对称矩阵,A A '-是反对称矩阵。
高等数学第六版(上册)第三章课后习题答案
高等数学第六版(上册)第三章课后习题答案及解析习题3-11.验证罗尔定理对函数y =ln sin x 在区间]65 ,6[ππ上的正确性.解因为y =ln sin x 在区间]65 ,6[ππ上连续,在)65 ,6(ππ内可导,且)65()6(ππy y =, 所以由罗尔定理知,至少存在一点)65 ,6(ππξ∈,使得y '(ξ)=cot ξ=0.由y '(x )=cot x =0得)65 ,6(2πππ∈.因此确有)65 ,6(2πππξ∈=,使y '(ξ)=cot ξ=0.2.验证拉格朗日中值定理对函数y =4x 3-5x 2+x -2在区间[0, 1]上的正确性. 解因为y =4x 3-5x 2+x -2在区间[0, 1]上连续,在(0, 1)内可导,由拉格朗日中值定理知,至少存在一点ξ∈(0, 1),使001)0()1()(=--='y y y ξ. 由y '(x )=12x 2-10x +1=0得)1 ,0(12135∈±=x .因此确有)1 ,0(12135∈±=ξ,使01)0()1()(--='y y y ξ.3.对函数f (x )=sin x 及F (x )=x +cos x 在区间]2 ,0[π上验证柯西中值定理的正确性.解因为f (x )=sin x 及F (x )=x +cos x 在区间]2 ,0[π上连续,在)2,0(π可导,且F '(x )=1-sin x 在)2 ,0(π内不为0,所以由柯西中值定理知至少存在一点)2 ,0(πξ∈,使得)()()0()2()0()2(ξξππF f F F f f ''=--. 令)0()2()0()2()()(F F f f x F x f --=''ππ,即22sin 1cos -=-πx x . 化简得14)2(8s i n 2-+-=πx .易证114)2(802<-+-<π,所以14)2(8s i n 2-+-=πx 在)2 ,0(π内有解,即确实存在)2 ,0(πξ∈, 使得 )()()0()2()0()2(ξππF f F F f f '=--. 4.试证明对函数y =px 2+qx +r 应用拉格朗日中值定理时所求得的点ξ总是位于区间的正中间.证明因为函数y =px 2+qx +r 在闭区间[a ,b ]上连续,在开区间(a ,b )内可导,由拉格朗日中值定理,至少存在一点ξ∈(a ,b ),使得y (b )-y (a )=y '(ξ)(b -a ),即 (pb 2+qb +r )-(pa 2+qa +r )=(2p ξ+q )(b -a ). 化间上式得p (b -a )(b +a )=2p ξ (b -a ), 故2b a +=ξ.5.不用求出函数f (x )=(x -1)(x -2)(x -3)(x -4)的导数,说明方程f '(x )=0有几个实根,并指出它们所在的区间.解由于f (x )在[1, 2]上连续,在(1, 2)内可导,且f (1)=f (2)=0,所以由罗尔定理可知,存在ξ1∈(1, 2),使f '(ξ1)=0.同理存在ξ2∈(2, 3),使f '(ξ2)=0;存在ξ3∈(3, 4),使f '(ξ3)=0.显然ξ1、ξ2、ξ 3都是方程f '(x )=0的根.注意到方程f '(x )=0是三次方程,它至多能有三个实根,现已发现它的三个实根,故它们也就是方程f '(x )=0的全部根.6.证明恒等式:2arccos arcsin π=+x x (-1≤x ≤1).证明设f (x )= arcsin x +arccos x .因为01111)(22≡---='x x x f , 所以f (x )≡C ,其中C 是一常数.因此2arccos arcsin )0()(π=+==x x f x f ,即2arccos arcsin π=+x x .7.若方程a 0x n +a 1x n -1+⋅⋅⋅+a n -1x =0有一个正根x 0,证明方程a 0nx n -1+a 1(n -1)x n -2 +⋅⋅⋅+a n -1 =0 必有一个小于x 0的正根.证明设F (x )=a 0x n +a 1x n -1+⋅⋅⋅+a n -1x ,由于F (x )在[0,x 0]上连续,在(0,x 0)内可导,且F (0)=F (x 0)=0,根据罗尔定理,至少存在一点ξ∈(0,x 0),使F '(ξ)=0,即方程 a 0nx n -1+a 1(n -1)x n -2 +⋅⋅⋅+a n -1 =0 必有一个小于x 0的正根.8.若函数f (x )在(a ,b )内具有二阶导数,且f (x 1)=f (x 2)=f (x 3),其中a <x 1<x 2<x 3<b ,证明:在(x 1,x 3)内至少有一点ξ,使得f ''(ξ)=0.证明由于f (x )在[x 1,x 2]上连续,在(x 1,x 2)内可导,且f (x 1)=f (x 2),根据罗尔定理,至少存在一点ξ1∈(x 1,x 2),使f '(ξ1)=0.同理存在一点ξ2∈(x 2,x 3),使f '(ξ2)=0. 又由于f '(x )在[ξ1,ξ2]上连续,在(ξ1,ξ2)内可导,且f '(ξ1)=f '(ξ2)=0,根据罗尔定理,至少存在一点ξ∈(ξ1,ξ2)⊂(x 1,x 3),使f ''(ξ )=0. 9.设a >b >0,n >1,证明:nb n -1(a -b )<a n -b n <na n -1(a -b ) .证明设f (x )=x n ,则f (x )在[b ,a ]上连续,在(b ,a )内可导,由拉格朗日中值定理,存在ξ∈(b ,a ),使f (a )-f (b )=f '(ξ)(a -b ),即a n -b n =n ξn -1(a -b ). 因为nb n -1(a -b )<n ξn -1(a -b )< na n -1(a -b ), 所以nb n -1(a -b )<a n -b n < na n -1(a -b ) . 10.设a >b >0,证明:bb a b a a b a -<<-ln . 证明设f (x )=ln x ,则f (x )在区间[b ,a ]上连续,在区间(b ,a )内可导,由拉格朗日中值定理,存在ξ∈(b ,a ),使f (a )-f (b )=f '(ξ)(a -b ),即)(1ln ln b a b a -=-ξ.因为b <ξ<a ,所以)(1ln ln )(1b a bb a b a a -<-<-,即b b a b a a b a -<<-ln .11.证明下列不等式:(1)|arctan a -arctan b |≤|a -b |; (2)当x >1时,e x >e ⋅x .证明 (1)设f (x )=arctan x ,则f (x )在[a ,b ]上连续,在(a ,b )内可导,由拉格朗日中值定理,存在ξ∈(a ,b ),使f (b )-f (a )=f '(ξ)(b -a ),即)(11arctan arctan 2a b a b -+=-ξ,所以||||11|arctan arctan |2a b a b a b -≤-+=-ξ,即|arctan a -arctan b |≤|a -b |.(2)设f (x )=e x ,则f (x )在区间[1,x ]上连续,在区间(1,x )内可导,由拉格朗日中值定理,存在ξ∈(1,x ),使f (x )-f (1)=f '(ξ)(x -1),即e x -e =e ξ(x -1). 因为ξ>1,所以e x -e =e ξ(x -1)>e (x -1),即e x >e ⋅x .12.证明方程x 5+x -1=0只有一个正根.证明设f (x )=x 5+x -1,则f (x )是[0,+∞)内的连续函数.因为f (0)=-1,f (1)=1,f (0)f (1)<0,所以函数在(0, 1)内至少有一个零点,即x 5+x -1=0至少有一个正根.假如方程至少有两个正根,则由罗尔定理,f '(x )存在零点,但f '(x )=5x 4+1≠0,矛盾.这说明方程只能有一个正根.13.设f (x )、g (x )在[a ,b ]上连续,在(a ,b )内可导,证明在(a ,b )内有一点ξ,使)()()()()()()()()(ξξg a g f a f a b b g a g b f a f ''-=.解设)()()()()(x g a g x f a f x =ϕ,则ϕ(x )在[a ,b ]上连续,在(a ,b )内可导,由拉格朗日中值定理,存在ξ∈(a ,b ),使ϕ(b )-ϕ(a )=ϕ'(ξ)(b -a ), 即⎥⎦⎤⎢⎣⎡''+''-=-)()()()()(])([)(])([)()()()()()()()()(ξξξξg a g f a f g a g f a f a b a g a g a f a f b g a g b f a f . 因此)()()()()()()()()(ξξg a g f a f a b b g a g b f a f ''-=.14.证明:若函数.f (x )在(-∞,+∞)内满足关系式 f '(x )=f (x ),且f (0)=1则f (x )=e x .证明令xe xf x )()(=ϕ,则在(-∞,+∞)内有 0)()()()()(2222≡-=-'='xx x x e e x f e x f e e x f e x f x ϕ,所以在(-∞,+∞)内ϕ(x )为常数.因此ϕ(x )=ϕ(0)=1,从而f (x )=e x .15.设函数y =f (x )在x =0的某邻域内具有n 阶导数,且f (0)=f '(0)=⋅⋅⋅=f(n -1)(0)=0,试用柯西中值定理证明:!)()()(n x f x x f n nθ= (0<θ<1).证明根据柯西中值定理111)(0)0()()(-'=--=n n n f x f x f x x f ξξ(ξ1介于0与x 之间),2221111111)1()(0)0()()(-----''=⋅-'-'='n n n n n n f n n f f n f ξξξξξξ(ξ2介于0与ξ1之间), 3332222222)2)(1()(0)1()1()0()()1()(------'''=⋅---''-''=-''n n n n n n n f n n n n f f n n f ξξξξξξ(ξ3介于0与ξ2之间), 依次下去可得!)(02 )1(2 )1()0()(2 )1()()(1)1(1)1(11)1(n f n n n n f f n n f n n n n n n n n n ξξξξξ=⋅⋅⋅⋅--⋅⋅⋅⋅--=⋅⋅⋅⋅--------(ξn 介于0与ξn -1之间), 所以!)()()(n f xx f n n n ξ=.由于ξn 可以表示为ξn =θx (0<θ<1),所以!)()()(n x f xx f n n θ= (0<θ<1).习题3-21.用洛必达法则求下列极限:(1)xx x )1ln(lim 0+→;(2)xee x x x sin lim 0-→-;(3)ax a x a x --→sin sin lim ;(4)x x x 5tan 3sin lim π→;(5)22)2(sin ln lim x x x -→ππ;(6)n n m m a x ax ax --→lim ;(7)xx x 2tan ln 7tan ln lim 0+→;(8)xx x 3tan tan lim 2π→;(9)x arc x x cot )11ln(lim++∞→; (10)xx x x cos sec )1ln(lim 20-+→;(11)x x x 2cot lim 0→;(12)2120lim x x ex →;(13))1112(lim 21---→x x x ;(14)x x x a )1(lim +∞→;(15)x x x sin 0lim +→;(16)x x xtan 0)1(lim +→. 解 (1)111lim 111lim )1ln(lim000=+=+=+→→→x x xx x x x . (2)2cos lim sin lim00=+=--→-→xe e x e e xx x x x x . (3)a x ax a x a x a x cos 1cos lim sin sin lim ==--→→.(4)535sec 53cos3lim 5tan 3sin lim 2-==→→x x x x x x ππ. (5)812csc lim 41)2()2(2cot lim )2(sin ln lim 22222-=---=-⋅-=-→→→x x x x x x x x πππππ. (6)n m n m n m a x n n m m a x a n m namx nx mx a x a x -----→→===--1111lim lim .(7)22sec 2tan 177sec 7tan 1lim 2tan ln 7tan ln lim 2200⋅⋅⋅⋅=+→+→x xx x x x x x177sec 22sec lim 277tan 2tan lim 272200=⋅⋅==+→+→x x x x x x . (8)x x x x x x x x x 2222222cos 3cos lim 3133sec sec lim 3tan tan lim πππ→→→=⋅= )sin (cos 23)3sin (3cos 2lim312x x x x x -⋅-=→πxx x cos 3cos lim π→-=3sin 3sin 3lim 2=---=→xx x π. (9)2221lim 11)1(111lim cot arc )11ln(lim xx x xx x x x x x x ++=+--⋅+=++∞→+∞→+∞→122lim 212lim ==+=+∞→+∞→x x x x . (10)x x x x x x x x x x x 22022020cos 1lim cos 1)1ln(cos lim cos sec )1ln(lim -=-+=-+→→→1sin lim )sin (cos 22lim 00==--=→→x x x x x x x .(注: cos x ⋅ln(1+x 2)~x 2) (11)2122sec 1lim 2tan lim2cot lim 2000=⋅==→→→x x x x x x x x . (12)+∞====+∞→+∞→→→1lim lim 1lim lim 21012022t t t t x x x x e t e xe e x(注:当x →0时,+∞→=21x t .(13)2121lim 11lim 1112lim 12121-=-=--=⎪⎭⎫ ⎝⎛---→→→x x x x x x x x . (14)因为)1ln(lim )1(lim x ax x x x exa +∞→∞→=+, 而221)(11lim 1)1ln(lim )1(ln(lim xx a x ax x a x a x x x x --⋅+=+=+∞→∞→∞→a a a x ax x x ==+=∞→∞→1lim lim ,所以a ax x x x e exa ==++∞→∞→)1ln(lim )1(lim . .(15)因为x x x x x e x ln sin 0sin 0lim lim +→+→=,而xx x x x x x x x x cot csc 1lim csc ln lim ln sin lim 000⋅-==+→+→+→0cos sin lim 20=-=+→xx x x , 所以1lim lim 0ln sin 0sin 0===+→+→e e x x x x x x .(16)因为x x x x e xln tan tan 0)1(lim -+→=,而xx x x x x x x x 2000csc 1limcot ln lim ln tan lim -==+→+→+→ 0sin lim 20=-=+→xx x , 所以1lim )1(lim 0ln tan 0tan 0===-+→+→e e x x x x x x .2.验证极限xx x x sin lim +∞→存在,但不能用洛必达法则得出.解1)sin 1(lim sin lim =+=+∞→∞→xx x x x x x ,极限x x x x sin lim +∞→是存在的. 但)cos 1(lim 1cos 1lim )()sin (limx x x x x x x x +=+=''+∞→∞→∞→不存在,不能用洛必达法则. 3.验证极限x x x x sin 1sin lim20→存在,但不能用洛必达法则得出. 解0011sin sin lim sin 1sin lim020=⋅=⋅=→→xx x x x x x x x ,极限x x x x sin 1sin lim 20→是存在的. 但xx x x x x x x x cos 1cos 1sin 2lim )(sin )1sin (lim020-=''→→不存在,不能用洛必达法则. 4.讨论函数⎪⎪⎩⎪⎪⎨⎧≤>+=-0])1([)(2111x e x e x x f x 在点x =0处的连续性.解21)0(-=e f ,)0(lim)(lim 21210f e e x f x x ===---→-→,因为]1)1ln(1[101100lim])1([lim )(lim -+-→-→+→=+=x x x x x x x x e ex x f ,而200)1ln(lim ]1)1ln(1[1lim xxx x x x x x -+=-++→+→ 21)1(21lim 2111lim 00-=+-=-+=+→+→x x x x x , 所以]1)1ln(1[101100lim])1([lim )(lim -+-→-→+→=+=x x x x x x x x e ex x f)0(21f e ==-.因此f (x )在点x =0处连续.习题3-31.按(x -4)的幂展开多项式x 4-5x 3+x 2-3x +4. 解设f (x )=x 4-5x 3+x 2-3x +4.因为f (4)=-56,f '(4)=(4x 3-15x 2+2x -3)|x =4=21, f ''(4)=(12x 2-30x +2)|x =4=74, f '''(4)=(24x -30)|x =4=66, f (4)(4)=24, 所以4)4(32)4(!4)4()4(!3)4()4(!2)4()4)(4()4()(-+-'''+-''+-'+=x f x f x f x f f x f=-56+21(x -4)+37(x -4)2+11(x -4)3+(x -4)4.2.应用麦克劳林公式,按x 幂展开函数f (x )=(x 2-3x +1)3. 解因为f '(x )=3(x 2-3x +1)2(2x -3),f ''(x )=6(x 2-3x +1)(2x -3)2+6(x 2-3x +1)2=30(x 2-3x +1)(x 2-3x +2), f '''(x )=30(2x -3)(x 2-3x +2)+30(x 2-3x +1)(2x -3)=30(2x -3)(2x 2-6x +3), f (4)(x )=60(2x 2-6x +3)+30(2x -3)(4x -6)=360(x 2-3x +2), f (5)(x )=360(2x -3), f (6)(x )=720;f (0)=1,f '(0)=-9,f ''(0)=60,f '''(0)=-270, f (4)(0)=720,f (5)(0)=-1080,f (6)(0)=720, 所以6)6(5)5(4)4(32!6)0(!5)0(!4)0(!3)0(!2)0()0()0()(x f x f x f x f x f x f f x f +++'''+''+'+==1-9x +30x 3-45x 3+30x 4-9x 5+x 6.3.求函数x x f =)(按(x -4)的幂展开的带有拉格朗日型余项的3阶泰勒公式. 解因为24)4(==f ,4121)4(421=='=-x x f ,32141)4(423-=-=''=-x x f ,328383)4(425⋅=='''=-x x f ,27)4(1615)(--=x x f , 所以4)4(32)4(!4)()4(!3)4()4(!2)4()4)(4()4(-+-'''+-''+-'+=x f x f x f x f f x ξ 4732)4()]4(4[1615!41)4(5121)4(641)4(412--+⋅--+---+=x x x x x θ(0<θ<1).4.求函数f (x )=ln x 按(x -2)的幂展开的带有佩亚诺型余项的n 阶泰勒公式. 解因为f '(x )=x -1,f ''(x )=(-1)x -2,f '''(x )=(-1)(-2)x -3,⋅⋅⋅,nn nn x n x n x f )!1()1()1( )2)(1()(1)(--=+-⋅⋅⋅--=--;kk k k f 2)!1()1()2(1)(--=-(k =1, 2,⋅⋅⋅,n +1), 所以])2[()2(!)2( )2(!3)2()2(!2)2()2)(2()2(ln )(32n n n x o x n f x f x f x f f x -+-+⋅⋅⋅+-'''+-''+-'+=])2[()2(2)1( )2(231)2(221)2(212ln 13322n n n n x o x n x x x -+-⋅-+⋅⋅⋅--⋅+-⋅--+=-. 5.求函数xx f 1)(=按(x +1)的幂展开的带有拉格朗日型余项的n 阶泰勒公式.解因为f (x )=x -1,f '(x )=(-1)x -2,f ''(x )=(-1)(-2)x -3,⋅⋅⋅,1)1()(!)1()( )2)(1()(++--=-⋅⋅⋅--=n n n n xn xn x f; !)1(!)1()1(1)(k k fk k k -=--=-+(k =1, 2,⋅⋅⋅,n ), 所以 )1(!3)1()1(!2)1()1)(1()1(132⋅⋅⋅++-'''++-''++-'+-=x f x f x f f x1)1()()1()!1()()1(!)1(++++++-+n n n n x n f x n f ξ12132)1()]1(1[)1(])1( )1()1()1(1[++++++--+++⋅⋅⋅+++++++-=n n n nx x x x x x θ (0<θ<1). 6.求函数f (x )=tan x 的带有拉格朗日型余项的3阶麦克劳林公式. 解因为f '(x )=sec 2x ,f ''(x )=2sec x ⋅sec x ⋅tan x =2sec 2x ⋅tan x ,f '''(x )=4sec x ⋅sec x ⋅tan 2x +2sec 4x =4sec 2x ⋅tan 2x +2sec 4x ,f (4)(x )=8sec 2x ⋅tan 3x +8sec 4x ⋅tan x +8sec 4x ⋅tan x xx x 52cos )2(sin sin 8+=;f (0)=0,f '(0)=1,f ''(0)=0,f '''(0)=2,所以4523)(cos 3]2)()[sin sin(31tan x x x x x x x θθθ+++=(0<θ<1). 7.求函数f (x )=xe x 的带有佩亚诺型余项的n 阶麦克劳林公式. 解因为f '(x )=e x +xe x ,f ''(x )=e x +e x +xe x =2e x +xe x , f '''(x )=2e x +e x +xe x =3e x +xe x ,⋅⋅⋅, f (n )(x )=ne x +xe x ; f (k )(0)=k (k =1, 2,⋅⋅⋅,n ), 所以)(!)0( !3)0(!2)0()0()0()(32n nn xx o x n f x f x f x f f xe ++⋅⋅⋅⋅+'''+''+'+= )()!1(1 !2132n n x o x n x x x +-⋅⋅⋅+++=.8.验证当210≤≤x 时,按公式62132x x x e x+++≈计算e x 的近似值时,所产生的误差小于0.01,并求e 的近似值,使误差小于0.01.解因为公式62132x x x e x +++≈右端为e x的三阶麦克劳林公式,其余项为43!4)(x e x R ξ=, 所以当210≤≤x 时,按公式62132x x x e x+++≈计算e x 的误差01.00045.0)21(!43|!4||)(|42143<≈≤=x e x R ξ. 645.1)21(61)21(212113221≈⋅+⋅++≈=e e .9.应用三阶泰勒公式求下列各数的近似值,并估计误差: (1)330; (2)sin18︒.解 (1)设3)(x x f =,则f (x )在x 0=27点展开成三阶泰勒公式为2353233)27)(2792(!21)27(273127)(-⋅-⋅+-⋅+==--x x x x f4311338)27)(8180(!41)27)(272710(!31--⋅+-⋅⋅+--x x ξ(ξ介于27与x 之间). 于是33823532333)272710(!313)2792(!21327312730⋅⋅⋅+⋅⋅-⋅+⋅⋅+≈---10724.3)3531311(31063≈+-+≈, 其误差为5114311431131088.13!4803278180!41|3)8180(!41||)30(|---⨯=⋅=⋅⋅⋅<⋅-⋅=ξR .(2) 已知43!4sin !31sin x x x x ξ+-=(ξ介于0与x 之间),所以 sin 18︒3090.0)10(!311010sin 3≈-≈=πππ,其误差为44431003.2)10(!46sin |)10(!4sin ||)10(|-⨯=<=πππξπR . 10.利用泰勒公式求下列极限: (1))23(lim 434323x x x x x --++∞→;(2))]1ln([cos lim2202x x x e x xx -+--→;(3)2220sin )(cos 1211lim 2x e x x x x x -+-+→. 解 (1)tt t xx x x x x x t x x 430434343232131lim 12131lim)23(lim --+=--+=--++→+∞→+∞→.因为)(1313t o t t ++=+,)(211214t o t t +-=-,所以23])(23[lim )](211[)](1[lim )23(lim 00434323=+=+--++=--++→+→+∞→t t o t t o t t o t x x x x t t x .(2)])1ln(1[)](41!21211[)](!41!211[lim)]1ln([cos lim1344244202202x x xx x xx o x x x o x x x x x e x -++⋅+--++-=-+-→-→ 010)1ln(1)(121lim 11340=+=-++-=-→e x x x o x x x . (3)2442442442202220))](!211())(!41!211[()](!43!211[211lim sin )(cos 1211lim 2x x o x x x o x x x o x x x x e x x x x x x +++-++-+-+-+=-+-+→→ 12123!43)(241123)(!43lim )(241123)(!43lim 2424404264440-=-=+--+=⋅+--+=→→x x o x x x o x o x x x x o x x x . 习题3-41.判定函数f (x )=arctan x -x 单调性.解因为011111)(22≤+-=-+='xx x f ,且仅当x =0时等号成立,所以f (x )在(-∞,+∞)内单调减少.2.判定函数f (x )=x +cos x (0≤x ≤2π)的单调性.解因为f '(x )=1-sin x ≥0,所以f (x )=x +cos x 在[0, 2π]上单调增加. 3.确定下列函数的单调区间: (1) y =2x 3-6x 2-18x -7; (2)xx y 82+=(x >0);(3)x x x y 6941023+-=;(4))1ln(2x x y ++=; (5) y =(x -1)(x +1)3; (6))0())(2(32>--=a x a a x y ; (7) y =x n e -x (n >0,x ≥0); (8)y =x +|sin 2x |.解 (1) y '=6x 2-12x -18=6(x -3)(x +1)=0,令y '=0得驻点x 1=-1,x 2=3. 列表得可见函数在(-∞,-1]和[3,+∞)内单调增加,在[-1, 3]内单调减少.(2) 0)2)(2(28222=+-=-='x x x x y ,令y '=0得驻点x 1=2,x 2=-2(舍去).因为当x >2时,y >0;当0<x <2时,y '<0,所以函数在(0, 2]内单调减少,在[2,+∞)内单调增加. (3)223)694()1)(12(60x x x x x y +----=',令y '=0得驻点211=x ,x 2=1,不可导点为x =0. 列表得可见函数在(-∞, 0),]21 ,0(, [1,+∞)内单调减少,在]1 ,21[上单调增加.(4)因为011)1221(11222>+=++++='x x x x x y ,所以函数在(-∞,+∞)内单调增加.(5) y '=(x +1)3+3(x -1)(x +1)22)1)(21(4+-=x x .因为当21<x 时,y '<0;当21>x 时,y '>0,所以函数在]21 ,(-∞内单调减少,在) ,21[∞+内单调增加.(6)32)()2(3)32(x a a x a x y ----=',驻点为321a x =,不可导点为22a x =,x 3=a .列表得可见函数在)2 ,(a -∞,]32 ,2(a a , (a ,+∞)内单调增加,在) ,32[a a 内单调减少.(7)y '=e -x x n -1(n -x ),驻点为x =n .因为当0<x <n 时,y '>0;当x >n 时,y '<0,所以函数在[0,n ]上单调增加,在[n ,+∞)内单调减少.(8)⎪⎩⎪⎨⎧+<<+-+≤≤+=πππππππk x k x x k x k x x y 2 2sin 2 2sin (k =0,±1,±2,⋅⋅⋅),⎪⎩⎪⎨⎧+<<+-+≤≤+='πππππππk x k x k x k x y 2 2cos 212 2cos 21(k =0,±1,±2,⋅⋅⋅).y '是以π为周期的函数,在[0,π]内令y '=0,得驻点21π=x ,652π=x ,不可导点为23π=x .列表得根据函数在[0,π]上的单调性及y '在(-∞,+∞)的周期性可知函数在]32 ,2[πππ+k k 上单调增加,在]22 ,32[ππππ++k k 上单调减少(k =0,±1,±2,⋅⋅⋅).4.证明下列不等式: (1)当x >0时,x x +>+1211;(2)当x >0时,221)1ln(1x x x x +>+++; (3)当20π<<x 时, sin x +tan x >2x ;(4)当20π<<x 时,331tan x x x +>;(5)当x >4时, 2x >x 2;证明 (1)设x x x f +-+=1211)(,则f (x )在[0,+∞)内是连续的.因为x x f +-='12121)(01211>+-+=xx ,所以f (x )在(0,+∞)内是单调增加的,从而当x >0时f (x )>f (0)=0,即01211>+-+x x , 也就是x x +>+1211.(2)设221)1ln(1)(x x x x x f +-+++=,则f (x )在[0,+∞)内是连续的.因为0)1ln(1)11(11)1ln()(22222>++=+-++⋅++⋅+++='x x x x x x x x x x x x f , 所以f (x )在(0,+∞)内是单调增加的,从而当x >0时f (x )>f (0)=0,即01)1ln(122>+-+++x x x x , 也就是221)1ln(1x x x x +>+++.(3)设f (x )=sin x +tan x -2x ,则f (x )在)2,0[π内连续,f '(x )=cos x +sec 2x -2xx x x 22cos ]cos )1)[(cos 1(cos ---=. 因为在)2 ,0(π内cos x -1<0, cos 2x -1<0,-cos x <0,所以f '(x )>0,从而f (x )在)2 ,0(π内单调增加,因此当20π<<x 时,f (x )>f (0)=0,即sin x +tan x -2x >0, 也就是 sin x +tan x >2x .(4)设331tan )(x x x x f --=,则f (x )在)2 ,0[π内连续,))(tan (tan tan 1sec )(2222x x x x x x x x x f +-=-=--='.因为当20π<<x 时, tan x >x , tan x +x >0,所以f '(x )在)2 ,0(π内单调增加,因此当20π<<x 时,f (x )>f (0)=0,即031tan 3>--x x x ,也就是231tan x x x +>.(5)设f (x )=x ln2-2ln x ,则f (x )在[4,+∞)内连续,因为0422ln 224ln 22ln )(=->-=-='e x x x f ,所以当x >4时,f '(x )>0,即f (x )内单调增加.因此当x >4时,f (x )>f (4)=0,即x ln2-2ln x >0,也就是2x >x 2.5.讨论方程ln x =ax (其中a >0)有几个实根?解设f (x )=ln x -ax .则f (x )在(0,+∞)内连续,xax a x x f -=-='11)(,驻点为a x 1=.因为当ax 10<<时,f '(x )>0,所以f (x )在)1 ,0(a 内单调增加;当a x 1>时,f '(x )<0,所以f (x )在) ,1(∞+a内单调减少.又因为当x →0及x →+∞时,f (x )→-∞,所以如果011ln )1(>-=a a f ,即e a 1<,则方程有且仅有两个实根;如果011ln )1(<-=aa f ,即e a 1>,则方程没有实根.如果011ln )1(=-=a a f ,即e a 1=,则方程仅有一个实根.6.单调函数的导函数是否必为单调函数?研究下面这个例子:f (x )=x +sin x .解单调函数的导函数不一定为单调函数.例如f (x )=x +sin x 在(-∞,+∞)内是单调增加的,但其导数不是单调函数.事实上,f '(x )=1+cos x ≥0,这就明f (x )在(-∞,+∞)内是单调增加的.f ''(x )=-sin x 在(-∞,+∞)内不保持确定的符号,故f '(x )在(-∞,+∞)内不是单调的.7.判定下列曲线的凹凸性: (1) y =4x -x 2; (2) y =sh x ; (3)x y 11+=(x >0);(4) y =x arctan x ; 解 (1)y '=4-2x ,y ''=-2,因为y ''<0,所以曲线在(-∞,+∞)内是凸的. (2)y '=ch x ,y ''=sh x .令y ''=0,得x =0.因为当x <0时,y ''=sh x <0;当x >0时,y ''=sh x >0,所以曲线在(-∞, 0]内是凸的,在[0,+∞)内是凹的.(3)1xy -=',32x y =''. 因为当x >0时,y ''>0,所以曲线在(0,+∞)内是凹的. (4)21arctan xx x y ++=',22)1(2x y +=''.因为在(-∞,+∞)内,y ''>0,所以曲线y =x arctg x 在(-∞,+∞)内是凹的.8.求下列函数图形的拐点及凹或凸的区间:(1).y =x 3-5x 2+3x +5 ; (2) y =xe -x ; (3) y =(x +1)4+e x ; (4) y =ln(x 2+1); (5) y =earctan x;(6) y =x 4(12ln x -7),解 (1)y '=3x 2-10x +3,y ''=6x -10.令y ''=0,得35=x .因为当35<x 时,y ''<0;当35>x 时,y ''>0,所以曲线在]35 ,(-∞内是凸的,在) ,35[∞+内是凹的,拐点为)2720 ,35(.(2)y '=e -x -xe -x ,y ''=-e -x -e -x +xe -x =e -x (x -2).令y ''=0,得x =2.因为当x <2时,y ''<0;当x >2时,y ''>0,所以曲线在(-∞, 2]内是凸的,在[2,+∞)内是凹的,拐点为(2, 2e -2).(3)y '=4(x +1)3+e x ,y ''=12(x +1)2+e x .因为在(-∞,+∞)内,y ''>0,所以曲线y =(x +1)4+e x 的在(-∞,+∞)内是凹的,无拐点.(4)122+='x x y ,22222)1()1)(1(2)1(22)1(2++--=+⋅-+=''x x x x x x x y .令y ''=0,得x 1=-1,x 2=1. 列表得可见曲线在(-∞,-1]和[1,+∞)内是凸的,在[-1, 1]内是凹的,拐点为(-1, ln2)和(1, ln2).(5)2arctan 11xe y x +⋅=',)21(12arctan x x e y x-+=''.令y ''=0得,21=x .因为当21<x 时,y ''>0;当21>x 时,y ''<0,所以曲线y =e arctg x 在]21 ,(-∞内是凹的,在) ,21[∞+内是凸的,拐点是),21(21arctan e. (6) y '=4x 3(12ln x -7)+12x 3,y ''=144x 2⋅ln x .令y ''=0,得x =1.因为当0<x <1时,y ''<0;当x >1时,y ''>0,所以曲线在(0, 1]内是凸的,在[1,+∞)内是凹的,拐点为(1,-7).9.利用函数图形的凹凸性,证明下列不等式:(1) nn n y x y x )2()(21+>+(x >0,y >0,x ≠y ,n >1); (2))(22y x e e e yx y x ≠>++;(3)2ln)(ln ln yx y x y y x x ++>+ (x >0,y >0,x ≠y ). 证明 (1)设f (t )=t n ,则f '(t )=nt n -1,f ''(t )=n (n -1)t n -2.因为当t >0时,f ''(t )>0,所以曲线f (t )=t n在区间(0,+∞)内是凹的.由定义,对任意的x >0,y >0,x ≠y 有 )2()]()([21y x f y f x f +>+, 即nn n y x y x )2()(21+>+. (2)设f (t )=e t ,则f '(t )=e t ,f ''(t )=e t .因为f ''(t )>0,所以曲线f (t )=e t 在(-∞,+∞)内是凹的.由定义,对任意的x ,y ∈(-∞,+∞),x ≠y 有 )2()]()([21y x f y f x f +>+, 即)(22y x e e e yx y x ≠>++.(3)设f (t )=t ln t ,则f '(t )=ln t +1,tt f 1)(=''.因为当t >0时,f ''(t )>0,所以函数f (t )=t ln t 的图形在(0,+∞)内是凹的.由定义,对任意的x >0,y >0,x ≠y 有 )2()]()([21y x f y f x f +>+, 即2ln )(ln ln yx y x y y x x ++>+.10.试证明曲线112+-=x x y 有三个拐点位于同一直线上.证明222)1(12+++-='x x x y ,323223)1()]32()][32()[1(2)1(2662++---+=++--=''x x x x x x x x y . 令y ''=0,得x 1=-1,322-=x ,323+=x . 例表得可见拐点为(-1,-1),))32(431 ,32(---,))32(431 ,32(+++.因为41)1(32)1()32(431=-------,41)1(32)1()32(431=--+--++, 所以这三个拐点在一条直线上.11.问a 、b 为何值时,点(1, 3)为曲线y =ax 3+bx 2的拐点?解y '=3ax 2+2bx ,y ''=6ax +2b .要使(1, 3)成为曲线y =ax 3+bx 2的拐点,必须y (1)=3且y ''(1)=0,即a +b =3且6a +2b =0,解此方程组得23-=a ,29=b .12.试决定曲线y =ax 3+bx 2+cx +d 中的a 、b 、c 、d ,使得x =-2处曲线有水平切线, (1,-10)为拐点,且点(-2, 44)在曲线上. 解y '=3ax 2+2bx +c ,y ''=6ax +2b .依条件有⎪⎩⎪⎨⎧=''=-'-==-0)1(0)2(10)1(44)2(y y y y ,即⎪⎩⎪⎨⎧=+=+--=+++=+-+-02604121044248b a c b a d c b a d c b a . 解之得a =1,b =-3,c =-24,d =16.13.试决定y =k (x 2-3)2中k 的值,使曲线的拐点处的法线通过原点. 解y '=4kx 3-12kx ,y ''=12k (x -1)(x +1).令y ''=0,得x 1=-1,x 2=1.因为在x 1=-1的两侧y ''是异号的,又当x =-1时y =4k ,所以点(-1, 4k )是拐点. 因为y '(-1)=8k ,所以过拐点(-1, 4k )的法线方程为)1(814+-=-x k k y .要使法线过原点,则(0, 0)应满足法线方程,即kk 814-=-,82±=k .同理,因为在x 1=1的两侧y ''是异号的,又当x =1时y =4k ,所以点(1, 4k )也是拐点. 因为y '(1)=-8k ,所以过拐点(-1, 4k )的法线方程为)1(814-=-x k k y .要使法线过原点,则(0, 0)应满足法线方程,即kk 814-=-,82±=k .因此当82±=k 时,该曲线的拐点处的法线通过原点.14.设y =f (x )在x =x 0的某邻域内具有三阶连续导数,如果f ''(x 0)=0,而f '''(x 0)≠0,试问 (x 0,f (x 0))是否为拐点?为什么?解不妨设f '''(x 0)>0.由f '''(x )的连续性,存在x 0的某一邻域(x 0-δ,x 0+δ),在此邻域内有f '''(x )>0.由拉格朗日中值定理,有f ''(x )-f ''(x 0)=f '''(ξ)(x -x 0) (ξ介于x 0与x 之间), 即f ''(x )=f '''(ξ)(x -x 0).因为当x 0-δ<x <x 0时,f ''(x )<0;当x 0<x <x 0+δ时,f ''(x )>0,所以(x 0,f (x 0))是拐点.习题3-51.求函数的极值:(1) y =2x 3-6x 2-18x +7; (2) y =x -ln(1+x ) ;(3) y =-x 4+2x 2; (4)x x y -+=1; (5)25431xx y ++=;(6)144322++++=x x x x y ;(7) y =e xcos x ;(8)xx y 1=;(9)31)1(23+-=x y ;(10) y =x +tan x .解 (1)函数的定义为(-∞,+∞), y '=6x 2-12x -18=6(x 2-2x -3)=6(x -3)(x +1),驻点为x 1=-1,x 2=3. 列表可见函数在x =-1处取得极大值17,在=3处取得极小值-47.(2)函数的定义为(-1,+∞),xxx y +=+-='1111,驻点为x =0.因为当-1<x <0时,y '<0;当x >0时,y '>0,所以函数在x =0处取得极小值,极小值为y (0)=0. (3)函数的定义为(-∞,+∞), y '=-4x 3+4x =-4x (x 2-1),y ''=-12x 2+4,令y '=0,得x 1=0,x 2=-1,x 3=1.因为y ''(0)=4>0,y ''(-1)=-8<0,y ''(1)=-8<0,所以y (0)=0是函数的极小值,y (-1)=1和y (1)=1是函数的极大值.(4)函数的定义域为(-∞, 1], )112(1243121121211+---=---=--='x x x xx xy ,令y '=0,得驻点43=x .因为当43<x 时,y '>0;当143<<x 时,y '<0,所以45)1(=y 为函数的极大值.(5)函数的定义为(-∞,+∞),32)54()512(5x x y +--=',驻点为512=x . 因为当512<x 时,y '>0;当512>x 时,y '<0,所以函数在512=x 处取得极大值,极大值为10205)512(=y . (6)函数的定义为(-∞,+∞),22)1()2(+++-='x x x x y ,驻点为x 1=0,x 2=-2.列表可见函数在x =-2处取得极小值38,在x =0处取得极大值4.(7)函数的定义域为(-∞,+∞).y '=e x (cos x -sin x ),y ''=-e x sin x .令y '=0,得驻点ππk x 24+=,ππ)1(24++=k x , (k =0,±1,±2,⋅ ⋅ ⋅).因为0)24(<+''ππk y ,所以22)24(24⋅=++ππππk e k y 是函数的极大值. 因为y ''0])1(24[>++ππk ,所以22])1(24[)1(24⋅-=++++ππππk e k y 是函数的极小值. (8)函数xx y 1=的定义域为(0,+∞),)ln 1(121x x x y x-⋅='.令y '=0,得驻点x =e .因为当x <e 时,y '>0;当x >e 时,y '<0,所以ee e y 1)(=为函数f (x )的极大值.(9)函数的定义域为(-∞,+∞),3/2)1(132+-='x y ,因为y '<0,所以函数在(-∞,+∞)是单调减少的,无极值.(10)函数y =x +tg x 的定义域为ππk x +≠2(k =0,±1,±2,⋅ ⋅ ⋅). 因为y '=1+sec 2x >0,所以函数f (x )无极值.2.试证明:如果函数y =ax 3+bx 2+cx +d 满足条件b 2-3ac <0,那么这函数没有极值.证明y '=3ax 2+2bx +c .由b 2-3ac <0,知a ≠0.于是配方得到 y '=3ax 2+2bx +c ab ac a b x a a c x a b x a 33)3(3)332(32222-++=++=,因3ac -b 2>0,所以当a >0时,y '>0;当a <0时,y '<0.因此y =ax 3+bx 2+cx +d 是单调函数,没有极值.3.试问a 为何值时,函数x x a x f 3sin 31sin )(+=在3π=x 处取得极值?它是极大值还是极小值?并求此极值.解f '(x )=a cos x +cos 3x ,f ''(x )=-a sin x -3 sin x . 要使函数f (x )在3π=x 处取得极值,必有0)3(='πf ,即0121=-⋅a ,a =2 . 当a =2时,0232)3(<⋅-=''πf .因此,当a =2时,函数f (x )在3π=x 处取得极值,而且取得极大值,极大值为3)23(=f . 4.求下列函数的最大值、最小值:(1) y =2x 3-3x 2,-1≤x ≤4;(2) y =x 4-8x 2+2 -1≤x ≤3 ; (3)x x y -+=1,-5≤x ≤1.解 (1)y '=6x 2-6x =6x (x -1),令y '=0,得x 1=0,x 2=1.计算函数值得 y (-1)=-5,y (0)=0,y (1)=-1,y (4)=80,经比较得出函数的最小值为y (-1)=-5,最大值为y (4)=80.(2)y '=4x 3-16x =4x (x 2-4),令y '=0,得x 1=0,x 2=-2(舍去),x 3=2.计算函数值得 y (-1)=-5,y (0)=2,y (2)=-14,y (3)=11,经比较得出函数的最小值为y (2)=-14,最大值为y (3)=11.(3)xy --='1211,令y '=0,得43=x .计算函数值得65)5(+-=-y ,45)43(=y ,y (1)=经比较得出函数的最小值为65)5(+-=-y ,最大值为45)43(=y .5.问函数y =2x 3-6x 2-18x -7(1≤x ≤4)在何处取得最大值?并求出它的最大值.解y '=6x 2-12x -18=6(x -3)(x +1),函数f (x )在1≤x ≤4内的驻点为x =3. 比较函数值:f (1)=-29,f (3)=-61,f (4)=-47,函数f (x )在x =1处取得最大值,最大值为f (1)=-29. 6.问函数xx y 542-=(x <0)在何处取得最小值? 解2542x x y +=',在(-∞, 0)的驻点为x =-3.因为31082xy -='',0271082)3(>+=-''y , 所以函数在x =-3处取得极小值.又因为驻点只有一个,所以这个极小值也就是最小值,即函数在x =-3处取得最小值,最小值为27)3(=-y .7.问函数12+=x x y (x ≥0)在何处取得最大值?解222)1(1+-='x x y .函数在(0,+∞)内的驻点为x =1.因为当0<x <1时,y '>0;当x >1时y '<0,所以函数在x =1处取得极大值.又因为函数在(0,+∞)内只有一个驻点,所以此极大值也是函数的最大值,即函数在x =1处取得最大值,最大值为f (1)=21. 8.某车间靠墙壁要盖一间长方形小屋,现有存砖只够砌20cm 长的墙壁,问应围成怎样的长方形才能使这间小屋的面积最大?解设宽为x 长为y ,则2x +y =20,y =20-2x ,于是面积为 S =xy =x (20-2x )=20x -2x 2. S '=20-4x =4(10-x ),S ''=-4. 令S '=0,得唯一驻点x =10.因为S ''(10)-4<0,所以x =10为极大值点,从而也是最大值点. 当宽为5米,长为10米时这间小屋面积最大.9.要造一圆柱形油罐,体积为V ,问底半径r 和高h 等于多少时,才能使表面积最小?这时底直径与高的比是多少?解由V = r 2h ,得h =V -1r -2.于是油罐表面积为 S =2 r 2+2 rh rVr 222+=π(0<x <+∞), 224r V r S -='π.令S '=0,得驻点32πV r =. 因为0443>+=''r V S π,所以S 在驻点32πVr =处取得极小值,也就是最小值.这时相应的高为r r Vh 2 20==π.底直径与高的比为2r :h =1 : 1.10.某地区防空洞的截面拟建成矩形加半圆(如图),截面的面积为5m 2,问底宽x 为多少时才能使截面的周长最小,从而使建造时所用的材料最省?解设矩形高为h ,截面的周长S ,则5)2(212=⋅+πx xh ,x x h 85π-=.于是xx x x h x S 10422++=++=ππ(π400<<x ), 21041xS -+='π.令S '=0,得唯一驻点π+=440x . 因为0203>=''xS ,所以π+=440x 为极小值点,同时也是最小值点. 因此底宽为π+=440x 时所用的材料最省. 11.设有重量为5kg 的物体,置于水平面上,受力F 的作用而开始移动(如图).设摩擦系数 =0.25,问力F 与水平线的交角 为多少时,才可使力F 的大小为最小? 解由F cos α=(m -F sin α)μ得αμαμsin cos +=m F (2 0πα≤≤),2)sin (cos )cos (sin αμααμαμ+-='m F ,驻点为α= arctan μ.因为F 的最小值一定在)2 ,0(π内取得,而F 在)2,0(π内只有一个驻点α= arctan μ, 所以α=arctan μ一定也是F 的最小值点.从而当α=arctan0.25=14︒时,力F 最小. 12.有一杠杆,支点在它的一端.在距支点0.1m 处挂一重量为49kg 的物体.加力于杠杆的另一端使杠杆保持水平(如图).如果杠杆的线密度为5kg/m ,求最省力的杆长? 解设杆长为x (m),加于杠杆一端的力为F ,则有 1.049521⋅+⋅=x x xF ,即)0(9.425>+=x x x F .29.425xF -=',驻点为x =1.4.由问题的实际意义知,F 的最小值一定在(0,+∞)内取得,而F 在(0,+∞)内只有一个驻点x =1.4,所以F 一定在x =1.4m 处取得最小值,即最省力的杆长为1.4m .。
高等代数(北大版)第3章习题参考答案
第三章 线性方程组1. 用消元法解下列线性方程组:123412345123451234512345354132211)234321x x x x x x x x x x x x x x x x x x x x x x x x ++-=⎧⎪++-+=-⎪⎪-+--=⎨⎪-++-=⎪⎪++-+=-⎩ 124512345123451234523213322)23452799616225x x x x x x x x x x x x x x x x x x x +-+=⎧⎪--+-=⎪⎨-+-+=⎪⎪-+-+=⎩ 1234234124234234433)31733x x x x x x x x x x x x x -+-=⎧⎪-+=-⎪⎨+++=⎪⎪-++=-⎩ 123412341234123434570233204)411131607230x x x x x x x x x x x x x x x x +-+=⎧⎪-+-=⎪⎨+-+=⎪⎪-++=-⎩ 123412341234123421322325)521234x x x x x x x x x x x x x x x x +-+=⎧⎪-+-=⎪⎨+-+=-⎪⎪-+-=⎩ 12341234123412341232313216)23122215522x x x x x x x x x x x x x x x x x x x ++-=⎧⎪++-=⎪⎪+++=⎨⎪++-=⎪⎪++=⎩ 解 1)对方程组得增广矩阵作行初等变换,有135401135401132211003212121113054312141113074512121111014812--⎡⎤⎡⎤⎢⎥⎢⎥----⎢⎥⎢⎥⎢⎥⎢⎥→------⎢⎥⎢⎥-----⎢⎥⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦10210110010100321200021200200000200000000000000001110010000--⎡⎤⎡⎤⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥→→--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦因为()()45rank A rank B ==<,所以方程组有无穷多解,其同解方程组为1415324122200x x x x x x x -=⎧⎪+=-⎪⎨-=⎪⎪-+=⎩, 解得123451022x k x k x x k x k=+⎧⎪=⎪⎪=⎨⎪=⎪⎪=--⎩ 其中k 为任意常数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 线性方程组1. 用消元法解下列线性方程组:123412345123451234512345354132211)234321x x x x x x x x x x x x x x x x x x x x x x x x ++-=ìï++-+=-ïï-+--=íï-++-=ïï++-+=-î 124512345123451234523213322)23452799616225x x x x x x x x x x x x x x x x x x x +-+=ìï--+-=ïí-+-+=ïï-+-+=î 1234234124234234433)31733x x x x x x x x x x x x x -+-=ìï-+=-ïí+++=ïï-++=-î 123412341234123434570233204)411131607230x x x x x x x x x x x x x x x x +-+=ìï-+-=ïí+-+=ïï-++=-î 123412341234123421322325)521234x x x x x x x x x x x x x x x x +-+=ìï-+-=ïí+-+=-ïï-+-=î 12341234123412341232313216)23122215522x x x x x x x x x x x x x x x x x x x ++-=ìï++-=ïï+++=íï++-=ïï++=î解 1)对方程组得增广矩阵作行初等变换,有135401135401132211003212121113054312141113074512121111014812--éùéùêúêú----êúêúêúêú®------êúêú-----êúêúêúêú-----ëûëû102101100101003212000212002000002000000000000000011100010000--éùéùêúêú---êúêúêúêú®®--êúêúêúêúêúêú---ëûëû因为()()45rank A rank B ==<所以方程组有无穷多解,其同解方程组为1415324122200x x x x x x x -=ìï+=-ïí-=ïï-+=î 解得123451022x k x k x x k x k=+ìï=ïï=íï=ïï=--î 其中k 为任意常数.2)对方程组德增广矩阵作行初等变换,有120321120321113132033451234527074125996162250276111616--éùéùêúêú------êúêú®êúêú----êúêú---ëûëû 120321120321033451033451252982529800110011333333003325297000001--éùéùêúêú------êúêú®®êúêú--êúêúêúêú--êúêúëûëû因为()4()3rank A rank A =>=所以原方程无解.3)对方程组德增广矩阵作行初等变换,有1234412344011130111313011053530731307313----éùéùêúêú----êúêú®êúêú--êúêú----ëûëû1012210008011130100300201200201200482400080---éùéùêúêú--êúêú®®êúêúêúêú--ëûëû因为(()4rank A rank A ==所以方程组有惟一解,且其解为12348360x x x x =-ìï=ïí=ïï=î 4)对方程组的增广矩阵作行初等变换,有34571789233223324111316411131672137213--éùéùêúêú----êúêú®êúêú--êúêú--ëûëû 17891789017192001719200171920000003438400000--éùéùêúêú----êúêú®®êúêú-êúêú--ëûëû即原方程组德同解方程组为123423478901719200x x x x x x x +-+=ìí-+-=î由此可解得1122123142313171719201717x k k x k k x k x k ì=-ïïï=-íï=ïï=î 其中12,k k 是任意常数g5)对方程组的增广矩阵作行初等变换,有2111121111322327001451121300122113440025--éùéùêúêú---êúêú®êúêú---êúêú---ëûëû 21111211117001470014100002100002100300001--éùéùêúêú--êúêú®®êúêúêúêú---ëûëû 因为()4()3rank A rank A =¹=所以原方程组无解.6)对方程组的增广矩阵作行初等变换,有12311354023211125202231112311122211453025520255202éùéùêúêú-êúêúêúêú®êúêú-êúêúêúêúëûëû2020000000552020570211611010015555101001010000000-éùéùêúêúêúêúêúêú®®-----êúêúêúêú--êúêúêúêúëûëû即原方程组的同解方程组为23341357261550x x x x x x +=ìïï-+=-íï-+=ïî 解之得123427551655x k x k x k x k =ìïï=-ïí=ïï=-+ïî其中k 是任意常数.2.把向量b 表成1234,,,a a a a 的线性组合.12341)(1,2,1,1)(1,1,1,1),(1,1,1,1)(1,1,1,1),(1,1,1,1)b a a a a ===--=--=--12342)(0,0,0,1)(1,1,0,1),(2,1,3,1)(1,1,0,0),(0,1,1,1)b a a a a =====--解 1)设有线性关系11223344k k k k b a a a a =+++代入所给向量,可得线性方程组12341234123412341211k k k k k k k k k k k k k k k k +++=ìï+--=ïí-+-=ïï--+=î 解之,得15,4k = 21,4k = 31,4k =- 414k =-因此123451114444b a a a a =+--2)同理可得13b a a =-3.证明:如果向量组12,,,r a a a L 线性无关,而12,,,,r a a a b L 线性相关,则向量可由12,,,r a a a L 线性表出.证 由题设,可以找到不全为零的数121,,,r k k k +L 使112210r r r k k k k a a a b +++++=L显然10r k +¹.事实上,若10r k +=,而12,,,r k k k L 不全为零,使11220r r k k k a a a +++=L成立,这与12,,,r a a a L 线性无关的假设矛盾,即证10r k +¹.故11rii i r k k b a =+=-å即向量b 可由12,,,r a a a L 线性表出.4.12(,,,)(1,2,,)i i i in i n a a a a ==L L ,证明:如果0ij a ¹,那么12,,,n a a a L 线性无关.证 设有线性关系11220n n k k k a a a +++=L代入分量,可得方程组111212112122221122000n n n nn n nn n k k k k k k k k k a a a a a a a a a +++=ìï+++=ïíïï+++=îL L L L L L L L L L L L L L 由于0ij a ¹,故齐次线性方程组只有零解,从而12,,,n a a a L 线性无关.5.设12,,,r t t t L 是互不相同的数,r n £.证明:1(1,,,)(1,2,,)n i i i t t i r a -==L L是线性无关的.证 设有线性关系11220r r k k k a a a +++=L则1211221111122000r r rn n n r rk k k t k t k t k t k t k t k ---+++=ìï+++=ïíïï+++=îL L L L L L L L L L L L L 1)当r n =时,方程组中的未知量个数与方程个数相同,且系数行列式为一个范德蒙行列式,即122221211112111()0nn j i i jn n n nt t t t t t t t t t t <---=-¹ÕL LL M M O M L所以方程组有惟一的零解,这就是说12,,,r a a a L 线性无关.2)当r n <时,令21111121222221(1,,,,)(1,,,,)(1,,,,)r r r r r r rt t t t t t t t t b b b ---ì=ï=ïíïï=îL L L L L L L L L L L 则由上面1)的证明可知12,,,r b b b L 是线性无关的.而12,,,r a a a L 是12,,,r b b b L 延长的向量,所以12,,,r a a a L 也线性无关.6.设123,,a a a 线性无关,证明122331,,a a a a a a +++也线性无关. 证 设由线性关系112223331()()()0k k k a a a a a a +++++=则131122233()()()0k k k k k k a a a +++++=再由题设知123,,a a a 线性无关,所以13122300k k k k k k +=ìï+=íï+=î 解得1230k k k ===所以122331,,a a a a a a +++线性无关.7.已知12,,,s a a a L 的秩为r ,证明:12,,,s a a a L 中任意r 个线性无关的向量都构成它的一个极大线性无关组.证 设12,,,i i ir a a a L 是12,,,s a a a L 中任意r 个线性无关向量组,如果能够证明任意一个向量(1,2,,)j j s a =L 都可由12,,,i i ir a a a L 线性表出就可以了.事实上,向量组12,,,,i i ir j a a a a L 是线性相关的,否则原向量组的秩大于r ,矛盾.这说明j a 可由12,,,i i ir a a a L 线性表出,再由j a 的任意性,即证.8.设12,,,s a a a L 的秩为r ,12,,,r i i i a a a L 是12,,,s a a a L 中的r 个向量,使得12,,,s a a a L 中每个向量都可被它们线性表出,证明:12,,,r i i i a a a L 是12,,,s a a a L 的一个极大线性无关组.证 由题设知12,,,r i i i a a a L 与12,,,s a a a L 等价,所以12,,,r i i i a a a L 的秩与12,,,s a a a L 的秩相等,且等于r .又因为12,,,r i i i a a a L 线性无关,故而12,,,r i i i a a a L 是12,,,s a a a L 的一个极大线性无关组.9.证明:一个向量组的任何一个线性无关组都可以扩充成一线性无关组.证 将所给向量组用(Ⅰ)表示,它的一个线性无关向量组用(Ⅱ)表示.若向量组(Ⅰ)中每一个向量都可由向量组(Ⅱ)线性表出,那么向量组(Ⅱ)就是向量组(Ⅰ)的极大线性无关组.否则,向量组(Ⅰ)至少有一个向量a 不能由向量组(Ⅱ)线性表出,此时将a 添加到向量组(Ⅱ)中去,得到向量组(Ⅲ),且向量组(Ⅲ)是线性无关的.进而,再检查向量组(Ⅰ)中向量是否皆可由向量组(Ⅲ)线性表出.若还不能,再把不能由向量组(Ⅲ)线性表出的向量添加到向量组(Ⅲ)中去,得到向量组(Ⅳ).继续这样下去,因为向量组(Ⅰ)的秩有限,所以只需经过有限步后,即可得到向量组(Ⅰ)的一个极大线性无关组.10.设向量组为1(1,1,2,4)a =-,2(0,3,1,2)a =,3(3,0,7,14)a =4(1,1,2,0)a =-,5(2,1,5,6)a =1) 证明:12,a a 线性无关.2) 把12,a a 扩充成一极大线性无关组.证 1)由于12,a a 的对应分量不成比例,因而12,a a 线性无关. 2)因为3123a a a =+,且由1122440k k k a a a ++=可解得1240k k k ===所以124,,a a a 线性无关.再令112244550k k k k a a a a +++=代入已知向量后,由于相应的齐次线性方程组的系数行列式为0,因而该齐次线性方程组存在非零解,即1245,,,a a a a 线性相关,所以5a 可由124,,a a a 线性表出.这意味着124,,a a a 就是原向量组的一个极大线性无关组.注 此题也可将1245,,,a a a a 排成54´的矩阵,再通过列初等变换化为行阶梯形或行最简形,然后得到相应结论.11.用消元法求下列向量组的极大线性无关组与秩:12341)(6,4,1,2),(1,0,2,3,4)(1,4,9,16,22),(7,1,0,1,3)a a a a =-=-=--=-,123452)(1,1,2,4),(0,3,1,2)(3,0,7,14),(1,1,2,0)(2,1,5,6)a a a a a =-===-=解 1)设12346411210234149162271013A a a a a -éùéùêúêú-êúêú==êúêú--êúêú-êúëûëû 对矩阵A 作行初等变换,可得0411192600102341023404111926004569980114223101142231A --éùéùêúêú-êúêú®®êúêú---êúêú----ëûëû 所以1234,,,a a a a 的秩为3,且234,,a a a 即为所求极大线性无关组.3) 同理可得124,,a a a 为所求极大线性无关组,且向量组的秩为3. 12.证明:如果向量组(Ⅰ)可以由向量组(Ⅱ)线性表出,那么(Ⅰ) 的秩不超过(Ⅱ)的秩.证 由题设,向量组(Ⅰ)的极大线性无关组也可由向量组(Ⅱ)的极大线性无关组线性表出,即证向量组(Ⅰ)的秩不超过向量组(Ⅱ)的秩.13.设12,,,n a a a L 是一组维向量,已知单位向量12,,,n e e e L 可被它们线性表出,证明:12,,,n a a a L 线性无关.证 设12,,,n a a a L 的秩为r n £,而12,,,n e e e L 的秩为n . 由题设及上题结果知n r £从而r n =.故12,,,n a a a L 线性无关.14.设12,,,n a a a L 是一组n 维向量,证明:12,,,n a a a L 线性无关的充分必要条件是任一n 维向量都可被它们线性表出.证 必要性.设12,,,n a a a L 线性无关,但是1n +个n 维向量12,,,,n a a a b L 必线性相关,于是对任意n 维向量b ,它必可由12,,,n a a a L 线性表出.充分性.任意n 维向量可由12,,,n a a a L 线性表出,特别单位向量12,,,n e e e L 可由12,,,n a a a L 线性表出,于是由上题结果,即证12,,,n a a a L 线性无关.15.证明:方程组11112211211222221122n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=ìï+++=ïíïï+++=îL L L L L L L L L L L L L 对任何12,,,n b b b L 都有解的充分必要条件是系数行列式0ij a ¹.证 充分性.由克拉默来姆法则即证.下证必要性.记1212(,,,)(1,2,,)(,,,)i i i ni n i n b b b a a a a b ===L L L则原方程组可表示为1122n n x x x b a a a =+++L由题设知,任意向量b 都可由线性12,,,n a a a L 表出,因此由上题结果可知12,,,n a a a L 线性无关.进而,下述线性关系12220n n k k k a a a +++=L仅有惟一零解,故必须有0ij A a =¹,即证.16.已知12,,,r a a a L 与121,,,,,,r r s a a a a a +L L 有相同的秩,证明: 与121,,,,,,r r s a a a a a +L L 等价.证 由于12,,,r a a a L 与121,,,,,,r r s a a a a a +L L 有相同的秩,因此它们的极大线性无关组所含向量个数必定相等.这样12,,,r a a a L 的极大线性无关组也必为121,,,,,,r r s a a a a a +L L 的极大线性无关组,从而它们有相同的极大线性无关组.另一方面,因为它们分别与极大线性无关组等价,所以它们一定等价. 17.设123213,,,r r b a a a b a a a =+++=+++L L L 121r r b a a a -=+++L证明:12,,,r b b b L 与12,,,r a a a L 具有相同的秩.证 只要证明两向量组等价即可.由题设,知12,,,r b b b L 可由12,,,r a a a L 线性表出.现在把这些等式统统加起来,可得12121()1r r r b b b a a a +++=+++-L L 于是121111(1)1111i i r r r r r a b b b b =+++-++----L L (1,2,,)i r =L即证12,,,r a a a L 也可由12,,,r b b b L 线性表出,从而向量组12,,,r b b b L 与12,,,r a a a L 等价.18.计算下列矩阵的秩:1)01112022200111111011-éùêú--êúêú--êú-ëû 2)11210224203061103001-éùêú--êúêú-êúëû3)141268261042191776341353015205éùêúêúêúêúëû 4)10014010250013612314324563277éùêúêúêúêúêúêúëû5)1010011000011000011001011éùêúêúêúêúêúêúëû解 1)秩为4.2)秩为3. 3)秩为2. 4)秩为3. 5)秩为5.19.讨论,,a b l 取什么值时,下列方程有解,并求解.1)12212321231x x x x x x x x x l l l l lì++=ï++=íï++=î 2)122123123(3)(1)23(1)(3)3x x x x x x x x x l l l l l l l l +++=ìï+-+=íï++++=î3)1221231234324ax x x x bx x x bx x ++=ìï++=íï++=î解 1)因为方程组的系数行列式21111(1)(2)11D l l l l l==-+所以当1l =时,原方程组与方程1221x x x ++=同解,故原方程组有无穷多解,且其解为11221321x k k x k x k=--ìï=íï=î 其中12,k k 为任意常数.当2l =-时,原方程组无解.当1l ¹且2l ¹-时,原方程组有惟一解.且12231212(1)2x x x l l l l l +ì=-ï+ïï=í+ïï+=ï=î2)因为方程组的系数行列式231211(1)333D l l l l l l l l +=-=-++所以当0l =时,原方程组的系数矩阵A 与增广矩阵A 的秩分别为2与3,所以无解.当1l =时,A 的秩为2,A 的秩为3,故原方程组也无解. 当0l ¹,且1l ¹时,方程组有唯一解321232232323159(1)129(1)43129(1)x x x l l l l l l l l l l l l l l ì+-+=ï-ïï-+ï=í-ïï--+=ï-ïî3) 因为方程组的系数行列式1111(1)121a Db b a b ==--所以当0D ¹时,即1a ¹且0b ¹时,方程组有惟一解,且为12321(1)1124(1)b x b a x b ab b x b a -ì=ï-ïï=íï+-ï=ï-î当0D =时1o若0b =,这时系数矩阵A 的秩为2,而它的增广矩阵A 的秩为3,故原方程组无解。